WorldWideScience

Sample records for mixed galaxy mergers

  1. Mixing processes in galaxy mergers

    International Nuclear Information System (INIS)

    White, S.D.M.

    1980-01-01

    Previously published simulations of mergers between galaxies are used to examine the degree to which population gradients are weakened during the coalescence of two or more stellar systems. Although substantial mixing occurs during a merger, its effect on such gradients is quite moderate and can be overwhelmed by the effect of changes in structure. Experiment suggests that the centre-to-edge population difference in a merger remnant will be 20 per cent smaller than that in its progenitor galaxies if these are identical centrally concentrated systems. A sequence of three binary mergers is thus required to reduce such differences by a factor of 2. Because of changes in radial structure, population gradients are, in general, reduced more rapidly than is suggested by these numbers. Mixing is more efficient in mergers between less concentrated systems. In real merger remnants any weakening of gradients may often be masked by star-formation in residual interstellar gas. (author)

  2. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    International Nuclear Information System (INIS)

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.; Jian, Hung-Yu; Chiueh, Tzihong; Koo, David C.; Guhathakurta, Puragra; Patton, David R.; Yan, Renbin; Coil, Alison L.; Croton, Darren J.; Gerke, Brian F.; Lotz, Jennifer; Newman, Jeffrey A.

    2010-01-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 c ) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z ∼ 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 ± 0.3 dry mergers since this time, accounting for (38 ± 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters.

  3. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.; Yale Univ., New Haven, CT

    1982-01-01

    A number of N-body simulations of mergers of equal and unequal galaxies are presented. A new code is presented which determines the potential from a mass distribution by a fourth-order expansion in Tesseral harmonics in three dimensions as an approximation to a collisionless system. The total number of particles in the system is 1200. Two galaxies, each a spherical non-rotating system with isothermal or Hubble density profile, are put in orbit around each other where tidal effects and dynamical friction lead to merging. The final system has a Hubble profile, and in some mergers an 'isothermal' halo forms as found in cD galaxies. Equal mass mergers are more flattened than unequal mass mergers. The central surface brightness decreases except in a merger of isothermal galaxies which shows a major redistribution of energy towards a Hubble profile. Mixing is severe in equal mass mergers, where radial gradients are weakened, while in unequal mass encounters gradients can build up due to less mixing and the formation of a halo. Oblate systems with strong rotation form in high angular momentum encounters while prolate systems with little rotation are formed in near head-on collisions. (author)

  4. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.

    1982-01-01

    This work is a theoretical investigation of the mechanisms and results of mergers of elliptical galaxies. An N-body code is developed to simulate the dynamics of centrally concentrated collisionless systems. It is used for N-body simulations of the mergers of galaxies with mass ratios of 1:1, 2:1 and 3:1 with a total of 1200 or 2400 particles. The initial galaxies are spherical and non-rotating with Hubble type profiles and isotropic velocity distributions. The remnants are flattened (up to E4) and are oblate, triaxial or prolate depending on the impact parameter. Equal mass mergers are more flattened than unequal mass mergers and have significant velocity anisotropies. The remnants have Hubble type profiles with decreased central surface brightness and increased core radii and tidal radii. In some unequal mass mergers ''isothermal'' haloes tend to form. The density profiles are inconsistent with De Vaucouleurs profiles even though the initial profiles were not. The central velocity dispersion increases in 1:1 and 2:1 mass mergers but decreases in 3:1 mass mergers. Near head-on mergers lead to prolate systems with little rotation while high angular momentum mergers lead to oblate systems with strong rotation. The rotation curves show solid body rotation out to the half mass radius followed by a slow decline. Radial mixing is strong in equal mass mergers where it will weaken radial gradients. In unequal mass mergers there is little radial mixing but matter from the smaller galaxy ends up in the outer parts of the system where it can give rise to colour gradient

  5. Dynamics of merging: post-merger mixing and relaxation of an Illustris galaxy

    Science.gov (United States)

    Young, Anthony M.; Williams, Liliya L. R.; Hjorth, Jens

    2018-02-01

    During the merger of two galaxies, the resulting system undergoes violent relaxation and seeks stable equilibrium. However, the details of this evolution are not fully understood. Using Illustris simulation, we probe two physically related processes, mixing and relaxation. Though the two are driven by the same dynamics—global time-varying potential for the energy, and torques caused by asymmetries for angular momentum—we measure them differently. We define mixing as the redistribution of energy and angular momentum between particles of the two merging galaxies. We assess the degree of mixing as the difference between the shapes of their energy distributions, N(E)s, and their angular momentum distributions, N(L2)s. We find that the difference is decreasing with time, indicating mixing. To measure relaxation, we compare N(E) of the newly merged system to N(E) of a theoretical prediction for relaxed collisionless systems, DARKexp, and witness the system becoming more relaxed, in the sense that N(E) approaches DARKexp N(E). Because the dynamics driving mixing and relaxation are the same, the timescale is similar for both. We measure two sequential timescales: a rapid, 1 Gyr phase after the initial merger, during which the difference in N(E) of the two merging halos decreases by ~ 80%, followed by a slow phase, when the difference decreases by ~ 50% over ~ 8.5 Gyrs. This is a direct measurement of the relaxation timescale. Our work also draws attention to the fact that when a galaxy has reached Jeans equilibrium it may not yet have reached a fully relaxed state given by DARKexp, in that it retains information about its past history. This manifests itself most strongly in stars being centrally concentrated. We argue that it is particularly difficult for stars, and other tightly bound particles, to mix because they have less time to be influenced by the fluctuating potential, even across multiple merger events.

  6. MAJOR-MERGER GALAXY PAIRS IN THE COSMOS FIELD—MASS-DEPENDENT MERGER RATE EVOLUTION SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. Kevin; Zhao, Yinghe; Gao, Y.; Scoville, N.; Capak, P.; Drory, N.

    2012-01-01

    We present results of a statistical study of the cosmic evolution of the mass-dependent major-merger rate since z = 1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band-selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting function of f pair = 10 –1.88(±0.03) (1 + z) 2.2(±0.2) . The best-fitting function for the merger rate is R mg (Gyr –1 ) = 0.053 × (M star /10 10.7 M ☉ ) 0.3 (1 + z) 2.2 /(1 + z/8). This rate implies that galaxies of M star ∼ 10 10 -10 11.5 M ☉ have undergone ∼0.5-1.5 major mergers since z = 1. Our results show that, for massive galaxies (M star ≥ 10 10.5 M ☉ ) at z ≤ 1, major mergers involving star-forming galaxies (i.e., wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs of M star ∼ 10.3 M ☉ . Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies (M star ≥ 10 11.3 M ☉ ), but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass-dependent (ultra)luminous infrared galaxies ((U)LIRG) rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.

  7. Observing Galaxy Mergers in Simulations

    Science.gov (United States)

    Snyder, Gregory

    2018-01-01

    I will describe results on mergers and morphology of distant galaxies. By mock-observing 3D cosmological simulations, we aim to contrast theory with data, design better diagnostics of physical processes, and examine unexpected signatures of galaxy formation. Recently, we conducted mock surveys of the Illustris Simulations to learn how mergers would appear in deep HST and JWST surveys. With this approach, we reconciled merger rates estimated using observed close galaxy pairs with intrinsic merger rates predicted by theory. This implies that the merger-pair observability time is probably shorter in the early universe, and therefore that major mergers are more common than implied by the simplest arguments. Further, we show that disturbance-based diagnostics of late-stage mergers can be improved significantly by combining multi-dimensional image information with simulated merger identifications to train automated classifiers. We then apply these classifiers to real measurements from the CANDELS fields, recovering a merger fraction increasing with redshift in broad agreement with pair fractions and simulations, and with statistical errors smaller by a factor of two than classical morphology estimators. This emphasizes the importance of using robust training sets, including cosmological simulations and multidimensional data, for interpreting observed processes in galaxy evolution.

  8. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  9. The galaxy major merger fraction to {z} 1

    Science.gov (United States)

    López-Sanjuan, C.; Balcells, M.; Pérez-González, P. G.; Barro, G.; García-Dabó, C. E.; Gallego, J.; Zamorano, J.

    2009-07-01

    Aims: The importance of disc-disc major mergers in galaxy evolution remains uncertain. We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries/distortions, and address three main sources of systematic errors: (i) we explicitly apply morphological K-corrections; (ii) we measure asymmetries in galaxies artificially redshifted to zd = 1.0 to deal with loss of morphological information with redshift; and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m^mph) below 0.06 up to z 1. Parameterizing the merger fraction evolution with redshift as f_m^mph(z) = f_m^mph(0) (1+z)^m, we find that m = 1.8 ± 0.5 for MB ≤ -20 galaxies, while m = 5.4 ± 0.4 for Mstar ≥ 1010 M⊙ galaxies. When we translate our merger fractions to merger rates (Re_m^mph), their evolution, parameterized as Re_m^mph(z) = Re_m^mph(0) (1+z)^n, is quite similar in both cases: n = 3.3 ± 0.8 for MB ≤ -20 galaxies, and n = 3.5 ± 0.4 for Mstar ≥ 1010 M⊙ galaxies. Conclusions: Our results imply that only 8% of today's Mstar ≥ 1010 M⊙ galaxies have undergone a disc-disc major merger since z 1. In addition, 21% of Mstar ≥ 1010 M⊙ galaxies at z 1 have undergone one of these mergers since z 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of Mstar ≥ 1010 M⊙ galaxies since z 1, with only 0.2 disc-disc major mergers per galaxy, but may be an important process at z > 1, with ˜1 merger per galaxy at 1 < z < 3.

  10. Cosmic Collisions: Galaxy Mergers and Evolution

    Science.gov (United States)

    Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.

    2014-08-01

    Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.

  11. Can mergers make slowly rotating elliptical galaxies

    International Nuclear Information System (INIS)

    White, S.D.M.

    1979-01-01

    The results of numerical experiments are used to guide an analytic discussion of hyperbolic mergers among an uncorrelated galaxy population. The expected merger rate is derived as a function of progenitor mass and relative angular momentum, and is used to predict the distribution of the parameter V/sub c//sigma 0 for merger products where V/sub c/ is the maximum observed rotation velocity in a galaxy and sigma 0 is its central velocity dispersion. The median value of this parameter for mergers between comparable galaxies is estimated to be 0.65 and is higher than the observed value in any of the 14 galaxies for which data are available. It seems unlikely that most elliptical galaxies are the result of single or multiple mergers between initially unbound stellar systems; further observational and theoretical work is suggested which should lead to a conclusive test of this picture. The present arguments cannot, however, exclude formation from low angular momentum elliptical orbits

  12. INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Yan, Renbin; Cooper, Michael C.; Coil, Alison L.; Faber, S. M.; Koo, David C.; Rosario, D. J.; Dutton, Aaron A.

    2009-01-01

    We present a new technique for observationally identifying galaxy mergers spectroscopically rather than through host galaxy imaging. Our technique exploits the dynamics of supermassive black holes (SMBHs) powering active galactic nuclei (AGNs) in merger-remnant galaxies. Because structure in the universe is built up through galaxy mergers and nearly all galaxies host a central SMBH, some galaxies should possess two SMBHs near their centers as the result of a recent merger. These SMBHs spiral to the center of the resultant merger-remnant galaxy, and one or both of the SMBHs may power AGNs. Using the DEEP2 Galaxy Redshift Survey, we have examined 1881 red galaxies, of which 91 exhibit [O III] and Hβ emission lines indicative of Seyfert 2 activity. Of these, 32 AGNs have [O III] emission-line redshifts significantly different from the redshifts of the host galaxies' stars, corresponding to velocity offsets of ∼50 km s -1 to ∼300 km s -1 . Two of these AGNs exhibit double-peaked [O III] emission lines, while the remaining 30 AGNs each exhibit a single set of velocity-offset [O III] emission lines. After exploring a variety of physical models for these velocity offsets, we argue that the most likely explanation is inspiralling SMBHs in merger-remnant galaxies. Based on this interpretation, we find that roughly half of the red galaxies hosting AGNs are also merger remnants, which implies that mergers may trigger AGN activity in red galaxies. The AGN velocity offsets we find imply a merger fraction of ∼30% and a merger rate of ∼3 mergers Gyr -1 for red galaxies at redshifts 0.34 < z < 0.82.

  13. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L ∼> fL * galaxies follows the simple relation dN/dt ≅ 0.03(1+f)Gyr -1 (1+z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L * high-redshift galaxies (∼ 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the last 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman Break Galaxies (LBGs)

  14. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  15. Creating lenticular galaxies with mergers

    NARCIS (Netherlands)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular

  16. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  17. THE MAJOR AND MINOR GALAXY MERGER RATES AT z < 1.5

    International Nuclear Information System (INIS)

    Lotz, Jennifer M.; Jonsson, Patrik; Cox, T. J.; Croton, Darren; Primack, Joel R.; Somerville, Rachel S.; Stewart, Kyle

    2011-01-01

    Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates and a cosmologically averaged 'observability' timescale (T obs (z)) for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, (T obs (z)) for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate (T obs (z)) for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G – M 20 , and (3) the morphology indicator asymmetry A. Then, we apply these timescales to the observed merger fractions at z +3.0±1.1 ) than samples selected with constant stellar mass or passively evolving luminosity (∝(1 + z) +0.1±0.4 ). We calculate the minor merger rate (1:4 sat /M primary ∼ 20 . The implied minor merger rate is ∼3 times the major merger rate at z ∼ 0.7 and shows little evolution with redshift.

  18. GALAXY MERGERS AND DARK MATTER HALO MERGERS IN ΛCDM: MASS, REDSHIFT, AND MASS-RATIO DEPENDENCE

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We employ a high-resolution ΛCDM N-body simulation to present merger rate predictions for dark matter (DM) halos and investigate how common merger-related observables for galaxies-such as close pair counts, starburst counts, and the morphologically disturbed fraction-likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We investigate both rate at which subhalos first enter the virial radius of a larger halo (the 'infall rate'), and the rate at which subhalos become destroyed, losing 90% of the mass they had at infall (the d estruction rate ) . For both merger rate definitions, we provide a simple 'universal' fitting formula that describes our derived merger rates for DM halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density matching to associate halos with galaxies. For example, we find that the instantaneous (destruction) merger rate of m/M > 0.3 mass-ratio events into typical L ∼> f L * galaxies follows the simple relation dN/dt ≅ 0.03(1 + f) Gyr -1 (1 + z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of >0.4 L * high-redshift galaxies (∼3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the previous 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman break galaxies (LBGs).

  19. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2016-01-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations

  20. The relative role of galaxy mergers and cosmic flows in feeding black holes

    International Nuclear Information System (INIS)

    Bellovary, Jillian; Brooks, Alyson; Volonteri, Marta; Governato, Fabio; Quinn, Thomas; Wadsley, James

    2013-01-01

    Using a set of zoomed-in cosmological simulations of high-redshift progenitors of massive galaxies, we isolate and trace the history of gas that is accreted by central supermassive black holes. We determine the origins of the accreted gas, in terms of whether it entered the galaxy during a merger event or was smoothly accreted. Furthermore, we designate whether the smoothly accreted gas is accreted via a cold flow or is shocked upon entry into the halo. For moderate-mass (10 6 -10 7 M ☉ ) black holes at z ∼ 4, there is a preference to accrete cold flow gas as opposed to gas of shocked or merger origin. However, this result is a consequence of the fact that the entire galaxy has a higher fraction of gas from cold flows. In general, each black hole tends to accrete the same fractions of smooth- and merger-accreted gas as is contained in its host galaxy, suggesting that once gas enters a halo it becomes well-mixed, and its origins are erased. We find that the angular momentum of the gas upon halo entry is a more important factor; black holes preferentially accrete gas that had low angular momentum when it entered the galaxy, regardless of whether it was accreted smoothly or through mergers.

  1. Quantifying the impact of mergers on the angular momentum of simulated galaxies

    Science.gov (United States)

    Lagos, Claudia del P.; Stevens, Adam R. H.; Bower, Richard G.; Davis, Timothy A.; Contreras, Sergio; Padilla, Nelson D.; Obreschkow, Danail; Croton, Darren; Trayford, James W.; Welker, Charlotte; Theuns, Tom

    2018-02-01

    We use EAGLE to quantify the effect galaxy mergers have on the stellar specific angular momentum of galaxies, jstars. We split mergers into dry (gas-poor)/wet (gas-rich), major/minor and different spin alignments and orbital parameters. Wet (dry) mergers have an average neutral gas-to-stellar mass ratio of 1.1 (0.02), while major (minor) mergers are those with stellar mass ratios ≥0.3 (0.1-0.3). We correlate the positions of galaxies in the jstars-stellar mass plane at z = 0 with their merger history, and find that galaxies of low spins suffered dry mergers, while galaxies of normal/high spins suffered predominantly wet mergers, if any. The radial jstars profiles of galaxies that went through dry mergers are deficient by ≈0.3 dex at r ≲ 10 r50 (with r50 being the half-stellar mass radius), compared to galaxies that went through wet mergers. Studying the merger remnants reveals that dry mergers reduce jstars by ≈30 per cent, while wet mergers increase it by ≈10 per cent, on average. The latter is connected to the build-up of the bulge by newly formed stars of high rotational speed. Moving from minor to major mergers accentuates these effects. When the spin vectors of the galaxies prior to the dry merger are misaligned, jstars decreases by a greater magnitude, while in wet mergers corotation and high orbital angular momentum efficiently spun-up galaxies. We predict what would be the observational signatures in the jstars profiles driven by dry mergers: (i) shallow radial profiles and (ii) profiles that rise beyond ≈10 r50, both of which are significantly different from spiral galaxies.

  2. A relationship of polycyclic aromatic hydrocarbon features with galaxy merger in star-forming galaxies at z < 0.2

    Science.gov (United States)

    Murata, Katsuhiro L.; Yamada, Rika; Oyabu, Shinki; Kaneda, Hidehiro; Ishihara, Daisuke; Yamagishi, Mitsuyoshi; Kokusho, Takuma; Takeuchi, Tsutomu T.

    2017-11-01

    Using the AKARI, Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST) data, we investigated the relation of polycyclic aromatic hydrocarbon (PAH) mass (MPAH), very small grain mass (MVSG), big grain mass (MBG) and stellar mass (Mstar) with galaxy merger for 55 star-forming galaxies at redshift z 0.1, we divided the galaxies into merger galaxies and non-merger galaxies with the morphological parameter asymmetry A, and quantified merging stages of galaxies based on the morphological indicators, the second-order momentum of the brightest 20 per cent region M20 and the Gini coefficient. We find that MPAH/MBG of merger galaxies tend to be lower than that of non-merger galaxies and there are no systematic differences of MVSG/MBG and MBG/Mstar between merger galaxies and non-merger galaxies. We find that galaxies with very low MPAH/MBG seem to be merger galaxies at late stages. These results suggest that PAHs are partly destroyed at late stages of merging processes. Furthermore, we investigated MPAH/MBG variations in radiation field intensity strength G0 and the emission line ratio of [O I] λ 6300/Hα that is a shock tracer for merger galaxies and find that MPAH/MBG decreases with increasing both G0 and [O I]/Hα. PAH destruction is likely to be caused by two processes: strong radiation fields and large-scale shocks during merging processes of galaxies.

  3. DATA MINING THE GALAXY ZOO MERGERS

    Data.gov (United States)

    National Aeronautics and Space Administration — DATA MINING THE GALAXY ZOO MERGERS STEVEN BAEHR, ARUN VEDACHALAM, KIRK BORNE, AND DANIEL SPONSELLER Abstract. Collisions between pairs of galaxies usually end in the...

  4. Late-stage galaxy mergers in cosmos to z ∼ 1

    International Nuclear Information System (INIS)

    Lackner, C. N.; Silverman, J. D.; Salvato, M.; Kampczyk, P.; Kartaltepe, J. S.; Sanders, D.; Lee, N.; Capak, P.; Scoville, N.; Civano, F.; Halliday, C.; Ilbert, O.; Le Fèvre, O.; Jahnke, K.; Koekemoer, A. M.; Liu, C. T.; Sheth, K.; Toft, S.

    2014-01-01

    The role of major mergers in galaxy and black hole formation is not well-constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images to distinguish two concentrated galaxy nuclei at small separations. This method does not rely on low surface brightness features to identify mergers, and is therefore reliable to high redshift. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. The mock images show that our method returns an uncontaminated (<10%) sample of mergers with projected separations between 2.2 and 8 kpc out to z∼1. We apply our new method to a magnitude-limited (m FW 814 <23) sample of 44,164 galaxies from the COSMOS HST/ACS catalog. Using a mass-complete sample with logM ∗ /M ⊙ >10.6 and 0.25mergers. Correcting for incompleteness and contamination, the fractional merger rate increases strongly with redshift as r merge ∝(1+z) 3.8±0.9 , in agreement both with earlier studies and with dark matter halo merger rates. Separating the sample into star-forming and quiescent galaxies shows that the merger rate for star-forming galaxies increases strongly with redshift, (1+z) 4.5±1.3 , while the merger rate for quiescent galaxies is consistent with no evolution, (1+z) 1.1±1.2 . The merger rate also becomes steeper with decreasing stellar mass. Limiting our sample to galaxies with spectroscopic redshifts from zCOSMOS, we find that the star formation rates and X-ray selected active galactic nucleus (AGN) activity in likely late-stage mergers are higher by factors of ∼2 relative to those of a control sample. Combining our sample with more widely separated pairs, we find that 8

  5. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); Cao, Chen [School of Space Science and Physics, Shandong University, Weihai, Weihai, Shandong 264209 (China); Xu, C. Kevin [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Jarrett, Thomas H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa)

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  6. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    International Nuclear Information System (INIS)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.

    2016-01-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  7. Can galaxy growth be sustained through HI-rich minor mergers?

    Science.gov (United States)

    Lehnert, M. D.; van Driel, W.; Minchin, R.

    2016-05-01

    Local galaxies with specific star-formation rates (star-formation rate per unit mass; sSFR ~ 0.2-10 Gyr-1) that are as high as distant galaxies (z ≈ 1-3), are very rich in Hi. Those with low stellar masses, M⋆ = 108-9 M⊙, for example, have MHI/M⋆ ≈ 5-30. Using continuity arguments, whereby the specific merger rate is hypothesized to be proportional to the specific star-formation rate, along with Hi gas mass measurements for local galaxies with high sSFR, we estimate that moderate-mass galaxies, M⋆ = 109-10.5 M⊙, can acquire enough gas through minor mergers (stellar mass ratios ~4-100) to sustain their star formation rates at z ~ 2. The relative fraction of the gas accreted through minor mergers declines with increasing stellar mass, and for the most massive galaxies considered, M⋆ = 1010.5-11 M⊙, this accretion rate is insufficient to sustain their star formation. We checked our minor merger hypothesis at z = 0 using the same methodology, but now with relations for local normal galaxies, and find that minor mergers cannot account for their specific growth rates, in agreement with observations of Hi-rich satellites around nearby spirals. We discuss a number of attractive features, such as a natural downsizing effect, in using minor mergers with extended Hi disks to support star formation at high redshift. The answer to the question posed by the title, "Can galaxy growth be sustained through Hi-rich minor mergers?", is "maybe", but only for relatively low-mass galaxies and at high redshift.

  8. The fraction of AGNs in major merger galaxies and its luminosity dependence

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  9. On order and chaos in the mergers of galaxies

    Science.gov (United States)

    Vandervoort, Peter O.

    2018-03-01

    This paper describes a low-dimensional model of the merger of two galaxies. The governing equations are the complete sets of moment equations of the first and second orders derived from the collisionless Boltzmann equations representing the galaxies. The moment equations reduce to an equation governing the relative motion of the galaxies, tensor virial equations, and equations governing the kinetic energy tensors. We represent the galaxies as heterogeneous ellipsoids with Gaussian stratifications of their densities, and we represent the mean stellar motions in terms of velocity fields that sustain those densities consistently with the equation of continuity. We reduce and solve the governing equations for a head-on encounter of a dwarf galaxy with a giant galaxy. That reduction includes the effect of dynamical friction on the relative motion of the galaxies. Our criterion for chaotic behaviour is sensitivity of the motion to small changes in the initial conditions. In a survey of encounters and mergers of a dwarf galaxy with a giant galaxy, chaotic behaviour arises mainly in non-linear oscillations of the dwarf galaxy. The encounter disrupts the dwarf, excites chaotic oscillations of the dwarf, or excites regular oscillations. Dynamical friction can drive a merger to completion within a Hubble time only if the dwarf is sufficiently massive. The survey of encounters and mergers is the basis for a simple model of the evolution of a `Local Group' consisting of a giant galaxy and a population of dwarf galaxies bound to the giant as satellites on radial orbits.

  10. Galaxy Mergers from the Largest to the Smallest Scales: Introduction and Overview

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    Galaxy mergers encompass a wide range of astrophysical phenomena, including cosmological considerations, gas and stellar dynamics, AGN evolution, and mergers of the central SMBHs. Astrophysical signatures of galaxy mergers can be observed across most of the electromagnetic spectrum and through gravitational radiation. This talk provides an introduction and overview of the meeting, highlighting the key aspects of galaxy mergers from large to small scales.

  11. PAIRING OF SUPERMASSIVE BLACK HOLES IN UNEQUAL-MASS GALAXY MERGERS

    International Nuclear Information System (INIS)

    Callegari, Simone; Mayer, Lucio; Kazantzidis, Stelios; Colpi, Monica; Governato, Fabio; Quinn, Thomas; Wadsley, James

    2009-01-01

    We examine the pairing process of supermassive black holes (SMBHs) down to scales of 20-100 pc using a set of N-body/SPH simulations of binary mergers of disk galaxies with mass ratios of 1:4 and 1:10. Our numerical experiments are designed to represent merger events occurring at various cosmic epochs. The initial conditions of the encounters are consistent with the ΛCDM paradigm of structure formation, and the simulations include the effects of radiative cooling, star formation (SF), and supernovae feedback. We find that the pairing of SMBHs depends sensitively on the amount of baryonic mass preserved in the center of the companion galaxies during the last phases of the merger. In particular, due to the combination of gasdynamics and SF, we find that a pair of SMBHs can form efficiently in 1:10 minor mergers, provided that galaxies are relatively gas-rich (gas fractions of 30% of the disk mass) and that the mergers occur at relatively high redshift (z ∼ 3), when dynamical friction timescales are shorter. Since 1:10 mergers are most common events during the assembly of galaxies, and mergers are more frequent at high redshift when galaxies are also more gas-rich, our results have positive implications for future gravitational wave experiments such as the Laser Interferometer Space Antenna.

  12. POST-MERGER SIGNATURES OF RED-SEQUENCE GALAXIES IN RICH ABELL CLUSTERS AT z ∼< 0.1

    International Nuclear Information System (INIS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Lee, Jaehyun; Ree, Chang H.

    2012-01-01

    We have investigated the post-merger signatures of red-sequence galaxies in rich Abell clusters at z ∼ r < –20) cluster red-sequence galaxies show post-merger signatures in four clusters consistently. Most (∼71%) of the featured galaxies were found to be bulge dominated, and for the subsample of bulge-dominated red-sequence galaxies, the post-merger fraction rises to ∼38%. We also found that roughly 4% of bulge-dominated red-sequence galaxies interact (ongoing merger). A total of 42% (38% post-merger, 4% ongoing merger) of galaxies show merger-related features. Compared to a field galaxy study with a similar limiting magnitude by van Dokkum in 2005, our cluster study presents a similar post-merger fraction but a markedly lower ongoing merger fraction. The merger fraction derived is surprisingly high for the high density of our clusters, where the fast internal motions of galaxies are thought to play a negative role in galaxy mergers. The fraction of post-merger and ongoing merger galaxies can be explained as follows. Most of the post-merger galaxies may have carried over their merger features from their previous halo environment, whereas interacting galaxies interact in the current cluster in situ. According to our semi-analytic calculation, massive cluster halos may very well have experienced tens of halo mergers over the last 4-5 Gyr; post-merger features last that long, allowing these features to be detected in our clusters today. The apparent lack of dependence of the merger fraction on the clustocentric distance is naturally explained this way. In this scenario, the galaxy morphology and properties can be properly interpreted only when the halo evolution characteristics are understood first.

  13. Exploring the cosmic evolution of habitability with galaxy merger trees

    Science.gov (United States)

    Stanway, E. R.; Hoskin, M. J.; Lane, M. A.; Brown, G. C.; Childs, H. J. T.; Greis, S. M. L.; Levan, A. J.

    2018-04-01

    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma-ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar-mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar-mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.

  14. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai

    2014-01-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst

  15. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    International Nuclear Information System (INIS)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M star > 10 6 M ☉ that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  16. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  17. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    Science.gov (United States)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  18. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA (United States); Wetzel, Andrew [TAPIR, California Institute of Technology, Pasadena, CA (United States); Garrison-Kimmel, Shea, E-mail: alis@ucolick.org [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA (United States)

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  19. From discs to bulges: effect of mergers on the morphology of galaxies

    NARCIS (Netherlands)

    Kannan, Rahul; Macciò, Andrea V.; Fontanot, Fabio; Moster, Benjamin P.; Karman, Wouter; Somerville, Rachel S.

    2015-01-01

    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then

  20. THE CFHTLS-DEEP CATALOG OF INTERACTING GALAXIES. I. MERGER RATE EVOLUTION TO z = 1.2

    International Nuclear Information System (INIS)

    Bridge, C. R.; Carlberg, R. G.; Sullivan, M.

    2010-01-01

    We present the rest-frame optical galaxy merger fraction between 0.2 vega ≤ 22.2 (∼27,000 galaxies) over 2 square degrees, we have compiled the CFHTLS-Deep Catalog of Interacting Galaxies, with ∼ 1600 merging galaxies. We find the merger fraction to be 4.3% ± 0.3% at z ∼ 0.3 and 19.0% ± 2.5% at z ∼ 1, implying evolution of the merger fraction going as (1 + z) m , with m = 2.25 ± 0.24. This result is inconsistent with a mild or non-evolving (m 4σ level of confidence. A mild trend, where by massive galaxies with M * >10 10.7 M sun are undergoing fewer mergers than less massive systems (M * ∼ 10 10 M sun ), consistent with the expectations of galaxy assembly downsizing is observed. Our results also show that interacting galaxies have on average SFRs double that found in non-interacting field galaxies. We conclude that (1) the optical galaxy merger fraction does evolve with redshift, (2) the merger fraction depends mildly on stellar mass, with lower mass galaxies having higher merger fractions at z < 1, and (3) star formation is triggered at all phases of a merger, with larger enhancements at later stages, consistent with N-body simulations.

  1. THE ROLE OF DRY MERGERS FOR THE FORMATION AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Ruszkowski, M.; Springel, V.

    2009-01-01

    Using a resimulation technique, we perform high-resolution cosmological simulations of dry mergers in a massive (10 15 M sun ) galaxy cluster identified in the Millennium Run. Our initial conditions include well resolved compound galaxy models consisting of dark matter halos and stellar bulges that are used to replace the most massive cluster progenitor halos at redshift z = 3, allowing us to follow the subsequent dry merger processes that build up the cluster galaxies in a self-consistent cosmological setting. By construction, our galaxy models obey the stellar mass-size relation initially. Also, we study both galaxy models with adiabatically contracted and uncompressed halos. We demonstrate that the brightest cluster galaxy (BCG) evolves away from the Kormendy relation as defined by the smaller mass galaxies (i.e., the relation bends). This is accompanied by a significantly faster dark matter mass growth within the half-light radius of the BCG compared to the increase in the stellar mass inside the same radius. As a result of the comparatively large number of mergers the BCG experiences, its total mass-to-light ratio becomes significantly higher than in typical elliptical galaxies. We also show that the mixing processes between dark matter and stars lead to a small but numerically robust tilt in the fundamental plane and that the BCG lies on the tilted plane. Our model is consistent with the observed steepening of the logarithmic mass-to-light gradient as a function of the stellar mass. As we have not included effects from gas dynamics or star formation, these trends are exclusively due to N-body and stellar dynamical effects. Surprisingly, we find only tentative weak distortion in the Faber-Jackson relation that depends on the aperture size, unlike expected based on studies of isolated merger simulations. This may be due to differences in the distribution of galaxy orbits, which is given in our approach directly by the cosmological context while it has to be

  2. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z ∼ 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M DM ∼ 10 11 - 10 13 M · . These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M star ∼ 10 10 M · (M DM ∼ 10 11.5 M · ) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M star ∼ 10 11 M · (M DM ∼ 10 13 M · the fraction of baryons amassed in mergers is even higher, ∼ 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on the fraction of a galaxy's cold baryons that can originate in cold flows or from hot halo cooling

  3. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  4. Toward the Distribution of Orbital Parameters of Nearby Major Galaxy Mergers

    Science.gov (United States)

    Mortazavi, S. Alireza

    2016-01-01

    In this thesis project our goal is to measure the initial conditions of a sample of ~20 local disk-disk major galaxy mergers. Measuring the orbital parameters is possible by findingthe most similar galaxy merger simulation to the morphology and kinematics of the data.We have developed an automated modeling method based on the Identikit software package,which also estimates the uncertainty of the measured initial conditions. We tested our modeling method using an independent set of GADGET simulations, and we acquired reliable results onprograde merger systems. We observed the Hα kinematics of our sample using SparsePak IFU on the WIYN telescope at KPNO, and DIS on the 3.5m telescope at APO. For the few merger systems in our sample with archival HI data available, we compare the use of HI vs Hα as the kinematic tracer. This work lays the ground-work for the analysis of larger statistical samples of mergers from on-going IFU galaxy survey such as MaNGA.

  5. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    Science.gov (United States)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  6. MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Naab, Thorsten; Johansson, Peter H.; Ostriker, Jeremiah P.

    2009-01-01

    Using a high-resolution hydrodynamical cosmological simulation of the formation of a massive spheroidal galaxy we show that elliptical galaxies can be very compact and massive at high redshift in agreement with recent observations. Accretion of stripped infalling stellar material increases the size of the system with time and the central concentration is reduced by dynamical friction of the surviving stellar cores. In a specific case of a spheroidal galaxy with a final stellar mass of 1.5 x 10 11 M sun we find that the effective radius r e increases from 0.7 ± 0.2 kpc at z = 3 to r e = 2.4 ± 0.4 kpc at z = 0 with a concomitant decrease in the effective density of an order of magnitude and a decrease of the central velocity dispersion by approximately 20% over this time interval. A simple argument based on the virial theorem shows that during the accretion of weakly bound material (minor mergers) the radius can increase as the square of the mass in contrast to the usual linear rate of increase for major mergers. By undergoing minor mergers compact high-redshift spheroids can evolve into present-day systems with sizes and concentrations similar to observed local ellipticals. This indicates that minor mergers may be the main driver for the late evolution of sizes and densities of early-type galaxies.

  7. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, R. Scott; Comerford, Julia M. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Pooley, David, E-mail: Robert.Barrows@Colorado.edu [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  8. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Science.gov (United States)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (˜0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  9. KINEMATIC CLASSIFICATIONS OF LOCAL INTERACTING GALAXIES: IMPLICATIONS FOR THE MERGER/DISK CLASSIFICATIONS AT HIGH-z

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Larson, Kirsten L.; Sanders, D. B.; Rich, Jeffrey A.; Yuan, Tiantian; Kewley, Lisa J.; Casey, Caitlin M.; Smith, Howard A.; Hayward, Christopher C.

    2015-01-01

    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. Galaxy kinematics as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the Wide Field Spectrograph observations of these local (U)LIRGs to z = 1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ∼900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematics compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of mergers displaying disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. Additional merger indicators such as morphological properties traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z

  10. Evolution of the major merger galaxy pair fraction at z < 1

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H. [Academia Sinica Institute for Astronomy and Astrophysics, Taipei, Taiwan (China); Foucaud, S. [Shanghai Jiao Tong University, Shanghai (China); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland)

    2014-11-10

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  11. Evolution of the major merger galaxy pair fraction at z < 1

    International Nuclear Information System (INIS)

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H.; Foucaud, S.; De Propris, R.

    2014-01-01

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10 8 -10 12 L ☉ , in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f pair ∝(1 + z) m than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  12. THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH

    International Nuclear Information System (INIS)

    Schawinski, Kevin; Dowlin, Nathan; Urry, C. Megan; Thomas, Daniel; Edmondson, Edward

    2010-01-01

    Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.

  13. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    International Nuclear Information System (INIS)

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tumlinson, Jason; Tripp, Todd M.

    2011-01-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h -1 70 kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U ∼ -2.5 ± 0.03), column density (N H,perpendicular ∼ 10 21 cm -2 ), metallicity ([M/H] ∼ - 0.20 ± 0.15), and mass (∼10 8 M sun ) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M DM > 8.8 x 10 11 M sun ) and its companion galaxy (M DM > 2.1 x 10 11 M sun ; M * ∼ 2 x 10 10 M sun ; stellar burst age = 300-800 Myr; SFR ∼6 M sun yr -1 ; and metallicity 12 + log (O/H) = 8.64 ± 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  14. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  15. ENVIRONMENTAL DEPENDENCE OF THE GALAXY MERGER RATE IN A ΛCDM UNIVERSE

    International Nuclear Information System (INIS)

    Jian, Hung-Yu; Chiueh, Tzihong; Lin Lihwai

    2012-01-01

    We make use of four galaxy catalogs based on four different semi-analytical models (SAMs) implemented in the Millennium Simulation to study the environmental effects and the model dependence of the galaxy merger rate. We begin the analyses by finding that the galaxy merger rate in SAMs has a mild redshift evolution with luminosity-selected samples in the evolution-corrected B-band magnitude range,–21 ≤ M e B ≤ –19, consistent with the results of previous works. To study the environmental dependence of the galaxy merger rate, we adopt two estimators, the local overdensity (1 + δ n ), defined as the surface density from the nth nearest neighbor (n = 6 is chosen in this study), and the host halo mass M h . We find that the galaxy merger rate F mg shows a strong dependence on the local overdensity (1 + δ n ) and the dependence is similar at all redshifts. For the overdensity estimator, the merger rate F mg is found to be about twenty times larger in the densest regions than in underdense ones in two of the four SAMs, while it is roughly four times higher in the other two. In other words, the discrepancies of the merger rate difference between the two extremes can differ by a factor of ∼5 depending on the SAMs adopted. On the other hand, for the halo mass estimator, F mg does not monotonically increase with the host halo mass M h but peaks in the M h range between 10 12 and 10 13 h –1 M ☉ , which corresponds to group environments. The high merger rate in high local density regions corresponds primarily to the high merger rate in group environments. In addition, we also study the merger probability of 'close pairs' identified using the projected separation and the line-of-sight velocity difference C mg and the merger timescale T mg ; these are two important quantities for observations to convert the pair fraction N c into the galaxy merger rate. We discover that T mg has a weak dependence on environment and different SAMs, and is about 2 Gyr old at z

  16. THE EFFECT OF DRY MERGERS ON THE COLOR-MAGNITUDE RELATION OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2009-01-01

    We investigate the effect of dry merging on the color-magnitude relation (CMR) of galaxies and find that the amount of merging predicted by a hierarchical model results in a red sequence that compares well with the observed low-redshift relation. A sample of ∼ 29,000 early-type galaxies selected from the Sloan Digital Sky Survey Data Release 6 shows that the bright end of the CMR has a shallower slope and smaller scatter than the faint end. This magnitude dependence is predicted by a simple toy model in which gas-rich mergers move galaxies onto a 'creation red sequence' (CRS) by quenching their star formation, and subsequent mergers between red, gas-poor galaxies (so-called 'dry' mergers) move galaxies along the relation. We use galaxy merger trees from a semianalytic model of galaxy formation to test the amplitude of this effect and find a change in slope at the bright end that brackets the observations, using gas fraction thresholds of 10%-30% to separate wet and dry mergers. A more realistic model that includes scatter in the CRS shows that dry merging decreases the scatter at the bright end. Contrary to previous claims, the small scatter in the observed CMR thus cannot be used to constrain the amount of dry merging.

  17. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    Science.gov (United States)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  18. Major galaxy mergers and the growth of supermassive black holes in quasars.

    Science.gov (United States)

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  19. Mergers in galaxy groups. I. Structure and properties of elliptical remnants

    International Nuclear Information System (INIS)

    Taranu, Dan S.; Dubinski, John; Yee, H. K. C.

    2013-01-01

    We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size-luminosity and velocity dispersion-luminosity (Faber-Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size-luminosity and Faber-Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.

  20. Galaxy-Wide Shocks in the H$\\alpha$ Emission of Nearby Galaxy Mergers

    Science.gov (United States)

    Mortazavi, S. Alireza; Lotz, Jennifer M.

    2018-01-01

    We examine the properties of shocked gas produced as a result of binary galaxy interactions, using H$\\alpha$ emission in a sample 22 mergers observed with SparsePak Integral Field Unit (IFU) at Kitt Peak National Observatory (KPNO). Our sample consists of major and minor tidally interacting galaxies (mass ratio $1text{f}_\\text{shocked}$, and examine the spatial distribution of shocks. We find that close galaxy pairs have, on average, a higher shock fraction than wide pairs, and our coalesced mergers have the highest average $\\text{f}_\\text{shocked}$. Additionally, we find for the first time, correlations between mass ratio, mass of the companion, and $\\text{f}_\\text{shocked}$ in tidally interacting galaxy pairs. Among the non-coalesced systems in our sample, the galaxy pairs with more equal light ratio (stellar mass ratio) tend to have a higher average $\\text{f}_\\text{shocked}$. Also, the primary (more massive) companions are on average slightly more shocked than the secondary (less massive) ones. Utilizing dynamical models in the literature and this work, we inspect trends between $\\text{f}_\\text{shocked}$ and the reconstructed encounter parameters. In this very limited sample, we find that the orbital pericentric separation is correlated with shock fraction, consistent with shocks being produced by the chain of events caused by the tidal impulse during the first passage. These results lay a basis for furture analysis using the higher statistics provided by the on-going and future IFU galaxy surveys.

  1. Galaxy mergers and active nuclei. II. Cosmological evolution

    International Nuclear Information System (INIS)

    Roos, N.

    1985-01-01

    Galaxy mergers may produce active galactic nuclei (AGNs) by repopulating stellar loss-cone orbits around a central black hole. In the companion paper we derived a local bolometric luminosity function of AGNs based on this process. In this paper we interpret the observed cosmological evolution of the luminosity function of AGNs as due to evolution of the merging rate among galaxies after their formation at a redshift of approx.3. An important difference between our model and previous (empirical) models is that the evolution depends on galactic (stellar) luminosity instead of central nonthermal luminosity. The radio counts at 1.4 GHz and optical counts are reproduced by the model if the merging rate of the galaxies at the bright end of the galaxy luminosity function evolves considerably faster than the merging rate of the smaller galaxies. The theoretical and observed luminosity functions at high redshift have similar characteristics: (i) at high luminosity the evolution is best described by luminosity evolution, and (2) the luminosity function has a maximum at approx.10 3 Gpc -3 , which is the space density of the most massive galaxies. A large fraction of these galaxies are presumably formed in the precursors of rich clusters. Their merger rate is high initially and declines rapidly on a time scale of a few billion years. If the initial density fluctuation spectrum for protoclusters of mass M/sub cl/ has the form deltarho/rhoproportionalM/sup( -1+n//3)/2/sub cl/, then the steep evolution of the most luminous galaxies suggests nroughly-equal-1.3 at a redshift of approx.3, which is consistent with the observed clustering of galaxies

  2. The Role Of Mergers In Galaxy Formation And Transformations

    Science.gov (United States)

    Conselice, Christopher J.; Mundy, Carl; Duncan, Kenneth

    2017-06-01

    Baryonic assembly of galaxies is one of the largest questions in extragalactic studies, which relates to many other issues, including environment, feedback, star formation, gas accretion and merging. In fact, all of these processes are related and must be accounted for and understood to paint a full picture of galaxy assembly. Perhaps the most straightforward of these processes to measure are the merging and star formation histories. I will present results of combining in a new reanalysis of the three deepest and large NIR surveys take to date: UDS, Ultra-VISTA and VIDEO as part of the REFINE project. Using consistently measured stellar masses and photometric redshifts for galaxies in these fields up to z =3, I will show how the major and minor merger rate can consistently be measured across these fields. Our new method involves a full use of the PDF for photo-zs and stellar masses. We show how the merger fraction and rate are lower than previous results and the implications for this for other methods of galaxy assembly and feedback mechanisms. Invited Talk presented at the conference Galaxy Evolution Across Time, 12-16 June, Paris, France

  3. EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Just, Andreas; Merritt, David

    2011-01-01

    In spherical galaxies, binary supermassive black holes (SMBHs) have difficulty reaching sub-parsec separations due to depletion of stars on orbits that intersect the massive binary-the 'final parsec problem'. Galaxies that form via major mergers are substantially non-spherical, and it has been argued that the centrophilic orbits in triaxial galaxies might provide stars to the massive binary at a high enough rate to avoid stalling. Here we test that idea by carrying out fully self-consistent merger simulations of galaxies containing central SMBHs. We find hardening rates of the massive binaries that are indeed much higher than in spherical models and essentially independent of the number of particles used in the simulations. Binary eccentricities remain high throughout the simulations. Our results constitute a fully stellar-dynamical solution to the final parsec problem and imply a potentially high rate of events for low-frequency gravitational wave detectors like LISA.

  4. SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS

    OpenAIRE

    Deason, A; Wetzel, A; Garrison-Kimmel, S

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  5. RECOILING MASSIVE BLACK HOLES IN GAS-RICH GALAXY MERGERS

    International Nuclear Information System (INIS)

    Guedes, Javiera; Madau, Piero; Mayer, Lucio; Callegari, Simone

    2011-01-01

    The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity 'kick' to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤M≤6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s -1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s -1 . (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s -1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

  6. No Assembly Required: Mergers are Mostly Irrelevant for the Growth of Low-mass Dwarf Galaxies

    Science.gov (United States)

    Fitts, Alex; Boylan-Kolchin, Michael; Bullock, James S.; Weisz, Daniel R.; El-Badry, Kareem; Wheeler, Coral; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Wetzel, Andrew; Hayward, Christopher C.

    2018-06-01

    We investigate the merger histories of isolated dwarf galaxies based on a suite of 15 high-resolution cosmological zoom-in simulations, all with masses of Mhalo ≈ 1010 M⊙ (and M⋆ ˜ 105 - 107 M⊙) at z = 0, from the Feedback in Realistic Environments (FIRE) project. The stellar populations of these dwarf galaxies at z = 0 are formed essentially entirely "in situ": over 90% of the stellar mass is formed in the main progenitor in all but two cases, and all 15 of the galaxies have >70% of their stellar mass formed in situ. Virtually all galaxy mergers occur prior to z ˜ 3, meaning that accreted stellar populations are ancient. On average, our simulated dwarfs undergo 5 galaxy mergers in their lifetimes, with typical pre-merger galaxy mass ratios that are less than 1:10. This merger frequency is generally comparable to what has been found in dissipationless simulations when coupled with abundance matching. Two of the simulated dwarfs have a luminous satellite companion at z = 0. These ultra-faint dwarfs lie at or below current detectability thresholds but are intriguing targets for next-generation facilities. The small contribution of accreted stars make it extremely difficult to discern the effects of mergers in the vast majority of dwarfs either photometrically or using resolved-star color-magnitude diagrams (CMDs). The important implication for near-field cosmology is that star formation histories of comparably massive galaxies derived from resolved CMDs should trace the build-up of stellar mass in one main system across cosmic time as opposed to reflecting the contributions of many individual star formation histories of merged dwarfs.

  7. Major cluster mergers and the location of the brightest cluster galaxy

    International Nuclear Information System (INIS)

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-01-01

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc) 3 in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M cl > 1.1 × 10 12 M ☉ , including 18 massive clusters with M cl > 10 14 M ☉ . It also contains 1, 088, 797 galaxies with mass M gal ≥ 2 × 10 9 M ☉ and luminosity L > 9.5 × 10 5 L ☉ . For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f BNC of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f BNC increases from 0.05 for low-mass clusters (M cl ∼ 10 12 M ☉ ) to 0.5 for high-mass clusters (M cl > 10 14 M ☉ ) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f BNC increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi-major mergers in the past. These mergers leave each cluster in a non-equilibrium state, but eventually the cluster

  8. The role of major mergers in (obscured) black hole growth and galaxy evolution

    Science.gov (United States)

    Treister, E.; Privon, G.; Ricci, C.; Bauer, F.; Schawinski, K.; MODA Collaboration

    2017-10-01

    A clear picture is emerging in which rapid supermassive black hole (SMBH) growth episodes (luminous AGN) are directly linked to major galaxy mergers. Here, we present the first results from our MODA program aimed to obtain optical and near-IR Integral Field Unit (IFU) spectroscopy and mm/sub-mm ALMA maps for a sample of confirmed nearby dual AGN (separation 10 kpc), including the archetypical galaxy NGC6240. Specifically, we will focus here on Mrk 463, a very rich system of two galaxies separated by 3.8 kpc hosting two SMBH growing simultaneously. Clear evidence for complex morphologies and kinematics, outflows and feedback effects can be seen in this system, evidencing the deep connection between major galaxy mergers, SMBH growth and galaxy evolution.

  9. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers

    Science.gov (United States)

    van Dokkum, Pieter G.

    2005-12-01

    We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0interesting to determine whether this mode of merging only plays an important role at low redshift or is relevant for galaxies at any redshift if they exceed a critical mass scale.

  10. THE MERGER-TRIGGERED ACTIVE GALACTIC NUCLEUS CONTRIBUTION TO THE ULTRALUMINOUS INFRARED GALAXY POPULATION

    International Nuclear Information System (INIS)

    Draper, A. R.; Ballantyne, D. R.

    2012-01-01

    It has long been thought that there is a connection between ultraluminous infrared galaxies (ULIRGs), quasars, and major mergers. Indeed, simulations show that major mergers are capable of triggering massive starbursts and quasars. However, observations by the Herschel Space Observatory suggest that, at least at high redshift, there may not always be a simple causal connection between ULIRGs and mergers. Here, we combine an evolving merger-triggered active galactic nucleus (AGN) luminosity function with a merger-triggered starburst model to calculate the maximum contribution of major mergers to the ULIRG population. We find that major mergers can account for the entire local population of ULIRGs hosting AGNs and ∼25% of the total local ULIRG luminosity density. By z ∼ 1, major mergers can no longer account for the luminosity density of ULIRGs hosting AGNs and contribute ∼<12% of the total ULIRG luminosity density. This drop is likely due to high-redshift galaxies being more gas rich and therefore able to achieve high star formation rates through secular evolution. Additionally, we find that major mergers can account for the local population of warm ULIRGs. This suggests that selecting high-redshift warm ULIRGs will allow for the identification of high-redshift merger-triggered ULIRGs. As major mergers are likely to trigger very highly obscured AGNs, a significant fraction of the high-redshift warm ULIRG population may host Compton thick AGNs.

  11. Cooking a `Sausage': the impact of merger shocks in cluster gas and galaxy evolution

    Science.gov (United States)

    Stroe, Andra; Sobral, David; Harwood, Jeremy; Van Weeren, Reinout J.; Rumsey, Clare; Intema, Huib; Röttgering, Huub; Brüggen, Marcus; Saunders, Richard; Hardcastle, Martin; Hoeft, Matthias

    2015-01-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to important astrophysical phenomena such as the segregation of dark and luminous matter and the formation of cluster-wide traveling shocks and also drive galaxy evolution. The observable effects of shock waves can be seen at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. Despite the great interest in relics, candidates with simple geometry, undisturbed morphology and high surface brightness are scarce. The `Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We use a unique combination of facilities (INT, WHT, Keck, Subaru, CFHT, GMRT, WSRT, AMI) to obtain the first cluster-wide, multi-wavelength, multi-method analysis aimed at giving a complete picture of a merging cluster with relics. Using the radio data, we derive shock properties and the magnetic field structure for the relic. Using spectral modeling, we test acceleration and electron energy-loss mechanisms and resolve the discrepancy between the Mach number calculated from the radio and X-rays. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area and line-of-sight mixing are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the `Sausage' relic. The radio analysis is complemented by Hα mapping of the cluster volume, aimed at providing the first direct test as to whether the shock drives or prohibits star formation. We find numerous Hα emitting galaxies in close proximity to the radio relic which are extremely massive, metal-rich, mostly star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction

  12. Galaxy pairs as a probe for mergers at z ~ 2

    DEFF Research Database (Denmark)

    Man, A.W.S.; Zirm, Andrew Wasmuth; Toft, Sune

    2011-01-01

    In this work I investigate the redshift evolution of pair fraction of a sample of 196 massive galaxies from z = 0 to 3, selected from the COSMOS field. We find that on average a massive galaxy undergoes ~ 1.1 \\pm 0.5 major merger since z = 3. I will review the current limitations of using the pair...

  13. Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

    Science.gov (United States)

    van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André

    2015-02-01

    We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H] ≲ -2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduce an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.

  14. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  15. THE ROLE OF STARBURST-ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME

    International Nuclear Information System (INIS)

    Yuan, T.-T.; Kewley, L. J.; Sanders, D. B.

    2010-01-01

    We investigate the fraction of starbursts, starburst-active galactic nucleus (AGN) composites, Seyferts, and low-ionization narrow emission-line region galaxies (LINERs) as a function of infrared luminosity (L IR ) and merger progress for ∼500 infrared (IR)-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare ( IR > 10 12 L sun ), starburst-AGN composite galaxies dominate at early-intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous IR objects.

  16. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    Science.gov (United States)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  17. THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS

    International Nuclear Information System (INIS)

    Teyssier, Romain; Chapon, Damien; Bournaud, Frederic

    2010-01-01

    We present hydrodynamic simulations of a major merger of disk galaxies, and study the interstellar medium (ISM) dynamics and star formation (SF) properties. High spatial and mass resolutions of 12 pc and 4 x 10 4 M sun allow us to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare lower-resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of SF are generally attributed to large-scale gas inflows toward the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid SF therein. As a consequence, SF is more efficient by a factor of up to ∼10 and is also somewhat more extended, while the gas density probability distribution function rapidly evolves toward very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10 3 K. Not only does our model reproduce the properties of the Antennae system, but it also explains the 'starburst mode' recently revealed in high-redshift mergers compared to quiescent disks.

  18. VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)

    Science.gov (United States)

    Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.

    2018-04-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).

  19. THE LOW FREQUENCY OF DUAL ACTIVE GALACTIC NUCLEI VERSUS THE HIGH MERGER RATE OF GALAXIES: A PHENOMENOLOGICAL MODEL

    International Nuclear Information System (INIS)

    Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques

    2011-01-01

    Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.

  20. Using transfer learning to detect galaxy mergers

    Science.gov (United States)

    Ackermann, Sandro; Schawinksi, Kevin; Zhang, Ce; Weigel, Anna K.; Turp, M. Dennis

    2018-05-01

    We investigate the use of deep convolutional neural networks (deep CNNs) for automatic visual detection of galaxy mergers. Moreover, we investigate the use of transfer learning in conjunction with CNNs, by retraining networks first trained on pictures of everyday objects. We test the hypothesis that transfer learning is useful for improving classification performance for small training sets. This would make transfer learning useful for finding rare objects in astronomical imaging datasets. We find that these deep learning methods perform significantly better than current state-of-the-art merger detection methods based on nonparametric systems like CAS and GM20. Our method is end-to-end and robust to image noise and distortions; it can be applied directly without image preprocessing. We also find that transfer learning can act as a regulariser in some cases, leading to better overall classification accuracy (p = 0.02). Transfer learning on our full training set leads to a lowered error rate from 0.0381 down to 0.0321, a relative improvement of 15%. Finally, we perform a basic sanity-check by creating a merger sample with our method, and comparing with an already existing, manually created merger catalogue in terms of colour-mass distribution and stellar mass function.

  1. The Dynamics and Cold Gas Content of Luminous Infrared Galaxy Mergers in the Local Universe

    Science.gov (United States)

    Privon, G. C.

    2014-08-01

    Luminous Infrared Galaxies (LIRGs; 10^11 ≤ L_IR [8 - 1000 μm]/L_sun systems in the local universe, both in terms of their absolute star formation rates—ten to several hundred times that of ``normal'' galaxies—and their star formation rate densities. Many U/LIRGs are interacting or merging disk galaxies undergoing enhanced star formation and/or nuclear activity, likely triggered as the objects transform into massive S0 and elliptical merger remnants. The LIRG population also contains a significant number of apparently isolated disk galaxies which are undergoing enhanced star formation, providing a window on secular galaxy evolution. This work examines nearby U/LIRGs chosen from the Great Observatories All-sky LIRG Survey (GOALS), an infrared flux and luminosity selected sample. The proximity of these systems enables high spatial resolution study of active galactic nuclei (AGN) and extreme star formation in these objects. New maps of the neutral hydrogen (HI) emission are presented for systems morphologically classified in the optical and mid-infrared as non-merging or pre-merger systems. The results of this study suggests that some infrared-selected galaxies may be minor mergers or interactions which are being viewed so soon after first pass that the stellar disk has not yet been significantly disturbed. Galaxy mergers appear to drive much of the enhanced activity observed in U/LIRGs; understanding the merger state of these systems provides a context for observations of star formation and AGN properties. In order to constrain the merger stage, dynamical models for a sample of nine systems were matched to the observed kinematics and morphology as obtained from optical imaging and interferometric HI maps. The resulting models are used not only to constrain the merger stage, but also the encounter geometry of the precursor. Based on these dynamical models a new merger stage classification is presented, which re-scales objects to a common timeline is used to

  2. A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees

    Science.gov (United States)

    Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.

    2018-04-01

    The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.

  3. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    Science.gov (United States)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  4. Observational evidence for mergers

    International Nuclear Information System (INIS)

    Schweizer, F.

    1983-01-01

    Theory has long suggested that dynamical friction between colliding galaxies must lead to mergers. The problem for observers has been to find which galaxies are mergers. The author first reviews the available evidence for mergers in various kinds of galaxies, then proposes a tentative classification scheme for mergers, and finally discusses mergers in giant ellipticals and their relation to the evolution and perhaps even the formation of ellipticals. (Auth.)

  5. THE HALO MERGER RATE IN THE MILLENNIUM SIMULATION AND IMPLICATIONS FOR OBSERVED GALAXY MERGER FRACTIONS

    International Nuclear Information System (INIS)

    Genel, Shy; Genzel, Reinhard; Bouche, Nicolas; Naab, Thorsten; Sternberg, Amiel

    2009-01-01

    We have developed a new method to extract halo merger rates from the Millennium Simulation. First, by removing superfluous mergers that are artifacts of the standard friends-of-friends (FOF) halo identification algorithm, we find a lower merger rate compared to previous work. The reductions are more significant at lower redshifts and lower halo masses, and especially for minor mergers. Our new approach results in a better agreement with predictions from the extended Press-Schechter model. Second, we find that the FOF halo finder overestimates the halo mass by up to 50% for halos that are about to merge, which leads to an additional ∼20% overestimate of the merger rate. Therefore, we define halo masses by including only particles that are gravitationally bound to their FOF groups. We provide new best-fitting parameters for a global formula to account for these improvements. In addition, we extract the merger rate per progenitor halo, as well as per descendant halo. The merger rate per progenitor halo is the quantity that should be related to observed galaxy merger fractions when they are measured via pair counting. At low-mass/redshift, the merger rate increases moderately with mass and steeply with redshift. At high enough mass/redshift (for the rarest halos with masses a few times the 'knee' of the mass function), these trends break down, and the merger rate per progenitor halo decreases with mass and increases only moderately with redshift. Defining the merger rate per progenitor halo also allows us to quantify the rate at which halos are being accreted onto larger halos, in addition to the minor and major merger rates. We provide an analytic formula that converts any given merger rate per descendant halo into a merger rate per progenitor halo. Finally, we perform a direct comparison between observed merger fractions and the fraction of halos in the Millennium Simulation that have undergone a major merger during the recent dynamical friction time, and find a

  6. MERGERS IN ΛCDM: UNCERTAINTIES IN THEORETICAL PREDICTIONS AND INTERPRETATIONS OF THE MERGER RATE

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Bundy, Kevin; Wetzel, Andrew; Ma, Chung-Pei; Croton, Darren; Khochfar, Sadegh; Hernquist, Lars; Genel, Shy; Van den Bosch, Frank; Somerville, Rachel S.; Keres, Dusan; Stewart, Kyle; Younger, Joshua D.

    2010-01-01

    Different theoretical methodologies lead to order-of-magnitude variations in predicted galaxy-galaxy merger rates. We examine how this arises and quantify the dominant uncertainties. Modeling of dark matter and galaxy inspiral/merger times contribute factor of ∼2 uncertainties. Different estimates of the halo-halo merger rate, the subhalo 'destruction' rate, and the halo merger rate with some dynamical friction time delay for galaxy-galaxy mergers, agree to within this factor of ∼2, provided proper care is taken to define mergers consistently. There are some caveats: if halo/subhalo masses are not appropriately defined the major-merger rate can be dramatically suppressed, and in models with 'orphan' galaxies and under-resolved subhalos the merger timescale can be severely over-estimated. The dominant differences in galaxy-galaxy merger rates between models owe to the treatment of the baryonic physics. Cosmological hydrodynamic simulations without strong feedback and some older semi-analytic models (SAMs), with known discrepancies in mass functions, can be biased by large factors (∼5) in predicted merger rates. However, provided that models yield a reasonable match to the total galaxy mass function, the differences in properties of central galaxies are sufficiently small to alone contribute small (factor of ∼1.5) additional systematics to merger rate predictions. But variations in the baryonic physics of satellite galaxies in models can also have a dramatic effect on merger rates. The well-known problem of satellite 'over-quenching' in most current SAMs-whereby SAM satellite populations are too efficiently stripped of their gas-could lead to order-of-magnitude under-estimates of merger rates for low-mass, gas-rich galaxies. Models in which the masses of satellites are fixed by observations (or SAMs adjusted to resolve this 'over-quenching') tend to predict higher merger rates, but with factor of ∼2 uncertainties stemming from the uncertainty in those

  7. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    Science.gov (United States)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  8. Decoding Galactic Merger Histories

    Directory of Open Access Journals (Sweden)

    Eric F. Bell

    2017-12-01

    Full Text Available Galaxy mergers are expected to influence galaxy properties, yet measurements of individual merger histories are lacking. Models predict that merger histories can be measured using stellar halos and that these halos can be quantified using observations of resolved stars along their minor axis. Such observations reveal that Milky Way-mass galaxies have a wide range of stellar halo properties and show a correlation between their stellar halo masses and metallicities. This correlation agrees with merger-driven models where stellar halos are formed by satellite galaxy disruption. In these models, the largest accreted satellite dominates the stellar halo properties. Consequently, the observed diversity in the stellar halos of Milky Way-mass galaxies implies a large range in the masses of their largest merger partners. In particular, the Milky Way’s low mass halo implies an unusually quiet merger history. We used these measurements to seek predicted correlations between the bulge and central black hole (BH mass and the mass of the largest merger partner. We found no significant correlations: while some galaxies with large bulges and BHs have large stellar halos and thus experienced a major or minor merger, half have small stellar halos and never experienced a significant merger event. These results indicate that bulge and BH growth is not solely driven by merger-related processes.

  9. MAJOR MERGERS WITH SMALL GALAXIES: THE DISCOVERY OF A MAGELLANIC-TYPE GALAXY AT z = 0.12

    International Nuclear Information System (INIS)

    Koch, Andreas; Frank, Matthias J.; Pasquali, Anna; Rich, R. Michael; Rabitz, Andreas

    2015-01-01

    We report on the serendipitous discovery of a star-forming galaxy at redshift z = 0.116 with morphological features that indicate an ongoing merger. This object exhibits two clearly separated components with significantly different colors, plus a possible tidal stream. Follow-up spectroscopy of the bluer component revealed a low star-forming activity of 0.09 M ⊙ yr −1 and a high metallicity of 12 + log(O/H) = 8.6. Based on comparison with mass–star formation-rate and mass–metallicity relations, and on fitting of spectral energy distributions, we obtain a stellar mass of 3 × 10 9 M ⊙ , which renders this object comparable to the Large Magellanic Cloud. Thus our finding provides a further piece of evidence of a major merger already acting on small, dwarf-galaxy-like scales

  10. MAJOR MERGERS WITH SMALL GALAXIES: THE DISCOVERY OF A MAGELLANIC-TYPE GALAXY AT z = 0.12

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Andreas; Frank, Matthias J. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Pasquali, Anna [Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstrasse 12, D-69117 Heidelberg (Germany); Rich, R. Michael [University of California Los Angeles, Department of Physics and Astronomy, Los Angeles, CA (United States); Rabitz, Andreas, E-mail: akoch@lsw.uni-heidelberg.de [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-12-20

    We report on the serendipitous discovery of a star-forming galaxy at redshift z = 0.116 with morphological features that indicate an ongoing merger. This object exhibits two clearly separated components with significantly different colors, plus a possible tidal stream. Follow-up spectroscopy of the bluer component revealed a low star-forming activity of 0.09 M{sub ⊙} yr{sup −1} and a high metallicity of 12 + log(O/H) = 8.6. Based on comparison with mass–star formation-rate and mass–metallicity relations, and on fitting of spectral energy distributions, we obtain a stellar mass of 3 × 10{sup 9} M{sub ⊙}, which renders this object comparable to the Large Magellanic Cloud. Thus our finding provides a further piece of evidence of a major merger already acting on small, dwarf-galaxy-like scales.

  11. Testing the hierarchical assembly of massive galaxies using accurate merger rates out to z ˜ 1.5

    Science.gov (United States)

    Rodrigues, Myriam; Puech, M.; Flores, H.; Hammer, F.; Pirzkal, N.

    2018-04-01

    We established an accurate comparison between observationally and theoretically estimated major merger rates over a large range of mass (log Mbar/M⊙ =9.9-11.4) and redshift (z = 0.7-1.6). For this, we combined a new estimate of the merger rate from an exhaustive count of pairs within the virial radius of massive galaxies at z ˜ 1.265 and cross-validated with their morphology, with estimates from the morpho-kinematic analysis of two other samples. Theoretical predictions were estimated using semi-empirical models with inputs matching the properties of the observed samples, while specific visibility time-scales scaled to the observed samples were used. Both theory and observations are found to agree within 30 per cent of the observed value, which provides strong support to the hierarchical assembly of galaxies over the probed ranges of mass and redshift. Here, we find that ˜60 per cent of population of local massive (Mstellar =1010.3-11.6 M⊙) galaxies would have undergone a wet major merger since z = 1.5, consistently with previous studies. Such recent mergers are expected to result in the (re-)formation of a significant fraction of local disc galaxies.

  12. THE EVOLUTION OF BLACK HOLE SCALING RELATIONS IN GALAXY MERGERS

    International Nuclear Information System (INIS)

    Johansson, Peter H.; Burkert, Andreas; Naab, Thorsten

    2009-01-01

    We study the evolution of black holes (BHs) on the M BH -σ and M BH -M bulge planes as a function of time in disk galaxies undergoing mergers. We begin the simulations with the progenitor BH masses being initially below (Δlog M BH,i ∼ -2), on (Δlog M BH,i ∼ 0), and above (Δlog M BH,i ∼ 0.5) the observed local relations. The final relations are rapidly established after the final coalescence of the galaxies and their BHs. Progenitors with low initial gas fractions (f gas = 0.2) starting below the relations evolve onto the relations (Δlog M BH,f ∼ -0.18), progenitors on the relations stay there (Δlog M BH,f ∼ 0), and finally progenitors above the relations evolve toward the relations, but still remain above them (Δlog M BH,f ∼ 0.35). Mergers in which the progenitors have high initial gas fractions (f gas = 0.8) evolve above the relations in all cases (Δlog M BH,f ∼ 0.5). We find that the initial gas fraction is the prime source of scatter in the observed relations, dominating over the scatter arising from the evolutionary stage of the merger remnants. The fact that BHs starting above the relations do not evolve onto the relations indicates that our simulations rule out the scenario in which overmassive BHs evolve onto the relations through gas-rich mergers. By implication our simulations thus disfavor the picture in which supermassive BHs develop significantly before their parent bulges.

  13. Properties of Merger Shocks in Merging Galaxy Clusters

    Science.gov (United States)

    Ha, Ji-Hoon; Ryu, Dongsu; Kang, Hyesung

    2018-04-01

    X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of subclumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we focus on the simulated clusters that undergo almost head-on collisions with mass ratio ∼2. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, , increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, F ϕ , peaks at ∼1 Gyr after their initial launching, or at ∼1–2 Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic-ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with }CR}∼ 3{--}4, compared to the kinetic-energy-weighted Mach number, }φ ∼ 2{--}3. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located on the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.

  14. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    Science.gov (United States)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  15. MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Bundy, Kevin; Wetzel, Andrew; Croton, Darren; Hernquist, Lars; Keres, Dusan; Younger, Joshua D.; Khochfar, Sadegh; Stewart, Kyle

    2010-01-01

    We use a suite of semi-empirical models to predict the galaxy-galaxy merger rate and relative contributions to bulge growth as a function of mass (both halo and stellar), redshift, and mass ratio. The models use empirical constraints on the halo occupation distribution, evolved forward in time, to robustly identify where and when galaxy mergers occur. Together with the results of high-resolution merger simulations, this allows us to quantify the relative contributions of mergers with different properties (e.g., mass ratios, gas fractions, redshifts) to the bulge population. We compare with observational constraints, and find good agreement. We also provide useful fitting functions and make public a code to reproduce the predicted merger rates and contributions to bulge mass growth. We identify several robust conclusions. (1) Major mergers dominate the formation and assembly of ∼L * bulges and the total spheroid mass density, but minor mergers contribute a non-negligible ∼30%. (2) This is mass dependent: bulge formation and assembly is dominated by more minor mergers in lower-mass systems. In higher-mass systems, most bulges originally form in major mergers near ∼L * , but assemble in increasingly minor mergers. (3) The minor/major contribution is also morphology dependent: higher B/T systems preferentially form in more major mergers, with B/T roughly tracing the mass ratio of the largest recent merger; lower B/T systems preferentially form in situ from minor mergers. (4) Low-mass galaxies, being gas-rich, require more mergers to reach the same B/T as high-mass systems. Gas-richness dramatically suppresses the absolute efficiency of bulge formation, but does not strongly influence the relative contribution of major versus minor mergers. (5) Absolute merger rates at fixed mass ratio increase with galaxy mass. (6) Predicted merger rates agree well with those observed in pair and morphology-selected samples, but there is evidence that some morphology

  16. Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time

    Science.gov (United States)

    Martin, G.; Kaviraj, S.; Volonteri, M.; Simmons, B. D.; Devriendt, J. E. G.; Lintott, C. J.; Smethurst, R. J.; Dubois, Y.; Pichon, C.

    2018-05-01

    Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed MBH-MBulge correlation in bulge-dominated galaxies is thought to be produced by major mergers, the existence of an MBH-M⋆ relation, across all galaxy morphological types, suggests that BHs may be largely built by secular processes. Recent evidence that bulge-less galaxies, which are unlikely to have had significant mergers, are offset from the MBH-MBulge relation, but lie on the MBH-M⋆ relation, has strengthened this hypothesis. Nevertheless, the small size and heterogeneity of current data sets, coupled with the difficulty in measuring precise BH masses, make it challenging to address this issue using empirical studies alone. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation to probe the role of mergers in BH growth over cosmic time. We show that (1) as suggested by observations, simulated bulge-less galaxies lie offset from the main MBH-MBulge relation, but on the MBH-M⋆ relation, (2) the positions of galaxies on the MBH-M⋆ relation are not affected by their merger histories, and (3) only ˜35 per cent of the BH mass in today's massive galaxies is directly attributable to merging - the majority (˜65 per cent) of BH growth, therefore, takes place gradually, via secular processes, over cosmic time.

  17. EVOLUTION OF THE MERGER-INDUCED HYDROSTATIC MASS BIAS IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Nelson, Kaylea; Nagai, Daisuke; Rudd, Douglas H.; Shaw, Laurie

    2012-01-01

    In this work, we examine the effects of mergers on the hydrostatic mass estimate of galaxy clusters using high-resolution Eulerian cosmological simulations. We utilize merger trees to isolate the last merger for each cluster in our sample and follow the time evolution of the hydrostatic mass bias as the systems relax. We find that during a merger, a shock propagates outward from the parent cluster, resulting in an overestimate in the hydrostatic mass bias. After the merger, as a cluster relaxes, the bias in hydrostatic mass estimate decreases but remains at a level of –5%-10% with 15%-20% scatter within r 500 . We also investigate the post-merger evolution of the pressure support from bulk motions, a dominant cause of this residual mass bias. At r 500 , the contribution from random motions peaks at 30% of the total pressure during the merger and quickly decays to ∼10%-15% as a cluster relaxes. Additionally, we use a measure of the random motion pressure to correct the hydrostatic mass estimate. We discover that 4 Gyr after mergers, the direct effects of the merger event on the hydrostatic mass bias have become negligible. Thereafter, the mass bias is primarily due to residual bulk motions in the gas which are not accounted for in the hydrostatic equilibrium equation. We present a hydrostatic mass bias correction method that can recover the unbiased cluster mass for relaxed clusters with 9% scatter at r 500 and 11% scatter in the outskirts, within r 200 .

  18. The Greater Impact of Mergers on the Growth of Massive Galaxies: Implications for Mass Assembly and Evolution since z sime 1

    Science.gov (United States)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Targett, Thomas A.; Belli, Sirio; Kodama, Tadayuki

    2009-06-01

    Using deep infrared observations conducted with the MOIRCS imager on the Subaru Telescope in the northern GOODS field combined with public surveys in GOODS-S, we investigate the dependence on stellar mass, M *, and galaxy type of the close pair fraction (5 h -1 kpc implied merger rate. In terms of combined depth and survey area, our publicly available mass-limited sample represents a significant improvement over earlier infrared surveys used for this purpose. In common with some recent studies, we find that the fraction of paired systems that could result in major mergers is low (~4%) and does not increase significantly with redshift to z ≈ 1.2, with vprop(1 + z)1.6±1.6. Our key finding is that massive galaxies with M *>1011 M sun are more likely to host merging companions than less massive systems (M * ~ 1010 M sun). We find evidence for a higher pair fraction for red, spheroidal hosts compared to blue, late-type systems, in line with expectations based on clustering at small scales. The so-called "dry" mergers between early-type galaxies devoid of star formation (SF) represent nearly 50% of close pairs with M *>3 × 1010 M sun at z ~ 0.5, but less than 30% at z ~ 1. This result can be explained by the increasing abundance of red, early-type galaxies at these masses. We compare the volumetric merger rate of galaxies with different masses to mass-dependent trends in galaxy evolution. Our results reaffirm the conclusion of Bundy et al. that major mergers do not fully account for the formation of spheroidal galaxies since z ~ 1. In terms of mass assembly, major mergers contribute little to galaxy growth below M * ~ 3 × 1010 M sun but play a more significant role among galaxies with M * gsim 1011 M sun ~ 30% of which have undergone mostly dry mergers over the observed redshift range. Overall, the relatively rapid and recent coalescence of high-mass galaxies mirrors the expected hierarchical growth of halos and is consistent with recent model predictions, even if

  19. Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers

    Science.gov (United States)

    Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie

    2018-05-01

    We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.

  20. A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Cassata, P.; Le Fevre, O.; Salvato, M.; Scoville, N. Z.; Capak, P.; Surace, J.; Yan, L.; Caputi, K.; Carollo, C. M.; Lilly, S.; Civano, F.; Hasinger, G.; Koekemoer, A. M.

    2010-01-01

    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 8 IR (8 - 1000 μm) 14 L sun with a median luminosity of 10 11.4 L sun . In general, these galaxies are massive, with a stellar mass range of 10 10 -10 12 M sun , and luminous, with -25 K IR , with the fraction at the highest luminosity (L IR > 10 12 L sun ) being up to ∼50%. We also find that the fraction of spirals drops dramatically with L IR . Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L IR 11.5 L sun ). The precise fraction of mergers in any given L IR bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U - V color of the galaxies in our sample peaks in the green valley ((U - V) = 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals ( 12 M sun ) to have been

  1. DRY MERGER RATE AND POST-MERGER FRACTION IN THE COMA CLUSTER CORE

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Juan P.; Campusano, Luis E.; Haines, Christopher P. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); De Propris, Roberto [Finnish Centre for Astronomy with ESO, University of Turku, Vaisalantie 20, Piikkio, FI-21500 (Finland); Weinzirl, Tim [School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Jogee, Shardha, E-mail: jcordero@das.uchile.cl [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712-1205 (United States)

    2016-01-20

    We evaluate the dry merger activity in the Coma cluster, using a spectroscopically complete sample of 70 red-sequence (RS) galaxies, most of which (∼75%) are located within 0.2R{sub 200} (∼0.5 Mpc) from the cluster center, with data from the Coma Treasury Survey obtained with the Hubble Space Telescope. The fraction of close galaxy pairs in the sample is the proxy employed for the estimation of the merger activity. We identify 5 pairs and 1 triplet, enclosing a total of 13 galaxies, based on limits on projected separation and line-of-sight velocity difference. Of these systems, none show signs of ongoing interaction, and therefore we do not find any true mergers in our sample. This negative result sets a 1σ upper limit of 1.5% per Gyr for the major dry merger rate, consistent with the low rates expected in present-day clusters. Detailed examination of the images of all the RS galaxies in the sample reveals only one with low surface brightness features identifiable as the remnant of a past merger or interaction, implying a post-merger fraction below 2%.

  2. DRY MERGER RATE AND POST-MERGER FRACTION IN THE COMA CLUSTER CORE

    International Nuclear Information System (INIS)

    Cordero, Juan P.; Campusano, Luis E.; Haines, Christopher P.; De Propris, Roberto; Weinzirl, Tim; Jogee, Shardha

    2016-01-01

    We evaluate the dry merger activity in the Coma cluster, using a spectroscopically complete sample of 70 red-sequence (RS) galaxies, most of which (∼75%) are located within 0.2R 200 (∼0.5 Mpc) from the cluster center, with data from the Coma Treasury Survey obtained with the Hubble Space Telescope. The fraction of close galaxy pairs in the sample is the proxy employed for the estimation of the merger activity. We identify 5 pairs and 1 triplet, enclosing a total of 13 galaxies, based on limits on projected separation and line-of-sight velocity difference. Of these systems, none show signs of ongoing interaction, and therefore we do not find any true mergers in our sample. This negative result sets a 1σ upper limit of 1.5% per Gyr for the major dry merger rate, consistent with the low rates expected in present-day clusters. Detailed examination of the images of all the RS galaxies in the sample reveals only one with low surface brightness features identifiable as the remnant of a past merger or interaction, implying a post-merger fraction below 2%

  3. Driving the growth of the earliest supermassive black holes with major mergers of host galaxies

    International Nuclear Information System (INIS)

    Tanaka, Takamitsu L

    2014-01-01

    The formation mechanism of supermassive black holes (SMBHs) in general, and of ∼10 9  m ⊙ SMBHs observed as luminous quasars at redshifts z>6 in particular, remains an open fundamental question. The presence of such massive BHs at such early times, when the Universe was less than a billion years old, implies that they grew via either super-Eddington accretion, or nearly uninterrupted gas accretion near the Eddington limit; the latter, at first glance, is at odds with empirical trends at lower redshifts, where quasar episodes associated with rapid BH growth are rare and brief. In this work, I examine whether and to what extent the growth of the z>6 quasar SMBHs can be explained within the standard quasar paradigm, in which major mergers of host galaxies trigger episodes of rapid gas accretion below or near the Eddington limit. Using a suite of Monte Carlo merger tree simulations of the assembly histories of 40 likely z>6 quasar host halos, I investigate (i) their growth and major merger rates out to z∼40, and (ii) how long the feeding episodes induced by host mergers must last in order to explain the observed z≳6 quasar population without super-Eddington accretion. The halo major merger rate scales roughly as ∝ (1+z) 5/2 , consistent with cosmological simulations at lower redshifts, with quasar hosts typically experiencing ≳10 major mergers between 15>z>6 (≈650 Myr), compared to ∼1 for typical massive galaxies at 3>z>0 (≈11 Gyr). The high rate of major mergers allows for nearly continuous SMBH growth if (for example) a merger triggers feeding for a duration comparable to the halo dynamical time. These findings suggest that the growth mechanisms of the earliest quasar SMBHs need not have been drastically different from their counterparts at lower redshifts. (paper)

  4. Mergers at z = 1

    Science.gov (United States)

    Kao, Lancelot L.

    1993-01-01

    Multiband images of nearby interacting pairs of galaxies, mergers, and normal field galaxies are used to simulate images of high redshift mergers by identifying distinctive morphological features. Preliminary results indicate that it is feasible for the HST to detect these high redshift objects.

  5. Probing Minor-merger-driven Star Formation In Early-type Galaxies Using Spatially-resolved Spectro-photometric Studies

    Science.gov (United States)

    Kaviraj, Sugata; Crockett, M.; Silk, J.; O'Connell, R. W.; Whitmore, B.; Windhorst, R.; Cappellari, M.; Bureau, M.; Davies, R.

    2012-01-01

    Recent studies that leverage the rest-frame ultraviolet (UV) spectrum have revealed widespread recent star formation in early-type galaxies (ETGs), traditionally considered to be old, passively-evolving systems. This recent star formation builds 20% of the ETG stellar mass after z 1, driven by repeated minor mergers between ETGs and small, gas-rich satellites. We demonstrate how spatially-resolved studies, using a combination of high-resolution UV-optical imaging and integral-field spectroscopy (IFS), is a powerful tool to quantify the assembly history of individual ETGs and elucidate the poorly-understood minor-merger process. Using a combination of WFC3 UV-optical (2500-8200 angstroms) imaging and IFS from the SAURON project of the ETG NGC 4150, we show that this galaxy experienced a merger with mass ratio 1:15 around 0.9 Gyr ago, which formed 3% of its stellar mass and a young kinematically-decoupled core. A UV-optical analysis of its globular cluster system shows that the bulk of the stars locked up in these clusters likely formed 6-7 Gyrs in the past. We introduce a new HST-WFC3 programme, approved in Cycle 19, which will leverage similar UV-optical imaging of a representative sample of nearby ETGs from SAURON to study the recent star formation and its drivers in unprecedented detail and put definitive constraints on minor-merger-driven star formation in massive galaxies at late epochs.

  6. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    Science.gov (United States)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  7. THE DIRT ON DRY MERGERS

    International Nuclear Information System (INIS)

    Desai, Vandana; Soifer, B. T.; Dey, Arjun; Cohen, Emma; Le Floc'h, Emeric

    2011-01-01

    Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 μm) spectral energy distributions of dry merger candidates in the Booetes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors to be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 μm excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than ∼1 M sun yr -1 . This represents a 'frosting' on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of star-forming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.

  8. Evidence for merger remnants in early-type host galaxies of low-redshift QSOs

    Czech Academy of Sciences Publication Activity Database

    Bennert, N.; Canalizo, G.; Jungwiert, Bruno; Stockton, A.; Schweizer, F.; Peng, Ch.; Lacy, M.

    2008-01-01

    Roč. 677, č. 2 (2008), s. 846-857 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy mergers * quasars * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.331, year: 2008

  9. MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Martínez-Galarza, Juan R.; Zezas, Andreas; Lanz, Lauranne

    2016-01-01

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk

  10. LOCAL BENCHMARKS FOR THE EVOLUTION OF MAJOR-MERGER GALAXIES-SPITZER OBSERVATIONS OF A K-BAND SELECTED SAMPLE

    International Nuclear Information System (INIS)

    Xu, C. Kevin; Cheng Yiwen; Lu Nanyao; Mazzarella, Joseph M.; Cutri, Roc; Domingue, Donovan; Huang Jiasheng; Gao Yu; Sun, W.-H.; Surace, Jason

    2010-01-01

    We present Spitzer observations for a sample of close major-merger galaxy pairs (KPAIR sample) selected from cross-matches between the Two Micron All Sky Survey and Sloan Digital Sky Survey Data Release 3. The goals are to study the star formation activity in these galaxies and to set a local bench mark for the cosmic evolution of close major mergers. The Spitzer KPAIR sample (27 pairs, 54 galaxies) includes all spectroscopically confirmed spiral-spiral (S+S) and spiral-elliptical (S+E) pairs in a parent sample that is complete for primaries brighter than K = 12.5 mag, projected separations of 5 h -1 kpc ≤ s ≤ 20 h -1 kpc, and mass ratios ≤2.5. The Spitzer data, consisting of images in seven bands (3.6, 4.5, 5.8, 8, 24, 70, 160 μm), show very diversified IR emission properties. Compared to single spiral galaxies in a control sample, only spiral galaxies in S+S pairs show significantly enhanced specific star formation rate (sSFR = SFR/M), whereas spiral galaxies in S+E pairs do not. Furthermore, the SFR enhancement of spiral galaxies in S+S pairs is highly mass-dependent. Only those with M ∼> 10 10.5 M sun show significant enhancement. Relatively low-mass (M ∼ 10 10 M sun ) spirals in S+S pairs have about the same SFR/M compared to their counterparts in the control sample, while those with 10 11 M sun have on average a ∼3 times higher SFR/M than single spirals. There is evidence for a correlation between the global star formation activities (but not the nuclear activities) of the component galaxies in massive S+S major-merger pairs (the H olmberg effect ) . There is no significant difference in the SFR/M between the primaries and the secondaries, nor between spirals of SEP KPAIR =2.54 x 10 -4 (M sun yr -1 Mpc -3 ).

  11. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    Energy Technology Data Exchange (ETDEWEB)

    Privon, G. C. [Instituto de Astrofśica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Stierwalt, S.; Johnson, K. E.; Kallivayalil, N.; Liss, S. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Patton, D. R. [Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2 (Canada); Besla, G. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pearson, S.; Putman, M., E-mail: gprivon@astro.puc.cl [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Collaboration: TiNy Titans

    2017-09-01

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The H α emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M {sub ⊙} yr{sup −1}, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

  12. Rapid Mergers in a Mixed System of Black Holes and Neutron Stars

    Science.gov (United States)

    Tagawa, Hiromichi; Umemura, Masayuki

    Recently, it has been argued that r-process elements in galaxies primarily originate from the mergers of double neutron stars (NSs) and black hole (BH)-NS. However, there is a momentous problem that the merger timescale is estimated to be much longer than the production timescale of r-process elements inferred from metal poor stars in the Galactic halo. To solve this problem, we propose the rapid merger processes in gas-rich first-generation objects in a high redshift epoch. In such an era, it is expected that the dynamical friction by dense gas effectively promotes the merger of compact objects. To explore the possibility of mergers in a system composed of multiple NSs as well as BHs, we perform post Newtonian N-body simulations, incorporating the gas dynamical friction, the gas accretion, and the gravitational wave emission including the recoil kick. As a result, we find that NS-NS or NS-BH can merge within 10 Myr in first-generation objects. Furthermore, to satisfy the condition of the mass ejection of r-process elements, the gas accretion rate need to be lower than 0.1 Hoyle-Lyttleton accretion rate. These results imply that the mergers in early cosmic epochs may reconcile the conflict on the timescale of NS mergers.

  13. A NOVEL APPROACH TO CONSTRAIN THE MASS RATIO OF MINOR MERGERS IN ELLIPTICAL GALAXIES: APPLICATION TO NGC 4889, THE BRIGHTEST CLUSTER GALAXY IN COMA

    Energy Technology Data Exchange (ETDEWEB)

    Gu Meng; Huang Song [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ho, Luis C. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Peng, Chien Y. [Giant Magellan Telescope Organization, 251 South Lake Avenue, Suite 300, Pasadena, CA 91101 (United States)

    2013-08-10

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (M{sub I} Almost-Equal-To -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of {approx}90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies.

  14. A NOVEL APPROACH TO CONSTRAIN THE MASS RATIO OF MINOR MERGERS IN ELLIPTICAL GALAXIES: APPLICATION TO NGC 4889, THE BRIGHTEST CLUSTER GALAXY IN COMA

    International Nuclear Information System (INIS)

    Gu Meng; Huang Song; Ho, Luis C.; Peng, Chien Y.

    2013-01-01

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (M I ≈ –18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ∼90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies

  15. A 2-3 billion year old major merger paradigm for the Andromeda galaxy and its outskirts

    Science.gov (United States)

    Hammer, F.; Yang, Y. B.; Wang, J. L.; Ibata, R.; Flores, H.; Puech, M.

    2018-04-01

    Recent observations of our neighbouring galaxy M31 have revealed that its disc was shaped by widespread events. The evidence for this includes the high dispersion (V/σ ≤ 3) of stars older than 2 Gyr, and a global star formation episode, 2-4 Gyr ago. Using the modern hydrodynamical code, GIZMO, we have performed 300 high-resolution simulations to explore the extent to which these observed properties can be explained by a single merger. We find that the observed M31 disc resembles models having experienced a 4:1 merger, in which the nuclei coalesced 1.8-3 Gyr ago, and where the first passage took place 7-10 Gyr ago at a large pericentre distance (32 kpc). We also show that within a family of orbital parameters, the Giant Stream (GS) can be formed with various merger mass ratios, from 2:1 to 300:1. A recent major merger may be the only way to create the very unusual age-dispersion relation in the disc. It reproduces and explains the long-lived 10 kpc ring, the widespread and recent star formation event, the absence of a remnant of the GS progenitor, the apparent complexity of the 3D spatial distribution of the GS, the NE and G Clumps and their formation process, and the observed slope of the halo profile. These modelling successes lead us to propose that the bulk of the substructure in the M31 halo, as well as the complexity of the inner galaxy, may be attributable to a single major interaction with a galaxy that has now fully coalesced with Andromeda.

  16. The Fate of Massive Black Holes in Gas-Rich Galaxy Mergers

    Science.gov (United States)

    Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D.

    2006-06-01

    Using SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by the very massive nuclear gas disks observed in the central regions of merging galaxies. Here we present results that expand on the treatment in previous works (Escala et al. 2004, 2005), by studying the evolution of a binary with different black holes masses in a massive gas disk.

  17. The Exceptional Soft X-Ray Halo of the Galaxy Merger NGC 6240

    Science.gov (United States)

    Nardini, E.; Wang, Junfeng; Fabbiano, G.; Elvis, M.; Pellegrini, S.; Risaliti, G.; Karovska, M.; Zezas, A.

    2013-03-01

    We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10-3 cm-3, and a total mass of ~1010 M ⊙, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s-1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  18. DARK MATTER HALO MERGERS: DEPENDENCE ON ENVIRONMENT

    International Nuclear Information System (INIS)

    Hester, J. A.; Tasitsiomi, A.

    2010-01-01

    This paper presents a study of the specific major merger rate as a function of group membership, local environment, and redshift in a very large, 500 h -1 Mpc, cosmological N-body simulation, the Millennium Simulation. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore rare compared to mergers between subhalos and their host halos. Tidal stripping also suppresses dynamical friction, resulting in long major merger timescales when the more massive merger progenitor does not host other subhalos. When other subhalos are present, however, major merger timescales are several times shorter. This enhancement may be due to inelastic unbound collisions between subhalos, which deplete their orbital angular momentum and lead to faster orbital decay. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific major merger rate is suppressed in groups when all group members are considered together, and that the frequency of fainter companions is enhanced for major mergers and their remnants. We also measure an 'assembly bias' in the specific major merger rate in that major mergers of galaxy-like halos are slightly suppressed in overdense environments while major mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.

  19. Decoding Mode-mixing in Black-hole Merger Ringdown

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  20. The influence of the merger history of dwarf galaxies in a reionized universe

    Science.gov (United States)

    Verbeke, Robbert; Vandenbroucke, Bert; De Rijcke, Sven; Koleva, Mina

    2015-08-01

    In the ΛCDM model, cosmic structure forms in a hierarchical fashion. According to this paradigm, even low-mass dwarf galaxies grow via smooth accretion and mergers. Given the low masses of dwarf galaxies and their even smaller progenitors, the UV background is expected to have a significant influence on their gas content and, consequently, their star formation histories. Generally, cosmological simulations predict that most dwarf systems with circular velocities below ~30 km/s should not be able to form significant amounts of stars or contain gas and be, in effect, "dark" galaxies (Sawala et al. 2013, 2014; Hopkins et al. 2014; Shen et al. 2014). This is in contradiction with the recent discovery of low-mass yet gas-rich dwarf galaxies, such as Leo P (Skillman et al. 2013), Pisces A (Tollerud et al. 2014), and SECCO 1 (Bellazzini et al. 2015). Moreover, Tollerud et al. (2014) point out that most isolated dark-matter halos down to circular velocities of ~15 km/s contain neutral gas, in contradiction with the predictions of current simulations.Based on a suite of simulations of the formation and evolution of dwarf galaxies we show that, by reducing the first peak of star formation by including Pop-III stars in the simulations, the resulting dwarf galaxies have severely suppressed SFRs and can hold on to their gas reservoirs. Moreover, we show that the majority of the zero-metallicity stars are ejected during mergers, resulting in an extended, low-metallicity stellar halo. This results in a marked difference between a galaxy's "total" star-formation history and the one read from the stars in the center of the galaxy at z=0. This mechanism leads to the formation of realistic low-mass, gas-rich dwarfs with a broad range of SFHs and which adhere to the observed scaling relations, such as the baryonic Tully-Fisher relation.In short, the simulations presented here are for the first time able to reproduce the observed properties of low-mass, gas-rich dwarfs such as DDO 210

  1. Recent star formation in interacting galaxies

    International Nuclear Information System (INIS)

    Joseph, R.D.; Wright, G.S.

    1985-01-01

    The subset of galaxy-galaxy interactions which have resulted in a merger are, as a class, ultraluminous IR galaxies. Their IR luminosities span a narrow range which overlaps with the most luminous Seyfert galaxies. However, in contrast with Seyfert galaxies, the available optical, IR, and radio properties of mergers show no evidence for a compact non-thermal central source, and are easily understood in terms of a burst of star formation of extraordinary intensity and spatial extent; they are 'super starbursts'. We argue that super starbursts occur in the evolution of most mergers, and discuss the implications of super starbursts for the suggestion that mergers evolve into elliptical galaxies. Finally, we note that merger-induced shocks are likely to leave the gas from both galaxies in dense molecular form which will rapidly cool, collapse, and fragment. Thus a merger might in fact be expected to result in a burst of star formation of exceptional intensity and spatial extent, i.e. a super starburst. (author)

  2. The most luminous heavily obscured quasars have a high merger fraction: morphological study of wise -selected hot dust-obscured galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lulu; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao [Shandong Provincial Key Lab of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Science, Shandong University, Weihai 264209 (China); Han, Yunkun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Fang, Guanwen, E-mail: llfan@sdu.edu.cn, E-mail: hanyk@ynao.ac.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-05-10

    Previous studies have shown that Wide-field Infrared Survey Explorer -selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ∼ 3 using Hubble Space Telescope /WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (∼10{sup 14} L {sub ⊙}) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  3. A Novel Approach to Constrain the Mass Ratio of Minor Mergers in Elliptical Galaxies: Application to NGC 4889, the Brightest Cluster Galaxy in Coma

    Science.gov (United States)

    Gu, Meng; Ho, Luis C.; Peng, Chien Y.; Huang, Song

    2013-08-01

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (MI ≈ -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ~90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  4. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    Science.gov (United States)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  5. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-01-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ∼ 1.5 and 46 galaxies at z ∼ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ∼ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ∼ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20 ), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ∼ 1.5 and 37/12% at z ∼ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z ∼ 1.5 and z ∼ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ∼ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ∼ 35% bulge or exponential at z ∼ 1.5 and 4. Therefore, ∼ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n 20 > - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ∼ 1.5 and 4.

  6. THE EXCEPTIONAL SOFT X-RAY HALO OF THE GALAXY MERGER NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Nardini, E.; Wang Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, S., E-mail: e.nardini@keele.ac.uk [Dipartimento di Fisica e Astronomia, Universita di Bologna, v.le Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-03-10

    We report on a recent {approx}150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3{sigma} confidence level over a diamond-shaped region with projected physical size of {approx}110 Multiplication-Sign 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of {approx}7.5 million K, an estimated density of 2.5 Multiplication-Sign 10{sup -3} cm{sup -3}, and a total mass of {approx}10{sup 10} M{sub Sun }, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 Multiplication-Sign 10{sup 41} erg s{sup -1}. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main {alpha}-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale ({approx}200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z {approx} 0.1 solar) and temperature (kT {approx} 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion

  7. THE EXCEPTIONAL SOFT X-RAY HALO OF THE GALAXY MERGER NGC 6240

    International Nuclear Information System (INIS)

    Nardini, E.; Wang Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Pellegrini, S.

    2013-01-01

    We report on a recent ∼150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ∼110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ∼7.5 million K, an estimated density of 2.5 × 10 –3 cm –3 , and a total mass of ∼10 10 M ☉ , resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 10 41 erg s –1 . The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (∼200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ∼ 0.1 solar) and temperature (kT ∼ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  8. WITNESSING GAS MIXING IN THE METAL DISTRIBUTION OF THE HICKSON COMPACT GROUP HCG 31

    International Nuclear Information System (INIS)

    Torres-Flores, S.; Alfaro-Cuello, M.; De Oliveira, C. Mendes; Amram, P.; Carrasco, E. R.; De Mello, D. F.

    2015-01-01

    We present for the first time direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. This is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. We focus on the emission line gas, which is extensive in the system. The two coalescing cores display similar oxygen abundances. While in between the two nuclei, the metallicity changes smoothly from one nucleus to the other indicating a mix of metals in this region, which is confirmed by the high-resolution Hα kinematics (R = 45,900). This nearby system is especially important because it involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies

  9. WITNESSING GAS MIXING IN THE METAL DISTRIBUTION OF THE HICKSON COMPACT GROUP HCG 31

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Flores, S.; Alfaro-Cuello, M. [Departamento de Física, Universidad de La Serena, Av. Cisternas 1200, La Serena (Chile); De Oliveira, C. Mendes [Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo, Cidade Universitária, CEP:05508-900, São Paulo, SP (Brazil); Amram, P. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Carrasco, E. R. [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile); De Mello, D. F., E-mail: storres@dfuls.cl [Catholic University of America, Washington, DC 20064 (United States)

    2015-01-01

    We present for the first time direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. This is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. We focus on the emission line gas, which is extensive in the system. The two coalescing cores display similar oxygen abundances. While in between the two nuclei, the metallicity changes smoothly from one nucleus to the other indicating a mix of metals in this region, which is confirmed by the high-resolution Hα kinematics (R = 45,900). This nearby system is especially important because it involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies.

  10. The ATLAS3D project - IX. The merger origin of a fast- and a slow-rotating early-type galaxy revealed with deep optical imaging: first results

    Science.gov (United States)

    Duc, Pierre-Alain; Cuillandre, Jean-Charles; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-10-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby early-type galaxies (ETGs) selected from the ATLAS3D sample, NGC 680 and 5557. Our ultra-deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag arcsec-2 in the g band. They reveal very low surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long, narrow, tail east of NGC 5557 hosts three gas-rich star-forming objects, previously detected in H I with the Westerbork Synthesis Radio Telescope and in UV with GALEX. NGC 680 exhibits two major diffuse plumes apparently connected to extended H I tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galaxies, we argue that the LSB features are tidal debris and that each of these two ETGs was assembled during a relatively recent, major wet merger, which most likely occurred after the redshift z ≃ 0.5 epoch. Had these mergers been older, the tidal features should have already fallen back or be destroyed by more recent accretion events. However, the absence of molecular gas and of a prominent young stellar population in the core region of the galaxies indicates that the merger is at least 1-2 Gyr old: the memory of any merger-triggered nuclear starburst has indeed been lost. The star-forming objects found towards the collisional debris of NGC 5557 are then likely tidal dwarf galaxies. Such recycled galaxies here appear to be long-lived and continue to form stars while any star formation activity has stopped in their parent galaxy. The inner kinematics of NGC

  11. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-16

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at $\\gtrsim 10$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$_{\\odot}$ yr$^{-1}$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $11.2^{+0.7}_{-1.4}$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $\\approx 4.5$ R$_{\\odot}$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$r_{e}$) from the center of NGC 4993 and to place a limit of $M_{r} \\gtrsim -7.2$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $\\sim 200$ km s$^{-1}$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.

  12. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Science.gov (United States)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

  13. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744

    Energy Technology Data Exchange (ETDEWEB)

    Owers, Matt S.; Couch, Warrick J. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Nulsen, Paul E. J.; Randall, Scott W., E-mail: mowers@aao.gov.au [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-01

    We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  14. THE STRUCTURES AND TOTAL (MINOR + MAJOR) MERGER HISTORIES OF MASSIVE GALAXIES UP TO z {approx} 3 IN THE HST GOODS NICMOS SURVEY: A POSSIBLE SOLUTION TO THE SIZE EVOLUTION PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    Bluck, Asa F. L. [Gemini Observatory, Northern Operations Center, Hilo, Hawaii 96720 (United States); Conselice, Christopher J.; Buitrago, Fernando; Gruetzbauch, Ruth; Hoyos, Carlos; Mortlock, Alice [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Bauer, Amanda E., E-mail: abluck@gemini.edu, E-mail: conselice@nottingham.ac.uk, E-mail: abauer@aa0.gov.au [Australian Astronomical Observatory, Epping, NSW 1710 (Australia)

    2012-03-01

    We investigate the total major (>1:4 by stellar mass) and minor (>1:100 by stellar mass) merger history of a population of 80 massive (M{sub *} > 10{sup 11} M{sub Sun }) galaxies at high redshifts (z = 1.7-3). We utilize extremely deep and high-resolution Hubble Space Telescope H-band imaging from the GOODS NICMOS Survey, which corresponds to rest-frame optical wavelengths at the redshifts probed. We find that massive galaxies at high redshifts are often morphologically disturbed, with a CAS (concentration, C; asymmetry, A; clumpiness, S) deduced merger fraction f{sub m} = 0.23 {+-} 0.05 at z = 1.7-3. We find close accord between close pair methods (within 30 kpc apertures) and CAS methods for deducing major merger fractions at all redshifts. We deduce the total (minor + major) merger history of massive galaxies with M{sub *} > 10{sup 9} M{sub Sun} galaxies, and find that this scales roughly linearly with log-stellar-mass and magnitude range. We test our close pair methods by utilizing mock galaxy catalogs from the Millennium Simulation. We compute the total number of mergers to be (4.5 {+-} 2.9)/({tau}{sub m}) from z = 3 to the present, to a stellar mass sensitivity threshold of {approx}1:100 (where {tau}{sub m} is the merger timescale in Gyr which varies as a function of mass). This corresponds to an average mass increase of (3.4 {+-} 2.2) Multiplication-Sign 10{sup 11} M{sub Sun} over the past 11.5 Gyr due to merging. We show that the size evolution observed for these galaxies may be mostly explained by this merging.

  15. THE STRUCTURES AND TOTAL (MINOR + MAJOR) MERGER HISTORIES OF MASSIVE GALAXIES UP TO z ∼ 3 IN THE HST GOODS NICMOS SURVEY: A POSSIBLE SOLUTION TO THE SIZE EVOLUTION PROBLEM

    International Nuclear Information System (INIS)

    Bluck, Asa F. L.; Conselice, Christopher J.; Buitrago, Fernando; Grützbauch, Ruth; Hoyos, Carlos; Mortlock, Alice; Bauer, Amanda E.

    2012-01-01

    We investigate the total major (>1:4 by stellar mass) and minor (>1:100 by stellar mass) merger history of a population of 80 massive (M * > 10 11 M ☉ ) galaxies at high redshifts (z = 1.7-3). We utilize extremely deep and high-resolution Hubble Space Telescope H-band imaging from the GOODS NICMOS Survey, which corresponds to rest-frame optical wavelengths at the redshifts probed. We find that massive galaxies at high redshifts are often morphologically disturbed, with a CAS (concentration, C; asymmetry, A; clumpiness, S) deduced merger fraction f m = 0.23 ± 0.05 at z = 1.7-3. We find close accord between close pair methods (within 30 kpc apertures) and CAS methods for deducing major merger fractions at all redshifts. We deduce the total (minor + major) merger history of massive galaxies with M * > 10 9 M ☉ galaxies, and find that this scales roughly linearly with log-stellar-mass and magnitude range. We test our close pair methods by utilizing mock galaxy catalogs from the Millennium Simulation. We compute the total number of mergers to be (4.5 ± 2.9)/(τ m ) from z = 3 to the present, to a stellar mass sensitivity threshold of ∼1:100 (where τ m is the merger timescale in Gyr which varies as a function of mass). This corresponds to an average mass increase of (3.4 ± 2.2) × 10 11 M ☉ over the past 11.5 Gyr due to merging. We show that the size evolution observed for these galaxies may be mostly explained by this merging.

  16. NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY

    International Nuclear Information System (INIS)

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David; Gil de Paz, Armando; Seibert, Mark; Madore, Barry F.; Wyder, Ted; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Chris; Morrissey, Patrick; Small, Todd; Rich, R. Michael; Yi, Sukyoung; Neff, Susan

    2010-01-01

    We have discovered recent star formation in the outermost portion ((1-4) x R 25 ) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring, the average star formation rate (SFR) surface density (Σ SFR ) is ∼2.2 x 10 -5 M sun yr -1 kpc -2 . Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10 -3 M sun yr -1 . The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to ∼1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.

  17. Further simulations of merging galaxies

    International Nuclear Information System (INIS)

    White, S.D.M.

    1979-01-01

    Galaxy collisions and the structure of the resulting merger remnants are studied using a large number of numerical simulations. These experiments extend earlier calculations of mergers between pairs of similar 'galaxies'. The tidal coupling in collisions is found to depend strongly on the rotational properties of the 'galaxies' involved. It is greatly enhanced if their spin vectors are aligned with that of their orbit, and it is suppressed if this alignment is reversed. The structure of a merger product depends only weakly on that of its progenitors. Such remnants are typically axisymmetric oblate systems with radially decreasing velocity dispersions and density profiles which have near power-law form over two decades in radius. This density structure is reasonably well described by de Vaucouleurs' empirical formula for the surface brightness distribution of elliptical galaxies. The flattening of merger remnants may be partly supported by an anisotropic pressure distribution, but the systems studied here nevertheless rotate considerably more rapidly than most observed elliptical galaxies, and a natural preference for nearly head-on collisions must be invoked if all ellipticals are to be identified as merger remnants. Mass and energy losses are found to be very small for mergers between bound or marginally unbound 'galaxies'. Escapers can, however, carry away a significant amount of angular momentum. (author)

  18. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    Science.gov (United States)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  19. Mergers as an Omega estimator

    International Nuclear Information System (INIS)

    Carlberg, R.G.

    1990-01-01

    The redshift dependence of the fraction of galaxies which are merging or strongly interacting is a steep function of Omega and depends on the ratio of the cutoff velocity for interactions to the pairwise velocity dispersion. For typical galaxies the merger rate is shown to vary as (1 + z)exp m, where m is about 4.51 (Omega)exp 0.42, for Omega near 1 and a CDM-like cosmology. The index m has a relatively weak dependence on the maximum merger velocity, the mass of the galaxy, and the background cosmology, for small variations around a cosmology with a low redshift, z of about 2, of galaxy formation. Estimates of m from optical and IRAS galaxies have found that m is about 3-4, but with very large uncertainties. If quasar evolution follows the evolution of galaxy merging and m for quasars is greater than 4, then Omega is greater than 0.8. 21 refs

  20. Social Network Mixing Patterns In Mergers & Acquisitions - A Simulation Experiment

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2011-01-01

    Full Text Available In the contemporary world of global business and continuously growing competition, organizations tend to use mergers and acquisitions to enforce their position on the market. The future organization’s design is a critical success factor in such undertakings. The field of social network analysis can enhance our uderstanding of these processes as it lets us reason about the development of networks, regardless of their origin. The analysis of mixing patterns is particularly useful as it provides an insight into how nodes in a network connect with each other. We hypothesize that organizational networks with compatible mixing patterns will be integrated more successfully. After conducting a simulation experiment, we suggest an integration model based on the analysis of network assortativity. The model can be a guideline for organizational integration, such as occurs in mergers and acquisitions.

  1. MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Xu, X.; Walker, C.; Narayanan, D.

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  2. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  3. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  4. Binary pairs of supermassive black holes - Formation in merging galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. (Turku Univ. (Finland); Alabama Univ., Tuscaloosa (USA))

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  5. A FUNDAMENTAL LINE FOR ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Nair, Preethi; Van den Bergh, Sidney; Abraham, Roberto G.

    2011-01-01

    Recent studies have shown that massive galaxies in the distant universe are surprisingly compact, with typical sizes about a factor of three smaller than equally massive galaxies in the nearby universe. It has been suggested that these massive galaxies grow into systems resembling nearby galaxies through a series of minor mergers. In this model the size growth of galaxies is an inherently stochastic process, and the resulting size-luminosity relationship is expected to have considerable environmentally dependent scatter. To test whether minor mergers can explain the size growth in massive galaxies, we have closely examined the scatter in the size-luminosity relation of nearby elliptical galaxies using a large new database of accurate visual galaxy classifications. We demonstrate that this scatter is much smaller than has been previously assumed, and may even be so small as to challenge the plausibility of the merger-driven hierarchical models for the formation of massive ellipticals.

  6. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    Science.gov (United States)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  7. The rise and fall of stellar across the peak of cosmic star formation history: effects of mergers versus diffuse stellar mass acquisition

    Science.gov (United States)

    Welker, C.; Dubois, Y.; Devriendt, J.; Pichon, C.; Kaviraj, S.; Peirani, S.

    2017-02-01

    Building galaxy merger trees from a state-of-the-art cosmological hydrodynamical simulation, Horizon-AGN, we perform a statistical study of how mergers and diffuse stellar mass acquisition processes drive galaxy morphologic properties above z > 1. By diffuse mass acquisition here, we mean both accretion of stars by unresolved mergers (relative stellar mass growth smaller than 4.5 per cent) as well as in situ star formation when no resolved mergers are detected along the main progenitor branch of a galaxy. We investigate how stellar densities, galaxy sizes and galaxy morphologies (defined via shape parameters derived from the inertia tensor of the stellar density) depend on mergers of different mass ratios. We investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that diffuse stellar accretion and in situ formation tend to flatten small galaxies over cosmic time, leading to the formation of discs. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar discs, confirming the origin of elliptical galaxies. We confirm that mergers grow galaxy sizes more efficiently than diffuse processes (r_{0.5}∝ M_s^{0.85} and r_{0.5}∝ M_s^{0.1} on average, respectively) and we also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r_{0.5}∝ M_s^{1.2} instead of r_{0.5}∝ M_s^{-0.5}-M^{0.5} for discs depending on the merger mass ratio. The gas content drives the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r_{0.5}∝ M_s2 than for gas-rich galaxies r0.5 ∝ Ms.

  8. A survey of dual active galactic nuclei in simulations of galaxy mergers: frequency and properties

    Science.gov (United States)

    Capelo, Pedro R.; Dotti, Massimo; Volonteri, Marta; Mayer, Lucio; Bellovary, Jillian M.; Shen, Sijing

    2017-08-01

    We investigate the simultaneous triggering of active galactic nuclei (AGN) in merging galaxies, using a large suite of high-resolution hydrodynamical simulations. We compute dual-AGN observability time-scales using bolometric, X-ray and Eddington-ratio thresholds, confirming that dual activity from supermassive black holes (BHs) is generally higher at late pericentric passages, before a merger remnant has formed, especially at high luminosities. For typical minor and major mergers, dual activity lasts ˜20-70 and ˜100-160 Myr, respectively. We also explore the effects of X-ray obscuration from gas, finding that the dual-AGN time decreases at most by a factor of ˜2, and of contamination from star formation. Using projected separations and velocity differences rather than three-dimensional quantities can decrease the dual-AGN time-scales by up to ˜4, and we apply filters that mimic current observational-resolution limitations. In agreement with observations, we find that for a sample of major and minor mergers hosting at least one AGN, the fraction harbouring dual AGN is ˜20-30 and ˜1-10 per cent, respectively. We quantify the effects of merger mass ratio (0.1 to 1), geometry (coplanar, prograde and retrograde, and inclined), disc gas fraction and BH properties, finding that the mass ratio is the most important factor, with the difference between minor and major mergers varying between factors of a few to orders of magnitude, depending on the luminosity and filter used. We also find that a shallow imaging survey will require very high angular resolution whereas a deep imaging survey will be less resolution-dependent.

  9. Simulating neutron star mergers as r-process sources in ultrafaint dwarf galaxies

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2017-10-01

    To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.

  10. Formation of a Quasar Host Galaxy through a Wet Merger 1.4 Billion Years after the Big Bang

    Science.gov (United States)

    Riechers, Dominik A.; Walter, Fabian; Carilli, Christopher L.; Bertoldi, Frank; Momjian, Emmanuel

    2008-10-01

    We present high-resolution Very Large Array imaging of the molecular gas in the host galaxy of the high-redshift quasar BRI 1335-0417 (z = 4.41). Our CO(J = 2→ 1) observations have a linear resolution of 0.15' ' (1.0 kpc) and resolve the molecular gas emission both spatially and in velocity. The molecular gas in BRI 1335-0417 is extended on scales of 5 kpc, and shows a complex structure. At least three distinct components encompassing about two-thirds of the total molecular mass of 9.2 × 1010 M⊙ are identified in velocity space, which are embedded in a structure that harbors about one-third of the total molecular mass in the system. The brightest CO(J = 2→ 1) line emission region has a peak brightness temperature of 61 ± 9 K within 1 kpc diameter, which is comparable to the kinetic gas temperature as predicted from the CO line excitation. This is also comparable to the gas temperatures found in the central regions of nearby ultraluminous infrared galaxies, which are however much more compact than 1 kpc. The spatial and velocity structure of the molecular reservoir in BRI 1335-0417 is inconsistent with a simple gravitationally bound disk, but resembles a merging system. Our observations are consistent with a major, gas-rich ("wet") merger that both feeds an accreting supermassive black hole (causing the bright quasar activity), and fuels a massive starburst that builds up the stellar bulge in this galaxy. Our study of this z > 4 quasar host galaxy may thus be the most direct observational evidence that wet mergers at high redshift are related to AGN activity.

  11. Mining MaNGA for Merging Galaxies: A New Imaging and Kinematic Technique from Hydrodynamical Simulations

    Science.gov (United States)

    Nevin, Becky; Comerford, Julia M.; Blecha, Laura

    2018-06-01

    Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifications. Mergers are typically identified using imaging alone, which has its limitations and biases. With the growing popularity of integral field spectroscopy (IFS), it is now possible to use kinematic signatures to improve galaxy merger identifications. I use GADGET-3 hydrodynamical simulations of merging galaxies with the radiative transfer code SUNRISE, the later of which enables me to apply the same analysis to simulations and observations. From the simulated galaxies, I have developed the first merging galaxy classification scheme that is based on kinematics and imaging. Utilizing a Linear Discriminant Analysis tool, I have determined which kinematic and imaging predictors are most useful for identifying mergers of various merger parameters (such as orientation, mass ratio, gas fraction, and merger stage). I will discuss the strengths and limitations of the classification technique and then my initial results for applying the classification to the >10,000 observed galaxies in the MaNGA (Mapping Nearby Galaxies at Apache Point) IFS survey. Through accurate identification of merging galaxies in the MaNGA survey, I will advance our understanding of supermassive black hole growth in galaxy mergers and other open questions related to galaxy evolution.

  12. Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments

    Science.gov (United States)

    Vijayaraghavan, Rukmani

    2015-07-01

    Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of

  13. ENVIRONMENTAL EFFECTS IN THE INTERACTION AND MERGING OF GALAXIES IN zCOSMOS

    Energy Technology Data Exchange (ETDEWEB)

    Kampczyk, P.; Lilly, S. J.; Carollo, C. M.; Diener, C.; Knobel, C.; Kovac, K.; Maier, C.; Bordoloi, R. [Institute of Astronomy, ETH Zuerich, CH-8093 Zuerich (Switzerland); De Ravel, L.; Le Fevre, O. [Laboratoire d' Astrophysique de Marseille, UMR 6110 CNRS-Universite de Provence, BP8, F-13376 Marseille Cedex 12 (France); Bolzonella, M.; Vergani, D.; Bardelli, S.; Coppa, G. [INAF Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Renzini, A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Sargent, M. T. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Abbas, U. [Berkeley Laboratory and Berkeley Center for Cosmological Physics, University of California, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50-5005, Berkeley, CA (United States); Bongiorno, A. [Max-Planck-Institut fuer Extraterrestrische Physik, D-84571 Garching (Germany); Caputi, K. [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3 HJ (United Kingdom); Contini, T., E-mail: kampczyk@phys.ethz.ch [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14, avenue Edouard Belin, F-31400 Toulouse (France); and others

    2013-01-01

    We analyze the environments and galactic properties (morphologies and star formation histories) of a sample of 153 close kinematic pairs in the redshift range 0.2 < z < 1 identified in the zCOSMOS-bright 10 k spectroscopic sample of galaxies. Correcting for projection effects, the fraction of close kinematic pairs is three times higher in the top density quartile than in the lowest one. This translates to a three times higher merger rate because the merger timescales are shown, from mock catalogs based on the Millennium simulation, to be largely independent of environment once the same corrections for projection are applied. We then examine the morphologies and stellar populations of galaxies in the pairs, comparing them to control samples that are carefully matched in environment so as to remove as much of the well-known effects of environment on the properties of the parent population of galaxies as possible. Once the environment is properly taken into account in this way, we find that the early-late morphology mix is the same as for the parent population, but that the fraction of irregular galaxies is boosted by 50%-75%, with a disproportionate increase in the number of irregular-irregular pairs (factor of 4-8 times), due to the disturbance of disk galaxies. Future dry mergers, involving elliptical galaxies comprise less than 5% of all close kinematic pairs. In the closest pairs, there is a boost in the specific star formation rates of star-forming galaxies of a factor of 2-4, and there is also evidence for an increased incidence of post-starburst galaxies. Although significant for the galaxies involved, the 'excess' star formation associated with pairs represents only about 5% of the integrated star formation activity in the parent sample. Although most pair galaxies are in dense environments, the effects of interaction appear to be largest in the lower density environments. By preferentially bringing more pairs into the sample in lower density

  14. Loops formed by tidal tails as fossil records of a major merger

    Science.gov (United States)

    Wang, J.; Hammer, F.; Athanassoula, E.; Puech, M.; Yang, Y.; Flores, H.

    2012-02-01

    Context. Many haloes of nearby disc galaxies contain faint and extended features, including loops, which are often interpreted as relics of satellite infall in the main galaxy's potential well. In most cases, however, the residual nucleus of the satellite is not seen, although it is predicted by numerical simulations. Aims: We test whether such faint and extended features can be associated to gas-rich, major mergers, which may also lead to disc rebuilding and thus be a corner stone for the formation of spiral galaxies. Our goal is to test whether the major merger scenario can provide a good model for a particularly difficult case, that of NGC 5907, and to compare to the scenario of a satellite infall. Methods: Using the TreeSPH code GADGET-2, we model the formation of an almost bulge-less galaxy similar to NGC 5907 (B/T ≲ 0.2) after a gas-rich major merger. First, we trace tidal tail particles captured by the galaxy gravitational potential to verify whether they can form loops similar to those discovered in the galactic haloes. Results: We indeed find that 3:1 major mergers can form features similar to the loops found in many galactic haloes, including in NGC 5907, and can reproduce an extended thin disc, a bulge, as well as the pronounced warp of the gaseous disc. Relatively small bulge fractions can be reproduced by a large gas fraction in the progenitors, as well as appropriate orbital parameters. Conclusions: Even though it remains difficult to fully cover the large volume of free parameters, the present modelling of the loops in NGC 5907 proves that they could well be the result of a major merger. It has many advantages over the satellite infall scenario; e.g., it solves the problem of the visibility of the satellite remnant, and it may explain some additional features in the NGC 5907 halo, as well as some gas properties of this system. For orbital parameters derived from cosmological simulations, the loops in NGC 5907 can be reproduced by major mergers (3

  15. X-Ray Emission from a Merger Remnant, NGC 7252 (the ``Atoms-for-Peace'' Galaxy)

    Science.gov (United States)

    Awaki, Hisamitsu; Matsumoto, Hironori; Tomida, Hiroshi

    2002-03-01

    We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA and detected X-ray emission with the X-ray flux of (1.8+/-0.3)×10-13 ergs s-1 cm-2 in the 0.5-10 keV band. This corresponds to the X-ray luminosity of 8.1×1040 ergs s-1. The X-ray emission is well described with a two-component model: a soft component with kT=0.72+/-0.13 keV and a hard component with kT>5.1 keV. Although NGC 7252 is referred to as a dynamically young protoelliptical, the 0.5-4 keV luminosity of the soft component is about 2×1040 ergs s-1, which is low for an early-type galaxy. The ratio of LX/LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 2-10 keV luminosity of 5.6×1040 ergs s-1. This may indicate the existence of nuclear activity or an intermediate-mass black hole in NGC 7252.

  16. THE SPACE DENSITY EVOLUTION OF WET AND DRY MERGERS IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    International Nuclear Information System (INIS)

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R.

    2011-01-01

    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z ∼ 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M stellar >10 11 M sun ) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of ∼0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.

  17. Star formation in mergers with comologically motivated initial conditions

    NARCIS (Netherlands)

    Karman, Wouter; Macciò, Andrea V.; Kannan, Rahul; Moster, Benjamin P.; Somerville, Rachel S.

    2015-01-01

    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multimerger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realizations of 12 merger

  18. EPISODIC ACTIVITIES OF SUPERMASSIVE BLACK HOLES AT REDSHIFT z ≤ 2: DRIVEN BY MERGERS?

    International Nuclear Information System (INIS)

    Li Yanrong; Wang Jianmin; Hu Chen; Zhang Shu; Yuan Yefei

    2010-01-01

    It has been suggested for quite a long time that galaxy mergers trigger activities of supermassive black holes (SMBHs) on the grounds of imaging observations of individual galaxies. To quantitatively examine this hypothesis, we calculate quasar luminosity functions (LFs) by manipulating the observed galaxy LFs (z ∼ maj ∼ 0.2 at z ∼ 2 to f maj → 0 at z ∼ 0. As a consequence, the newly formed SMBHs from major mergers at z ∼ 2 may acquire a maximal spin due to the orbital angular momentum of the merging holes. Subsequently, random accretion led by minor mergers rapidly drives the SMBHs to spin down. Such an evolutionary trend of the SMBH spins is consistent with the fact that radiative efficiency of accreting SMBHs strongly declines with cosmic time, reported by Wang et al. This suggests that minor mergers are important in triggering activities of SMBHs at low redshift, while major mergers may dominate at high redshift.

  19. Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at z ∼ 4.5

    Science.gov (United States)

    Gómez-Guijarro, C.; Toft, S.; Karim, A.; Magnelli, B.; Magdis, G. E.; Jiménez-Andrade, E. F.; Capak, P. L.; Fraternali, F.; Fujimoto, S.; Riechers, D. A.; Schinnerer, E.; Smolčić, V.; Aravena, M.; Bertoldi, F.; Cortzen, I.; Hasinger, G.; Hu, E. M.; Jones, G. C.; Koekemoer, A. M.; Lee, N.; McCracken, H. J.; Michałowski, M. J.; Navarrete, F.; Pović, M.; Puglisi, A.; Romano-Díaz, E.; Sheth, K.; Silverman, J. D.; Staguhn, J.; Steinhardt, C. L.; Stockmann, M.; Tanaka, M.; Valentino, F.; van Kampen, E.; Zirm, A.

    2018-04-01

    Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median r e = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median {log}({M}* /{M}ȯ )=10.49+/- 0.32). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = L IR/L UV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.

  20. AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2

    International Nuclear Information System (INIS)

    Mendez, Alexander J.; Coil, Alison L.; Moustakas, John; Lotz, Jennifer; Salim, Samir; Simard, Luc

    2011-01-01

    We present quantitative morphologies of ∼300 galaxies in the optically defined green valley at 0.4 20 . We find that the green galaxy population is intermediate between the red and blue galaxy populations in terms of concentration, asymmetry, and morphological type and merger fraction estimated using Gini/M 20 . We find that most green galaxies are not classified as mergers; in fact, the merger fraction in the green valley is lower than in the blue cloud. We show that at a given stellar mass, green galaxies have higher concentration values than blue galaxies and lower concentration values than red galaxies. Additionally, we find that 12% of green galaxies have B/T = 0 and 21% have B/T ≤ 0.05. Our results show that green galaxies are generally massive (M * ∼ 10 10.5 M sun ) disk galaxies with high concentrations. We conclude that major mergers are likely not the sole mechanism responsible for quenching star formation in this population and that either other external processes or internal secular processes play an important role both in driving gas toward the center of these galaxies and in quenching star formation.

  1. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Eric F.; Harmsen, Benjamin; D’Souza, Richard [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States); Monachesi, Antonela [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Jong, Roelof S. de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States); Radburn-Smith, David J. [Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195 (United States); Holwerda, Benne W., E-mail: ericbell@umich.edu [Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292 (United States)

    2017-03-01

    Galaxies with Milky Way–like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity–mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18 Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.

  2. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    Science.gov (United States)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-04-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.

  3. Cold Molecular Gas Along the Merger Sequence in Local Luminous Infrared Galaxies

    Science.gov (United States)

    Yamashita, Takuji; Komugi, Shinya; Matsuhara, Hideo; Armus, Lee; Inami, Hanae; Ueda, Junko; Iono, Daisuke; Kohno, Kotaro; Evans, Aaron S.; Arimatsu, Ko

    2017-08-01

    We present an initial result from the 12CO (J = 1-0) survey of 79 galaxies in 62 local luminous and ultraluminous infrared galaxy (LIRG and ULIRG) systems obtained using the 45 m telescope at the Nobeyama Radio Observatory. This is a systematic 12CO (J = 1-0) survey of the Great Observatories All-sky LIRGs Survey (GOALS) sample. The molecular gas mass of the sample is in the range 2.2× {10}8{--}7.0× {10}9 {M}⊙ within the central several kiloparsecs subtended by the 15\\prime\\prime beam. A method to estimate the size of a CO gas distribution is introduced, which is combined with the total CO flux in the literature. This method is applied to part of our sample, and we find that the median CO radius is 1-4 kpc. From the early stage to the late stage of mergers, we find that the CO size decreases while the median value of the molecular gas mass in the central several-kiloparsec region is constant. Our results statistically support a scenario where molecular gas inflows toward the central region from the outer disk to replenish gas consumed by starburst, and that such a process is common in merging LIRGs.

  4. BOOSTED TIDAL DISRUPTION BY MASSIVE BLACK HOLE BINARIES DURING GALAXY MERGERS FROM THE VIEW OF N -BODY SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Berczik, Peter; Spurzem, Rainer [National Astronomical Observatories and Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, Beijing 100012 (China); Liu, F. K., E-mail: lishuo@nao.cas.cn [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China)

    2017-01-10

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N -body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N -body simulation results to reality, and the implications of our results to observations.

  5. The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models

    Science.gov (United States)

    Tweed, D. P.; Mamon, G. A.; Thuan, T. X.; Cattaneo, A.; Dekel, A.; Menci, N.; Calura, F.; Silk, J.

    2018-06-01

    In the local Universe, the existence of very young galaxies (VYGs), having formed at least half their stellar mass in the last 1 Gyr, is debated. We predict the present-day fraction of VYGs among central galaxies as a function of galaxy stellar mass. For this, we apply to high mass resolution Monte Carlo halo merger trees (MCHMTs) three (one) analytical models of galaxy formation, where the ratio of stellar to halo mass (mass growth rate) is a function of halo mass and redshift. Galaxy merging is delayed until orbital decay by dynamical friction. With starbursts associated with halo mergers, our models predict typically 1 per cent of VYGs up to galaxy masses of m = 1010 M⊙, falling rapidly at higher masses, and VYGs are usually associated with recent major mergers of their haloes. Without these starbursts, two of the models have VYG fractions reduced by 1 or 2 dex at low or intermediate stellar masses, and VYGs are rarely associated with major halo mergers. In comparison, the state-of-the-art semi-analytical model (SAM) of Henriques et al. produces only 0.01 per cent of VYGs at intermediate masses. Finally, the Menci et al. SAM run on MCHMTs with Warm Dark Matter cosmology generates 10 times more VYGs at m < 108 M⊙ than when run with Cold Dark Matter. The wide range in these VYG fractions illustrates the usefulness of VYGs to constrain both galaxy formation and cosmological models.

  6. The three phases of galaxy formation

    Science.gov (United States)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  7. The x ray morphology of the relaxed cluster of galaxies A2256. 1: Evidence for a merger event

    Science.gov (United States)

    Briel, U. G.; Henry, J. Patrick; Schwarz, Raimund A.; Boehringer, Hans; Ebeling, Harald; Edge, Alastair C.; Hartner, Gisela D.; Schindler, Sabine; Truemper, Joachim E.; Voges, Wolfgang

    1991-01-01

    The rich cluster of galaxies A2256 was studied utilizing the imaging proportional counter (PSPC (Position Sensitive Proportional Counters)) on board the x-ray observatory ROSAT. A2256 is considered to be a relaxed, Comalike cluster which is dynamically well evolved. However, clear evidence for substructure in A2256 was found. The x-ray surface brightness distribution reveals two separate maxima in the center, one of which is coincident with the central cD galaxy while the morphology of the other shows indications that it is merging with the main cluster body. The x-ray temperatures of the two maxima are different; the probable merging object being about a factor of five cooler than the cluster. The previously measured broad velocity distribution supports the idea that a merger in this cluster is being observed.

  8. The X-ray morphology of the relaxed cluster of galaxies A2256. I - Evidence for a merger event

    Science.gov (United States)

    Briel, U. G.; Henry, J. P.; Schwarz, R. A.; Boehringer, H.; Ebeling, H.

    1991-01-01

    The rich cluster of galaxies A2256 are studied by utilizing the imaging proportional counter on board the X-ray observatory ROSAT. A2256 is considered to be a relaxed Coma-like cluster which is dynamically well evolved. Cleara evidence, however, is found for substructure in A2256. The X-ray surface brightness distribution reveals two separate maxima in the center; one of which is coincident with the central cD galaxy while the morphology of the other shows indications that it is merging with the main cluster body. The X-ray temperatures of the two maxima are different; the probable merging object being about a factor of five cooler than the cluster. The previously measured broad velocity distribution supports the idea that a merger is occurring in this cluster.

  9. REPRODUCING THE OBSERVED ABUNDANCES IN RCB AND HdC STARS WITH POST-DOUBLE-DEGENERATE MERGER MODELS—CONSTRAINTS ON MERGER AND POST-MERGER SIMULATIONS AND PHYSICS PROCESSES

    International Nuclear Information System (INIS)

    Menon, Athira; Herwig, Falk; Denissenkov, Pavel A.; Clayton, Geoffrey C.; Staff, Jan; Pignatari, Marco; Paxton, Bill

    2013-01-01

    The R Coronae Borealis (RCB) stars are hydrogen-deficient, variable stars that are most likely the result of He-CO WD mergers. They display extremely low oxygen isotopic ratios, 16 O/ 18 O ≅ 1-10, 12 C/ 13 C ≥ 100, and enhancements up to 2.6 dex in F and in s-process elements from Zn to La, compared to solar. These abundances provide stringent constraints on the physical processes during and after the double-degenerate merger. As shown previously, O-isotopic ratios observed in RCB stars cannot result from the dynamic double-degenerate merger phase, and we now investigate the role of the long-term one-dimensional spherical post-merger evolution and nucleosynthesis based on realistic hydrodynamic merger progenitor models. We adopt a model for extra envelope mixing to represent processes driven by rotation originating in the dynamical merger. Comprehensive nucleosynthesis post-processing simulations for these stellar evolution models reproduce, for the first time, the full range of the observed abundances for almost all the elements measured in RCB stars: 16 O/ 18 O ratios between 9 and 15, C-isotopic ratios above 100, and ∼1.4-2.35 dex F enhancements, along with enrichments in s-process elements. The nucleosynthesis processes in our models constrain the length and temperature in the dynamic merger shell-of-fire feature as well as the envelope mixing in the post-merger phase. s-process elements originate either in the shell-of-fire merger feature or during the post-merger evolution, but the contribution from the asymptotic giant branch progenitors is negligible. The post-merger envelope mixing must eventually cease ∼10 6 yr after the dynamic merger phase before the star enters the RCB phase

  10. REPRODUCING THE OBSERVED ABUNDANCES IN RCB AND HdC STARS WITH POST-DOUBLE-DEGENERATE MERGER MODELS-CONSTRAINTS ON MERGER AND POST-MERGER SIMULATIONS AND PHYSICS PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Athira; Herwig, Falk; Denissenkov, Pavel A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Clayton, Geoffrey C.; Staff, Jan [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Pignatari, Marco [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Paxton, Bill [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

    2013-07-20

    The R Coronae Borealis (RCB) stars are hydrogen-deficient, variable stars that are most likely the result of He-CO WD mergers. They display extremely low oxygen isotopic ratios, {sup 16}O/{sup 18}O {approx_equal} 1-10, {sup 12}C/{sup 13}C {>=} 100, and enhancements up to 2.6 dex in F and in s-process elements from Zn to La, compared to solar. These abundances provide stringent constraints on the physical processes during and after the double-degenerate merger. As shown previously, O-isotopic ratios observed in RCB stars cannot result from the dynamic double-degenerate merger phase, and we now investigate the role of the long-term one-dimensional spherical post-merger evolution and nucleosynthesis based on realistic hydrodynamic merger progenitor models. We adopt a model for extra envelope mixing to represent processes driven by rotation originating in the dynamical merger. Comprehensive nucleosynthesis post-processing simulations for these stellar evolution models reproduce, for the first time, the full range of the observed abundances for almost all the elements measured in RCB stars: {sup 16}O/{sup 18}O ratios between 9 and 15, C-isotopic ratios above 100, and {approx}1.4-2.35 dex F enhancements, along with enrichments in s-process elements. The nucleosynthesis processes in our models constrain the length and temperature in the dynamic merger shell-of-fire feature as well as the envelope mixing in the post-merger phase. s-process elements originate either in the shell-of-fire merger feature or during the post-merger evolution, but the contribution from the asymptotic giant branch progenitors is negligible. The post-merger envelope mixing must eventually cease {approx}10{sup 6} yr after the dynamic merger phase before the star enters the RCB phase.

  11. UNVEILING THE σ-DISCREPANCY IN INFRARED-LUMINOUS MERGERS. I. DUST AND DYNAMICS

    International Nuclear Information System (INIS)

    Rothberg, Barry; Fischer, Jacqueline

    2010-01-01

    Mergers in the local universe present a unique opportunity for studying the transformations of galaxies in detail. Presented here are recent results, based on multi-wavelength, high-resolution imaging and medium resolution spectroscopy, which demonstrate how star formation and the presence of red supergiants and/or asymptotic giant branch stars have led to a serious underestimation of the dynamical masses of infrared-bright galaxies. The dominance of a nuclear disk of young stars in the near-infrared bands, where dust obscuration does not block their signatures, can severely bias the global properties measured in a galaxy, including mass. This explains why past studies of gas-rich luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies, which have measured dynamical masses using the 1.62 or 2.29 μm CO band heads, have found that these galaxies are forming m m* ellipticals. Moreover, merger remnants, including LIRGs, are placed on the I-band fundamental plane for the first time and appear to be virtually indistinguishable from elliptical galaxies.

  12. GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z = 1.6

    International Nuclear Information System (INIS)

    Tal, Tomer; Van Dokkum, Pieter G.; Leja, Joel; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.

    2013-01-01

    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  13. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  14. MASSIVE GALAXIES ARE LARGER IN DENSE ENVIRONMENTS: ENVIRONMENTAL DEPENDENCE OF MASS–SIZE RELATION OF EARLY-TYPE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yongmin; Im, Myungshin; Kim, Jae-Woo, E-mail: yymx2@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2017-01-01

    Under the Λ cold dark matter (ΛCDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at 0.1 ≤  z  < 0.15, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than 10{sup 11.2} M {sub ⊙} show a clear environmental dependence in mass–size relation, in such a way that galaxies are as much as 20%–40% larger in the densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the ΛCDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.

  15. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  16. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  17. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    International Nuclear Information System (INIS)

    Kormendy, John; Cornell, Mark E.; Drory, Niv; Bender, Ralf

    2010-01-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ≅ 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s -1 in the nucleus of M 33 to 78 ± 2 km s -1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M . ∼ 6 M sun in M 101 and M . ∼ 6 M sun in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up ∼ circ > 150 km s -1 , including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

  18. Mass and environment as drivers of galaxy evolution. III. The constancy of the faint-end slope and the merging of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying-jie; Lilly, Simon J.; Carollo, Marcella [Institute of Astronomy, ETH Zurich, 8093 Zurich (Switzerland); Renzini, Alvio [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-08-01

    Using our continuity approach, we explore the underlying connections between the evolution of the faint-end slope α{sub s} of the stellar mass function of star-forming galaxies, the logarithmic slope β of the specific star formation rate (sSFR)-mass relation, and the merging of galaxies. We derive analytically the consequences of the observed constancy of α{sub s} since redshifts of at least z ∼ 2. If the logarithmic slope β of the sSFR-mass relation is negative, then the faint-end slope α{sub s} should quickly diverge due to the differential mass increase of galaxies on the star-forming main sequence, and this will also quickly destroy the Schechter form of the mass function. This problem can be solved by removing low-mass galaxies by merging them into more massive galaxies. We quantify this process by introducing the specific merger mass rate (sMMR) as the specific rate of mass added to a given galaxy through mergers. For a modest negative value of β ∼ –0.1, an average sMMR ∼ 0.1 sSFR across the population is required to keep α{sub s} constant with epoch, as observed. This in turn implies a merger rate of ∼0.2 sSFR for major mergers, which is consistent with the available observational estimates. More negative values of β require higher sMMR and higher merger rates, and the steepening of the mass function becomes impossible to control for β < –(α{sub s} + 2). The close link that is required between the in situ sSFR and the sMMR probably arises because both are closely linked to the buildup of dark matter halos. These new findings further develop the formalism for the evolving galaxy population that we introduced earlier and show how striking symmetries in the galaxy population can emerge as the result of deep links between the physical processes involved.

  19. LEDA 074886: A REMARKABLE RECTANGULAR-LOOKING GALAXY

    International Nuclear Information System (INIS)

    Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Janz, Joachim; Moore, Ben

    2012-01-01

    We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of –17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e,disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot /σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this 'emerald cut galaxy' having very boxy isophotes with a 4 /a = –0.05 to –0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both 'wet' and 'dry' galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.

  20. CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62

    International Nuclear Information System (INIS)

    Lotz, Jennifer M.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Papovich, Casey; Tran, Kim-Vy; Faber, S. M.; Guo Yicheng; Kocevski, Dale; Lee, Kyoung-Soo; McIntosh, Daniel; Momcheva, Ivelina; Rudnick, Gregory; Saintonge, Amelie; Van der Wel, Arjen; Willmer, Christopher

    2013-01-01

    We present the recent merger history of massive galaxies in a spectroscopically confirmed proto-cluster at z = 1.62. Using Hubble Space Telescope WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we select cluster and z ∼ 1.6 field galaxies with M star ≥ 3 × 10 10 M ☉ , to determine the frequency of double nuclei or close companions within projected separations less than 20 kpc co-moving. We find that four out of five spectroscopically confirmed massive proto-cluster galaxies have double nuclei, and 57 +13 -14 % of all M star ≥ 3 × 10 10 M ☉ cluster candidates are observed in either close pair systems or have double nuclei. In contrast, only 11% ± 3% of the field galaxies are observed in close pair/double nuclei systems. After correcting for the contribution from random projections, the implied merger rate per massive galaxy in the proto-cluster is ∼3-10 times higher than the merger rate of massive field galaxies at z ∼ 1.6. Close pairs in the cluster have minor merger stellar mass ratios (M primary : M satellite ≥ 4), while the field pairs consist of both major and minor mergers. At least half of the cluster mergers are gas-poor, as indicated by their red colors and low 24 μm fluxes. Two of the double-nucleated cluster members have X-ray detected active galactic nuclei with L x > 10 43 erg s –1 , and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly via minor mergers, and discuss the implications for galaxy evolution in proto-cluster environments

  1. Fueling QSOs: the relevance of mergers

    Czech Academy of Sciences Publication Activity Database

    Bennert, N.; Canalizo, G.; Jungwiert, Bruno; Stockton, A.; Schweizer, F.; Peng, Ch.; Lacy, M.

    2008-01-01

    Roč. 79, č. 4 (2008), s. 1247-1250 ISSN 0037-8720 R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy mergers * quasars * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. Dual Active Galactic Nuclei in Nearby Galaxies

    Science.gov (United States)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  3. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Kim, Taehyun; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah L.; Zaritsky, Dennis; Lee, Myung Gyoon; Gadotti, Dimitri A.; Knapen, Johan H.; Schinnerer, Eva; Ho, Luis C.; Madore, Barry F.; Laurikainen, Eija; Salo, Heikki; Athanassoula, E.; Bosma, Albert; De Swardt, Bonita; Comerón, Sébastien; Regan, Michael W.; Menéndez-Delmestre, Karín; De Paz, Armando Gil

    2012-01-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T ≤ 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S 4 G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes ∼3%-10% to the total 3.6 μm luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  4. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  5. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Koekemoer, Anton M.; Somerville, Rachel S.; Lotz, Jennifer M.; Dahlen, Tomas; Donley, Jennifer L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn [Max-Planck-Institut fuer extraterrestrische Physik, D-85748 Garching (Germany); Rangel, Cyprian; Laird, Elise S. [Astrophysics Group, Imperial College London, London, SW7 2AZ (United Kingdom); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bournaud, Frederic [CEA, IRFU, SAp and Laboratoire AIM Paris-Saclay, F-91191 Gif-sur-Yvette (France); Conselice, Christopher J. [Centre for Astronomy and Particle Theory, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Dekel, Avishai, E-mail: kocevski@ucolick.org [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  6. HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS

    International Nuclear Information System (INIS)

    Jogee, Shardha; Miller, Sarah H.; Penner, Kyle; Skelton, Rosalind E.; Somerville, Rachel S.; Bell, Eric F.; Rix, Hans-Walter; Robaina, Aday R.; Borch, Andrea; Haeussler, Boris; Jahnke, Knud; Conselice, Christopher J.; Zheng, Xian Zhong; Barazza, Fabio D.; Barden, Marco; Beckwith, Steven V. W.; Caldwell, John A. R.; Peng, Chien Y.; Heymans, Catherine; McIntosh, Daniel H.

    2009-01-01

    We perform a comprehensive estimate of the frequency of galaxy mergers and their impact on star formation over z∼ 0.24-0.80 (lookback time T b ∼ 3-7 Gyr) using ∼3600 (M≥ 1 x 10 9 M sun ) galaxies with GEMS Hubble Space Telescope, COMBO-17, and Spitzer data. Our results are as follows. (1) Among ∼790 high-mass (M≥ 2.5 x 10 10 M sun ) galaxies, the visually based merger fraction over z∼ 0.24-0.80, ranges from 9% ± 5% to 8% ± 2%. Lower limits on the major merger and minor merger fraction over this interval range from 1.1% to 3.5%, and 3.6% to 7.5%, respectively. This is the first, albeit approximate, empirical estimate of the frequency of minor mergers over the last 7 Gyr. Assuming a visibility timescale of ∼0.5 Gyr, it follows that over T b ∼ 3-7 Gyr, ∼68% of high-mass systems have undergone a merger of mass ratio >1/10, with ∼16%, 45%, and 7% of these corresponding respectively to major, minor, and ambiguous 'major or minor' mergers. The average merger rate is ∼ a few x10 -4 galaxies Gyr -1 Mpc -3 . Among ∼2840 blue-cloud galaxies of mass M≥ 1.0 x 10 9 M sun , similar results hold. (2) We compare the empirical merger fraction and merger rate for high-mass galaxies to three Λ cold dark matter-based models: halo occupation distribution models, semi-analytic models, and hydrodynamic SPH simulations. We find qualitative agreement between observations and models such that the (major+minor) merger fraction or rate from different models bracket the observations, and show a factor of 5 dispersion. Near-future improvements can now start to rule out certain merger scenarios. (3) Among ∼3698 M≥ 1.0 x 10 9 M sun galaxies, we find that the mean star formation rate (SFR) of visibly merging systems is only modestly enhanced compared to non-interacting galaxies over z∼ 0.24-0.80. Visibly merging systems only account for a small fraction ( b ∼ 3-7 Gyr. This complements the results of Wolf et al. over a shorter time interval of T b ∼ 6

  7. CCD imagery of the S0 galaxies NGC 3990 and NGC 3998

    International Nuclear Information System (INIS)

    Welch, G.A.; Welch, D.M.K.; Dupuy, D.L.

    1991-01-01

    The structure and colors of NGC 3990 and NGC 3998 are investigated using BR CCD imagery. Fits of bulge-disk models of the galaxies indicate that both disks are somewhat brighter and more compact than typical S0 galaxies in the Virgo and Fornax clusters. Although the two galaxies are separated by only about 3.5 arcmin, none of the obvious signs of gravitational interaction are seen. The colors of both galaxies are normal; the disk of NGC 3998 is somewhat bluer than its bulge. The search has failed to reveal the interstellar dust predicted from the neutral hydrogen observations of NGC 3998. The dust that is seen appears to be mixed with ionized gas which occupies the center of this galaxy and may be the same material seen at longer wavelengths by the IRAS experiment. Its low abundance relative to the neutral gas is consistent with the idea that the ISM was contributed by a gas-rich dwarf galaxy in a destructive merger. 31 refs

  8. Cosmological aspects and properties evolution of galaxy clusters

    International Nuclear Information System (INIS)

    Majerowicz, Sebastien

    2003-01-01

    In the standard scenario for galaxy cluster formation, galaxy clusters form by material accretion and violent merger events. Between two merger events, galaxy cluster components which are the dark matter (75 %), the intra-cluster medium (20 %) and the galaxies (5 %), reach for equilibrium. The intra-cluster medium is the main baryonic component. This is a hot optically thin gas and its temperature tells something about the gravitational potential well. This well is essentially the consequence of the dark matter distribution. The intra-cluster medium is so hot than its emission produces only x-ray photons. We studied the properties of the intra-cluster medium for some clusters by using the observations coming from the european satellite XMM-NEWTON [fr

  9. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  10. The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-06-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.

  11. High-Resolution Imaging of Colliding and Merging Galaxies

    Science.gov (United States)

    Whitmore, Brad

    1991-07-01

    We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?

  12. Searching for dark matter with neutron star mergers and quiet kilonovae

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai

    2018-03-01

    We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.

  13. The RSA survey of dwarf galaxies, 1: Optical photometry

    Science.gov (United States)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    merger candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. Finally, our sample contains several examples of late-type dwarfs and 'transition' types that are potential precursors of nucleated early-type dwarfs. All the above processes--mass loss, mergers, astration--are likely to have contributed to the formation of the current population of diffuse early-type dwarfs. A few new redshifts of dwarf galaxies are reported in this paper.

  14. Organisational culture and post-merger integration in an academic health centre: a mixed-methods study.

    Science.gov (United States)

    Ovseiko, Pavel V; Melham, Karen; Fowler, Jan; Buchan, Alastair M

    2015-01-22

    Around the world, the last two decades have been characterised by an increase in the numbers of mergers between healthcare providers, including some of the most prestigious university hospitals and academic health centres. However, many mergers fail to bring the anticipated benefits, and successful post-merger integration in university hospitals and academic health centres is even harder to achieve. An increasing body of literature suggests that organisational culture affects the success of post-merger integration and academic-clinical collaboration. This paper reports findings from a mixed-methods single-site study to examine 1) the perceptions of organisational culture in academic and clinical enterprises at one National Health Service (NHS) trust, and 2) the major cultural issues for its post-merger integration with another NHS trust and strategic partnership with a university. From the entire population of 72 clinician-scientists at one of the legacy NHS trusts, 38 (53%) completed a quantitative Competing Values Framework survey and 24 (33%) also provided qualitative responses. The survey was followed up by semi-structured interviews with six clinician-scientists and a group discussion including five senior managers. The cultures of two legacy NHS trusts differed and were primarily distinct from the culture of the academic enterprise. Major cultural issues were related to the relative size, influence, and history of the legacy NHS trusts, and the implications of these for respective identities, clinical services, and finances. Strategic partnership with a university served as an important ameliorating consideration in reaching trust merger. However, some aspects of university entrepreneurial culture are difficult to reconcile with the NHS service delivery model and may create tension. There are challenges in preserving a more desirable culture at one of the legacy NHS trusts, enhancing cultures in both legacy NHS trusts during their post-merger integration, and

  15. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; hide

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  16. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M star as a function of redshift, and on the observed galaxy stellar mass function up to redshift z ∼ 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M star relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z ∼ 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z ∼ 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of ∼0.5 at redshift z ∼ 4 to a value of ∼0.1 at

  17. The different growth pathways of Brightest Cluster Galaxies and the Intra-Cluster Light

    Science.gov (United States)

    Contini, E.; Yi, S. K.; Kang, X.

    2018-06-01

    We study the growth pathways of Brightest Central Galaxies (BCGs) and Intra-Cluster Light (ICL) by means of a semi-analytic model. We assume that the ICL forms by stellar stripping of satellite galaxies and violent processes during mergers, and implement two independent models: (1) one considers both mergers and stellar stripping (named STANDARD model), and one considers only mergers (named MERGERS model). We find that BCGs and ICL form, grow and overall evolve at different times and with different timescales, but they show a clear co-evolution after redshift z ˜ 0.7 - 0.8. Around 90% of the ICL from stellar stripping is built-up in the innermost 150 Kpc from the halo centre and the dominant contribution comes from disk-like galaxies (B/Tcluster other than the BCG, at z = 0. We then suggest that this quantity is a valid observable that can shed light on the relative importance of mergers and stellar stripping for the formation of the ICL.

  18. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    Science.gov (United States)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  19. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  20. Galaxy Mass Assembly with VLT & HST and lessons for E-ELT/MOSAIC

    Science.gov (United States)

    Hammer, François; Flores, Hector; Puech, Mathieu

    2015-02-01

    The fraction of distant disks and mergers is still debated, while 3D-spectroscopy is revolutionizing the field. However its limited spatial resolution imposes a complimentary HST imagery and a robust analysis procedure. When applied to observations of IMAGES galaxies at z = 0.4-0.8, it reveals that half of the spiral progenitors were in a merger phase, 6 billion year ago. The excellent correspondence between methodologically-based classifications of morphologies and kinematics definitively probes a violent origin of disk galaxies as proposed by Hammer et al. (2005). Examination of nearby galaxy outskirts reveals fossil imprints of such ancient merger events, under the form of well organized stellar streams. Perhaps our neighbor, M31, is the best illustration of an ancient merger, which modeling in 2010 leads to predict the gigantic plane of satellites discovered by Ibata et al. (2013). There are still a lot of discoveries to be done until the ELT era, which will open an avenue for detailed and accurate 3D-spectroscopy of galaxies from the earliest epochs to the present.

  1. On the consequences of low-mass white dwarf mergers

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1990-01-01

    The theory of binary star evolution suggests that about 10 percent of all main-sequence binary systems should evolve into a close pair of light white dwarfs which merge within a Hubble time. This paper explores the consequences of such mergers on the assumption that a merger can be approximated by a mass-transfer event which occurs on a time scale shorter than that given by the Eddington accretion limit. The evolution of He + He mergers and of CO + He and of hybrid + He mergers are discussed. The birthrate of helium degenerate pairs which merge in less than a Hubble time is estimated, and the space density of low-luminosity merger products currently present in the Galaxy is predicted. It is shown that the evolutionary tracks of models of simulated mergers pass through the region in the H-R diagram occupied by subdwarfs, but that the predicted space density of merger products exceeds by over a factor of three the space density of subdwarf estimated form the known sample of such stars. 61 refs

  2. Galactic interaction as the trigger for the young radio galaxy MRC B1221-423

    OpenAIRE

    Anderson, Craig; Johnston, Helen; Hunstead, Richard

    2013-01-01

    Mergers between a massive galaxy and a small gas-rich companion (minor mergers) have been proposed as a viable mechanism for triggering radio emission in an active galaxy. Until now the problem has been catching this sequence of events as they occur. With MRC B1221$-$423 we have an active radio galaxy that has only recently been triggered, and a companion galaxy that provides the "smoking gun". Using spectroscopic data taken with the VIMOS Integral Field Unit detector on the European Southern...

  3. The slingshot ejections in merging galaxies

    International Nuclear Information System (INIS)

    Mikkola, S.; Valtonen, M.J.

    1990-01-01

    The evolution of black hole systems in multiple mergers of galaxies has been investigated, using a particular galaxy merger process with a continuous distribution of the black hole masses. Two types of escapes represented the most common line of evolution: the nearly symmetric escapes and the one-sided escapes. Symmetric escapes dominate at low velocities, and one-sided escapes dominate at high velocities. An exception to this rule is made by those one-sided escape trails where the escape speed is low; the number of such trails is only about 10 percent of the number of symmetric escape trails. In the present form of the slingshot model, the degree of symmetry of the black hole separations from the center of the galaxy is very close to the degree of symmetry by which the lobes of the 3C double radio sources are placed relative to the center of the radio galaxy. 46 refs

  4. Ellipticities of Elliptical Galaxies in Different Environments

    Science.gov (United States)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  5. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (rstandard models of photoionization, shocks, and starbursts). We present four detailed emission

  6. Observations and Modeling of Merging Galaxy Clusters

    Science.gov (United States)

    Golovich, Nathan Ryan

    Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses

  7. Astrophysics of Super-Massive Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  8. Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670

    International Nuclear Information System (INIS)

    Sheen, Yun-Kyeong; Kim, Minjin; Smith, Rory; Yi, Sukyoung K.; Jaffé, Yara; Duc, Pierre-Alain; Nantais, Julie; Candlish, Graeme; Demarco, Ricardo; Treister, Ezequiel

    2017-01-01

    Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gas disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.

  9. Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, Yun-Kyeong; Kim, Minjin [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Smith, Rory; Yi, Sukyoung K. [Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 (Korea, Republic of); Jaffé, Yara [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago de Chile (Chile); Duc, Pierre-Alain [Laboratoire AIM Paris-Saclay, CEA/Irfu/SAp CNRS Universite Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France); Nantais, Julie [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, 7591538 Las Condes, Santiago (Chile); Candlish, Graeme [Instituto de Física y Astronomía, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso (Chile); Demarco, Ricardo [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Treister, Ezequiel, E-mail: yksheen@kasi.re.kr [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile)

    2017-05-01

    Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gas disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.

  10. PHL 6625: A Minor Merger-associated QSO Behind NGC 247

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lian; Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Shen, Yue; Liu, Xin [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100087 (China); Ge, Junqiang [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Kaaret, Philip [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Mao, Shude [Center for Astrophysics, Tsinghua University, Beijing 100084 (China)

    2017-06-01

    PHL 6625 is a luminous quasi-stellar object (QSO) at z = 0.3954 located behind the nearby galaxy NGC 247 ( z = 0.0005). Hubble Space Telescope observations revealed an arc structure associated with it. We report on spectroscopic observations with the Very Large Telescope and multiwavelength observations from the radio to the X-ray band for the system, suggesting that PHL 6625 and the arc are a close pair of merging galaxies, instead of a strong gravitational lens system. The QSO host galaxy is estimated to be (4–28) × 10{sup 10} M {sub ☉} and the mass of the companion galaxy is estimated to be M {sub *} = (6.8 ± 2.4) × 10{sup 9} M {sub ☉}, suggesting that this is a minor merger system. The QSO displays typical broad emission lines, from which a black hole mass of about (2–5) × 10{sup 8} M {sub ☉} and an Eddington ratio of about 0.01–0.05 can be inferred. The system represents an interesting and rare case where a QSO is associated with an ongoing minor merger, analogous to Arp 142.

  11. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  12. When Worlds Collide: Chandra Observes Titanic Merger

    Science.gov (United States)

    2002-04-01

    NASA's Chandra X-ray Observatory has provided the best X-ray image yet of two Milky Way-like galaxies in the midst of a head-on collision. Since all galaxies - including our own - may have undergone mergers, this provides insight into how the universe came to look as it does today. Astronomers believe the mega-merger in the galaxy known as Arp 220 triggered the formation of huge numbers of new stars, sent shock waves rumbling through intergalactic space, and could possibly lead to the formation of a supermassive black hole in the center of the new conglomerate galaxy. The Chandra data also suggest that merger of these two galaxies began only 10 million years ago, a short time in astronomical terms. "The Chandra observations show that things really get messed up when two galaxies run into each other at full speed," said David Clements of the Imperial College, London, one of the team members involved in the study. "The event affects everything from the formation of massive black holes to the dispersal of heavy elements into the universe." Arp 220 is considered to be a prototype for understanding what conditions were like in the early universe, when massive galaxies and supermassive black holes were presumably formed by numerous galaxy collisions. At a relatively nearby distance of about 250 million light years, Arp 220 is the closest example of an "ultra-luminous" galaxy, one that gives off a trillion times as much radiation as our Sun. The Chandra image shows a bright central region at the waist of a glowing, hour-glass-shaped cloud of multimillion-degree gas. Rushing out of the galaxy at hundreds of thousands of miles per hour, the super-heated as forms a "superwind," thought to be due to explosive activity generated by the formation of hundreds of millions of new stars. Farther out, spanning a distance of 75,000 light years, are giant lobes of hot gas that could be galactic remnants flung into intergalactic space by the early impact of the collision. Whether the

  13. The role of neutron star mergers in the chemical evolution of the Galactic halo

    Science.gov (United States)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  14. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    Science.gov (United States)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  15. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    Science.gov (United States)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  16. The origins of post-starburst galaxies at z < 0.05

    Science.gov (United States)

    Pawlik, M. M.; Taj Aldeen, L.; Wild, V.; Mendez-Abreu, J.; Lahén, N.; Johansson, P. H.; Jimenez, N.; Lucas, W.; Zheng, Y.; Walcher, C. J.; Rowlands, K.

    2018-06-01

    Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with 0.01 9.5 and projected axial ratio b/a > 0.32. We explore their structural properties, environments, emission lines, and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70 per cent of post-starburst galaxies at 9.510.5); (2) at 9.510.5, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40 per cent). Our analysis suggests that active galactic nuclei (AGNs) are 'on' for 50 per cent of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission-line cuts will be at least 50 per cent incomplete due to the exclusion of narrow-line AGNs.

  17. The influence of massive black hole binaries on the morphology of merger remnants

    Science.gov (United States)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  18. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    Science.gov (United States)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  19. The cold interstellar medium - An HI view of spiral galaxies

    NARCIS (Netherlands)

    Sancisi, R; Bender, R; Davies, RL

    1996-01-01

    An HI view of spiral galaxies is presented. In the first part the standard picture of isolated, normal spiral galaxies is briefly reviewed. In the second part attention is drawn to all those phenomena, such as tidal interactions, accretion and mergers, that depend on the galaxy environment and seem

  20. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  1. STAR FORMATION PROPERTIES IN BARRED GALAXIES (SFB). I. ULTRAVIOLET TO INFRARED IMAGING AND SPECTROSCOPIC STUDIES OF NGC 7479

    International Nuclear Information System (INIS)

    Zhou Zhimin; Meng Xianmin; Wu Hong; Cao Chen

    2011-01-01

    Large-scale bars and minor mergers are important drivers for the secular evolution of galaxies. Based on ground-based optical images and spectra as well as ultraviolet data from the Galaxy Evolution Explorer and infrared data from the Spitzer Space Telescope, we present a multi-wavelength study of star formation properties in the barred galaxy NGC 7479, which also has obvious features of a minor merger. Using various tracers of star formation, we find that under the effects of both a stellar bar and a minor merger, star formation activity mainly takes place along the galactic bar and arms, while the star formation rate changes from the bar to the disk. With the help of spectral synthesis, we find that strong star formation took place in the bar region about 100 Myr ago, and the stellar bar might have been ∼10 Gyr old. By comparing our results with the secular evolutionary scenario from Jogee et al., we suggest that NGC 7479 is possibly in a transitional stage of secular evolution at present, and it may eventually become an earlier type galaxy or a luminous infrared galaxy. We also note that the probable minor merger event happened recently in NGC 7479, and we find two candidates for minor merger remnants.

  2. Structure and Formation of Elliptical and Spheroidal Galaxies

    Science.gov (United States)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong

  3. Double neutron stars: merger rates revisited

    Science.gov (United States)

    Chruslinska, Martyna; Belczynski, Krzysztof; Klencki, Jakub; Benacquista, Matthew

    2018-03-01

    We revisit double neutron star (DNS) formation in the classical binary evolution scenario in light of the recent Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo DNS detection (GW170817). The observationally estimated Galactic DNS merger rate of R_MW = 21^{+28}_{-14} Myr-1, based on three Galactic DNS systems, fully supports our standard input physics model with RMW = 24 Myr-1. This estimate for the Galaxy translates in a non-trivial way (due to cosmological evolution of progenitor stars in chemically evolving Universe) into a local (z ≈ 0) DNS merger rate density of Rlocal = 48 Gpc-3 yr-1, which is not consistent with the current LIGO/Virgo DNS merger rate estimate (1540^{+3200}_{-1220} Gpc-3 yr-1). Within our study of the parameter space, we find solutions that allow for DNS merger rates as high as R_local ≈ 600^{+600}_{-300} Gpc-3 yr-1 which are thus consistent with the LIGO/Virgo estimate. However, our corresponding BH-BH merger rates for the models with high DNS merger rates exceed the current LIGO/Virgo estimate of local BH-BH merger rate (12-213 Gpc-3 yr-1). Apart from being particularly sensitive to the common envelope treatment, DNS merger rates are rather robust against variations of several of the key factors probed in our study (e.g. mass transfer, angular momentum loss, and natal kicks). This might suggest that either common envelope development/survival works differently for DNS (˜10-20 M⊙ stars) than for BH-BH (˜40-100 M⊙ stars) progenitors, or high black hole (BH) natal kicks are needed to meet observational constraints for both types of binaries. Our conclusion is based on a limited number of (21) evolutionary models and is valid within this particular DNS and BH-BH isolated binary formation scenario.

  4. MAJOR GALAXY MERGERS ONLY TRIGGER THE MOST LUMINOUS ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Treister, E.; Schawinski, K.; Urry, C. M.; Simmons, B. D.

    2012-01-01

    Using multiwavelength surveys of active galactic nuclei (AGNs) across a wide range of bolometric luminosities (10 43 bol (erg s –1 ) 46 ) and redshifts (0 bol -f merger relation suggests that downsizing, i.e., the general decline in AGN and star formation activity with decreasing redshift, is driven by a decline in the frequency of major mergers combined with a decrease in the availability of gas at lower redshifts.

  5. THE L∝σ8 CORRELATION FOR ELLIPTICAL GALAXIES WITH CORES: RELATION WITH BLACK HOLE MASS

    International Nuclear Information System (INIS)

    Kormendy, John; Bender, Ralf

    2013-01-01

    We construct the Faber-Jackson correlation between velocity dispersion σ and total galaxy luminosity L V separately for elliptical galaxies with and without cores. The coreless ellipticals show the well-known, steep relationship dlog σ/dlog L V = 0.268 or L V ∝σ 3.74 . This corresponds to dlog σ/dlog M = 0.203, where M is the stellar mass and we use M/L∝L 0.32 . In contrast, the velocity dispersions of core ellipticals increase much more slowly with L V and M: dlog σ/dlog L V = 0.120, L V ∝σ 8.33 , and dlog σ/dlog M = 0.091. Dissipationless major galaxy mergers are expected to preserve σ according to the simplest virial-theorem arguments. However, numerical simulations show that σ increases slowly in dry major mergers, with dlog σ/dlog M ≅ +0.15. In contrast, minor mergers cause σ to decrease, with dlog σ/dlog M ≅ –0.05. Thus, the observed relation argues for dry major mergers as the dominant growth mode of the most massive ellipticals. This is consistent with what we know about the formation of cores. We know no viable way to explain galaxy cores except through dissipationless mergers of approximately equal-mass galaxies followed by core scouring by binary supermassive black holes. The observed, shallow σ∝L V +0.12 relation for core ellipticals provides further evidence that they formed in dissipationless and predominantly major mergers. Also, it explains the observation that the correlation of supermassive black hole mass with velocity dispersion, M . ∝σ 4 , ''saturates'' at high M . such that M . becomes almost independent of σ.

  6. Dynamics of small groups of galaxies. I. Virialized groups

    International Nuclear Information System (INIS)

    Mamon, G.A.; New York Univ., NY)

    1987-01-01

    The dynamical evolution of small groups of galaxies from an initial virial equilibrium state is investigated by means of numerical simulations. The basic scheme is a gravitational N-body code in which galaxies and diffuse background are treated as single particles with both external parameters and internal structure; collisional and tidal stripping, dynamical friction, mergers, and orbital braking are taken into account. The results are presented in extensive tables and graphs and characterized in detail. Eight-galaxy groups with surface densities like those of compact groups (as defined by Hickson, 1982) are found to be unstable to rapid mergers after 1/30 to 1/8 Hubble time. The effects of dark-matter distribution (in galactic halos or in a common intergalactic background) are considered. 79 references

  7. Dark Satellites and the Morphology of Dwarf Galaxies

    NARCIS (Netherlands)

    Helmi, Amina; Sales, L. V.; Starkenburg, E.; Starkenburg, T. K.; Vera Ciro, C.; De Lucia, G.; Li, Y. -S.

    2012-01-01

    One of the strongest predictions of the Delta CDM cosmological model is the presence of dark satellites orbiting all types of galaxies. We focus here on the dynamical effects of such satellites on disky dwarf galaxies, and demonstrate that these encounters can be dramatic. Although mergers with

  8. SMM J04135+10277: A CANDIDATE EARLY-STAGE ''WET-DRY'' MERGER OF TWO MASSIVE GALAXIES AT z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Dominik A., E-mail: dr@astro.cornell.edu [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2013-03-10

    We report interferometric imaging of CO(J = 3{yields}2) emission toward the z = 2.846 submillimeter-selected galaxy SMM J04135+10277, using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). SMM J04135+10277 was previously thought to be a gas-rich, submillimeter-selected quasar, with the highest molecular gas mass among high-z quasars reported in the literature. Our maps at {approx}6 Multiplication-Sign improved linear resolution relative to earlier observations spatially resolve the emission on {approx}1.''7 scales, corresponding to a (lensing-corrected) source radius of {approx}5.2 kpc. They also reveal that the molecular gas reservoir, and thus, likely the submillimeter emission, is not associated with the host galaxy of the quasar, but with an optically faint gas-rich galaxy at 5.''2, or 41.5 kpc projected distance from the active galactic nucleus (AGN). The obscured gas-rich galaxy has a dynamical mass of M{sub dyn} sin{sup 2} i = 5.6 Multiplication-Sign 10{sup 11} M{sub Sun }, corresponding to a gas mass fraction of {approx_equal}21%. Assuming a typical M{sub BH}/M{sub *} ratio for z {approx}> 2 quasars, the two galaxies in this system have an approximate mass ratio of {approx}1.9. Our findings suggest that this quasar-starburst galaxy pair could represent an early stage of a rare major, gas-rich/gas-poor ({sup w}et-dry{sup )} merger of two massive galaxies at z = 2.8, rather than a single, gas-rich AGN host galaxy. Such systems could play an important role in the early buildup of present-day massive galaxies through a submillimeter-luminous starburst phase, and may remain hidden in larger numbers among rest-frame far-infrared-selected quasar samples at low and high redshift.

  9. Star formation and substructure in galaxy clusters

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-01-01

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M r 0.1 <−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  10. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  11. A massive, dead disk galaxy in the early Universe.

    Science.gov (United States)

    Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L

    2017-06-21

    At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

  12. EVIDENCE FOR MORPHOLOGY AND LUMINOSITY TRANSFORMATION OF GALAXIES AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2009-01-01

    We study the galaxy morphology-luminosity-environmental relation and its redshift evolution using a spectroscopic sample of galaxies in the Great Observatories Origins Deep Survey. In the redshift range of 0.4 ≤ z ≤ 1.0, we detect conformity in morphology between neighboring galaxies. The realm of conformity is confined within the virialized region associated with each galaxy plus dark matter halo system. When a galaxy is located within the virial radius of its nearest neighbor galaxy, its morphology strongly depends on the neighbor's distance and morphology: the probability for a galaxy to be an early type (f E ) increases as it approaches an early-type neighbor, but decreases as it approaches a late-type neighbor. We find that f E evolves much faster in high-density regions than in low-density regions, and that the morphology-density relation becomes significantly weaker at z ∼ 1. This may be because the rate of galaxy-galaxy interactions is higher in high-density regions, and a series of interactions and mergers over the course of galaxy life eventually transform late types into early types. We find more isolated galaxies are more luminous, which supports luminosity transformation through mergers at these redshifts. Our results are consistent with those from nearby galaxies, and demonstrate that galaxy-galaxy interactions have been strongly affecting the galaxy evolution over a long period of time.

  13. Clusters of galaxies as tools in observational cosmology : results from x-ray analysis

    International Nuclear Information System (INIS)

    Weratschnig, J.M.

    2009-01-01

    Clusters of galaxies are the largest gravitationally bound structures in the universe. They can be used as ideal tools to study large scale structure formation (e.g. when studying merger clusters) and provide highly interesting environments to analyse several characteristic interaction processes (like ram pressure stripping of galaxies, magnetic fields). In this dissertation thesis, we have studied several clusters of galaxies using X-ray observations. To obtain scientific results, we have applied different data reduction and analysis methods. With a combination of morphological and spectral analysis, the merger cluster Abell 514 was studied in much detail. It has a highly interesting morphology and shows signs for an ongoing merger as well as a shock. using a new method to detect substructure, we have analysed several clusters to determine whether any substructure is present in the X-ray image. This hints towards a real structure in the distribution of the intra-cluster medium (ICM) and is evidence for ongoing mergers. The results from this analysis are extensively used with the cluster of galaxies Abell S1136. Here, we study the ICM distribution and compare its structure with the spatial distribution of star forming galaxies. Cluster magnetic fields are another important topic of my thesis. They can be studied in Radio observations, which can be put into relation with results from X-ray observations. using observational data from several clusters, we could support the theory that cluster magnetic fields are frozen into the ICM. (author)

  14. Star Formation in Merging Galaxies Using FIRE

    Science.gov (United States)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  15. An Empirical Analysis of Post-Merger Organizational Integration

    OpenAIRE

    Smeets, Valerie Anne Rolande; Gibbs, Michael; Ierulli, Kathryn

    2015-01-01

    We study post-merger organizational integration using linked employer-employee data. Integration is implemented by reassigning a small number of high skilled workers, especially in R&D and management. Workforce mixing is concentrated to establishments set up after merger rather than to previously existing establishments. Worker turnover is high after merger, but new hiring yields stable total employment. Target employees have higher turnover and reassignment, particularly if the target fi...

  16. Gemini/GMOS Spectroscopy of Globular Clusters in the Merger Remnant Galaxy M85

    Science.gov (United States)

    Ko, Youkyung; Lee, Myung Gyoon; Park, Hong Soo; Sohn, Jubee; Lim, Sungsoon; Hwang, Narae

    2018-06-01

    M85 is a peculiar S0 galaxy in Virgo and a well-known merger remnant. We present the first spectroscopic study of globular clusters (GCs) in M85. We obtain spectra for 21 GC candidates and the nucleus of M85 using the Gemini Multi-Object Spectrograph on the Gemini North 8.1 m telescope. From their radial velocities, 20 of the GCs are found to be members of M85. We find a strong rotation signal of the M85 GC system with a rotation amplitude of 235 km s‑1. The rotation axis of the GC system has a position angle of about 161°, which is 51.°5 larger than that of the stellar light. The rotation-corrected radial velocity dispersion of the GC system is estimated to be {σ }{{r},{cor}}=160 km s‑1. The rotation parameter {{Ω }}{R}icor}/{σ }{{r},{cor}} of the GC system is derived to be {1.47}-0.48+1.05, which is one of the largest among known early-type galaxies. The ages and metallicities of the GCs, which show the same trend as the results based on Lick indices, are derived from full spectrum fitting (ULySS). About half of the GCs are an intermediate-age population whose mean age is ∼3.7 ± 1.9 Gyr, having a mean [Fe/H] value of ‑0.26. The other half are old and metal-poor. These results suggest that M85 experienced a wet merging event about 4 Gyr ago, forming a significant population of star clusters. The strong rotational feature of the GC system can be explained by an off-center major merging.

  17. The benefit of mergers and taking-overs

    International Nuclear Information System (INIS)

    Nillesen, P.H.L.; Keats, K.; Pollitt, M.

    2001-01-01

    Electricity companies can realize considerable efficiency benefits through mergers by using management skills of a more efficient company and the resulting changed mix of inputs. In this article a pattern of thought is introduced by means of which cost savings of mergers can be identified in a strategic and scientific way. Such a way of thinking can be applied, e.g. in a cash flow analysis, in the valuation of companies and in the merger and taking-over process. 7 refs

  18. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-01-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z +3.6 -1.9 % to 18 +5 -5 %). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ∼3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9 +3 -2 % to 29 -19 +26 %). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs

  19. OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Kim, Duho; Im, Myungshin

    2013-01-01

    It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 10 11.4 M ☉ but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients

  20. Links between galaxy evolution, morphology and internal physical processes

    International Nuclear Information System (INIS)

    Kraljic, Katarina

    2014-01-01

    This thesis aims at making the link between galaxy evolution, morphology and internal physical processes, namely star formation as the outcome of the turbulent multiphase interstellar medium, using the cosmological zoom-in simulations, simulations of isolated and merging galaxies, and the analytic model of star formation. In Chapter 1, I explain the motivation for this thesis and briefly review the necessary background related to galaxy formation and modeling with the use of numerical simulations. I first explore the evolution of the morphology of Milky-Way-mass galaxies in a suite of zoom-in cosmological simulations through the analysis of bars. I analyze the evolution of the fraction of bars with redshift, its dependence on the stellar mass and accretion history of individual galaxies. I show in particular, that the fraction of bars declines with increasing redshift, in agreement with the observations. This work also shows that the obtained results suggest that the bar formation epoch corresponds to the transition between an early 'violent' phase of spiral galaxies formation at z > 1, during which they are often disturbed by major mergers or multiple minor mergers as well as violent disk instabilities, and a late 'secular' phase at z [fr

  1. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  2. What Drive the Damage to Post-Merger Operating Performance?

    Directory of Open Access Journals (Sweden)

    Soegiharto Soegiharto

    2010-05-01

    Full Text Available This study examines whether bidders’ post-merger operat-ing performance are affected by their CEO behavior, premiumspaid to the target firms, the period of mergers, the method ofpayment, the industry of merged firms, capital liquidity, andtheir pre-merger operating performance. Testing the U.S. suc-cessful merger and acquisition data for the period of 1990s, thisstudy finds that in-wave mergers, intra-industry mergers, thepayment of lower premiums, and better pre-merger operatingperformance drive the bidders to produce better post-mergeroperating performance. Three measures of CEO behavior—themain predictor scrutinezed in this study—are proposed andexamined, and the results demonstrate that the effects of thesemeasures on post-merger operating performance are mixed,suggesting that each of the behavioral measures designed in thisstudy may capture CEO behavior in different ways. Keywords: capital liquidity; CEO overconfidence; merger waves, method of pay-ment operating performance

  3. Reconstructing galaxy histories from globular clusters.

    Science.gov (United States)

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  4. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    Science.gov (United States)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  5. STELLAR POPULATION GRADIENTS IN ULTRALUMINOUS INFRARED GALAXIES: IMPLICATIONS FOR GAS INFLOW TIMESCALES

    International Nuclear Information System (INIS)

    Soto, Kurt T.; Martin, Crystal L.

    2010-01-01

    Using longslit, optical spectra of ultraluminous infrared galaxies, we measure the evolution in the star formation intensity during galactic mergers. In individual galaxies, we resolve kiloparsec scales allowing comparison of the nucleus, inner disk, and outer disk. We find that the strength of the Hβ absorption line increases with the projected distance from the center of the merger, typically reaching about 9 A around 10 kpc. At these radii, the star formation intensity must have rapidly decreased about 300-400 Myr ago; only stellar populations deficient in stars more massive than Type A produce such strong Balmer absorption. In contrast, we find the star formation history in the central kiloparsec consistent with continuous star formation. Our measurements indicate that gas depletion occurs from the outer disk inward during major mergers. This result is consistent with merger-induced gas inflow and empirically constrains the gas inflow timescale. Numerical simulations accurately calculate the total amount of infalling gas but often assume the timescale for infall. These new measurements are therefore central to modeling merger-induced star formation and active galactic nucleus activity.

  6. The dynamical fingerprint of core scouring in massive elliptical galaxies

    International Nuclear Information System (INIS)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-01-01

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  7. SERENDIPITOUS DISCOVERY OF A MASSIVE cD GALAXY AT z = 1.096: IMPLICATIONS FOR THE EARLY FORMATION AND LATE EVOLUTION OF cD GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. S.; Guo Yicheng; Koo, David C.; Trump, Jonathan R.; Barro, Guillermo; Yesuf, Hassen; Faber, S. M.; Cheung, Edmond; Giavalisco, M.; Cassata, P.; Koekemoer, A. M.; Grogin, Norman A.; Pentericci, L.; Castellano, M.; Mao, Shude; Xia, X. Y.; Hathi, Nimish P.; Huang, Kuang-Han; Kocevski, Dale; McGrath, Elizabeth J.

    2013-01-01

    We have made a serendipitous discovery of a massive (∼5 × 10 11 M ☉ ) cD galaxy at z = 1.096 in a candidate-rich cluster in the Hubble Ultra Deep Field (HUDF) area of GOODS-South. This brightest cluster galaxy (BCG) is the most distant cD galaxy confirmed to date. Ultra-deep HST/WFC3 images reveal an extended envelope starting from ∼10 kpc and reaching ∼70 kpc in radius along the semimajor axis. The spectral energy distributions indicate that both its inner component and outer envelope are composed of an old, passively evolving (specific star formation rate –4 Gyr –1 ) stellar population. The cD galaxy lies on the same mass-size relation as the bulk of quiescent galaxies at similar redshifts. The cD galaxy has a higher stellar mass surface density (∼M * /R 50 2 ) but a similar velocity dispersion (∼√(M * /R 50 )) to those of more massive, nearby cDs. If the cD galaxy is one of the progenitors of today's more massive cDs, its size (R 50 ) and stellar mass have had to increase on average by factors of 3.4 ± 1.1 and 3.3 ± 1.3 over the past ∼8 Gyr, respectively. Such increases in size and stellar mass without being accompanied by significant increases in velocity dispersion are consistent with evolutionary scenarios driven by both major and minor dissipationless (dry) mergers. If such cD envelopes originate from dry mergers, our discovery of even one example proves that some BCGs entered the dry merger phase at epochs earlier than z = 1. Our data match theoretical models which predict that the continuance of dry mergers at z 1 and, yet, the HUDF covers only a minuscule region of sky (∼3.1 × 10 –8 ). Adding that cDs are rare, our serendipitous discovery hints that such cDs may be more common than expected, perhaps even ubiquitous. Images reaching HUDF depths of more area (especially with cluster BCGs at z > 1) are needed to confirm this conjecture.

  8. HI Absorption in Merger Remnants

    Science.gov (United States)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  9. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  10. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  11. The Stormy Life of Galaxy Clusters

    Science.gov (United States)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  12. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  13. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  14. SERENDIPITOUS DISCOVERY OF A MASSIVE cD GALAXY AT z = 1.096: IMPLICATIONS FOR THE EARLY FORMATION AND LATE EVOLUTION OF cD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F. S. [College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034 (China); Guo Yicheng; Koo, David C.; Trump, Jonathan R.; Barro, Guillermo; Yesuf, Hassen; Faber, S. M.; Cheung, Edmond [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Giavalisco, M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cassata, P. [Aix Marseille Universite, CNRS, LAM-Laboratoire d' Astrophysique de Marseille, F-13388 Marseille (France); Koekemoer, A. M.; Grogin, Norman A. [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Pentericci, L.; Castellano, M. [INAF Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio (RM) (Italy); Mao, Shude [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Beijing 100012 (China); Xia, X. Y. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Hathi, Nimish P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kocevski, Dale [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); McGrath, Elizabeth J., E-mail: fengshan@ucolick.org [Department of Physics and Astronomy, Colby College, Mayflower Hill Drive, Waterville, ME 0490 (United States); and others

    2013-06-01

    We have made a serendipitous discovery of a massive ({approx}5 Multiplication-Sign 10{sup 11} M{sub Sun }) cD galaxy at z = 1.096 in a candidate-rich cluster in the Hubble Ultra Deep Field (HUDF) area of GOODS-South. This brightest cluster galaxy (BCG) is the most distant cD galaxy confirmed to date. Ultra-deep HST/WFC3 images reveal an extended envelope starting from {approx}10 kpc and reaching {approx}70 kpc in radius along the semimajor axis. The spectral energy distributions indicate that both its inner component and outer envelope are composed of an old, passively evolving (specific star formation rate <10{sup -4} Gyr{sup -1}) stellar population. The cD galaxy lies on the same mass-size relation as the bulk of quiescent galaxies at similar redshifts. The cD galaxy has a higher stellar mass surface density ({approx}M{sub *}/R{sub 50}{sup 2}) but a similar velocity dispersion ({approx}{radical}(M{sub *}/R{sub 50})) to those of more massive, nearby cDs. If the cD galaxy is one of the progenitors of today's more massive cDs, its size (R{sub 50}) and stellar mass have had to increase on average by factors of 3.4 {+-} 1.1 and 3.3 {+-} 1.3 over the past {approx}8 Gyr, respectively. Such increases in size and stellar mass without being accompanied by significant increases in velocity dispersion are consistent with evolutionary scenarios driven by both major and minor dissipationless (dry) mergers. If such cD envelopes originate from dry mergers, our discovery of even one example proves that some BCGs entered the dry merger phase at epochs earlier than z = 1. Our data match theoretical models which predict that the continuance of dry mergers at z < 1 can result in structures similar to those of massive cD galaxies seen today. Moreover, our discovery is a surprise given that the extreme depth of the HUDF is essential to reveal such an extended cD envelope at z > 1 and, yet, the HUDF covers only a minuscule region of sky ({approx}3.1 Multiplication-Sign 10{sup -8

  15. Tracking the Obscured Star Formation Along the Complete Evolutionary Merger Sequence of LIRGs

    Science.gov (United States)

    Diaz-Santos, Tanio

    2014-10-01

    We propose to obtain WFC3 narrow-band Pa-beta imaging of a sample of 24 nearby luminous infrared (IR) galaxies (LIRGs) from the Great Observatories All-sky LIRG survey (GOALS) selected to be in advanced stages of interaction. LIRGs account for half of the obscured star formation of the Universe at z ~ 1-2, and they represent a key population in galaxy formation and evolution. We will use the Pa-beta images to trace the ionized gas in LIRGs and study its spatial distribution from scales of ~ 100 pc to up to several kpc, probing the youngest, massive stars formed in the most buried environments of LIRGs due to the interaction process. This will allow us to measure how the gas in the center of mergers is converted into stars, which eventually leads to the build-up of a nuclear stellar cusp and the "inside-out" growth of bulges. We will also create spatially-resolved Pa-beta equivalent width maps to search for age gradients across the galaxies and correlate the distribution of Pa-beta emission with that of un-obscured star clusters detected in the UV and optical with HST on the same spatial scales. Finally, we will combine our data with previous studies mainly focused on isolated and early-stage interacting LIRG systems to analyze the size and compactness of the starburst along the complete merger sequence of LIRGs. The requested data represent a critical missing piece of information that will allow us to understand both the physics of merger-induced star formation and the applicability of local LIRGs as templates for high-z interacting starburst galaxies.

  16. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

    Science.gov (United States)

    Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R

    2003-12-04

    The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).

  17. THE FATE OF DWARF GALAXIES IN CLUSTERS AND THE ORIGIN OF INTRACLUSTER STARS. II. COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Martel, Hugo; Barai, Paramita; Brito, William

    2012-01-01

    We combine an N-body simulation algorithm with a subgrid treatment of galaxy formation, mergers, and tidal destruction, and an observed conditional luminosity function Φ(L|M), to study the origin and evolution of galactic and extragalactic light inside a cosmological volume of size (100 Mpc) 3 , in a concordance ΛCDM model. This algorithm simulates the growth of large-scale structures and the formation of clusters, the evolution of the galaxy population in clusters, the destruction of galaxies by mergers and tides, and the evolution of the intracluster light (ICL). We find that destruction of galaxies by mergers dominates over destruction by tides by about an order of magnitude at all redshifts. However, tidal destruction is sufficient to produce ICL fractions f ICL that are sufficiently high to match observations. Our simulation produces 18 massive clusters (M cl > 10 14 M ☉ ) with values of f ICL ranging from 1% to 58% at z = 0. There is a weak trend of f ICL to increase with cluster mass. The bulk of the ICL (∼60%) is provided by intermediate galaxies of total masses 10 11 -10 12 M ☉ and stellar masses 6 × 10 8 M ☉ to 3 × 10 10 M ☉ that were tidally destroyed by even more massive galaxies. The contribution of low-mass galaxies to the ICL is small and the contribution of dwarf galaxies is negligible, even though, by numbers, most galaxies that are tidally destroyed are dwarfs. Tracking clusters back in time, we find that their values of f ICL tend to increase over time, but can experience sudden changes that are sometimes non-monotonic. These changes occur during major mergers involving clusters of comparable masses but very different intracluster luminosities. Most of the tidal destruction events take place in the central regions of clusters. As a result, the ICL is more centrally concentrated than the galactic light. Our results support tidal destruction of intermediate-mass galaxies as a plausible scenario for the origin of the ICL.

  18. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  19. Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Linott, C.; Slosar, A.; Lintott, C.; Schawinski, K.; Bamford, S.; Slosar, A.; Land, K.; Thomas, D.; Edmondson, E.; Masters, K.; Nichol, R.C.; Raddick, M.J.; Szalay, A.; Andreescu, D.; Murray, P.; Vandenberg, J.

    2011-01-01

    Morphology is a powerful indicator of a galaxy's dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900,000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly available and full catalogues can be downloaded in electronic format from http://data.galaxyzoo.org.

  20. Fast-Growing SMBHs in Fast-Growing Galaxies, at High Redshifts: The Role of Major Mergers As Revealed by ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Trakhtenbrot, Benny [Department of Physics, ETH Zurich, Zurich (Switzerland); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Santiago (Chile); Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy and the Wise Observatory, Tel-Aviv University, Tel-Aviv (Israel); Cicone, Claudia [Department of Physics, ETH Zurich, Zurich (Switzerland); INAF-Osservatorio Astronomico di Brera, Milan (Italy); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Shemmer, Ohad, E-mail: benny.trakhtenbrot@phys.ethz.ch [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-11-30

    We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z ≃ 4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L{sub Edd} ≃ 0.7 and M{sub BH} ≃ 10{sup 9}M{sub ⊙}. The sample consists of “FIR-bright” sources with a previous Herschel/SPIRE detection, suggesting SFR > 1,000 M{sub ⊙} yr−1, as well as of “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of ~400 M{sub ⊙} yr−1. Six of the quasars have been observed by ALMA in [C ii] λ157.74μm line emission and adjacent rest-frame 150μm continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources—one FIR-bright and two FIR-faint. The companions are separated by ~14–45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  1. Fast-Growing SMBHs in Fast-Growing Galaxies, at High Redshifts: The Role of Major Mergers As Revealed by ALMA

    International Nuclear Information System (INIS)

    Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto; Shemmer, Ohad

    2017-01-01

    We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z ≃ 4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L Edd ≃ 0.7 and M BH ≃ 10 9 M ⊙ . The sample consists of “FIR-bright” sources with a previous Herschel/SPIRE detection, suggesting SFR > 1,000 M ⊙ yr−1, as well as of “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of ~400 M ⊙ yr−1. Six of the quasars have been observed by ALMA in [C ii] λ157.74μm line emission and adjacent rest-frame 150μm continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources—one FIR-bright and two FIR-faint. The companions are separated by ~14–45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  2. Glimpsing the imprint of local environment on the galaxy stellar mass function

    Science.gov (United States)

    Tomczak, Adam R.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy R.; Wu, Po-Feng; Holden, Bradford; Kocevski, Dale D.; Mei, Simona; Pelliccia, Debora; Rumbaugh, Nicholas; Shen, Lu

    2017-12-01

    We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 109 M⊙. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct three-dimensional density maps between 0.55 environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments, we devise a simple semi-empirical model. The model begins with a sample of ≈106 galaxies at zstart = 5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to zfinal = 0.8 following empirical prescriptions for star-formation, quenching and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).

  3. Simulated galaxy interactions as probes of merger spectral energy distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Brassington, Nicola, E-mail: llanz@ipac.caltech.edu [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  4. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  5. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  6. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  7. Creating S0s with Major Mergers: A 3D View

    Directory of Open Access Journals (Sweden)

    Miguel Querejeta

    2015-12-01

    Full Text Available A number of simulators have argued that major mergers can sometimes preserve discs, but the possibility that they could explain the emergence of lenticular galaxies (S0s has been generally neglected. In fact, observations of S0s reveal a strong structural coupling between their bulges and discs, which seems difficult to reconcile with the idea that they come from major mergers. However, in our recent papers we have used N-body simulations of binary mergers to show that, under favourable conditions, discs are first destroyed but soon regrow out of the leftover debris, matching observational photometric scaling relations. Additionally, we have shown how the merger scenario agrees with the recent discovery that S0s and most spirals are not compatible in an angular momentum–concentration plane. This important result from CALIFA constitutes a serious objection to the idea that spirals transform into S0s mainly by fading (e.g., via ram-pressure stripping, as that would not explain the observed simultaneous change in λ Re and concentration, but our simulations of major mergers do explain that mismatch. From such a 3D comparison we conclude that mergers must be a relevant process in the build-up of the current population of S0s.

  8. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Busha, Michael T.; Hahn, Oliver; Klypin, Anatoly; Primack, Joel R.

    2014-01-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8 −1.0 +2.3 R vir,host for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7 −2.2 +3.3 R vir,host at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R vir, host ) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  9. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.

    2014-05-14

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of $1.8^{+2.3}_{-1.0} \\,R_\\mathrm{vir,host}$ for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ($3.7^{+3.3}_{-2.2} \\,R_\\mathrm{vir,host}$ at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  10. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    International Nuclear Information System (INIS)

    Dahle, H.; Sarazin, C. L.; Lopez, L. A.; Kouveliotou, C.; Patel, S. K.; Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J.; Fynbo, J.; Michałowski, M. J.; Burrows, D. N.; Grupe, D.; Gehrels, N.; Ramirez-Ruiz, E.

    2013-01-01

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the origin of short GRBs

  11. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Sarazin, C. L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Lopez, L. A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Kouveliotou, C. [Space Science Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Patel, S. K. [Optical Sciences Corporation, 6767 Old Madison Pike, Suite 650, Huntsville, AL 35806 (United States); Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Fynbo, J.; Michalowski, M. J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Burrows, D. N.; Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gehrels, N. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ramirez-Ruiz, E., E-mail: hdahle@astro.uio.no [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States)

    2013-07-20

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the

  12. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    Science.gov (United States)

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  13. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    International Nuclear Information System (INIS)

    Rupke, David S. N.; Veilleux, Sylvain

    2013-01-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z –1 , and the highest velocities (2000-3000 km s –1 ) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  14. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Grant R.; Davis, Timothy A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Gladders, Michael D.; Florian, Michael [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Baum, Stefi A.; O' Dea, Christopher P.; Cooke, Kevin C. [Chester F. Carlson Center for Imaging Science and School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Bayliss, Matthew B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Rigby, Jane R. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Sharon, Keren [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Soto, Emmaris [Department of Physics, The Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States); Wuyts, Eva, E-mail: grant.tremblay@eso.org [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching bei München (Germany)

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  15. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. I. X-RAY LUMINOSITY FUNCTION OF LOW-MASS X-RAY BINARIES

    International Nuclear Information System (INIS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2010-01-01

    We have compared the combined X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) detected in Chandra observations of young, post-merger elliptical galaxies with that of typical old elliptical galaxies. We find that the XLF of the 'young' sample does not present the prominent high-luminosity break at L X > 5 x 10 38 erg s -1 found in the old elliptical galaxy XLF. The 'young' and 'old' XLFs differ with a 3σ statistical significance (with a probability less than 0.2% that they derive from the same underlying parent distribution). Young elliptical galaxies host a larger fraction of luminous LMXBs (L X > 5 x 10 38 erg s -1 ) than old elliptical galaxies and the XLF of the young galaxy sample is intermediate between that of typical old elliptical galaxies and that of star-forming galaxies. This observational evidence may be related to the last major/minor mergers and the associated star formation.

  16. THE FATE OF DWARF GALAXIES IN CLUSTERS AND THE ORIGIN OF INTRACLUSTER STARS. II. COSMOLOGICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Hugo [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, QC (Canada); Barai, Paramita [Osservatorio Astronomico di Trieste, I-34143 Trieste (Italy); Brito, William [Centre de Recherche en Astrophysique du Quebec, C.P. 6128, Succ. Centre-Ville, Montreal, QC (Canada)

    2012-09-20

    We combine an N-body simulation algorithm with a subgrid treatment of galaxy formation, mergers, and tidal destruction, and an observed conditional luminosity function {Phi}(L|M), to study the origin and evolution of galactic and extragalactic light inside a cosmological volume of size (100 Mpc){sup 3}, in a concordance {Lambda}CDM model. This algorithm simulates the growth of large-scale structures and the formation of clusters, the evolution of the galaxy population in clusters, the destruction of galaxies by mergers and tides, and the evolution of the intracluster light (ICL). We find that destruction of galaxies by mergers dominates over destruction by tides by about an order of magnitude at all redshifts. However, tidal destruction is sufficient to produce ICL fractions f{sub ICL} that are sufficiently high to match observations. Our simulation produces 18 massive clusters (M{sub cl} > 10{sup 14} M{sub Sun }) with values of f{sub ICL} ranging from 1% to 58% at z = 0. There is a weak trend of f{sub ICL} to increase with cluster mass. The bulk of the ICL ({approx}60%) is provided by intermediate galaxies of total masses 10{sup 11}-10{sup 12} M{sub Sun} and stellar masses 6 Multiplication-Sign 10{sup 8} M{sub Sun} to 3 Multiplication-Sign 10{sup 10} M{sub Sun} that were tidally destroyed by even more massive galaxies. The contribution of low-mass galaxies to the ICL is small and the contribution of dwarf galaxies is negligible, even though, by numbers, most galaxies that are tidally destroyed are dwarfs. Tracking clusters back in time, we find that their values of f{sub ICL} tend to increase over time, but can experience sudden changes that are sometimes non-monotonic. These changes occur during major mergers involving clusters of comparable masses but very different intracluster luminosities. Most of the tidal destruction events take place in the central regions of clusters. As a result, the ICL is more centrally concentrated than the galactic light. Our results

  17. ANATOMY OF A POST-STARBURST MINOR MERGER: A MULTI-WAVELENGTH WFC3 STUDY OF NGC 4150

    International Nuclear Information System (INIS)

    Crockett, R. Mark; Kaviraj, Sugata; Silk, Joseph I.; Whitmore, Bradley C.; Mutchler, Max; Bond, Howard E.; O'Connell, Robert W.; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; Paresce, Francesco; Saha, Abhijit; Trauger, John T.

    2011-01-01

    We present a spatially resolved near-UV/optical study, using the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope, of NGC 4150, a sub-L * , early-type galaxy (ETG) of around 6 x 10 9 M sun , which has been observed as part of the WFC3 Early-Release Science Programme. Previous work indicates that this galaxy has a large reservoir of molecular hydrogen gas, exhibits a kinematically decoupled core (a likely indication of recent merging) and strong, central Hβ absorption (indicative of young stars). While relatively uninspiring in its optical image, the core of NGC 4150 shows ubiquitous near-UV emission and remarkable dusty substructure. Our analysis shows this galaxy to lie in the near-UV green valley, and its pixel-by-pixel photometry exhibits a narrow range of near-UV/optical colors that are similar to those of nearby E+A (post-starburst) galaxies and lie between those of M83 (an actively star-forming spiral) and the local quiescent ETG population. We parameterize the properties of the recent star formation (RSF; age, mass fraction, metallicity, and internal dust content) in the NGC 4150 pixels by comparing the observed near-UV/optical photometry to stellar models. The typical age of the RSF is around 0.9 Gyr, consistent with the similarity of the near-UV colors to post-starburst systems, while the morphological structure of the young component supports the proposed merger scenario. The typical RSF metallicity, representative of the metallicity of the gas fuelling star formation, is ∼0.3-0.5 Z sun . Assuming that this galaxy is a merger and that the gas is sourced mainly from the infalling companion, these metallicities plausibly indicate the gas-phase metallicity (GPM) of the accreted satellite. Comparison to the local mass-GPM relation suggests (crudely) that the mass of the accreted system is ∼3 x 10 8 M sun , making NGC 4150 a 1:20 minor merger. A summation of the pixel RSF mass fractions indicates that the RSF contributes ∼2%-3% of the

  18. The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers

    Science.gov (United States)

    Gargiulo, Adriana; Vipers Team

    2017-06-01

    At fixed stellar mass, the population of passive galaxies has increased its mean effective radius by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.

  19. Potential gains from hospital mergers in Denmark.

    Science.gov (United States)

    Kristensen, Troels; Bogetoft, Peter; Pedersen, Kjeld Moeller

    2010-12-01

    The Danish hospital sector faces a major rebuilding program to centralize activity in fewer and larger hospitals. We aim to conduct an efficiency analysis of hospitals and to estimate the potential cost savings from the planned hospital mergers. We use Data Envelopment Analysis (DEA) to estimate a cost frontier. Based on this analysis, we calculate an efficiency score for each hospital and estimate the potential gains from the proposed mergers by comparing individual efficiencies with the efficiency of the combined hospitals. Furthermore, we apply a decomposition algorithm to split merger gains into technical efficiency, size (scale) and harmony (mix) gains. The motivation for this decomposition is that some of the apparent merger gains may actually be available with less than a full-scale merger, e.g., by sharing best practices and reallocating certain resources and tasks. Our results suggest that many hospitals are technically inefficient, and the expected "best practice" hospitals are quite efficient. Also, some mergers do not seem to lower costs. This finding indicates that some merged hospitals become too large and therefore experience diseconomies of scale. Other mergers lead to considerable cost reductions; we find potential gains resulting from learning better practices and the exploitation of economies of scope. To ensure robustness, we conduct a sensitivity analysis using two alternative returns-to-scale assumptions and two alternative estimation approaches. We consistently find potential gains from improving the technical efficiency and the exploitation of economies of scope from mergers.

  20. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Wechsler, Risa H.; Lu, Yu; Busha, Michael T. [Physics Department, Stanford University, Department of Particle and Particle Astrophysics, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology Stanford, CA 94305 (United States); Hahn, Oliver [Institute for Astronomy, ETH Zurich, 8093-CH Zurich (Switzerland); Klypin, Anatoly [Astronomy Department, New Mexico State University, Las Cruces, NM 88003 (United States); Primack, Joel R., E-mail: behroozi@stsci.edu [Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    2014-06-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8{sub −1.0}{sup +2.3} R{sub vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7{sub −2.2}{sup +3.3} R{sub vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R {sub vir,} {sub host}) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  1. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    Science.gov (United States)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  2. Spatially Resolved Hard X-ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    Science.gov (United States)

    Wang, Junfeng; Nardini, E.; Fabbiano, G.; Karovska, M.; Elvis, M.; Pellegrini, S.; Max, C. E.; Risaliti, G.; U, V.; Zezas, A.

    2013-04-01

    We have obtained a deep, sub-arcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from 70 million K hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with velocity of 2200 km/s. For the first time we obtain spatial distribution of this highly ionized gas emitting FeXXV and find that it shows a remarkable correspondence to the large scale morphology of H_2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originated in the starburst driven wind into the ambient dense gas can account for this morphological correspondence. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate.

  3. Galaxy interactions trigger rapid black hole growth: An unprecedented view from the Hyper Suprime-Cam survey

    Science.gov (United States)

    Goulding, Andy D.; Greene, Jenny E.; Bezanson, Rachel; Greco, Johnny; Johnson, Sean; Leauthaud, Alexie; Matsuoka, Yoshiki; Medezinski, Elinor; Price-Whelan, Adrian M.

    2018-01-01

    Collisions and interactions between gas-rich galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and possibly serving as a mechanism for fueling supermassive black holes (BHs). Harnessing the exquisite spatial resolution (˜0{^''.}5) afforded by the first ˜170 deg2 of the Hyper Suprime-Cam (HSC) survey, we present our new constraints on the importance of galaxy-galaxy major mergers (1 : 4) in growing BHs throughout the last ˜8 Gyr. Utilizing mid-infrared observations in the WISE all-sky survey, we robustly select active galactic nuclei (AGN) and mass-matched control galaxy samples, totaling ˜140000 spectroscopically confirmed systems at i based on our comparison of AGN fractions in mass-matched samples, we determine that the most luminous AGN population (LAGN ≳ 1045 erg s-1) systematically reside in merging systems over non-interacting galaxies. Our findings show that galaxy-galaxy interactions do, on average, trigger luminous AGN activity substantially more often than in secularly evolving non-interacting galaxies, and we further suggest that the BH growth rate may be closely tied to the dynamical time of the merger system.

  4. Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies?

    International Nuclear Information System (INIS)

    Khosroshahi, Habib G.; Raouf, Mojtaba; Miraghaei, Halime; Brough, Sarah; Croton, Darren J.; Graham, Alister; Driver, Simon; Baldry, Ivan; Brown, Michael; Prescott, Matt; Wang, Lingyu

    2017-01-01

    We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy and Mass Assembly survey. The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy (BGG), e.g., the luminosity gap between the two most luminous members, and the offset between the position of the BGG and the luminosity centroid of the group. We find that the radio luminosity of the largest galaxy in the group strongly depends on its environment, such that the BGGs in dynamically young (evolving) groups are an order of magnitude more luminous in the radio than those with a similar stellar mass but residing in dynamically old (relaxed) groups. This observation has been successfully reproduced by a newly developed semi-analytic model that allows us to explore the various causes of these findings. We find that the fraction of radio-loud BGGs in the observed dynamically young groups is ∼2 times that of the dynamically old groups. We discuss the implications of this observational constraint on the central galaxy properties in the context of galaxy mergers and the super massive black hole accretion rate.

  5. Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies?

    Energy Technology Data Exchange (ETDEWEB)

    Khosroshahi, Habib G.; Raouf, Mojtaba; Miraghaei, Halime [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746 (Iran, Islamic Republic of); Brough, Sarah [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Croton, Darren J.; Graham, Alister [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Driver, Simon [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Baldry, Ivan [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Brown, Michael [School of Physics, Monash University, Clayton, VIC 3800 (Australia); Prescott, Matt [Astrophysics Group, The University of Western Cape, Robert Sobukwe Road, Bellville 7530 (South Africa); Wang, Lingyu, E-mail: habib@ipm.ir [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands)

    2017-06-20

    We study the radio emission of the most massive galaxies in a sample of dynamically relaxed and unrelaxed galaxy groups from the Galaxy and Mass Assembly survey. The dynamical state of the group is defined by the stellar dominance of the brightest group galaxy (BGG), e.g., the luminosity gap between the two most luminous members, and the offset between the position of the BGG and the luminosity centroid of the group. We find that the radio luminosity of the largest galaxy in the group strongly depends on its environment, such that the BGGs in dynamically young (evolving) groups are an order of magnitude more luminous in the radio than those with a similar stellar mass but residing in dynamically old (relaxed) groups. This observation has been successfully reproduced by a newly developed semi-analytic model that allows us to explore the various causes of these findings. We find that the fraction of radio-loud BGGs in the observed dynamically young groups is ∼2 times that of the dynamically old groups. We discuss the implications of this observational constraint on the central galaxy properties in the context of galaxy mergers and the super massive black hole accretion rate.

  6. Quantifying the Effects of Gas-Rich Flyby Encounters on Galaxy Evolution

    Science.gov (United States)

    Dumas, Julie; Holley-Bockelmann, Kelly; Lang, Meagan

    2017-01-01

    Recent work has shown that flyby encounters may be a common event in a galaxy's lifetime. Galaxy flybys are a one-time encounter when two halos interpenetrate, but unlike a galaxy merger, the two halos later detach. Relatively little work has been done to assess how flybys affect galaxy evolution. We present preliminary results of a suite of high-resolution hydrodynamical + N-body simulations of gas-rich flyby encounters, concentrating on Milky Way-like primaries. We track the bulk changes in structure, star formation history, kinematics, and morphology over a broad span of flyby encounters.

  7. An Empirical Analysis of Post-Merger Organizational Integration

    DEFF Research Database (Denmark)

    Smeets, Valerie Anne Rolande; Ierulli, Kathryn; Gibbs, Michael

    2016-01-01

    existing establishments. Worker turnover is high after merger, but new hiring yields stable total employment. Target employees have higher turnover and reassignment, particularly if the target firm is small relative to the acquiring firm. These findings may suggest integration is costly, but can......We study post-merger organizational integration using linked employer-employee data. Integration is implemented by reassigning a small number of high skilled workers, especially in R&D and management. Workforce mixing is concentrated to establishments set up after merger rather than to previously...... be achieved by focusing on key employees. Alternatively, reassigning a few key employees is sufficient for achieving integration....

  8. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations

    Science.gov (United States)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2017-10-01

    We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.

  9. Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    Science.gov (United States)

    Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.

    2018-06-01

    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdepstar-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.

  10. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    Science.gov (United States)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  11. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    International Nuclear Information System (INIS)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-01-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties

  12. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  13. The separation distribution and merger rate of double white dwarfs: improved constraints

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama; Badenes, Carles

    2018-05-01

    We obtain new and precise information on the double white dwarf (DWD) population and on its gravitational-wave-driven merger rate by combining the constraints on the DWD population from two previous studies on radial velocity variation. One of the studies is based on a sample of white dwarfs (WDs) from the Sloan Digital Sky Survey (SDSS, which with its low spectral resolution probes systems at separations a distribution of initial WD separations (at the start of solely gravitational-wave-driven binary evolution), N(a)da ∝ aαda, is α = -1.30 ± 0.15 (1σ) +0.05 (systematic). The Galactic WD merger rate per WD is Rmerge = (9.7 ± 1.1) × 10-12 yr-1. Integrated over the Galaxy lifetime, this implies that 8.5-11 per cent of all WDs ever formed have merged with another WD. If most DWD mergers end as more-massive WDs, then some 10 per cent of WDs are DWD-merger products, consistent with the observed fraction of WDs in a `high-mass bump' in the WD mass function. The DWD merger rate is 4.5-7 times the Milky Way's specific Type Ia supernova (SN Ia) rate. If most SN Ia explosions stem from the mergers of some DWDs (say, those with massive-enough binary components) then ˜15 per cent of all WD mergers must lead to a SN Ia.

  14. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  15. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  16. Mergers of elliptical galaxies and the fundamental plane

    NARCIS (Netherlands)

    Gonzalez-Garcia, AC; van Albada, TS; AvilaReese,; Firmani, C; Frenk, CS; Allen, YC

    2003-01-01

    N-body simulations have been carried out in order to explore the final state of elliptical galaxies after encounters and more expecifically whether the Fundamental Plane (FP hereafter) relation is affected by merging.

  17. A homogeneous sample of binary galaxies: Basic observational properties

    Science.gov (United States)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  18. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    Science.gov (United States)

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  19. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    International Nuclear Information System (INIS)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-01-01

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  20. Wide-field kinematic structure of early-type galaxy halos

    Science.gov (United States)

    Arnold, Jacob Antony

    2013-12-01

    The stellar halos of nearby galaxies bare the signatures of the mass-assembly processes that have driven galaxy evolution over the last ˜10 Gyr. Finding and interpreting these relict clues in galaxies within and beyond the local group offers one of the most promising avenues for understanding how galaxies accumulate their stars over time. To tackle this problem we have performed a systematic study of the wide-field kinematic structure of nearby (Dspectroscopy out to several effective radii (˜3 R e). The 22 galaxies presented here span a range of environments (field, group, and cluster), intrinsic luminosities (-22.4 infrared Calcium II triplet. For each spectrum, we parameterize the line-of-sight velocity distribution (LOSVD) as a truncated Gauss-Hermite series convolved with an optimally weighted combination of stellar templates. These kinematic measurements (V, sigma, h3, and h4) are combined with literature values to construct spatially resolved maps of large-scale kinematic structure. A variety of kinematic behaviors are observed beyond ~1 Re, potentially reflecting the stochastic and chaotic assembly of stellar bulges and halos in early-type galaxies. Next, we describe a global analysis (out to 5 Re) of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging and multi-slit spectra of the field stars and globular clusters (GCs). Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly. At larger radii, the rotation declines dramatically, while the characteristic GC metallicities also decrease with radius. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers. To test this hypothesis

  1. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    Science.gov (United States)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  2. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    scenario still remain poorly understood. ... to test models with future observations. ... A popular scenario for the origin of radio halos assumes that relativis- ..... based on particle acceleration by merger-driven turbulence in galaxy clusters shows.

  3. Galaxy formation: internal mechanisms and cosmological processes

    International Nuclear Information System (INIS)

    Martig, Marie

    2010-01-01

    This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr

  4. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  5. Hydrogen in hot subdwarfs formed by double helium white dwarf mergers

    OpenAIRE

    Hall, Philip D.; Jeffery, C. Simon

    2016-01-01

    Isolated hot subdwarfs might be formed by the merging of two helium-core white dwarfs. Before merging, helium-core white dwarfs have hydrogen-rich envelopes and some of this hydrogen may survive the merger. We calculate the mass of hydrogen that is present at the start of such mergers and, with the assumption that hydrogen is mixed throughout the disrupted white dwarf in the merger process, estimate how much can survive. We find a hydrogen mass of up to about $2 \\times 10^{-3}\\,\\mathrm{M}_{\\o...

  6. The role of interactions in galaxy evolution: A new perspective from the CALIFA and MaNGA Integral Field Spectroscopic surveys.

    Science.gov (United States)

    Barrera-Ballesteros, J. K.; Sanchez, S. F.; Califa Collaboration

    2016-06-01

    Interactions and mergers have been playing a paramount role to understand how galaxies evolve. In recent years integral field spectroscopic (IFS) observations have become routinely allowing researchers to conduct large IFS surveys. In this context, these surveys are providing a new observational scenario to probe the properties of galaxies at different stages of the interaction —from close pairs to post-merger galaxies. Even more, these surveys also include homogeneous observations of non-interacting galaxies which in turns allows to distinguish the processes induce by secular evolution from those driven by interactions. In this talk, We review the studies of interacting studies from the CALIFA survey. They consider from the thorough analysis of a single interactive systems (e.g., the Mice, Wild et al. 2014) to the the statistical study of physical properties of a large sample of interacting/merging galaxies such as their internal structure via their stellar and gas line-of-sight kinematic maps (Barrera-Ballesteros et al. 2015a) or the spatial distribution of the star-forming gas in these galaxies (Barrera-Ballesteros et al. 2015b). Then we present some of the on-going studies within the MaNGA survey. Due to its statistical power (sample size ~10000 objects), this survey will allow us to probe the properties of galaxies in a wide range of the interaction-parameter space. This in turn provides a unique view on the key parameters that affect the internal structure and properties of galaxies during the interaction and subsequent merger.

  7. GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2

    International Nuclear Information System (INIS)

    Kartaltepe, Jeyhan S.; Dickinson, Mark; Alexander, David M.; Bell, Eric F.; Dahlen, Tomas; Lotz, Jennifer; Elbaz, David; Wiklind, Tommy; Faber, S. M.; Aussel, Herve; Bethermin, Matthieu; Bournaud, Frederic; Dannerbauer, Helmut; McIntosh, Daniel H.; Altieri, Bruno; Charmandaris, Vassilis; Conselice, Christopher J.; Cooray, Asantha; Davé, Romeel; Dunlop, James

    2012-01-01

    Using deep 100 and 160 μm observations in GOODS-South from GOODS-Herschel, combined with high-resolution HST/WFC3 near-infrared imaging from CANDELS, we present the first detailed morphological analysis of a complete, far-infrared (FIR) selected sample of 52 ultraluminous infrared galaxies (ULIRGs; L IR > 10 12 L ☉ ) at z ∼ 2. We also make use of a comparison sample of galaxies with lower IR luminosities but with the same redshift and H-band magnitude distribution. Our visual classifications of these two samples indicate that the fractions of objects with disk and spheroid morphologies are roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs (72 +5 –7 % versus 32 ± 3%). The combination of disk and irregular/interacting morphologies suggests that early-stage interactions, minor mergers, and disk instabilities could play an important role in ULIRGs at z ∼ 2. We compare these fractions with those of a z ∼ 1 sample selected from GOODS-H and COSMOS across a wide luminosity range and find that the fraction of disks decreases systematically with L IR while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z ∼ 2 and z ∼ 1, though there are slightly fewer mergers and slightly more disks at higher redshift. We investigate the position of the z ∼ 2 ULIRGs, along with 70 z ∼ 2 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (i.e., they lie more than a factor of three above the main-sequence relation). We find that many of these systems are clear interactions and mergers (∼50%) compared to only 24% of systems on the main sequence relation. If irregular disks are included as potential minor mergers, then we find that up to ∼73% of starbursts are involved in a merger or interaction at some level

  8. GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Kartaltepe, Jeyhan S.; Dickinson, Mark [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Dahlen, Tomas; Lotz, Jennifer [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Elbaz, David; Wiklind, Tommy [Joing ALMA Observatory, ESO, Santiago (Chile); Faber, S. M.; Aussel, Herve; Bethermin, Matthieu; Bournaud, Frederic; Dannerbauer, Helmut [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette (France); McIntosh, Daniel H. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Altieri, Bruno [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dave, Romeel [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dunlop, James, E-mail: jeyhan@noao.edu [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2012-09-20

    Using deep 100 and 160 {mu}m observations in GOODS-South from GOODS-Herschel, combined with high-resolution HST/WFC3 near-infrared imaging from CANDELS, we present the first detailed morphological analysis of a complete, far-infrared (FIR) selected sample of 52 ultraluminous infrared galaxies (ULIRGs; L{sub IR} > 10{sup 12} L{sub Sun }) at z {approx} 2. We also make use of a comparison sample of galaxies with lower IR luminosities but with the same redshift and H-band magnitude distribution. Our visual classifications of these two samples indicate that the fractions of objects with disk and spheroid morphologies are roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs (72{sup +5}{sub -7}% versus 32 {+-} 3%). The combination of disk and irregular/interacting morphologies suggests that early-stage interactions, minor mergers, and disk instabilities could play an important role in ULIRGs at z {approx} 2. We compare these fractions with those of a z {approx} 1 sample selected from GOODS-H and COSMOS across a wide luminosity range and find that the fraction of disks decreases systematically with L{sub IR} while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z {approx} 2 and z {approx} 1, though there are slightly fewer mergers and slightly more disks at higher redshift. We investigate the position of the z {approx} 2 ULIRGs, along with 70 z {approx} 2 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (i.e., they lie more than a factor of three above the main-sequence relation). We find that many of these systems are clear interactions and mergers ({approx}50%) compared to only 24% of systems on the main sequence relation. If irregular disks are included as potential minor mergers, then we find that up to {approx

  9. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    Science.gov (United States)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in

  10. BLACK HOLE-GALAXY CORRELATIONS WITHOUT SELF-REGULATION

    International Nuclear Information System (INIS)

    Anglés-Alcázar, Daniel; Özel, Feryal; Davé, Romeel

    2013-01-01

    Recent models of black hole growth in a cosmological context have forwarded a paradigm in which the growth is self-regulated by feedback from the black hole itself. Here we use cosmological zoom simulations of galaxy formation down to z = 2 to show that such strong self-regulation is required in the popular spherical Bondi accretion model, but that a plausible alternative model in which black hole growth is limited by galaxy-scale torques does not require self-regulation. Instead, this torque-limited accretion model yields black holes and galaxies evolving on average along the observed scaling relations by relying only on a fixed, 5% mass retention rate onto the black hole from the radius at which the accretion flow is fed. Feedback from the black hole may (and likely does) occur, but does not need to couple to galaxy-scale gas in order to regulate black hole growth. We show that this result is insensitive to variations in the initial black hole mass, stellar feedback, or other implementation details. The torque-limited model allows for high accretion rates at very early epochs (unlike the Bondi case), which if viable can help explain the rapid early growth of black holes, while by z ∼ 2 it yields Eddington factors of ∼1%-10%. This model also yields a less direct correspondence between major merger events and rapid phases of black hole growth. Instead, growth is more closely tied to cosmological disk feeding, which may help explain observational studies showing that, at least at z ∼> 1, active galaxies do not preferentially show merger signatures.

  11. Understanding r-process nucleosynthesis with dwarf galaxies

    Science.gov (United States)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  12. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  13. Railroad mergers and acquisitions take shape

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    1995-12-01

    This year has been one of the most exciting years in recent history concerning US railroads and coal transportation, as mergers and acquisitions narrow the field for Western coal carriers. The views on the mergers and how they will affect coal transportation are mixed. The coal industry`s growth in the West and its stability in the East is the basis for the most recent changes in the rail industry. Restructuring US coal markets to confirm to environmental policy has had a profound effect on much more than the coal industry itself. Deregulation of rail transport has also been an important factor. 1 fig., 3 tabs.

  14. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  15. Galaxies with long tails

    International Nuclear Information System (INIS)

    Schweizer, F.

    1978-01-01

    Two types of galaxies with long tails are described. The first occurs in pairs, each individual one having a long tail and the second occurs on its own with two tails. NGC 7252 shows several characteristics which one would expect of a merger: a pair of tidal tails despite the splendid isolation, a single nucleus, tail motions in opposite directions relative to the nucleus, and chaotic motions of a strangely looped main body. (C.F.)

  16. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    Science.gov (United States)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  17. The Stellar Kinematics of E+A Galaxies in SDSS IV-MaNGA

    Science.gov (United States)

    Johnson, Amalya; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Ojanen, Winonah; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    E+A galaxies, hypothesized to be “transition” galaxies between the blue cloud and the red sequence, are valuable sources for studying the evolution of galaxies. Using data from the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, a large scale integral field spectroscopic survey of nearby galaxies from 3600 to 10300 Å, we identifed galaxies that exhibitted E+A characteristics within their optical spectra. We analyzed the 2,812 galaxies thus far observed by MaNGA to identify those that showed evidence of a starburst about 1 billion years ago, followed by cessation of star formation and quenching of the galaxy. Through this process we identifed 39 E+A galaxies by directly looking at the optical spectra and ensuring they exhibited the necessary properties of an E+A spectra, including a strong break at the 4000 Å mark, little to no Hα emission and absorption through the Balmer series, and a blue slope of the continuum past ~5000 Å as the flux decreases. We analyzed the stellar kinematics of these galaxies to determine whether or not they were fast or slow rotators, a proposed indicator of a major merger in their recent past. Using Voronoi binned graphs from the MaNGA Marvin database, we measured their stellar rotation curves in order to more clearly show the range of velocities within the galaxies. Among our 39 E+A candidates, all but two exhibited significant, orderly rotation across the galaxy, and 29 out of 39 of our galaxies show rotation faster than 30 km/s. With the caveat that our selection process was biased toward galaxies with orderly rotation, this prevalence of rotation challenges the belief that all E+A galaxies are created from major mergers. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  18. V1309 Scorpii: merger of a contact binary

    Science.gov (United States)

    Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2011-04-01

    Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims: Our aim is to investigate the nature of V1309 Sco. Methods: V1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results: We find that the progenitor of V1309 Sco was a contact binary with an orbital period of ~1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions: For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type. Based on observations obtained with the 1.3-m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. The photometric data analysed in the present paper are available from the OGLE Internet archive: ftp://ogle.astrouw.edu.pl/ogle/ogle3/V1309_SCO

  19. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    Science.gov (United States)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  20. Exploring Hot Gas at Junctions of Galaxy Filaments

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Yamasaki, Noriko; Kawahara, Hajime; Sekiya, Norio; Sasaki, Shin; Sousbie, Thierry

    Because galaxies are forced to follow the strong gravitational potential created by the underlying cosmic web of the dark matter, their distribution reflects its filamentary structures. By identifying the filamentary structures, one can therefore recover a map of the network that drives structure formation. Filamentary junctions are regions of particular interest as they identify places where mergers and other interesting astrophysical phenomena have high chances to occur. We identified the galaxy filaments by our original method (Sousbie (2011) & Sousbie et al. (2011)) and X-ray pointing observations were conducted for the six fields locating in the junctions of the galaxy filaments where no specific diffuse X-ray emissions had previously been detected so far. We discovered significant X-ray signals in their images and spectra of the all regions. Spectral analysis demonstrated that six sources originate from diffuse emissions associated with optically bright galaxies, group-scale, or cluster-scale X-ray halos with kT˜1-4 keV, while the others are compact object origin. Interestingly, all of the newly discovered three intracluster media show peculiar features such as complex or elongated morphologies in X-ray and/or optical and hot spot involved in ongoing merger events (Kawahara et al. (2011) & Mitsuishi et al. (2014)). In this conference, results of follow-up radio observations for the merging groups as well as the details of the X-ray observations will be reported.

  1. Reionization and Galaxy Formation in Warm Dark Matter Cosmologies

    NARCIS (Netherlands)

    Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.

    2017-01-01

    We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization

  2. THE STAR FORMATION HISTORIES OF z ∼ 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Gonzalez, A. H.; Melbourne, J.

    2012-01-01

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z ∼ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M * ) of two populations of Spitzer-selected ULIRGs that have extremely red R – [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 μm associated with stellar emission ( b ump DOGs ) , while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ( p ower-law DOGs ) . We measure M * by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M * values for SMGs, bump DOGs, and power-law DOGs are log(M * /M ☉ ) = 10.42 +0.42 –0.36 , 10.62 +0.36 –0.32 , and 10.71 +0.40 –0.34 , respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z ∼ 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z ∼ 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M * , a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  3. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  4. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  5. TIDAL TAILS OF MINOR MERGERS: STAR FORMATION EFFICIENCY IN THE WESTERN TAIL OF NGC 2782

    Energy Technology Data Exchange (ETDEWEB)

    Knierman, Karen; Scowen, Paul; Jansen, Rolf A. [School of Earth and Space Exploration, Arizona State University, 550 East Tyler Mall, Room PSF-686 (P.O. Box 871404), Tempe, AZ 85287-1404 (United States); Knezek, Patricia M. [WIYN Consortium, Inc., 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wehner, Elizabeth, E-mail: karen.knierman@asu.edu, E-mail: paul.scowen@asu.edu, E-mail: rolf.jansen@asu.edu, E-mail: pknezek@noao.edu, E-mail: ewehner@haverford.edu [Department of Astronomy, Haverford College, Haverford, PA 19041 (United States)

    2012-04-10

    While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios {approx}< 0.3). The peculiar spiral NGC 2782 is the result of a merger between two disk galaxies with a mass ratio of {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun to occur in that tidal tail. However, deep H{alpha} narrowband images show evidence of recent star formation in the western tail. Across the entire western tail, we find the global star formation rate per unit area ({Sigma}{sub SFR}) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) {Sigma}{sub SFR} from H{alpha} that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.

  6. Major Mergers in CANDELS up to z=3: Calibrating the Close-Pair Method Using Semi-Analytic Models and Baryonic Mass Ratio Estimates

    Science.gov (United States)

    Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team

    2018-01-01

    Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR 10.3 galaxies spanning 01.5 in strong disagreement with theoretical merger rate predictions. On the other hand, if we compare to a simulation-tuned, evolving timescale prescription from Snyder et al., 2017, we find that the merger rate evolution agrees with theory out to z=3. These results highlight the need for robust calibrations on the complex and presumably redshift-dependent pair-to-merger-rate conversion factors to improve constraints of the empirical merger history. To address this, we use a unique compilation of mock datasets produced by three independent state-of-the-art Semi-Analytic Models (SAMs). We present preliminary calibrations of the close-pair observability timescale and outlier fraction as a function of redshift, stellar-mass, mass-ratio, and local over-density. Furthermore, to verify the hypothesis by previous empirical studies that SMR-selection of major pairs may be biased, we present a new analysis of the baryonic (gas+stars) mass ratios of a subset of close pairs in our sample. For the first time, our preliminary analysis highlights that a noticeable fraction of SMR-selected minor pairs (SMR>4) have major baryonic-mass ratios (BMR<4), which indicate that merger rates based on SMR selection may be under-estimated.

  7. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    Science.gov (United States)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  8. Merging Galaxy Clusters: Analysis of Simulated Analogs

    Science.gov (United States)

    Nguyen, Jayke; Wittman, David; Cornell, Hunter

    2018-01-01

    The nature of dark matter can be better constrained by observing merging galaxy clusters. However, uncertainty in the viewing angle leads to uncertainty in dynamical quantities such as 3-d velocities, 3-d separations, and time since pericenter. The classic timing argument links these quantities via equations of motion, but neglects effects of nonzero impact parameter (i.e. it assumes velocities are parallel to the separation vector), dynamical friction, substructure, and larger-scale environment. We present a new approach using n-body cosmological simulations that naturally incorporate these effects. By uniformly sampling viewing angles about simulated cluster analogs, we see projected merger parameters in the many possible configurations of a given cluster. We select comparable simulated analogs and evaluate the likelihood of particular merger parameters as a function of viewing angle. We present viewing angle constraints for a sample of observed mergers including the Bullet cluster and El Gordo, and show that the separation vectors are closer to the plane of the sky than previously reported.

  9. HUBBLE SPACE TELESCOPE ACS IMAGING OF THE GOALS SAMPLE: QUANTITATIVE STRUCTURAL PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES WITH L{sub IR} > 10{sup 11.4} L{sub Sun}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-C.; Evans, A. S.; Privon, G. C., E-mail: dkim@nrao.edu, E-mail: aevans@virginia.edu, E-mail: gcp8y@virginia.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); and others

    2013-05-10

    A Hubble Space Telescope/Advanced Camera for Surveys study of the structural properties of 85 luminous and ultraluminous (L{sub IR} > 10{sup 11.4} L{sub Sun }) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W ''I-band'' images to decompose each galaxy, as appropriate, into bulge, disk, central point-spread function (PSF) and stellar bar components. The fraction of bulge-less disk systems is observed to be higher in LIRGs (35%) than in ULIRGs (20%), with the disk+bulge systems making up the dominant fraction of both LIRGs (55%) and ULIRGs (45%). Further, bulge+disk systems are the dominant late-stage merger galaxy type and are the dominant type for LIRGs and ULIRGs at almost every stage of galaxy-galaxy nuclear separation. The mean I-band host absolute magnitude of the GOALS galaxies is -22.64 {+-} 0.62 mag (1.8{sup +1.4}{sub -0.4} L{sup *}{sub I}), and the mean bulge absolute magnitude in GOALS galaxies is about 1.1 mag fainter than the mean host magnitude. Almost all ULIRGs have bulge magnitudes at the high end (-20.6 to -23.5 mag) of the GOALS bulge magnitude range. Mass ratios in the GOALS binary systems are consistent with most of the galaxies being the result of major mergers, and an examination of the residual-to-host intensity ratios in GOALS binary systems suggests that smaller companions suffer more tidal distortion than the larger companions. We find approximately twice as many bars in GOALS disk+bulge systems (32.8%) than in pure-disk mergers (15.9%) but most of the disk+bulge systems that contain bars are disk-dominated with small bulges. The bar-to-host intensity ratio, bar half-light radius, and bar ellipticity in GOALS galaxies are similar to those found in nearby spiral galaxies. The fraction of stellar bars decreases toward later merger stages and smaller nuclear separations, indicating that bars are

  10. The University of Johannesburg merger: Academics experience of the pre-merger phase

    Directory of Open Access Journals (Sweden)

    G. A. Goldman

    2006-12-01

    Full Text Available Purpose of the study: The aim of this study is to gain an understanding of the merger experiences academic staff were exposed to during the pre-merger phase of the University of Johannesburg merger. Of particular interest is how these experiences translate into acceptance of the merger amongst academic staff. The study was borne out of the transformation of the higher education landscape in South Africa, which is typified by a spate of mergers between higher education institutions. Design/methodology/approach: As the purpose of the study was, inter alia, aimed at understanding the merger experiences of academic staff, the study was conducted according to an interpretive research paradigm, where interpretation of data calls for an insider perspective, in order to "see things through their eyes" as it were. In this regard, a qualitative methodology was employed. Findings: Findings indicate that academic staff members at the University of Johannesburg experience two distinct mental states during the pre-merger phase. Following the announcement of the merger, reaction and experience tend to be emotionally driven but as merging efforts become more concrete over time, this emotive state is replaced by a more rationally driven disposition. Implications: The distinction between an emotive and rational demeanour during the pre-merger phase of a merger affords managers and leaders the opportunity to plan change interventions in such a way that irrational, emotive responses and behaviour do not hamper progress in terms of merger implementation. In a more general sense, this study highlights the process of transition individual staff members pass through as they have to come to terms with the changes brought about by a merger. Originality / Value: The majority of merger literature, as well as change literature, focuses on the organisational context of change during a merger. Limited literature exists on the personal effects of a change event such as a

  11. On the origin of X-shaped radio galaxies

    International Nuclear Information System (INIS)

    Gopal-Krishna; Biermann, Peter L.; Gergely, László Á.; Wiita, Paul J.

    2012-01-01

    After a brief, critical review of the leading explanations proposed for the small but important subset of radio galaxies showing an X-shaped morphology (XRGs) we propose a generalized model, based on the jet-shell interaction and spin-flip hypotheses. The most popular scenarios for this intriguing phenomenon invoke either hydrodynamical backflows and over-pressured cocoons or rapid jet reorientations, presumably from the spin-flips of central engines following the mergers of pairs of galaxies, each of which contains a supermassive black hole. We confront these models with a number of key observations, and thus argue that none of the models is capable of explaining the entire range of the salient observational properties of XRGs, although some of the arguments raised in the literature against the spin-flip scenario are probably not tenable. We then propose a new scenario which also involves galactic mergers but would allow the spin of the central engine to maintain its direction. Motivated by detailed multi-band observations of the nearest radio galaxy, Centaurus A, this new model emphasizes the role of the interactions between the jets and the shells of stars and gas that form and rotate around the merged galaxy and can cause temporary deflections of the jets, occasionally giving rise to an X-shaped radio structure. Although each model is likely to be relevant to a subset of XRGs, the bulk of the evidence indicates that most of them are best explained by the jet-shell interaction or spin-flip hypotheses.

  12. Study of the Lynx-Cancer void galaxies. - V. The extremely isolated galaxy UGC 4722

    Science.gov (United States)

    Chengalur, J. N.; Pustilnik, S. A.; Makarov, D. I.; Perepelitsyna, Y. A.; Safonova, E. S.; Karachentsev, I. D.

    2015-04-01

    We present a detailed study of the extremely isolated Sdm galaxy UGC 4722 (MB = -17.4) located in the nearby Lynx-Cancer void. UGC 4722 is a member of the Catalogue of Isolated Galaxies, and has also been identified as one of the most isolated galaxies in the Local Supercluster. Optical images of the galaxy however show that it has a peculiar morphology with an elongated ˜14 kpc-long plume. New observations with the Russian 6-m telescope (BTA) and the Giant Metrewave Radio Telescope (GMRT) of the ionized and neutral gas in UGC 4722 reveal the second component responsible for the disturbed morphology of the system. This is a small, almost completely destroyed, very gas-rich dwarf (MB = -15.2, M(H I)/LB ˜ 4.3) We estimate the oxygen abundance for both galaxies to be 12 + log (O/H) ˜ 7.5-7.6 which is two to three times lower than what is expected from the luminosity-metallicity relation for similar galaxies in denser environments. The ugr colours of the plume derived from Sloan Digital Sky Survey (SDSS) images are consistent with a simple stellar population with a post starburst age of 0.45-0.5 Gyr. This system hence appears to be the first known case of a minor merger with a prominent tidal feature consisting of a young stellar population.

  13. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter [Spitzer Science Center-Caltech, MS 314-6, Pasadena, CA 91125 (United States); Arendt, Richard G. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Martínez-Delgado, David [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davies, James E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Stephen R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); GaBany, R. Jay, E-mail: seppo@ipac.caltech.edu [Black Bird Observatory, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.

  14. Astrophysical Implications of the Binary Black Hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  15. Astrophysical Implications of the Binary Black-hole Merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  16. The Evolution of Dwarf-Irregular Galaxy NGC 1569: A Kinematic Study of the Stars and Gas

    Science.gov (United States)

    Johnson, Megan C.

    2011-12-01

    The evolution and formation of dwarf galaxies has great importance to our knowledge of cosmological history from the Big Bang through the present day structure we observe in our local universe. Dwarf galaxies are believed to be the "building blocks" of larger galaxies, which implies that interactions and mergers of these small systems must have occurred frequently in the early universe. There is a population of starburst dwarf irregular (dIm) galaxies that seem to have characteristics indicative of interactions or mergers. One of these dIm galaxies is the nearby post-starburst NGC 1569. This dissertation project explores the stellar and gas kinematics of NGC 1569 as well as examines a deep neutral Hydrogen (HI) map made using the Robert C. Byrd Green Bank Telescope (GBT). From these observations, this dissertation analyzes the evolution of NGC 1569 by understanding the three-dimensional shape of this dIm system for the first time. The structure of dIm galaxies is an important fundamental, physical property necessary to understand the evolution and formation of these common systems. However, the intrinsic shape of dIm galaxies remains controversial. Projected minor-to-major axis ratios provide insufficient data to determine the shapes of dIm galaxies. Fortunately, there is another method by which accurate structures can be measured. The stellar velocity dispersion, coupled with the maximum rotational velocity derived from HI observations, gives a measure of how kinematically hot a system is, and, therefore, indicates its structure. In this dissertation, we present the stellar kinematics, including the stellar velocity dispersion, of NGC 1569 obtained using the Kitt Peak National Observatory (KPNO) Mayall 4-m+Echelle spectrograph. These data are combined with an in depth analysis of high resolution HI data and a discussion of the nature of this starburst dwarf system. The dissertation concludes with a deep HI map of NGC 1569 and three of its nearest neighbors in the

  17. Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds

    International Nuclear Information System (INIS)

    Bournaud, F.

    2011-01-01

    Major progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly onto galaxies, and that internal evolution processes play a major role in shaping galaxies mergers are not necessarily the dominant process. However, predictions from the various assembly mechanisms are still in large disagreement with the observed properties of galaxies in the nearby Universe. Small-scale processes have a major impact on the global evolution of galaxies over a Hubble time and the usual sub-grid models account for them in a far too uncertain way. Understanding when, where and at which rate galaxies formed their stars becomes crucial to understand the formation of galaxy populations. I discuss recent improvements and current limitations in 'resolved' modeling of star formation, aiming at explicitly capturing star-foul-ling instabilities, in cosmological and galaxy-sized simulations. Such models need to develop three-dimensional turbulence in the ISM, which requires parsec-scale resolution at redshift zero. (authors)

  18. ON THE SIZE AND COMOVING MASS DENSITY EVOLUTION OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Van der Wel, Arjen; Bell, Eric F.; Van den Bosch, Frank C.; Gallazzi, Anna; Rix, Hans-Walter

    2009-01-01

    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive (>10 11 M sun ) early-type galaxies from z = 2 to the present. First, we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. The Sloan Digital Sky Survey (SDSS) data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. This implies that with increasing look-back time, the more extended galaxies will be more and more absent from the population. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Based on this, we define an empirically motivated, redshift-dependent velocity dispersion threshold above which galaxies do not form stars at a significant rate, which we associate with the transformation into early-type galaxies. Applying this 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z ∼ 2 in the mean size and in the comoving mass density of early-type galaxies with mass M > 10 11 M sun . We conclude that

  19. CORES AND THE KINEMATICS OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Lauer, Tod R.

    2012-01-01

    I have combined the Emsellem et al. ATLAS 3D rotation measures of a large sample of early-type galaxies with Hubble Space Telescope based classifications of their central structure to characterize the rotation velocities of galaxies with cores. 'Core galaxies' rotate slowly, while 'power-law galaxies' (galaxies that lack cores) rotate rapidly, confirming the analysis of Faber et al. Significantly, the amplitude of rotation sharply discriminates between the two types in the –19 > M V > –22 domain over which the two types coexist. The slow rotation in the small set of core galaxies with M V > –20, in particular, brings them into concordance with the more massive core galaxies. The ATLAS 3D 'fast-rotating' and 'slow-rotating' early-type galaxies are essentially the same as power-law and core galaxies, respectively, or the Kormendy and Bender two families of elliptical galaxies based on rotation, isophote shape, and central structure. The ATLAS 3D fast rotators do include roughly half of the core galaxies, but their rotation amplitudes are always at the lower boundary of that subset. Essentially, all core galaxies have ATLAS 3D rotation amplitudes λ R e /2 ≤0.25, while all galaxies with λ R e /2 >0.25 and figure eccentricity >0.2 lack cores. Both figure rotation and the central structure of early-type galaxies should be used together to separate systems that appear to have formed from 'wet' versus 'dry' mergers.

  20. `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    Science.gov (United States)

    Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.

    2017-10-01

    We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.

  1. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    Science.gov (United States)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  2. THE SINS/zC-SINF SURVEY OF z ∼ 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES

    International Nuclear Information System (INIS)

    Newman, Sarah F.; Genzel, Reinhard; Förster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter; Shapiro Griffin, Kristen; Mancini, Chiara; Renzini, Alvio; Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie; Bouché, Nicolas; Burkert, Andreas; Cresci, Giovanni; Genel, Shy; Hicks, Erin K. S.; Naab, Thorsten

    2013-01-01

    We analyze the spectra, spatial distributions, and kinematics of Hα, [N II], and [S II] emission in a sample of 38, z ∼ 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z ∼ 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  3. A comparison of galaxy group luminosity functions from semi-analytic models

    NARCIS (Netherlands)

    Snaith, Owain N.; Gibson, Brad K.; Brook, Chris B.; Courty, Stéphanie; Sánchez-Blázquez, Patricia; Kawata, Daisuke; Knebe, Alexander; Sales, Laura V.

    Semi-analytic models (SAMs) are currently one of the primary tools with which we model statistically significant ensembles of galaxies. The underlying physical prescriptions inherent to each SAM are, in many cases, different from one another. Several SAMs have been applied to the dark matter merger

  4. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, G.; Vrtilek, J. M.; David, L.; O’Sullivan, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giacintucci, S. [Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375 (United States); Johnston-Hollitt, M.; Duchesne, S. W. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6140 (New Zealand); Raychaudhury, S., E-mail: gerrit.schellenberger@cfa.harvard.edu [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)

    2017-08-10

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, a 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.

  5. Anti- versus Pro-Competitive Mergers

    OpenAIRE

    Fridolfsson, Sven-Olof

    2007-01-01

    In a framework where mergers are mutually excluding, I show that firms pursue anti- rather than (alternative) pro-competitive mergers. Potential outsiders to anti-competitive mergers refrain from pursuing pro-competitive mergers if the positive externalities from anti-competitive mergers are strong enough. Potential outsiders to pro-competitive mergers pursue anti-competitive mergers if the negative externalities from the pro-competitive mergers are strong enough. Potential participants in an...

  6. Does the dwarf galaxy system of the Milky Way originate from Andromeda?

    Science.gov (United States)

    Fouquet, Sylvain; Hammer, François; Yang, Yanbin; Puech, Mathieu; Flores, Hector

    2012-12-01

    The Local Group is often seen to be a quiescent environment without significant merger events. However, an ancient major merger may have occurred in the most massive galaxy as suggested by the M31 classical bulge and its halo haunted by numerous stellar streams. Numerical simulations have shown that tidal tails formed during gas-rich major mergers are long-lived and could be responsible for old stellar streams and likely induce the formation of tidal dwarf galaxies (TDGs). Using several hydrodynamical simulations we have investigated the most prominent tidal tail formed during the first passage, which is gas rich and contains old and metal-poor stars. We discovered several striking coincidences after comparing its location and motion to those of the Milky Way (MW) and of the Magellanic Clouds (MCs). First, the tidal tail is sweeping a relatively small volume in which the MW precisely lies. Because the geometry of the merger is somehow fixed by the anisotropic properties of the giant stream (GS), we evaluate the chance of the MW to be at such a rendezvous with this gigantic tidal tail to be 5 per cent. Secondly, the velocity of the tidal tail matches the Large Magellanic Cloud (LMC) proper motion, and reproduces quite well the geometrical and angular momentum properties of the MW dwarfs, that is, the so-called disc of satellites, also known as the vast polar structure (VPOS). Thirdly, the simulation of the tidal tail reveals one of the formed TDGs with the mass and location almost comparable to those of the LMC. Our present modelling is, however, too limited to study the detailed interaction of gas-rich TDGs with the potential of the MW, and a complementary study is required to test whether the dwarf intrinsic properties can be accounted for by our scenario. Nevertheless this study suggests a causal link between an expected event, an ancient, gas-rich major merger at the M31 location, and several enigmas in the Local Group, namely the GS in the M31 outskirts, the

  7. General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David, E-mail: dradice@astro.princeton.edu [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-20

    The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrino emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.

  8. THE ASSEMBLY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We study the formation of 53 galaxy cluster-size dark matter halos (M = 10 14.0-14.76 M sun ) formed within a pair of cosmological Λ cold dark matter N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host ∼0.3 L * galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'preprocessing' in the group environment prior to their accretion into the cluster. On average, 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; less than 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past (∼<6 Gyr) than a field halo of the same mass. These results suggest that local cluster processes such as ram pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass, and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with ∼20% incorporated into the cluster halo more than 7 Gyr ago and ∼20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate timescale for late-type to early-type transformation within the cluster environment to be ∼6 Gyr.

  9. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    International Nuclear Information System (INIS)

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi

    2010-01-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 ± 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 ± 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 ± 0.03 yr, an orbital radius of (3.9 ± 1.0) x 10 -3 pc, an orbital separation of (6.1 +1.0 -0.9 ) x 10 -3 pc, a larger black hole mass of (1.2 +0.5 -0.2 ) x 10 9 M sun , and a smaller black hole mass of (7.0 +4.7 -6.4 ) x 10 8 M sun . The BBH decay time of (5.1 +60.5 -2.5 ) x 10 2 yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  10. HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations

    Science.gov (United States)

    Han, Jiaxin; Cole, Shaun; Frenk, Carlos S.; Benitez-Llambay, Alejandro; Helly, John

    2018-02-01

    Dark matter subhalos are the remnants of (incomplete) halo mergers. Identifying them and establishing their evolutionary links in the form of merger trees is one of the most important applications of cosmological simulations. The HBT (Hierachical Bound-Tracing) code identifies haloes as they form and tracks their evolution as they merge, simultaneously detecting subhaloes and building their merger trees. Here we present a new implementation of this approach, HBT+ , that is much faster, more user friendly, and more physically complete than the original code. Applying HBT+ to cosmological simulations, we show that both the subhalo mass function and the peak-mass function are well fitted by similar double-Schechter functions. The ratio between the two is highest at the high-mass end, reflecting the resilience of massive subhaloes that experience substantial dynamical friction but limited tidal stripping. The radial distribution of the most-massive subhaloes is more concentrated than the universal radial distribution of lower mass subhaloes. Subhalo finders that work in configuration space tend to underestimate the masses of massive subhaloes, an effect that is stronger in the host centre. This may explain, at least in part, the excess of massive subhaloes in galaxy cluster centres inferred from recent lensing observations. We demonstrate that the peak-mass function is a powerful diagnostic of merger tree defects, and the merger trees constructed using HBT+ do not suffer from the missing or switched links that tend to afflict merger trees constructed from more conventional halo finders. We make the HBT+ code publicly available.

  11. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  12. Dwarf Galaxies Swimming in Tidal Tails

    Science.gov (United States)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground. Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born. The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light. This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  13. Active Galactic Nuclei in Dwarf Galaxies

    Science.gov (United States)

    Hein, Megan; Secrest, N.; Satyapal, S.

    2014-01-01

    Supermassive black holes (SMBHs) one million to a few billion times the mass of our sun are thought to reside in the center of most, if not all, bulge-dominated galaxies. It has been observed that the mass of these SMBHs is strongly correlated with the mass of these bulges, leading to the popular view that these central black holes are formed by galaxy mergers, which induce the growth of the galaxy's bulge and provide matter with which to feed the black hole. Although these properties and their possible consequences have been studied extensively in high mass galaxies and galaxies with large bulges, there is very little research on the possible existence and subsequent properties of SMBHs in low mass galaxies or galaxies with small or no central bulges. This is a significant weakness in the research of these objects as the study of this population of galaxies would allow us to gain valuable insight into SMBH seeds, black holes thought to have formed in the early universe. Strong X-rays are a good indicator of an accreting black hole, because they require more energy to produce and SMBHs are highly energetic, as well as being easier to see due to their ability to penetrate matter more easily than other forms of radiation. In this poster, I will present the results from an X-ray investigation using data matched from the Chandra X-ray observatory to a sample of low mass galaxies (with a mass of log(M) < 9).

  14. Merger Activity and Radio Emission Within A2061

    Science.gov (United States)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2015-01-01

    Abell 2061 is a galaxy cluster located in the Corona Borealis Supercluster that boasts radio and X-ray structures indicative of a merger. A2061 is located at a redshift z = .0784, contains two brightest cluster galaxies, and has another cluster (A2067) about 2.5 Mpc to the NE, falling towards it. Within A2061, there exists an elongated structure of soft X-ray emission extending to the NE of cluster's center (referred to as the 'Plume') along with a hard X-ray shock region (the 'Shock') located just NE of the cluster's center. Previous observations in the radio have indicated the presence of a extended, central radio halo/relic accompanying the cluster's main X-ray emission but with slight NE displacement and further NE extension. Also emitting in the radio, to the SW of A2061, is a radio relic. The X-ray structures of A2061 were previously examined in 2009 by a Chandra observation. Here we present the results of an August 2013 XMM-Newton observation of the cluster. This XMM-Newton observation, imaged by three detectors, covers a greater field of view with a longer exposure (48.6 ks) than the previous Chandra observation. We will present images and spectra of various regions of the cluster. In addition, we will discuss the dynamics of the cluster, the nature of the Plume, Shock and other features, and origin of the central diffuse radio halo/relic and SW radio relic. These X-ray observations will also be compared to a numerical simulation from the Simulation Library of Astrophysics cluster Mergers (SLAM).

  15. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  16. EVIDENCE FOR THREE ACCRETING BLACK HOLES IN A GALAXY AT z ∼ 1.35: A SNAPSHOT OF RECENTLY FORMED BLACK HOLE SEEDS?

    International Nuclear Information System (INIS)

    Schawinski, Kevin; Urry, Meg; Treister, Ezequiel; Simmons, Brooke; Natarajan, Priyamvada; Glikman, Eilat

    2011-01-01

    One of the key open questions in cosmology today pertains to understanding when, where, and how supermassive black holes form. While it is clear that mergers likely play a significant role in the growth cycles of black holes, the issue of how supermassive black holes form, and how galaxies grow around them, still needs to be addressed. Here, we present Hubble Space Telescope Wide Field Camera 3/IR grism observations of a clumpy galaxy at z = 1.35, with evidence for 10 6 -10 7 M ☉ rapidly growing black holes in separate sub-components of the host galaxy. These black holes could have been brought into close proximity as a consequence of a rare multiple galaxy merger or they could have formed in situ. Such holes would eventually merge into a central black hole as the stellar clumps/components presumably coalesce to form a galaxy bulge. If we are witnessing the in situ formation of multiple black holes, their properties can inform seed formation models and raise the possibility that massive black holes can continue to emerge in star-forming galaxies as late as z = 1.35 (4.8 Gyr after the big bang).

  17. THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE-GALAXY SCALING RELATIONS

    International Nuclear Information System (INIS)

    Jahnke, Knud; Maccio, Andrea V.

    2011-01-01

    We show that the M BH -M bulge scaling relations observed from the local to the high-z universe can be largely or even entirely explained by a non-causal origin, i.e., they do not imply the need for any physically coupled growth of black hole (BH) and bulge mass, for example, through feedback by active galactic nuclei (AGNs). Provided some physics for the absolute normalization, the creation of the scaling relations can be fully explained by the hierarchical assembly of BH and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) BH and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and BH accretion recipes that (1) work without any coupling of the two properties per individual galaxy and (2) correctly reproduce the observed star formation and BH accretion rate density in the universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ∼1.1 for the M BH -M bulge relation at z = 0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.

  18. EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS

    International Nuclear Information System (INIS)

    Paul, S.; Mannheim, K.; Iapichino, L.; Miniati, F.; Bagchi, J.

    2011-01-01

    We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h -1 , and the turbulent velocity dispersion in this region is larger than 100 km s -1 . We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M 5/3 , which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the

  19. MERGERS IN DOUBLE-PEAKED [O III] ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Fu Hai; Djorgovski, S. G.; Myers, Adam D.; Yan Lin

    2011-01-01

    As a natural consequence of galaxy mergers, binary active galactic nuclei (AGNs) should be commonplace. Nevertheless, observational confirmations are rare, especially for binaries with separations less than 10 kpc. Such a system may show two sets of narrow emission lines in a single spectrum owing to the orbital motion of the binary. We have obtained high-resolution near-infrared images of 50 double-peaked [O III]λ5007 AGNs with the Keck II laser guide star adaptive optics system. The Sloan Digital Sky Survey sample is compiled from the literature and consists of 17 type-1 AGNs between 0.18 BH -σ * relation because of overestimated stellar velocity dispersions, illustrating the importance of removing mergers from the samples defining the M BH -σ * relations. Finally, we find that the emission-line properties are indistinguishable for spatially resolved and unresolved sources, emphasizing that scenarios involving a single AGN can produce the same double-peaked line profiles and they account for at least 70% of the double-peaked [O III] AGNs.

  20. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  1. THE SINS/zC-SINF SURVEY OF z {approx} 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Foerster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, Padova I-35122 (Italy); Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich CH-8093 (Switzerland); Bouche, Nicolas [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Burkert, Andreas [Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hicks, Erin K. S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Naab, Thorsten, E-mail: sfnewman@berkeley.edu [Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2013-04-20

    We analyze the spectra, spatial distributions, and kinematics of H{alpha}, [N II], and [S II] emission in a sample of 38, z {approx} 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z {approx} 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  2. The hard X–ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    DEFF Research Database (Denmark)

    Puccetti, S.; Comastri, A.; Bauer, F. E.

    2016-01-01

    We present a broad–band (∼0.3–70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC6240, combined with archival Chandra, XMM–Newton and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger statewith two distinct nuclei separated by ∼1′.′5. P...

  3. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  4. The Universe's Most Extreme Star-forming Galaxies

    Science.gov (United States)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  5. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    Science.gov (United States)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  6. Mergers and Acquisitions

    DEFF Research Database (Denmark)

    Risberg, Annette

    Introduction to the study of mergers and acquisitions. This book provides an understanding of the mergers and acquisitions process, how and why they occur, and also the broader implications for organizations. It presents issues including motives and planning, partner selection, integration......, employee experiences and communication. Mergers and acquisitions remain one of the most common forms of growth, yet they present considerable challenges for the companies and management involved. The effects on stakeholders, including shareholders, managers and employees, must be considered as well...... by editorial commentaries and reflects the important organizational and behavioural aspects which have often been ignored in the past. By providing this in-depth understanding of the mergers and acquisitions process, the reader understands not only how and why mergers and acquisitions occur, but also...

  7. Major merging history in CANDELS. I. Evolution of the incidence of massive galaxy-galaxy pairs from z = 3 to z ˜ 0

    Science.gov (United States)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Ferguson, Henry C.; Kodra, Dritan; Newman, Jeffrey A.; Rafelski, Marc; Somerville, Rachel S.; Conselice, Christopher J.; Cook, Joshua S.; Hathi, Nimish P.; Koo, David C.; Lotz, Jennifer M.; Simmons, Brooke D.; Straughn, Amber N.; Snyder, Gregory F.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; Lee, Seong-Kook; Lucas, Ray A.; Pacifici, Camilla; Peth, Michael A.; Barro, Guillermo; Dahlen, Tomas; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Guo, Yicheng; Mobasher, Bahram; Nayyeri, Hooshang; Pérez-González, Pablo G.; Pforr, Janine; Santini, Paola; Stefanon, Mauro; Wiklind, Tommy

    2018-04-01

    The rate of major galaxy-galaxy merging is theoretically predicted to steadily increase with redshift during the peak epoch of massive galaxy development (1 ≤ z ≤ 3). We use close-pair statistics to objectively study the incidence of massive galaxies (stellar M1 > 2 × 1010 M⊙) hosting major companions (1 ≤ M1/M2 ≤ 4; i.e. 4:1) companions at z > 1. We show that these evolutionary trends are statistically robust to changes in companion proximity. We find disagreements between published results are resolved when selection criteria are closely matched. If we compute merger rates using constant fraction-to-rate conversion factors (Cmerg,pair = 0.6 and Tobs,pair = 0.65 Gyr), we find that MR rates disagree with theoretical predictions at z > 1.5. Instead, if we use an evolving Tobs,pair(z) ∝ (1 + z)-2 from Snyder et al., our MR-based rates agree with theory at 0 history.

  8. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  9. The difference between radio-loud and radio-quiet active galaxies

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-01-01

    The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.

  10. Do large mergers increase or decrease the productivity of pharmaceutical R&D?

    Science.gov (United States)

    Ringel, Michael S; Choy, Michael K

    2017-12-01

    There is current uncertainty regarding the effects of mergers on pharmaceutical R&D productivity, with various mechanisms reported by which mergers could either help or harm R&D, and mixed empirical findings in prior analyses. Here, we present an analysis that is novel in several ways: we use downstream measures of R&D productivity, account for both inputs and outputs in our calculations, and use a self-controlled design. We find that recent large pharmaceutical mergers are associated with statistically significant increases in R&D productivity. These results are perhaps not surprising in light of the broader literature on R&D productivity that points to two factors as instrumental in driving higher R&D productivity (depth of scientific information, and objectivity of decision-making based on that information), both of which could be expected to increase because of a merger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Impact of Merger Status and Relative Representation on Identification with a Merger Group

    Directory of Open Access Journals (Sweden)

    Filip Boen

    2005-12-01

    Full Text Available This experiment tested to what extent identification with a new merger group is determined by the status of that merger group and by the relative representation of the pre-merger ingroup. One hundred university students were assigned to a team of 'inductive' thinkers, and were later merged with a team of 'deductive' thinkers to form a team of 'analyst' thinkers. The status of the merger group (low, high and the relative representation of the ingroup into the novel merger group (low, high were manipulated. Participants identified more with the merger group in the high than in the low status condition, and they identified more in the high than in the low representation condition. The predicted interaction between relative representation and merger status was not significant. However, relative representation did interact with participants' pre-merger identification: Pre- and post-merger identification were positively related when the ingroup was highly represented, but 'negatively' when the ingroup was lowly represented.

  12. ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Yutaka; Kajino, Toshitaka [Department of Astronomy, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ishimaru, Yuhri [Department of Material Science,International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Saitoh, Takayuki R. [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Fujii, Michiko S.; Hidaka, Jun, E-mail: yutaka.hirai@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-8588 (Japan)

    2015-11-20

    The rapid neutron-capture process (r-process) is a major process for the synthesis of elements heavier than iron-peak elements, but the astrophysical site(s) of the r-process has not yet been identified. Neutron star mergers (NSMs) are suggested to be a major r-process site according to nucleosynthesis studies. Previous chemical evolution studies, however, required unlikely short merger times of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements to iron: the [Eu/Fe] of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs), which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate the enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] due to NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time ∼300 Myr from the start of the simulation due to the low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be ≲300 Myr and ∼10{sup −4} year{sup −1}, respectively, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports the argument that NSMs are the major astrophysical site of the r-process.

  13. Dark matter deprivation in the field elliptical galaxy NGC 7507

    Science.gov (United States)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  14. Effects of Galaxy collisions on the structure and evolution of Galaxy clusters. I. Mass and luminosity functions and background light

    International Nuclear Information System (INIS)

    Miller, G.E.; Department of Astronomy, University of Texas at Austin)

    1983-01-01

    The role of galaxy collisions in controlling the form of the galaxy mass and luminosity functions and in creating a diffuse background light is investigated by means of a direct computer simulation. Galaxy collisions are treated in a realistic manner, including both galaxy mergers and tidal encounters. A large number of theoretical studies of a galaxy collisions were consulted to formulate the basic input physics of collision cross sections. Despite this large number of studies, there remains considerable uncertainty in the effects of a collision on a galaxy due mainly to our lack of knowledge of the orbital distribution of matter in galaxies. To improve this situation, some methods of semiempirical calibration are suggested: for example, a survey of background light in clusters of different richness and morphological classes. If real galaxies are represented by galaxy models where the bulk of the matter is on radial, rather than circular, orbits, then tidal collisions are more damaging and there are a number of interesting effects: Repeated tidal encounters lead to galaxy mass and luminosity functions which are largely independent of model parameters and the initial galaxy mass function. It appears unlikely that the form of the average present-day luminosity function characteristic of both field and cluster galaxies is due to collisions, but certain observed deviations from the average found by Heiligman and Turner and by Dressler may be a signature of collisions, in particular a flat faint-end slope. The amount of luminous matter stripped from the galaxies in the simulations agrees with the amount of diffuse background light seen in the Coma Cluster

  15. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    Science.gov (United States)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  16. Surviving mergers & acquisitions.

    Science.gov (United States)

    Dixon, Diane L

    2002-01-01

    Mergers and acquisitions are never easy to implement. The health care landscape is a minefield of failed mergers and uneasy alliances generating great turmoil and pain. But some mergers have been successful, creating health systems that benefit the communities they serve. Five prominent leaders offer their advice on minimizing the difficulties of M&As.

  17. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  18. Deep spectroscopy of nearby galaxy clusters - IV. The quench of the star formation in galaxies in the infall region of Abell 85

    Science.gov (United States)

    Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.

    2018-06-01

    Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.

  19. THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, David V.; Jenkins, Edward B. [Princeton University Observatory, Ivy Lane, Princeton, NJ 08544 (United States); Chelouche, Doron [Department of Physics, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Tripp, Todd M. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Pettini, Max [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0EZ (United Kingdom); York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, Enrico Fermi Institute, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Frye, Brenda L. [Department of Astronomy/Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-07-20

    We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of ρ = 48–165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly α absorption is detected along all sightlines and Si iii λ 1206 is found along the three sightlines with the smallest ρ ; metal lines of C ii, Si ii, and Si iv are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H i disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known “dog-leg” stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a “typical” absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher- z studies.

  20. The Role of the Most Luminous Obscured AGNs in Galaxy Assembly at z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Petty, Sara [Green Science Policy Institute, Berkeley, CA 94709 (United States); Connolly, Brian [Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Efstathiou, Andreas [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stern, Daniel; Bridge, Carrie; Eisenhardt, Peter; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lake, Sean; Tsai, Chao-Wei [Physics and Astronomy Department, University of California, Los Angeles, CA 90095 (United States); Jarrett, Tom [Department of Astronomy, University of Cape Town, 7700 Rondebosch, Capetown 7700 (South Africa); Benford, Dominic [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jones, Suzy [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Wu, Jingwen [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012 (China)

    2017-08-01

    We present Hubble Space Telescope WFC3 F160W imaging and infrared spectral energy distributions for 12 extremely luminous, obscured active galactic nuclei (AGNs) at 1.8 < z < 2.7 selected via “hot, dust-obscured” mid-infrared colors. Their infrared luminosities span (2–15) × 10{sup 13} L {sub ⊙}, making them among the most luminous objects in the universe at z ∼ 2. In all cases, the infrared emission is consistent with arising at least for the most part from AGN activity. The AGN fractional luminosities are higher than those in either submillimeter galaxies or AGNs selected via other mid-infrared criteria. Adopting the G , M {sub 20}, and A morphological parameters, together with traditional classification boundaries, infers that three-quarters of the sample are mergers. Our sample does not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, the asymmetries and effective radii of our sample are distributed identically to those of massive galaxies at z ∼ 2. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample includes examples of the massive galaxy population at z ∼ 2 that harbor a briefly luminous, “flickering” AGN and in which the G and M {sub 20} values have been perturbed due to either the AGN and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represents a small fraction of the immediate antecedents of compact star-forming galaxies at z ∼ 2.

  1. HUBBLE SPACE TELESCOPE WFC3 GRISM SPECTROSCOPY AND IMAGING OF A GROWING COMPACT GALAXY AT z = 1.9

    International Nuclear Information System (INIS)

    Van Dokkum, Pieter G.; Brammer, Gabriel

    2010-01-01

    We present HST/WFC3 grism near-IR spectroscopy of the brightest galaxy at z > 1.5 in the GOODS-South WFC3 ERS grism pointing. The spectrum is of remarkable quality and shows the redshifted Balmer lines Hβ, Hγ, and Hδ in absorption at z = 1.902 ± 0.002. The absorption lines can be produced by a post-starburst stellar population with a luminosity-weighted age of ∼0.5 Gyr. The mass-to-light ratio inferred from the spectrum implies a stellar mass of (4 ± 1) x 10 11 M sun . We determine the morphology of the galaxy from a deep WFC3 H 160 image. Similar to other massive galaxies at z ∼ 2 the galaxy is compact, with an effective radius of 2.1 ± 0.3 kpc. Although most of the light is in a compact core, the galaxy has two red, smooth spiral arms that appear to be tidally induced. The spatially resolved spectroscopy demonstrates that the center of the galaxy is quiescent whereas the surrounding disk is forming stars, as it shows Hβ in emission. The galaxy interacts with a companion at a projected distance of 18 kpc, which also shows prominent tidal features. The companion is a factor of ∼10 fainter than the primary galaxy and may have a lower metallicity. It is tempting to interpret these observations as evidence for the growth of compact, quiescent high-redshift galaxies through minor mergers, which has been proposed by several recent observational and theoretical studies. Interestingly both objects host luminous active galactic nuclei, which implies that these mergers can be accompanied by significant black hole growth.

  2. IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION

    International Nuclear Information System (INIS)

    Nissanke, Samaya; Georgieva, Alexandra; Kasliwal, Mansi

    2013-01-01

    Combined gravitational wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. This decade, ground-based GW interferometers promise to routinely detect compact binary mergers. Unfortunately, networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts of GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: (1) GW sky localization, distance measures, and volume errors with two compact binary populations and four different GW networks; (2) subsequent EM detectability by a slew of multiwavelength telescopes; and (3) final identification of the merger counterpart amidst a sea of possible astrophysical false positives. First, we find that double neutron star binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks, respectively. Neutron-star-black-hole binary mergers can be detected a factor of 1.5 further out; their median to maximum sky localizations are 50-170 deg 2 (or 6-65 deg 2 ) for a three (or five) detector GW network. Second, by optimizing depth, cadence, and sky area, we quantify relative fractions of optical counterparts that are detectable by a suite of different aperture-size telescopes across the globe. Third, we present five case studies to illustrate the diversity of scenarios in secure identification of the EM counterpart. We discuss the case of a typical binary, neither beamed nor nearby, and the challenges associated with identifying an EM counterpart at both low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives. We conclude with strategies that would

  3. SDSS IV MaNGA: Discovery of an Hα Blob Associated with a Dry Galaxy Pair—Ejected Gas or a “Dark” Galaxy Candidate?

    Science.gov (United States)

    Lin, Lihwai; Lin, Jing-Hua; Hsu, Chin-Hao; Fu, Hai; Huang, Song; Sánchez, Sebastián F.; Gwyn, Stephen; Gelfand, Joseph D.; Cheung, Edmond; Masters, Karen; Peirani, Sébastien; Rujopakarn, Wiphu; Stark, David V.; Belfiore, Francesco; Bothwell, M. S.; Bundy, Kevin; Hagen, Alex; Hao, Lei; Huang, Shan; Law, David; Li, Cheng; Lintott, Chris; Maiolino, Roberto; Roman-Lopes, Alexandre; Wang, Wei-Hao; Xiao, Ting; Yuan, Fangting; Bizyaev, Dmitry; Malanushenko, Elena; Drory, Niv; Fernández-Trincado, J. G.; Pace, Zach; Pan, Kaike; Thomas, Daniel

    2017-03-01

    We report the discovery of a mysterious giant Hα blob that is ˜8 kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, and has been identified in the first-year SDSS-IV MaNGA data. The size of the Hα blob is ˜3-4 kpc in radius, and the Hα distribution is centrally concentrated. However, there is no optical continuum counterpart in the deep broadband images reaching ˜26.9 mag arcsec-2 in surface brightness. We estimate that the masses of the ionized and cold gases are 3.3× {10}5 {M}⊙ and MaNGA 1-24145 to the Hα blob, suggesting that the primary ionizing source may come from MaNGA 1-24145, likely a low-activity AGN. Possible explanations for this Hα blob include the AGN outflow, the gas remnant being tidally or ram-pressure stripped from MaNGA 1-24145, or an extremely low surface brightness galaxy. However, the stripping scenario is less favored according to galaxy merger simulations and the morphology of the Hα blob. With the current data, we cannot distinguish whether this Hα blob is ejected gas due to a past AGN outburst, or a special category of “ultra-diffuse galaxy” interacting with MaNGA 1-24145 that further induces the gas inflow to fuel the AGN in MaNGA 1-24145.

  4. Estimating the potential gains from mergers

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Wang, Dexiang

    2005-01-01

    We introduce simple production economic models to estimate the potential gains from mergers. We decompose the gains into technical ef¿ciency, size (scale) and harmony (mix) gains, and we discuss alternative ways to capture these gains. We propose to approximate the production processes using...... the non-parametric. Data Envelopment Analysis (DEA) approach, and we use the resulting operational approach to estimate the potential gains from merging agricultural extension of¿ces in Denmark....

  5. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Weeren, Reinout van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buote, David A. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gastaldello, Fabio, E-mail: yuanyuan.su@cfa.harvard.edu [INAF-IASF-Milano, Via E. Bassini 15, I-20133 Milano (Italy)

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  6. Pre and Post Merger Valuation- A Study of Tata Corus Merger Deal

    OpenAIRE

    Sumeet Gupta

    2009-01-01

    Indian Economy being characterized as Global Economy leading to inorganic growth through Mergers, Acquisitions, Takeovers and Joint Ventures. Mergers would affect the company’s inflow and outflow of various variables like sales, expenses and cash position etc. It becomes imperative to evaluate the pre merger and post merger conditions of the firms so that successful deal can be carried out. The deal would also affect the shareholders wealth. The prediction of future forecasted sales and other...

  7. A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    International Nuclear Information System (INIS)

    Minchev, I.; Chiappini, C.; Steinmetz, M.; De Jong, R. S.; Scannapieco, C.; Martig, M.; Boeche, C.; Grebel, E. K.; Zwitter, T.; Wyse, R. F. G.; Binney, J. J.; Bland-Hawthorn, J.; Bienaymé, O.; Famaey, B.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kordopatis, G.; Helmi, A.; Lee, Y. S.

    2014-01-01

    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of α elements (e.g., Mg) with respect to iron, [α/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events

  8. A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Minchev, I.; Chiappini, C.; Steinmetz, M.; De Jong, R. S.; Scannapieco, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Martig, M. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Wyse, R. F. G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Binney, J. J. [Rudolf Peierls Centre for Theoretical Physics, Keble Road, Oxford OX1 3NP (United Kingdom); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Bienaymé, O.; Famaey, B. [CNRS, Observatoire Astronomique, Université de Strasbourg, 11 rue de l' Université, F-67000 Strasbourg (France); Freeman, K. C. [Australian National University, Canberra, ACT 0200 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G.; Kordopatis, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Lee, Y. S. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2014-01-20

    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of α elements (e.g., Mg) with respect to iron, [α/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events.

  9. REST-FRAME UV VERSUS OPTICAL MORPHOLOGIES OF GALAXIES USING SERSIC PROFILE FITTING: THE IMPORTANCE OF MORPHOLOGICAL K-CORRECTION

    International Nuclear Information System (INIS)

    Rawat, Abhishek; Wadadekar, Yogesh; De Mello, Duilia

    2009-01-01

    We show a comparison of the rest-frame UV morphologies of a sample of 162 intermediate-redshift (z median = 1.02) galaxies with their rest-frame optical morphologies. We select our sample from the deepest near-UV image obtained with the Hubble Space Telescope (HST) using the Wide Field Planetary Camera 2 (WFPC2; F300W) as part of the parallel observations of the Hubble Ultra Deep Field campaign overlapping with the HST/ACS Great Observatories Origins Deep Survey data set. We perform single-component Sersic fits in both WFPC2/F300W (rest-frame UV) and ACS/F850LP (rest-frame optical) bands and deduce that the Sersic index n is estimated to be smaller in the rest-frame UV compared to the rest-frame optical, leading to an overestimation of the number of merger candidates by ∼40%-100% compared to the rest-frame optical depending upon the cutoff in n employed for identifying merger candidates. This effect seems to be dominated by galaxies with low values of n(F300W) ≤ 0.5 that have a value of n(F850LP) ∼ 1.0. We argue that these objects are probably clumpy star-forming galaxies or minor mergers, both of which are essentially contaminants, if one is interested in identifying major mergers. In addition, we also find evidence that the axis ratio b/a is lower, i.e., ellipticity (1 - b/a) is higher in rest-frame UV compared to the rest-frame optical. Moreover, we find that in the rest-frame UV, the number of high ellipticity (e ≥ 0.8) objects are higher by a factor of ∼2.8 compared to the rest-frame optical. This indicates that the reported dominance of elongated morphologies among high-z Lyman Break Galaxies might just be a bias related to the use of rest-frame UV data sets in high-z studies.

  10. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting; Carroll, Christopher M.; Jones, Mackenzie L.; Zervos, Alexandros S. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Goulding, Andrew D. [Department Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirm the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.

  11. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    Science.gov (United States)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  12. Gravitational Wave Astrophysics in the Mid-band: progenitors and advanced localizations of Advanced LIGO/Virgo binary-merger events

    Science.gov (United States)

    Cheung, Chi C. Teddy; Hogan, Jason; Graham, Peter; Kasevich, Mark; Rajendran, Surjeet; Saif, Babak; Kerr, Matthew T.; Lovellette, Michael; Wood, Kent S.; Michelson, Peter; MAGIS Team

    2018-01-01

    We consider the scientific potential of gravitational wave (GW) observations in the ~30 mHz to 3 Hz frequency range with the Mid-band Atomic Gravitational-wave Interferometric Sensor (MAGIS). MAGIS is a probe-class space-mission concept, using an atom-based gravitational wave detector, that will provide all-sky strain sensitivities of ~10^-21 sqrt(Hz) and better (1-year) in the GW-frequency mid-band between the LISA/L3 detector (planned 2034 launch) and ground-based Advanced LIGO/Virgo interferometers. Primary gravitational wave astrophysics science in the mid-band include GW observations of the binary black hole population discovered by Advanced LIGO/Virgo at higher-frequencies, prior to their merger stage. For such systems, MAGIS will observe the binaries in their inspiral phase, where system parameters such as eccentricities are most easily constrained, and will provide advanced, degree-scale localizations that would enable electromagnetic observations of possible precursor emission 1-week to 1-month prior to their mergers as well as prompt post-merger transient emission. Joint GW-observations with MAGIS and Advanced LIGO/Virgo covering all stages of binary coalescence will further reduce uncertainties in the GW- localizations and distances, and will be powerful paired with galaxy catalogs, to enable unique galaxy counterpart identifications in the case black hole binary mergers are completely absent of detectable electromagnetic precursor or transient signals. These possibilities for MAGIS extend to neutron star binary systems (black hole - neutron star, neutron star - neutron star), and mid-band prospects for such systems will also be considered.The MAGIS team is a collaboration between institutes in the U.S. including Stanford, AOSense, Harvard, NASA/GSFC, NASA/JPL, NIST, NRL, and UC Berkeley, and international partners at Birmingham, Bordeaux, CNRS, Dusseldorf, Ecole Normale Superieure, Florence, Hannover, and Ulm University.

  13. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  14. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  15. R-process enrichment from a single event in an ancient dwarf galaxy.

    Science.gov (United States)

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  16. THE ACS FORNAX CLUSTER SURVEY. X. COLOR GRADIENTS OF GLOBULAR CLUSTER SYSTEMS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Liu Chengze; Peng, Eric W.; Jordan, Andres; Ferrarese, Laura; Blakeslee, John P.; Cote, Patrick; Mei, Simona

    2011-01-01

    We use the largest homogeneous sample of globular clusters (GCs), drawn from the ACS Virgo Cluster Survey (ACSVCS) and ACS Fornax Cluster Survey (ACSFCS), to investigate the color gradients of GC systems in 76 early-type galaxies. We find that most GC systems possess an obvious negative gradient in (g-z) color with radius (bluer outward), which is consistent with previous work. For GC systems displaying color bimodality, both metal-rich and metal-poor GC subpopulations present shallower but significant color gradients on average, and the mean color gradients of these two subpopulations are of roughly equal strength. The field of view of ACS mainly restricts us to measuring the inner gradients of the studied GC systems. These gradients, however, can introduce an aperture bias when measuring the mean colors of GC subpopulations from relatively narrow central pointings. Inferred corrections to previous work imply a reduced significance for the relation between the mean color of metal-poor GCs and their host galaxy luminosity. The GC color gradients also show a dependence with host galaxy mass where the gradients are weakest at the ends of the mass spectrum-in massive galaxies and dwarf galaxies-and strongest in galaxies of intermediate mass, around a stellar mass of M * ∼10 10 M sun . We also measure color gradients for field stars in the host galaxies. We find that GC color gradients are systematically steeper than field star color gradients, but the shape of the gradient-mass relation is the same for both. If gradients are caused by rapid dissipational collapse and weakened by merging, these color gradients support a picture where the inner GC systems of most intermediate-mass and massive galaxies formed early and rapidly with the most massive galaxies having experienced greater merging. The lack of strong gradients in the GC systems of dwarfs, which probably have not experienced many recent major mergers, suggests that low-mass halos were inefficient at retaining

  17. Impact of star formation inhomogeneities on merger rates and interpretation of LIGO results

    International Nuclear Information System (INIS)

    O'Shaughnessy, R; Kopparapu, R K; Belczynski, K

    2012-01-01

    gravitational-wave observations future population synthesis models suggest all BH-BH binary mergers occur promptly and therefore are associated with well-studied present-day star formation, the associated composition-related systematic uncertainty could be lower than the pessimistic value quoted above. Further, as gravitational-wave detectors will make available many properties of each merger-binary component masses, spins and even short GRB associations and host galaxies could be available-many detections can still be exploited to create high-precision constraints on binary compact object formation models. (paper)

  18. SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara; Garel, Thibault; Bernyk, Maksym; Bibiano, Antonio; Hodkinson, Luke; Mutch, Simon J.; Poole, Gregory B.; Shattow, Genevieve M. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2016-02-15

    This paper describes a new publicly available codebase for modeling galaxy formation in a cosmological context, the “Semi-Analytic Galaxy Evolution” model, or sage for short.{sup 5} sage is a significant update to the 2006 model of Croton et al. and has been rebuilt to be modular and customizable. The model will run on any N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties. In this work, we present the baryonic prescriptions implemented in sage to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include the following: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling–radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.

  19. SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS

    International Nuclear Information System (INIS)

    Croton, Darren J.; Stevens, Adam R. H.; Tonini, Chiara; Garel, Thibault; Bernyk, Maksym; Bibiano, Antonio; Hodkinson, Luke; Mutch, Simon J.; Poole, Gregory B.; Shattow, Genevieve M.

    2016-01-01

    This paper describes a new publicly available codebase for modeling galaxy formation in a cosmological context, the “Semi-Analytic Galaxy Evolution” model, or sage for short. 5 sage is a significant update to the 2006 model of Croton et al. and has been rebuilt to be modular and customizable. The model will run on any N-body simulation whose trees are organized in a supported format and contain a minimum set of basic halo properties. In this work, we present the baryonic prescriptions implemented in sage to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include the following: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling–radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population

  20. A study of the dynamical state of the hot plasma in galaxy clusters using XMM-Newton data and numerical simulation

    International Nuclear Information System (INIS)

    Solovyeva, Lilia

    2008-01-01

    Cluster of galaxies are the largest and youngest objects in the Universe and these objects are very interesting for study the cosmology. In this moment with the capacity of the instruments (XMM-Newton, Chandra) and with numerical simulations it is possible to study the dynamical state of gas in the cluster during their formation. And plus, now, we have the possibility to study the cluster in different wavelengths (optics, radio, X-ray). Our study helps us to understand the physics processes in clusters. In our work we studied the galaxy cluster around the maximum core collapse. We used the X-ray data, how the first indicators of dynamical state of gas. After with the help of numerical simulation and optics data we performed the completed analysis with the proposition of merger scenario possible. We performed the detailed analysis of two clusters (CL0016+16 and A548b), these clusters presents the signature of major merger and also we studied the cluster from numerical simulation (Cluster 6) around the major merger. (author) [fr

  1. Mergers and Acquisitions

    OpenAIRE

    Frasch, Manfred; Leptin, Maria

    2000-01-01

    Mergers and acquisitions (M&As) are booming a strategy of choice for organizations attempting to maintain a competitive advantage. Previous research on mergers and acquisitions declares that acquirers do not normally benefit from acquisitions. Targets, on the other hand, have a tendency of gaining positive returns in the few days surrounding merger announcements due to several characteristic on the acquisitions deal. The announcement period wealth effect on acquiring firms, however, is as cle...

  2. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; François, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-01-01

    Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims.

  3. 7 CFR 3575.89 - Mergers.

    Science.gov (United States)

    2010-01-01

    ... merged borrower. Mergers may be approved when: (1) The merger is in the best interest of the Government.... (b) Distinguishing mergers from transfers and assumptions. Mergers occur when one entity combines with another entity in such a way that the first entity ceases to exist as a separate entity while the...

  4. Angular Momentum and Galaxy Formation Revisited

    Science.gov (United States)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  5. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  6. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  7. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  8. 7 CFR 1779.89 - Mergers.

    Science.gov (United States)

    2010-01-01

    ... of the merged borrower. Mergers may be approved when: (1) The merger is in the best interest of the... borrower. (b) Distinguishing mergers from transfers and assumptions. Mergers occur when one entity combines with another entity in such a way that the first entity ceases to exist as a separate entity while the...

  9. The SLUGGS survey: a comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ˜4 effective radii

    Science.gov (United States)

    Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj

    2018-06-01

    We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.

  10. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Craig D.; Miller, Christopher J. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Richards, Joseph W.; Deadman, Paul-James [Center for Time Domain Informatics, University of California, Berkeley, CA 94720 (United States); Lloyd-Davies, E. J.; Kathy Romer, A.; Mehrtens, Nicola; Liddle, Andrew R. [Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Hoyle, Ben [Institute of Sciences of the Cosmos (ICCUB) and IEEC, Physics Department, University of Barcelona, Barcelona 08024 (Spain); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Stott, John P.; Capozzi, Diego; Collins, Chris A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Sahlen, Martin [Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Stanford, S. Adam [Physics Department, University of California, Davis, CA 95616 (United States); Viana, Pedro T. P., E-mail: craigha@umich.edu [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-06-10

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.

  11. Lost but not forgotten: intracluster light in galaxy groups and clusters

    Science.gov (United States)

    DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Connor, Thomas; Donahue, Megan; Mulchaey, John S.

    2018-03-01

    With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 ≤ z ≤ 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 1010.0 M⊙ galaxy and that 75 per cent of the total BCG+ICL luminosity at r originating in galaxies with L > 0.2 L* (log(M★ [M⊙])>10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.

  12. Reconciling mass functions with the star-forming main sequence via mergers

    Science.gov (United States)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  13. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  14. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  15. AMMONIA AS A TEMPERATURE TRACER IN THE ULTRALUMINOUS GALAXY MERGER Arp 220

    International Nuclear Information System (INIS)

    Ott, Jürgen; Henkel, Christian; Weiß, Axel; Braatz, James A.

    2011-01-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH 3 ) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH 3 (1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 ± 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from ∼0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH 3 (1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold (∼ 14 cm –2 . This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are ∼120-430 km s –1 , in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to ∼1800 km s –1 previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 ± 19) K, corresponding to a kinetic temperature of T kin = (186 ± 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH 3 ) = (1.7 ± 0.1) × 10 16 cm –2 and (8.4 ± 0.5) × 10 16 cm –2 , respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are consistent with an ortho-to-para-ammonia ratio of unity, implying that the ammonia formation temperature exceeds ∼30 K. In the context of a model with a molecular ring that connects the two nuclei in Arp

  16. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    Science.gov (United States)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  17. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    Science.gov (United States)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  18. Supermassive black holes do not correlate with dark matter haloes of galaxies.

    Science.gov (United States)

    Kormendy, John; Bender, Ralf

    2011-01-20

    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.

  19. Study of turbulent and shock heated IGM gas with emission line spectroscopy in the Taffy galaxies

    Science.gov (United States)

    Joshi, Bhavin; Appleton, Phil; Blanc, Guillermo; Guillard, Pierre; Freeland, Emily; Peterson, Bradley; Alatalo, Katherine

    2018-01-01

    We present our results from optical IFU observations of the Taffy system (UGC 12914/15); named so because of the radio emission that stretches between the two galaxies. The Taffy galaxies are a major merger pair of galaxies where two gas-rich spiral galaxies have collided face on and passed through each other. The pair presents an unusually low IR luminosity (L_FIR ~ 4.5 x 10^{10} L_solar) and SFR (~ 0.23 M_solar / yr) for a typical post merger system. It was also found from Spitzer and Chandra observations that the Taffy "bridge" between the galaxies contains large amounts of warm molecular Hydrogen, >4.5 x 10^8 M_solar at 150-175K, and also shows soft X-ray emission. These results hinted at shock heating as a likely mechanism for heating the large amounts of gas in the Taffy bridge and keeping it at these temperatures, after other sources of heating are ruled out. The data we present in this paper are from the VIRUS-P instrument (now called GCMS) on the Harlan J. Smith 2.7m telescope at McDonald Observatory. We detect ionized gas all throughout the Taffy galaxies and in the bridge between them. Interestingly, the ionized gas shows emission line profiles with two velocity components almost all throughout the system. We also show evidence, through line diagnostic (BPT) diagrams, that the velocity component with lower velocity is likely excited by star formation whereas the velocity component with higher velocity is likely excited by shocks. We also find evidence for post-starburst populations in parts of the Taffy system.

  20. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Bezanson, Rachel; Lee, Kyoung-Soo; Muzzin, Adam; Wake, David A.; Kriek, Mariska; Franx, Marijn; Quadri, Ryan F.; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.; Rudnick, Gregory

    2010-01-01

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10 11 M sun ) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, σ z /(1 + z) ∼ 2%, and rest-frame colors, σ U-V ∼ 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread in ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z ∼< 1, and a frosting of relatively young stars from star formation at later times.

  1. Predation and Mergers: Is Merger Law Counterproductive?

    OpenAIRE

    Persson, Lars

    1999-01-01

    This Paper shows that predation might help firms overcome the free riding problem of mergers by changing the acquisition situation in the buyer's favour relative to the firms outside the merger. It is also shown that the bidding competition for the prey's assets is most harmful to predators when the use of the prey's assets exerts strong negative externalities on rivals, i.e. when their use severely reduces competitors' profits. The reason is that potential buyers are then willing to pay a hi...

  2. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    Science.gov (United States)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities ~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type galaxies created in major mergers or interactions, and compare them with those early-types which have had the bulk of their stars in place since a much earlier epoch.

  3. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  4. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Peng-Fei; Yuan, Qi-Rong [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Zhang, Li [QuFu Education Bureau, QuFu 273100 (China); Zhou, Xu, E-mail: pfyan0822@sina.com, E-mail: yuanqirong@njnu.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have

  5. Change commitment in low-status merger partners: The role of information processing, relative ingroup prototypicality, and merger patterns.

    Science.gov (United States)

    Rosa, Miriam; Kavanagh, Eithne; Kounov, Pavel; Jarosz, Sywlia; Waldzus, Sven; Collins, Elizabeth C; Giessner, Steffen

    2017-09-01

    Merger announcements cause stress among employees, often leading to low change commitment, especially among employees from the lower-status merger partner. Such stress influences how deeply employees process merger-relevant information. Previous research examined how merger patterns that preserve versus change status differences impact merger support, but did not address how employees' information processing may influence this relationship. The current research addresses this gap through a scenario experiment, focusing on the low-status merger partner. The interplay between merger patterns and information processing was examined regarding employees' prototypicality claims in relation to merger support. Results suggest that an integration-equality merger pattern increases change commitment via prototypicality claims in the new organization, conditional to employees' systematic information processing. © 2017 The British Psychological Society.

  6. POST-STARBURST TIDAL TAILS IN THE ARCHETYPICAL ULTRA LUMINOUS INFRARED GALAXY Arp 220

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Matsubayashi, K.; Kajisawa, M.; Shioya, Y.; Ideue, Y.; Ohyama, Y.; Nagao, T.; Murayama, T.; Koda, J.

    2012-01-01

    We present our new deep optical imaging and long-slit spectroscopy for Arp 220, the archetypical ultra luminous infrared galaxy in the local universe. Our sensitive Hα imaging has newly revealed large-scale Hα absorption, i.e., post-starburst regions in this merger. One is found in the eastern superbubble and the other is in the two tidal tails that are clearly revealed in our deep optical imaging. The size of the Hα absorption region in the eastern bubble is 5 kpc × 7.5 kpc, and the observed Hα equivalent widths are ∼2 Å ± 0.2 Å. The sizes of the northern and southern Hα-absorption tidal tails are ∼5 kpc × 10 kpc and ∼6 kpc × 20 kpc, respectively. The observed Hα equivalent widths range from 4 Å to 7 Å. In order to explain the presence of the two post-starburst tails, we suggest a possible multiple-merger scenario for Arp 220 in which two post-starburst disk-like structures merged into one, causing the two tails. This favors Arp 220 as a multiple merging system composed of four or more galaxies arising from a compact group of galaxies. Taking our new results into account, we discuss a star formation history in the last 1 Gyr in Arp 220.

  7. Variations of the ISM conditions accross the Main Sequence of star forming galaxies: observations and simulations.

    Science.gov (United States)

    Martinez Galarza, Juan R.; Smith, Howard Alan; Lanz, Lauranne; Hayward, Christopher C.; Zezas, Andreas; Hung, Chao-Ling; Rosenthal, Lee; Weiner, Aaron

    2015-01-01

    A significant amount of evidence has been gathered that leads to the existence of a main sequence (MS) of star formation in galaxies. This MS is expressed in terms of a correlation between the SFR and the stellar mass of the form SFR ∝ M* and spans a few orders of magnitude in both quantities. Several ideas have been suggested to explain fundamental properties of the MS, such as its slope, its dispersion, and its evolution with redshift, but no consensus has been reached regarding its true nature, and whether the membership or not of particular galaxies to this MS underlies the existence of two different modes of star formation. In order to advance in the understanding of the MS, here we use a statistically robust Bayesian SED analysis method (CHIBURST) to consistently analyze the star-forming properties of a set of hydro-dynamical simulations of mergers, as well as observations of real mergers, both local and at intermediate redshift. We find a remarkable, very tight correlation between the specific star formation rate (sSFR) of galaxies, and the typical ISM conditions near their inernal star-forming regions, parametrized via a novel quantity: the compactness parameter (C). The evolution of mergers along this correlation explains the spread of the MS, and implies that the physical conditions of the ISM smoothly evolve between on-MS (secular) conditions and off-MS (coalescence/starburst) conditions. Furthermore, we show that the slope of the correlation can be interpreted in terms of the efficiency in the conversion of gas into stars, and that this efficiency remains unchanged along and across the MS. Finally, we discuss differences in the normalization of the correlation as a function of merger mass and redshift, and conclude that these differences imply the existence of two different modes of star formation, unrelated to the smooth evolution across the MS: a disk-like, low pressure mode and a compact nuclear-starburst mode.

  8. Analysis of candidates for interacting galaxy clusters. I. A1204 and A2029/A2033

    Science.gov (United States)

    Gonzalez, Elizabeth Johana; de los Rios, Martín; Oio, Gabriel A.; Lang, Daniel Hernández; Tagliaferro, Tania Aguirre; Domínguez R., Mariano J.; Castellón, José Luis Nilo; Cuevas L., Héctor; Valotto, Carlos A.

    2018-04-01

    Context. Merging galaxy clusters allow for the study of different mass components, dark and baryonic, separately. Also, their occurrence enables to test the ΛCDM scenario, which can be used to put constraints on the self-interacting cross-section of the dark-matter particle. Aim. It is necessary to perform a homogeneous analysis of these systems. Hence, based on a recently presented sample of candidates for interacting galaxy clusters, we present the analysis of two of these cataloged systems. Methods: In this work, the first of a series devoted to characterizing galaxy clusters in merger processes, we perform a weak lensing analysis of clusters A1204 and A2029/A2033 to derive the total masses of each identified interacting structure together with a dynamical study based on a two-body model. We also describe the gas and the mass distributions in the field through a lensing and an X-ray analysis. This is the first of a series of works which will analyze these type of system in order to characterize them. Results: Neither merging cluster candidate shows evidence of having had a recent merger event. Nevertheless, there is dynamical evidence that these systems could be interacting or could interact in the future. Conclusions: It is necessary to include more constraints in order to improve the methodology of classifying merging galaxy clusters. Characterization of these clusters is important in order to properly understand the nature of these systems and their connection with dynamical studies.

  9. Hydrodynamical simulations and semi-analytic models of galaxy formation: two sides of the same coin

    Science.gov (United States)

    Neistein, Eyal; Khochfar, Sadegh; Dalla Vecchia, Claudio; Schaye, Joop

    2012-04-01

    In this work we develop a new method to turn a state-of-the-art hydrodynamical cosmological simulation of galaxy formation (HYD) into a simple semi-analytic model (SAM). This is achieved by summarizing the efficiencies of accretion, cooling, star formation and feedback given by the HYD, as functions of the halo mass and redshift. The SAM then uses these functions to evolve galaxies within merger trees that are extracted from the same HYD. Surprisingly, by turning the HYD into a SAM, we conserve the mass of individual galaxies, with deviations at the level of 0.1 dex, on an object-by-object basis, with no significant systematics. This is true for all redshifts, and for the mass of stars and gas components, although the agreement reaches 0.2 dex for satellite galaxies at low redshift. We show that the same level of accuracy is obtained even in case the SAM uses only one phase of gas within each galaxy. Moreover, we demonstrate that the formation history of one massive galaxy provides sufficient information for the SAM to reproduce the population of galaxies within the entire cosmological box. The reasons for the small scatter between the HYD and SAM galaxies are as follows. (i) The efficiencies are matched as functions of the halo mass and redshift, meaning that the evolution within merger trees agrees on average. (ii) For a given galaxy, efficiencies fluctuate around the mean value on time-scales of 0.2-2 Gyr. (iii) The various mass components of galaxies are obtained by integrating the efficiencies over time, averaging out these fluctuations. We compare the efficiencies found here to standard SAM recipes and find that they often deviate significantly. For example, here the HYD shows smooth accretion that is less effective for low-mass haloes, and is always composed of hot or dilute gas; cooling is less effective at high redshift, and star formation changes only mildly with cosmic time. The method developed here can be applied in general to any HYD, and can thus

  10. EVOLUTION OF DARK MATTER PHASE-SPACE DENSITY DISTRIBUTIONS IN EQUAL-MASS HALO MERGERS

    International Nuclear Information System (INIS)

    Vass, Ileana M.; Kazanzidis, Stelios; Valluri, Monica; Kravtsov, Andrey V.

    2009-01-01

    We use dissipationless N-body simulations to investigate the evolution of the true coarse-grained phase-space density distribution f(x, v) in equal-mass mergers between dark matter (DM) halos. The halo models are constructed with various asymptotic power-law indices ρ ∝ r -γ ranging from steep cusps to core-like profiles and we employ the phase-space density estimator 'EnBid' developed by Sharma and Steinmetz to compute f(x, v). The adopted force resolution allows robust phase-space density profile estimates in the inner ∼1% of the virial radii of the simulated systems. We confirm that merger events result in a decrease of the coarse-grained phase-space density in accordance with expectations from Mixing Theorems for collisionless systems. We demonstrate that binary mergers between identical DM halos produce remnants that retain excellent memories of the inner slopes and overall shapes of the phase-space density distribution of their progenitors. The robustness of the phase-space density profiles holds for a range of orbital energies, and a variety of encounter configurations including sequences of several consecutive merger events, designed to mimic hierarchical merging, and collisions occurring at different cosmological epochs. If the progenitor halos are constructed with appreciably different asymptotic power-law indices, we find that the inner slope and overall shape of the phase-space density distribution of the remnant are substantially closer to that of the initial system with the steepest central density cusp. These results explicitly demonstrate that mixing is incomplete in equal-mass mergers between DM halos, as it does not erase memory of the progenitor properties. Our results also confirm the recent analytical predictions of Dehnen regarding the preservation of merging self-gravitating central density cusps.

  11. Mergers: Success versus failure

    International Nuclear Information System (INIS)

    Carley, G. R.

    1997-01-01

    Successful mergers in the context of long-term value creation, as measured by return realized on investor-provided capital, were discussed. In essence, a successful merger is characterized by being motivated by a sound business reason and strategy for the merger, a reasonable price and sound execution. The acquiror's pre-merger success in managing a company is a good indicator of future success. Poorly managed companies that acquire other companies generally continue to be poorly managed with no significant increase in shareholder value. Prior to the acquisition, identification of the potential target, assessment of the people involved on both sides of the transaction, thorough knowledge of the target's potential for value creation, financial implications (debt, equity, terms and demand, tax implications, the potential effect of the proposed acquisition on the acquiror's business plan) and finally the execution of the process itself, are the important determinants of successful mergers

  12. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  13. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    French, K. Decker; Zabludoff, Ann [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Arcavi, Iair [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  14. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    Science.gov (United States)

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  15. On universality in ergoregion mergers

    International Nuclear Information System (INIS)

    Elvang, Henriette; Figueras, Pau; Hubeny, Veronika E; Rangamani, Mukund; Horowitz, Gary T

    2009-01-01

    We study non-dynamical mergers of ergoregions in d + 1-dimensional vacuum gravity. At the merger point, where the ergosurfaces bounding each ergoregion just touch, solutions exhibit universal behavior when there is rotation only in one plane: the angle between the merging ergosurfaces depends only on the symmetries of the solution, not on any other details of the configuration. We show that universality follows from the fact that the relevant component of Einstein's equation reduces to Laplace's equation at the point of merger. Thus ergoregion mergers mimic mergers of Newtonian equipotentials and have similar universal behavior. For solutions with rotation in more than one plane, universality is lost. We demonstrate universality and non-universality in several explicit examples.

  16. Colliding and merging galaxies. II. S0 galaxies with polar rings

    International Nuclear Information System (INIS)

    Schweizer, F.; Whitmore, B.D.; Rubin, V.C.

    1983-01-01

    We first present a detailed optical study of A0136-0801, a 16 1/2 -mag ''spindle'' galaxy girdled by a ring of gas, dust, and young stars. The spindle is a normal S0 disk seen nearly edge-on, as shown by its photometric profile and fast rotation (v/sub rot//sigma/sub v/ = 2.2); a prolate structure seems to be ruled out. The surrounding ring runs over the poles of this S0 disk and serves as a probe of the vertical potential. The ring motions suggest that a massive halo extends far beyond the S0 disk (out to 3R 25 ) and that this halo is more nearly spherical than flat. We then list 22 related galaxies and derive that a few percent of all field S0's possess near-polar rings or disks. We suggest that these structures are due to a second event, most likely the transfer of mass from a companion galaxy during a close encounter and occasionally also the merger of a companion. Although accretion occurs presumably at random angles, polar rings are favored statistically because of their slow differential precession and consequent longevity. Alternate evolutionary schemes are also discussed. Finally, we suggest that M82 may be forming a polar ring from former M81 material, and predict that the ''tilted bulge'' of UGC 7576 is an S0 disk seen nearly edge-on

  17. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  18. The challenge of merging : Merger patterns, premerger status, and merger support

    NARCIS (Netherlands)

    Giessner, [No Value; Täuber, Susanne; Viki, GT; Otten, S; Terry, DJ; Giessner, S.R

    Employees of merging organizations often show resistance to the merger. The employees' support depends on the companies' premerger status and on the merger pattern. Based on an inter-group perspective, three studies were conducted to investigate the influence of premerger status (high, low) and

  19. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  20. Modelling the star formation histories of nearby elliptical galaxies

    Science.gov (United States)

    Bird, Katy

    Since Lick indices were introduced in 1994, they have been used as a source of observational data against which computer models of galaxy evolution have been compared. However, as this thesis demonstrates, observed Lick indices lead to mathematical ill-conditioning: small variations in observations can lead to very large differences in population synthesis models attempting to recreate the observed values. As such, limited reliance should be placed on any results currently or historically in the literature purporting to give the star formation history of a galaxy, or group of galaxies, where this is deduced from Lick observations taken from a single instrument, without separate verification from at least one other source. Within these limitations, this thesis also constrains the star formation histories of 21 nearby elliptical galaxies, finding that they formed 13.26 +0.09 -0.06 Gyrs ago, that all mergers are dry, and that galactic winds are formed from AGN activity (rather than being supernovae-driven). This thesis also finds evidence to support the established galaxy-formation theory of "downsizing". An existing galactic model from the literature is examined and evaluated, and the reasons for it being unable to establish star formation histories of individual galaxies are ascertained. A brand-new model is designed, developed, tested and used with two separate data sets, corroborated for 10 galaxies by data from a third source, and compared to results from a Single Stellar Population model from the literature, to model the star formation histories of nearby elliptical galaxies.

  1. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    Science.gov (United States)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  2. Trade Union Mergers: A Survey of the Literature.

    Science.gov (United States)

    Michelson, Grant

    2000-01-01

    Examines trade union mergers highlighting merger forms, merger motivation, role played by union officers, and merger waves. Discusses the consequences of mergers on members and union performance and concludes that union merger activity has had little impact. (Contains 74 references.) (JOW)

  3. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.

    Science.gov (United States)

    Mayer, L; Kazantzidis, S; Escala, A; Callegari, S

    2010-08-26

    Observations of distant quasars indicate that supermassive black holes of billions of solar masses already existed less than a billion years after the Big Bang. Models in which the 'seeds' of such black holes form by the collapse of primordial metal-free stars cannot explain the rapid appearance of these supermassive black holes because gas accretion is not sufficiently efficient. Alternatively, these black holes may form by direct collapse of gas within isolated protogalaxies, but current models require idealized conditions, such as metal-free gas, to prevent cooling and star formation from consuming the gas reservoir. Here we report simulations showing that mergers between massive protogalaxies naturally produce the conditions for direct collapse into a supermassive black hole with no need to suppress cooling and star formation. Merger-driven gas inflows give rise to an unstable, massive nuclear gas disk of a few billion solar masses, which funnels more than 10(8) solar masses of gas to a sub-parsec-scale gas cloud in only 100,000 years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can subsequently grow to a billion solar masses on timescales of about 10(8) years by accreting gas from the surrounding disk.

  4. Electromagnetic Counterparts to Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspirating BH system will interact strongly-on a purely Newtonian level-with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.

  5. College Mergers: An Emerging Alternative.

    Science.gov (United States)

    Breuder, Robert L.

    1989-01-01

    Examines the merger of Williamsport Area Community College (WACC) and the University of Pennsylvania, necessitated by the city of Williamsport's decision to discontinue its sponsorship of WACC. Considers the principles underlying the merger, legal questions, reactions from within WACC and the surrounding community, and the benefits of the merger.…

  6. Welfare standards in hospital mergers.

    Science.gov (United States)

    Katona, Katalin; Canoy, Marcel

    2013-08-01

    There is a broad literature on the consequences of applying different welfare standards in merger control. Total welfare is usually defined as the sum of consumer and provider surplus, i.e., potential external effects are not considered. The general result is then that consumer welfare is a more restrictive standard than total welfare, which is advantageous in certain situations. This relationship between the two standards is not necessarily true when the merger has significant external effects. We model mergers on hospital markets and allow for not-profit-maximizing behavior of providers and mandatory health insurance. Mandatory health insurance detaches the financial and consumption side of health care markets, and the concept consumer in merger control becomes non-evident. Patients not visiting the merging hospitals still are affected by price changes through their insurance premiums. External financial effects emerge on not directly affected consumers. We show that applying a restricted interpretation of consumer (neglecting externality) in health care merger control can reverse the relation between the two standards; consumer welfare standard can be weaker than total welfare. Consequently, applying the wrong standard can lead to both clearing socially undesirable and to blocking socially desirable mergers. The possible negative consequences of applying a simple consumer welfare standard in merger control can be even stronger when hospitals maximize quality and put less weight on financial considerations. We also investigate the implications of these results for the practice of merger control.

  7. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    Science.gov (United States)

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  8. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    Science.gov (United States)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  9. Understanding FE Mergers. Research Report

    Science.gov (United States)

    Calvert, Natasha

    2009-01-01

    This report presents research findings and discussion to help develop an understanding of what gives rise to mergers and, when they do happen, what makes them work. The research has focused on merger activity between further education (FE) colleges since incorporation in 1993. Mergers are highly contextual, and part of ensuring success is…

  10. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  11. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Tinker, Jeremy [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Finoguenov, Alexis, E-mail: mgeorge@astro.berkeley.edu [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland)

    2013-06-20

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10{sup 13}-10{sup 14} M{sub Sun} and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M{sub *}/M{sub Sun }) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  12. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    International Nuclear Information System (INIS)

    George, Matthew R.; Ma, Chung-Pei; Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta; Tinker, Jeremy; Wechsler, Risa H.; Finoguenov, Alexis

    2013-01-01

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10 13 -10 14 M ☉ and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M * /M ☉ ) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  13. The double galaxy cluster Abell 2465 - I. Basic properties: optical imaging and spectroscopy

    Science.gov (United States)

    Wegner, Gary A.

    2011-05-01

    Optical imaging and spectroscopic observations of the z= 0.245 double galaxy cluster Abell 2465 are described. This object appears to be undergoing a major merger. It is a double X-ray source and is detected in the radio at 1.4 GHz. The purpose of this paper is to investigate signatures of the interaction of the two components. Redshifts were measured to determine velocity dispersions and virial radii of each component. The technique of fuzzy clustering was used to assign membership weights to the galaxies in each clump. Using redshifts of 93 cluster members within 1.4 Mpc of the subcluster centres, the virial masses of the north-east (NE) and south-west (SW) components are Mv= 4.1 ± 0.8 × 1014 and 3.8 ± 0.8 × 1014 M⊙, respectively. These agree within the errors with masses from X-ray scaling relations. The projected velocity difference between the two subclusters is 205 ± 149 km s-1. The anisotropy parameter, β, is found to be low for both components. Spectra of 37 per cent of the spectroscopically observed galaxies show emission lines and are predominantly star forming in the diagnostic diagram. No strong active galactic nucleus sources were found. The emission-line galaxies tend to lie between the two cluster centres with more near the SW clump. The luminosity functions of the two subclusters differ. The NE component is similar to many rich clusters, while the SW component has more faint galaxies. The NE clump’s light profile follows a single Navarro-Frenk-White profile with c= 10 while the SW is better fitted with an extended outer region and a compact inner core, consistent with available X-ray data indicating that the SW clump has a cooling core. The observed differences and properties of the two components of Abell 2465 are interpreted to have been caused by a collision 2-4 Gyr ago, after which they have moved apart and are now near their apocentres, although the start of a merger remains a possibility. The number of emission-line galaxies gives

  14. Effects of the environment on galaxies in the Catalogue of Isolated Galaxies: physical satellites and large scale structure

    Science.gov (United States)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.

    2014-04-01

    , redder CIG galaxies with companions. Reciprocally, the satellites are redder and with an older stellar populations around massive early-type CIG galaxies, while they have a younger stellar content around massive late-type CIG galaxies. This suggests that the CIG is composed of a heterogeneous population of galaxies, sampling from old to more recent, dynamical systems of galaxies. CIG galaxies with companions might have a mild tendency (0.3-0.4 dex) to be more massive, and may indicate a higher frequency of having suffered a merger in the past. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A94

  15. TIDAL TAILS OF MINOR MERGERS: STAR FORMATION EFFICIENCY IN THE WESTERN TAIL OF NGC 2782

    International Nuclear Information System (INIS)

    Knierman, Karen; Scowen, Paul; Jansen, Rolf A.; Knezek, Patricia M.; Wehner, Elizabeth

    2012-01-01

    While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios ∼ SFR ) to be several orders of magnitude less than expected from the total gas density. Together with extended FUV+NUV emission from Galaxy Evolution Explorer along the tail, this indicates a low global star formation efficiency in the tidal tail producing lower mass star clusters. The H II region that we observed has a local (few-kiloparsec scale) Σ SFR from Hα that is less than that expected from the total gas density, which is consistent with other observations of tidal debris. The star formation efficiency of this H II region inferred from the total gas density is low, but normal when inferred from the molecular gas density. These results suggest the presence of a very small, locally dense region in the western tail of NGC 2782 or of a low-metallicity and/or low-pressure star-forming region.

  16. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  17. Medical group mergers: strategies for success.

    Science.gov (United States)

    Latham, Will

    2014-01-01

    As consolidation sweeps over the healthcare industry, many medical groups are considering mergers with other groups as an alternative to employment. While mergers are challenging and fraught with risk, an organized approach to the merger process can dramatically increase the odds for success. Merging groups need to consider the benefits they seek from a merger, identify the obstacles that must be overcome to merge, and develop alternatives to overcome those obstacles. This article addresses the benefits to be gained and issues to be addressed, and provides a tested roadmap that has resulted in many successful medical group mergers.

  18. Endogenous mergers: bidder momentum and market reaction

    NARCIS (Netherlands)

    Kling, G.; Weitzel, G.U.

    2010-01-01

    Recent empirical studies on stock misvaluation as a possible determinant of mergers are inconclusive concerning the central hypothesis that over (under) valuation is negatively (positively) associated with merger announcement returns in stock mergers, but not in cash mergers. We provide empirical

  19. Endogenous mergers: Bidder momentum and market reaction

    NARCIS (Netherlands)

    Kling, G.; Weitzel, U.

    Recent empirical studies on stock misvaluation as a possible determinant of mergers are inconclusive concerning the central hypothesis that over(under)valuation is negatively (positively) associated with merger announcement returns in stock mergers, but not in cash mergers. We provide empirical

  20. Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Jin, Zhi-Ping; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Zhang, Fu-Wen, E-mail: jin@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2017-07-20

    Short gamma-ray bursts (SGRBs) are widely believed to be from mergers of binary compact objects involving at least one neutron star and hence have a broad range of spatial offsets from their host galaxies. In this work, we search for possible correlations between the emission properties of 18 SGRBs and their offsets from the host galaxies. The SGRBs with and without extended emission do not show significant differences between their offset distributions, in agreement with some previous works. There are, however, possible correlations between the optical and X-ray afterglow emission and the offsets. The underlying physical origins are examined.

  1. Helicity coherence in binary neutron star mergers and nonlinear feedback

    Science.gov (United States)

    Chatelain, Amélie; Volpe, Cristina

    2017-02-01

    Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.

  2. RCB stars from double degenerate white dwarf mergers

    Science.gov (United States)

    Staff, Jan; Wiggins, Brandon K.; Marcello, Dominic; Motl, Patrick; Clayton, Geoffrey C.

    2018-01-01

    We have conducted grid based and SPH based hydrodynamic simulations of white dwarf mergers, to investigate the role of dredge-up and mixing during the merger. The goal is to test if sufficiently little 16O can be brought up to the surface to explain the observed 16O to 18O ratio of order unity found in RCB stars. In all simulations, the total mass is ~< 1 M⊙. By initializing both the grid based and the SPH simulations with the same setup, we can compare the results from these different methods. In most of the simulations, more than 0.01 M⊙ of 16O is brought up to the surface. Hence a similar mass of 18O must be produced in order to explain the observed oxygen ratio. However,in SPH simulations where the accretor is a hybrid He/CO white dwarf, much less 16O is brought to the surface, making this an excellent candidate for the progenitor of RCB stars.

  3. Mergers, Strategic Investments and Antitrust Policy

    OpenAIRE

    Deneffe, Daniel; Wakker, Peter

    1996-01-01

    textabstractEstablished firms can diversify into new markets in two distinct modes: through internal development or through conglomerate merger. Building on a dynamic three-stage bargaining model with variable threats, this paper shows that a lenient antitrust position toward horizontal mergers can induce established firms that would otherwise not have entered to enter via conglomerate merger. The vigor of antitrust enforcement toward horizontal mergers also affects the conglomerate acquisiti...

  4. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    International Nuclear Information System (INIS)

    Pacifici, Camilla; Kassin, Susan A.; Gardner, Jonathan P.; Weiner, Benjamin; Charlot, Stéphane

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 s bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  5. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    Science.gov (United States)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  6. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  7. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  8. Bank Mergers Performance and the Determinants of Singaporean Banks’ Efficiency: An Application of Two-Stage Banking Models

    Directory of Open Access Journals (Sweden)

    Fadzlan Sufian

    2007-01-01

    Full Text Available An event study window analysis of Data Envelopment Analysis (DEA is employed in this study to investigate the effect of mergers and acquisitions on Singaporean domestic banking groups’ efficiency. The results suggest that the mergers have resulted in a higher post-merger mean overall efficiency of Singaporean banking groups. However, from the scale efficiency perspective, our findings do not support further consolidation in the Singaporean banking sector. We find mixed evidence of the efficiency characteristics of the acquirers and targets banks. Hence, the findings do not fully support the hypothesis that a more (less efficient bank becomes the acquirer (target. In most cases, our results further confirm the hypothesis that the acquiring bank’s mean overall efficiency improves (deteriorates post-merger resulted from the merger with a more (less efficient bank. Tobit regression model is employed to determine factors affecting bank performance, and the results suggest that bank profitability has a significantly positive impact on bank efficiency, whereas poor loan quality has a significantly negative influence on bank performance.

  9. Bundling and mergers in energy markets

    International Nuclear Information System (INIS)

    Granier, Laurent; Podesta, Marion

    2010-01-01

    Does bundling trigger mergers in energy industries? We observe mergers between firms belonging to various energy markets, for instance between gas and electricity providers. These mergers enable firms to bundle. We consider two horizontally differentiated markets. In this framework, we show that bundling strategies in energy markets create incentives to form multi-market firms in order to supply bi-energy packages. Moreover, we find that this type of merger is detrimental to social welfare. (author)

  10. New View of Distant Galaxy Reveals Furious Star Formation

    Science.gov (United States)

    2007-12-01

    star formation at those times. "This means that future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) can reveal many more such galaxies and give us a much more complete picture of star formation in the early Universe," he added. Lennox Cowie of the University of Hawaii said, "We found out in the last decade that most of the recent star formation in the Universe occurs in large dusty galaxies, but we had always expected that early star formation would be dominated by smaller and less obscured galaxies. Now it seems that even at very early times it may be the same big dusty star formers that are the sites of most of the star formation. That's quite a surprise." Astronomers believe that large galaxies originally formed through mergers of smaller objects. Seeing a large galaxy such as GOODS 850-5 forming stars so rapidly at such an early time in the history of the Universe is a surprise. "Either the mergers that formed the galaxy happened much faster than we thought or some other process altogether produced the galaxy," Wang said. Wang and Cowie worked with Jennifer van Saders of Rutgers University and NRAO, Amy Barger of the University of Wisconsin-Madison, and Jonathan Williams of the University of Hawaii. The scientists published their findings in the December 1 edition of the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.The Submillimeter Array is an 8-element interferometer located atop Mauna Kea in Hawaii. It is a collaboration between the Smithsonian Astrophysical Observatory and the Institute of Astronomy and Astrophysics of the Academia Sinica of Taiwan.

  11. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Ignacio; Vazdekis, Alexandre [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205-La Laguna, Tenerife (Spain); Ferré-Mateu, Anna [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Balcells, Marc [Isaac Newton Group of Telescopes, E-38700 Santa Cruz de La Palma, Canary Islands (Spain); Sánchez-Blázquez, Patricia, E-mail: trujillo@iac.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049, Cantoblanco, Madrid (Spain)

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  12. 7 CFR 1782.15 - Mergers and consolidations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Mergers and consolidations. 1782.15 Section 1782.15... AGRICULTURE (CONTINUED) SERVICING OF WATER AND WASTE PROGRAMS § 1782.15 Mergers and consolidations. Mergers... transaction under consideration and the unique facts involved in each transaction. Mergers occur when two or...

  13. Neutron-Star Merger Detected By Many Eyes and Ears

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    -Ray Burst Monitor detected a short ( 2-second) gamma-ray burst, GRB170817A, which appears to have occurred 1.7 seconds after the merger indicated by the gravitational-wave signal. This source was later identified by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) spacecraft as well.Locations of the many observatories that observed the neutron-star merger first detected on 17 August, 2017. [Abbott et al. 2017]Electromagnetic Counterpart and Host GalaxyThough they were initially foiled by the signals location (the localized region of GW170817 only became visible in Chile 10 hours after its detection), the One-Meter, Two-Hemisphere team used the Swope telescope at Las Campanas Observatory in Chile to discover an optical counterpart to the LIGO and Fermi detection, located in the early-type galaxy NGC 4993. Within an hour, five other teams had independently detected the optical source in NGC 4993, with more following after.In the subsequent hours, days, and weeks, observatories across the electromagnetic spectrum monitored the transient. The source soon faded from view in the ultraviolet and gradually reddened in the optical and infrared bands. Delayed X-ray emission was discovered 9 days after the LIGO signal, and a radio counterpart was discovered a week after that.No NeutrinosThough several neutrino observatories searched for high-energy neutrinos in the direction of NGC 4993 in the two-week period following the merger, none were detected.Summary and timeline of the observations of the neutron-star merger detected on 17 August, 2017 relative to the time tc of the gravitational-wave event. Click for a closer look. [Abbott et al. 2017]A Spectacular ConfirmationSo what do these observations tell us? Our model for neutron-star mergers appears to be remarkably successful! The associated detections of gravitational waves and electromagnetic counterparts have confirmed that merging neutron stars produce the expected gravitational-wave signal, that they are the source

  14. The Complex Kinematics of Galaxies in Hickson 67

    Science.gov (United States)

    Bettoni, D.; Buson, L. M.

    The kinematics of galaxies belonging to the Hickson compact group HCG67 are investigated. The latter consists of four galaxies, three of which (a, c, d) are embedded in a common envelope. The fourth galaxy (b) is a spiral that is detected both in radio and in IR wave-bands. Our observations show that the three galaxies in apparent interaction are probably caught during an ongoing merger process. Z Balcells, M., Morganti, R., Oosterloo, T., Peréz-Fournon, I. González Serrano, J. I. 1995, aap, 302, 665. Bertola, F., Bettoni, D., Rusconi, L., Sedmak, G. 1984, aj, 89, 356 Barnes, J. 1985, mnras, 215, 517 Hickson, P. 1982, apj, 255, 382 Hickson, P. 1993, Astrophys. Lett. Commun., 29, 1 Hickson, P., Menon, T. K., Palumbo, G. G. C., Persic, M. 1989, apj, 341,679 Leon, S., Combes, F., Menon, T. K. 1998, aap, 330, 37 Mamon, G. A. 1992, in "Physics of Nearby Galaxies: Nature or Nurture?", ed. T. X6. Thuan, C. Balkowski & Thran Thanh Van (12th Moriond Astrophysics Meeting)(Editions Frontiéres), p.367. Mendes de Oliveira, C., Hickson, P. 1991, apj, 380, 30 Mendes de Oliveira, C., Plana, H, Amram, P., Bolte, M., Boulesteix, J. 1998, apj, 507, 691 Menon, T. K. 1995, mnras, 274, 845 Rabaça, C. R., Sulentic, J. W. 1991, baas, 23, 1338 Zepf, S. E., Whitmore, B. C., Levison, H. F. 1991, apj, 383, 524

  15. Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)

    Science.gov (United States)

    Fuse, Christopher R.; Malespina, Alysa

    2017-01-01

    Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.

  16. DIFFERENTIAL MORPHOLOGY BETWEEN REST-FRAME OPTICAL AND ULTRAVIOLET EMISSION FROM 1.5 < z < 3 STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Bond, Nicholas A.; Gawiser, Eric; Koekemoer, Anton M.

    2011-01-01

    We present the results of a comparative study of the rest-frame optical and rest-frame ultraviolet morphological properties of 117 star-forming galaxies (SFGs), including BX, BzK, and Lyman break galaxies with B 3σ) and larger than we find in passive galaxies at 1.4 0.05) generally have complex morphologies that are both extended and asymmetric, suggesting that they are mergers-in-progress or very large galaxies in the act of formation. We also find a correlation between half-light radius and ICD, a fact that is not reflected by the difference in half-light radii between bandpasses. In general, we find that it is better to use diagnostics like the ICD to measure the morphological properties of the difference image than it is to measure the difference in morphological properties between bandpasses.

  17. Getting cold feet?: Why health care mergers are abandoned.

    Science.gov (United States)

    Roos, Anne-Fleur; Postma, Jeroen

    2016-01-01

    Despite the frequent occurrence and sizeable consequences of merger abandonment in other sectors, there is no thorough understanding of merger abandonment in health care. The purpose of this study is to improve the understanding of determinants of health care merger abandonment. On the basis of the literature on merger abandonment, we formulated a framework on potential determinants of health care merger abandonment. We then constructed a survey that was sent to 70% of all executives of Dutch health care organizations (response rate = 35%, n = 291). We provide descriptive overviews of open, multiple-response, and multiple-choice questions on merger abandonment and use chi-square tests and Fisher's exact tests to test whether abandoned and completed merger processes differ. About 62% of the respondents were involved in at least one merger process during the period of 2005-2012. Thirty-eight percent of these respondents reported that their last merger case ended prematurely (n = 53). The most frequently mentioned determinants of merger abandonment are changing insights on the desirability and feasibility during merger processes, incompatibilities between executives, and insufficient support for the merger from internal stakeholders. We did not find significant relationships between merger abandonment and executives' previous merger experience, degree of organizational diversification, health care sector, size differences, or other organizational differences. Our findings partially confirm results from previous studies, especially with regard to the importance of changing insights and incompatibilities between the involved executives in merger abandonment. We also find that pressure from internal stakeholders, particularly nonexecutive directors, and distrust, fear, and animosity play an important role in merger abandonment. To minimize the organizational and societal costs of abandoned mergers, we advise executives who engage in mergers to construct backup plans with

  18. The effects of mergers and acquisitions on stock price behavior in banking sector of Pakistan

    Directory of Open Access Journals (Sweden)

    Zahoor Rahman

    2018-03-01

    Full Text Available Mergers and Acquisitions are considered as one of the useful strategies for growth and expansion of businesses. These strategies have widely been adopted in developed economies while are quite often practiced in developing countries like Pakistan. This study aims to explore the effect of Mergers and Acquisitions on stock price behavior of banking sector in Pakistan by using event study analysis for the period of 2002–2012. Market Study Method was used to compute the abnormal and cumulative abnormal returns for analyzing pre and post events effect of the phenomenon on share prices. The results reveal mixed observations of the activity of mergers and acquisitions on stock price performance. Our findings indicate that most of the firms experienced negative while some firms have shown positive abnormal and cumulative abnormal returns following the activity. Overall, the results indicate that the market responded negatively towards the phenomenon of mergers and acquisition in Banking sector of Pakistan. The results would be useful in providing new insights to the investors and management in making their investment related decisions.

  19. The fate of high redshift massive compact galaxies in dense environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Tobias; /Zurich, ETH; Mayer, Lucio; /Zurich U.; Carollo, Marcella; /Zurich, ETH; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  20. Accounting for distress in bank mergers

    NARCIS (Netherlands)

    Koetter, M.; Bos, J. W. B.; Heid, F.; Kolari, J. W.; Kool, C. J. M.; Porath, D.

    2007-01-01

    Most bank merger studies do not control for hidden bailouts, which may lead to biased results. In this study we employ a unique data set of approximately 1000 mergers to analyze the determinants of bank mergers. We use undisclosed information on banks' regulatory intervention history to distinguish

  1. Hospital mergers: a panacea?

    Science.gov (United States)

    Weil, Thomas

    2010-10-01

    Hospital mergers in Europe and North America have been launched to scale down expenditure, enhance the delivery of health care and elevate quality. However, the outcome of mergers suggest that they neither generated cost savings nor improved the quality of care. Almost all consolidations fall short, since those in leadership positions lack the necessary understanding and appreciation of the differences in culture, values and goals of the existing facilities. In spite of these shortcomings, hospital mergers will continue to be pursued in order to improve market share, eliminate excess capacity, gain access to capital and enhance the personal egos of the organizations' leaders.

  2. MERGER ACCOUTING FOR COMPANIES

    Directory of Open Access Journals (Sweden)

    SUCIU GHEORGHE

    2014-05-01

    Full Text Available Companies, especially nowadays, are characterized through great mobility, fast circulation of capital, occurring in their chase for profit. In this context, companies look for alliances, economical and political assistance. These objectives can materialize through merging of companies. The merger can be internal (between Romanian companies or transboundary, which includes foreign companies. In order to correctly reflect these events, the merger operations must be regulated and must respect national and international regulations. One important request concerning the merger operations is that the accounting values of the assets, debts and ownership equity must be brought to the present financial value.

  3. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 proof for the existence of Pop III stars.

  4. An unusually brilliant transient in the galaxy M85.

    Science.gov (United States)

    Kulkarni, S R; Ofek, E O; Rau, A; Cenko, S B; Soderberg, A M; Fox, D B; Gal-Yam, A; Capak, P L; Moon, D S; Li, W; Filippenko, A V; Egami, E; Kartaltepe, J; Sanders, D B

    2007-05-24

    Historically, variable and transient sources have both surprised astronomers and provided new views of the heavens. Here we report the discovery of an optical transient in the outskirts of the lenticular galaxy Messier 85 in the Virgo cluster. With a peak absolute R magnitude of -12, this event is distinctly brighter than novae, but fainter than type Ia supernovae (which are expected in a population of old stars in lenticular galaxies). Archival images of the field do not show a luminous star at that position with an upper limit in the g filter of about -4.1 mag, so it is unlikely to be a giant eruption from a luminous blue variable star. Over a two-month period, the transient source emitted radiation energy of almost 10(47) erg and subsequently faded in the optical sky. It is similar to, but six times more luminous at peak than, an enigmatic transient in the galaxy M31 (ref. 1). A possible origin of M85 OT2006-1 is a stellar merger. If so, searches for similar events in nearby galaxies will not only allow study of the physics of hyper-Eddington sources, but also probe an important phase in the evolution of stellar binary systems.

  5. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    Science.gov (United States)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  6. THE FOSSIL RECORD OF TWO-PHASE GALAXY ASSEMBLY: KINEMATICS AND METALLICITIES IN THE NEAREST S0 GALAXY

    International Nuclear Information System (INIS)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Chomiuk, Laura; Strader, Jay; Spitler, Lee R.; Forbes, Duncan A.; Benson, Andrew J.

    2011-01-01

    We present a global analysis of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging from Suprime-Cam on the Subaru telescope, and multi-slit spectra of the field stars and globular clusters (GCs) obtained using Keck-DEIMOS/LRIS and Magellan-IMACS. Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly (v/σ ∼> 1.5). At larger radii, the rotation declines dramatically to v/σ ∼ 0.7, but remains well aligned with the inner regions. The radial decrease in characteristic metallicity of both the metal-rich and metal-poor GC subpopulations produces strong gradients with power-law slopes of -0.17 ± 0.04 and -0.38 ± 0.06 dex dex -1 , respectively. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers with typical mass ratios of ∼15-20:1.

  7. SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies

    Science.gov (United States)

    Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino

    2018-06-01

    We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.

  8. LEGAL CONSEQUENCES OF MERGERS AND ACQUISITIONS

    Directory of Open Access Journals (Sweden)

    Amelia-Raluca ONIŞOR

    2016-05-01

    Full Text Available The research analyses the legal effects of mergers and acquisitions from the Romanian Company Law perspective, underlining certain general principles, the procedure of annulment of such a legal transformation of companies and the protection of the employees of companies participating in the merger according to the Law no. 67/2006. These consequences of mergers and acquisions are to be seen in the broader light of the most important purpose of this legal instrument, maximizing financial and organizational efficiencies, thus legal certainty is a desirable goal to be assumed by any merger regulation.

  9. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    International Nuclear Information System (INIS)

    Haxthausen, E.; Carilli, C.; Vangorkom, J.H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance

  10. STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Salim, Samir; Rich, R. Michael

    2010-01-01

    In recent years, an argument has been made that a high fraction of early-type galaxies (ETGs) in the local universe experience low levels (∼ sun yr -1 ) of star formation (SF) that causes strong excess in UV flux, yet leaves the optical colors red. Many of these studies were based on Galaxy Evolution Explorer imaging of Sloan Digital Sky Survey (SDSS) galaxies (z ∼ 0.1), and were thus limited by its 5'' FWHM. Poor UV resolution left other possibilities for UV excess open, such as the old populations or an active galactic nucleus (AGN). Here, we study high-resolution far-ultraviolet HST/ACS images of optically quiescent early-type galaxies with strong UV excess. The new images show that three-quarters of these moderately massive (∼5 x 10 10 M sun ) ETGs shows clear evidence of extended SF, usually in form of wide or concentric UV rings, and in some cases, striking spiral arms. SDSS spectra probably miss these features due to small fiber size. UV-excess ETGs have on average less dust and larger UV sizes (D > 40 kpc) than other green-valley galaxies, which argues for an external origin for the gas that is driving the SF. Thus, most of these galaxies appear 'rejuvenated' (e.g., through minor gas-rich mergers or intergalactic medium accretion). For a smaller subset of the sample, the declining SF (from the original internal gas) cannot be ruled out. SF is rare in very massive early-types (M * > 10 11 M sun ), a possible consequence of AGN feedback. In addition to extended UV emission, many galaxies show a compact central source, which may be a weak, optically inconspicuous AGN.

  11. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  12. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-20

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  13. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    International Nuclear Information System (INIS)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John; Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben; Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya; Price, Larry R.; Raymond, Vivien; Kasliwal, Mansi M.; Nissanke, Samaya; Coughlin, Michael; Urban, Alex L.; Vitale, Salvatore; Mohapatra, Satya; Graff, Philip

    2016-01-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  14. The DEEP2 Galaxy Redshift Survey: AEGIS observations of a Dual AGNat z = 0.7

    International Nuclear Information System (INIS)

    Gerke1, Brian F.; Newman, Jeffrey A.; Lotz, Jennifer; Yan, Renbin; Barmby, P.; Coil, Alison L.; Conselice, Christopher J.; Ivison, R.J.; Lin, Lihwai; Koo, David C.; Nandra, Kirpal; Salim, Samir; Small, Todd; Weiner, Benjamin J.; Cooper, Michael C.; Davis, Marc; Faber, S.M.; Guhathakurta, Puragra

    2006-01-01

    We present evidence for a dual Active Galactic Nucleus (AGN) within an early-type galaxy at z = 0.709 in the Extended Groth Strip. The galaxy lies on the red sequence, with absolute magnitude M B = -21.0 ( AB, w , with h = 0 0.7) and rest-frame color U - B = 1.38. Its optical spectrum shows strong, double-peaked [O III] emission lines and weak Hβ emission, with Seyfert-like line ratios. The two narrow peaks are separate by 630 km s-1 in velocity and arise from two distinct regions, spatially resolved in the DEIMOS spectrum, with a projected physical separation of 1.2 kpc. HST/ACS imaging shows an early-type (E/S0) galaxy with hints of disturbed structure, consistent with the remnant of a dissipationless merger. Multiwavelength photometric information from the AEGIS consortium confirm the identification of a dust-obscured AGN in an early-type galaxy, with detections in X-ray, optical, infrared and radio wavebands. These data are most readily explained as a single galaxy harboring two AGN--the first such system to be observed in an otherwise typical early-type galaxy

  15. Merger mania: mergers and acquisitions in the generic drug sector from 1995 to 2016.

    Science.gov (United States)

    Gagnon, Marc-André; Volesky, Karena D

    2017-08-22

    Drug shortages and increasing generic drug prices are associated with low levels of competition. Mergers and acquisitions impact the level of competition. Record merger and acquisition activity was reported for the pharmaceutical sector in 2014/15, yet information on mergers and acquisitions in the generic drug sector are absent from the literature. This information is necessary to understand if and how such mergers and acquisitions can be a factor in drug shortages and increasing prices. Data on completed merger and acquisition deals that had a generic drug company being taken over (i.e. 'target') were extracted from Bloomberg Finance L.P. The number and announced value of deals are presented globally, for the United States, and globally excluding the United States annually from 1995 to 2016 in United States dollars. Generic drug companies comprised 9.3% of the value of all deals with pharmaceutical targets occurring from 1995 to 2016. Globally, in 1995 there were no deals, in 2014 there were 22 deals worth $1.86 billion, in 2015 there were 34 deals totalling $33.56 billion, and in 2016 there were 42 deals worth in excess of $44 billion. This substantial increase was partially attributed to Teva's 2016 acquisition of Allergan's generic drug business. The surge in mergers and acquisitions for 2015/16 was driven by deals in the United States, where they represented 89.7% of the dollar value of deals in those years. The recent blitz in mergers and acquisitions signals that the generic drug industry is undergoing a transformation, especially in the United States. This restructuring can negatively affect the level of competition that might impact prices and shortages for some products, emphasizing the importance of updating regulations and procurement policies.

  16. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  17. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P.

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ R . An evaluation of the galaxies in the λ R ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects

  18. Nurse Executive Leadership During Organizational Mergers.

    Science.gov (United States)

    Piper, Letty Roth; Schneider, Maureen

    2015-12-01

    The recent growth in hospital mergers and the resultant mergers of nursing service departments (NSDs) have produced a need for chief nursing officers (CNOs) to be aware of implications and anticipated dynamic changes. This article addresses the major issues raised by mergers for NSDs and presents an operational step-by-step checklist for CNOs.

  19. ENHANCED NITROGEN IN MORPHOLOGICALLY DISTURBED BLUE COMPACT GALAXIES AT 0.20 < z < 0.35: PROBING GALAXY MERGING FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwon; Rey, Soo-Chang; Yeom, Bum-Suk; Yi, Wonhyeong [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Sung, Eon-Chang; Kyeong, Jaemann [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Humphrey, Andrew, E-mail: jiwon@cnu.ac.kr, E-mail: screy@cnu.ac.kr [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762, Porto (Portugal)

    2013-04-10

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either ''disturbed'' or ''undisturbed'' by visual inspection of the SDSS images, and using the Gini coefficient and M{sub 20}. We derive oxygen and nitrogen abundances using the T{sub e} method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the H{alpha} to near-UV star formation rate ratio. The equivalent width of the H{beta} emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  20. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    Science.gov (United States)

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.