WorldWideScience

Sample records for mixed finite elements

  1. A survey of mixed finite element methods

    Science.gov (United States)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  2. Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems

    OpenAIRE

    Zuliang Lu

    2011-01-01

    We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...

  3. Iterative methods for mixed finite element equations

    Science.gov (United States)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  4. Mixed finite elements for global tide models

    CERN Document Server

    Cotter, Colin J

    2014-01-01

    We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.

  5. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  6. On Hybrid and mixed finite element methods

    Science.gov (United States)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  7. On mixed finite element techniques for elliptic problems

    Directory of Open Access Journals (Sweden)

    M. Aslam Noor

    1983-01-01

    mildly nonlinear elliptic problems by means of finite element methods of mixed type. The technique is based on an extended variational principle, in which the constraint of interelement continuity has been removed at the expense of introducing a Lagrange multiplier.

  8. A mixed finite element for the analysis of laminated plates

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1983-01-01

    A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.

  9. EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Shipeng Mao; Zhong-Ci Shi

    2009-01-01

    In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an ex-plicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex-tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.Mathematics subject classification: 65N12, 65N15, 65N30, 65N50.

  10. Preconditioning for Mixed Finite Element Formulations of Elliptic Problems

    KAUST Repository

    Wildey, Tim

    2013-01-01

    In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.

  11. Behaviour of Lagrangian triangular mixed fluid finite elements

    Indian Academy of Sciences (India)

    S Gopalakrishnan; G Devi

    2000-02-01

    The behaviour of mixed fluid finite elements, formulated based on the Lagrangian frame of reference, is investigated to understand the effects of locking due to incompressibility and irrotational constraints. For this purpose, both linear and quadratic mixed triangular fluid elements are formulated. It is found that there exists a close relationship between the penalty finite element approach that uses reduced/selective numerical integration to alleviate locking, and the mixed finite element approach. That is, performing reduced/selective integration in the penalty approach amounts to reducing the order of pressure interpolation in the mixed finite element approach for obtaining similar results. A number of numerical experiments are performed to determine the optimum degree of interpolation of both the mean pressure and the rotational pressure in order that the twin constraints are satisfied exactly. For this purpose, the benchmark solution of the rigid rectangular tank is used. It is found that, irrespective of the degree of mean and the rotational pressure interpolation, the linear triangle mesh, with or without central bubble function (incompatible mode), locks when both the constraints are enforced simultaneously. However, for quadratic triangle, linear interpolation of the mean pressure and constant rotational pressure ensures exact satisfaction of the constraints and the mesh does not lock. Based on the results obtained from the numerical experiments, a number of important conclusions are arrived at.

  12. Material nonlinear analysis via mixed-iterative finite element method

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1992-01-01

    The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.

  13. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  14. Discontinuous dual-primal mixed finite elements for elliptic problems

    Science.gov (United States)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

  15. Generalization of mixed multiscale finite element methods with applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  16. Dual Formulations of Mixed Finite Element Methods with Applications.

    Science.gov (United States)

    Gillette, Andrew; Bajaj, Chandrajit

    2011-10-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail.

  17. Recent advances in hybrid/mixed finite elements

    Science.gov (United States)

    Pian, T. H. H.

    1985-01-01

    In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.

  18. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  19. Analysis of a non-standard mixed finite element method with applications to superconvergence

    NARCIS (Netherlands)

    Brandts, J.H.

    2009-01-01

    We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconve

  20. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  1. Mixed Generalized Multiscale Finite Element Methods and Applications

    KAUST Repository

    Chung, Eric T.

    2015-03-03

    In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.

  2. Mixed finite element formulation for frictionless contact problems

    Science.gov (United States)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational procedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large-rotation theory of the structure with the effect of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (or stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. Numerical examples of axisymmetric deformations of a hemispherical shell and planar deformations of a circular ring are presented. Both structures are pressed against a rigid plate. Detailed information about the response of the structures is presented. The numerical studies demonstrate the high accuracy of the mixed models and the effectiveness of the computational procedure based on combining the geometrically nonlinear terms and the contact conditions in one iteration loop.

  3. IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT-MIXED FINITE ELEMENT METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE

    Institute of Scientific and Technical Information of China (English)

    陈蔚

    2003-01-01

    The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.

  4. SUPERCONVERGENCE OF LEAST-SQUARES MIXED FINITE ELEMENTS FOR ELLIPTIC PROBLEMS ON TRIANGULATION

    Institute of Scientific and Technical Information of China (English)

    陈艳萍; 杨菊娥

    2003-01-01

    In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projection and some mixed finite element projections,we obtain the superconvergence result of least-squares mixed finite element solutions.This error estimate indicates an accuracy of O(h3/2)if the lowest order Raviart-Thomas elements are employed.

  5. Mixed isoparametric finite element models of laminated composite shells

    Science.gov (United States)

    Noor, A. K.; Andersen, C. M.

    1977-01-01

    Mixed shear-flexible isoparametric elements are presented for the stress and free vibration analysis of laminated composite shallow shells. Both triangular and quadrilateral elements are considered. The 'generalized' element stiffness, consistent mass, and consistent load coefficients are obtained by using a modified form of the Hellinger-Reissner mixed variational principle. Group-theoretic techniques are used in conjunction with computerized symbolic integration to obtain analytic expressions for the stiffness, mass and load coefficients. A procedure is outlined for efficiently handling the resulting system of algebraic equations. The accuracy of the mixed isoparametric elements developed is demonstrated by means of numerical examples, and their advantages over commonly used displacement elements are discussed.

  6. Error estimates of H1-Galerkin mixed finite element method for Schr(o)dinger equation

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; LI Hong; WANG Jin-feng

    2009-01-01

    An H1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.

  7. Efficient Realization of the Mixed Finite Element Discretization for nonlinear Problems

    OpenAIRE

    Knabner, Peter; Summ, Gerhard

    2016-01-01

    We consider implementational aspects of the mixed finite element method for a special class of nonlinear problems. We establish the equivalence of the hybridized formulation of the mixed finite element method to a nonconforming finite element method with augmented Crouzeix-Raviart ansatz space. We discuss the reduction of unknowns by static condensation and propose Newton's method for the solution of local and global systems. Finally, we show, how such a nonlinear problem arises from the mixe...

  8. Prototype Mixed Finite Element Hydrodynamics Capability in ARES

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N

    2008-07-10

    This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additions and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.

  9. A new formulation of hybrid/mixed finite element

    Science.gov (United States)

    Pian, T. H. H.; Kang, D.; Chen, D.-P.

    1983-01-01

    A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.

  10. Mixed time discontinuous space-time finite element method for convection diffusion equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A mixed time discontinuous space-time finite element scheme for second-order convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.

  11. GLOBAL SUPERCONVERGENCE OF THE MIXED FINITE ELEMENT METHODS FOR 2-D MAXWELL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Jia-fu Lin; Qun Lin

    2003-01-01

    Superconvergence of the mixed finite element methods for 2-d Maxwell equations isstudied in this paper. Two order of superconvergent factor can be obtained for the k-thNedelec elements on the rectangular meshes.

  12. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  13. A mixed formulation finite element for linear thin shell analysis

    Science.gov (United States)

    Lee, S. W.; Wong, S. C.

    1982-01-01

    An eight node curved thin shell slement was tested. The element is based on the degenerate solid concept and the mixed formulation with the independent inplane and transverse shear strains. The number of unknown parameters in the assumed strains is chosen to alleviate the spurious constaining or locking effect. It is indicated that for a pinched cylindrical shell with diaphragmed ends and fixed ends the present element shows good performance.

  14. DIFFERENCE SCHEME AND NUMERICAL SIMULATION BASED ON MIXED FINITE ELEMENT METHOD FOR NATURAL CONVECTION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    罗振东; 朱江; 谢正辉; 张桂芳

    2003-01-01

    The non-stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non-stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.

  15. A mixed finite element method for the unilateral contact problem in elasticity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we provide a new mixed finite element approximation of the variational inequality resulting from the unilateral contact problem in elasticity. We use the continuous piecewise P2-P1 finite element to approximate the displacement field and the normal stress component on the contact region. Optimal convergence rates are obtained under the reasonable regularity hypotheses. Numerical example verifies our results.

  16. LEAST-SQUARES MIXED FINITE ELEMENT METHOD FOR SADDLE-POINT PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Lie-heng Wang; Huo-yuan Duan

    2000-01-01

    In this paper, a least-squares mixed finite element method for the solution of the primal saddle-point problem is developed. It is proved that the approximate problem is consistent ellipticity in the conforming finite element spaces with only the discrete BB-condition needed for a smaller auxiliary problem. The abstract error estimate is derived.

  17. The mixed finite element multigrid method for stokes equations.

    Science.gov (United States)

    Muzhinji, K; Shateyi, S; Motsa, S S

    2015-01-01

    The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results.

  18. On conforming mixed finite element methods for incompressible viscous flow problems

    Science.gov (United States)

    Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.

    1982-01-01

    The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.

  19. LEAST-SQUARES MIXED FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Dan-ping Yang

    2002-01-01

    Two least-squares mixed finite element schemes are formulated to solve the initialboundary value problem of a nonlinear parabolic partial differential equation and the convergence of these schemes are analyzed.

  20. The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.

  1. Looking-Free Mixed hp Finite Element Methods for Linear and Geometrically Nonlinear Elasticity

    Science.gov (United States)

    1997-06-09

    hp mixed methods has been addressed by Stenberg and Suri[20]. They identify sufficient conditions for selecting mixed method spaces on parallelogram...spaces of piecewise polynomials. Math. Modeling Num. Anal., 19:111-143, 1985. [20] R. Stenberg and M. Suri. Mixed hp finite element methods for

  2. Numerical modeling of two-phase binary fluid mixing using mixed finite elements

    KAUST Repository

    Sun, Shuyu

    2012-07-27

    Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.

  3. SUPERCONVERGENCE OF LEAST-SQUARES MIXED FINITE ELEMENT FOR SECOND-ORDER ELLIPTIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Yan-ping Chen; De-hao Yu

    2003-01-01

    In this paper the least-squares mixed finite element is considered for solving secondorder elliptic problems in two dimensional domains. The primary solution u and the flux σ are approximated using finite element spaces consisting of piecewise polynomials of degree k and r respectively. Based on interpolation operators and an auxiliary projection,superconvergent Hi-error estimates of both the primary solution approximation uh and the flux approximation σh are obtained under the standard quasi-uniform assumption on finite element partition. The superconvergence indicates an accuracy of O(hr+2) for the least-squares mixed finite element approximation if Raviart-Thomas or Brezzi-DouglasFortin-Marini elements of order r are employed with optimal error estimate of O(hr+1).

  4. A New Positive Definite Expanded Mixed Finite Element Method for Parabolic Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2012-01-01

    Full Text Available A new positive definite expanded mixed finite element method is proposed for parabolic partial integrodifferential equations. Compared to expanded mixed scheme, the new expanded mixed element system is symmetric positive definite and both the gradient equation and the flux equation are separated from its scalar unknown equation. The existence and uniqueness for semidiscrete scheme are proved and error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are provided to confirm our theoretical analysis.

  5. Application of the control volume mixed finite element method to a triangular discretization

    Science.gov (United States)

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  6. MULTIGRID METHODS FOR THE GENERALIZED STOKES EQUATIONS BASED ON MIXED FINITE ELEMENT METHODS

    Institute of Scientific and Technical Information of China (English)

    Qing-ping Deng; Xiao-ping Feng

    2002-01-01

    Multigrid methods are developed and analyzed for the generalized stationary Stokes equations which are discretized by various mixed finite element methods. In this paper, the multigrid algorithm, the criterion for prolongation operators and the convergence analysis are all established in an abstract and element-independent fashion. It is proven that the multigrid algorithm converges optimally if the prolongation operator satisfies the criterion.To utilize the abstract result, more than ten well-known mixed finite elements for the Stokes problems are discussed in detail and examples of prolongation operators are constructed explicitly. For nonconforming elements, it is shown that the usual local averaging technique for constructing prolongation operators can be replaced by a computationally cheaper alternative, random choice technique. Moreover, since the algorithm and analysis allows using of nonnested meshes, the abstract result also applies to low order mixed finite elements, which are usually stable only for some special mesh structures.

  7. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  8. Adaptive strategies using standard and mixed finite elements for wind field adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Winter, G.; Montero, G.; Montenegro, R. [Univ. of Las Palmas de Gran Canaria, FL (United States)

    1995-01-01

    In order to find a map of wind velocities, this study tries to obtain an incompressible wind field that adjusts to an experimental one: also verifying the corresponding boundary conditions of physical interest. This problem has been solved by several authors using finite differences or standard finite element techniques. In this paper, this problem is solved by two different adaptive finite element methods. The first makes use of standard finite element techniques, using linear interpolation of a potential function. In the second, a direct computation of the velocity field is undertaken by means of a mixed finite element method. Several error indicators are proposed for both formulations together with an adaptive strategy. We have applied both methods to several typical test problems, as well as to realistic data corresponding to the Island of Fuerteventura, with satisfactory results from a numerical point of view. 13 refs., 16 figs., 1 tab.

  9. Dual-mixed finite elements for the three-field Stokes model as a finite volume method on staggered grids

    KAUST Repository

    Kou, Jisheng

    2017-06-09

    In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.

  10. Progress in mixed Eulerian-Lagrangian finite element simulation of forming processes

    NARCIS (Netherlands)

    Huetink, Han; Vreede, P.T.; van der Lugt, J.

    1990-01-01

    A review is given of a mixed Eulerian-Lagrangian finite element method for simulation of forming processes. This method permits incremental adaptation of nodal point locations independently from the actual material displacements. Hence numerical difficulties due to large element distortions, as may

  11. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-09-21

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  12. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    Science.gov (United States)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  13. AN EXPANDED CHARACTERISTIC-MIXED FINITE ELEMENT METHOD FOR A CONVECTION-DOMINATED TRANSPORT PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Ling Guo; Huan-zhen Chen

    2005-01-01

    In this paper, we propose an Expanded Characteristic-mixed Finite Element Method for approximating the solution to a convection dominated transport problem. The method is a combination of characteristic approximation to handle the convection part in time and an expanded mixed finite element spatial approximation to deal with the diffusion part.The scheme is stable since fluid is transported along the approximate characteristics on the discrete level. At the same time it expands the standard mixed finite element method in the sense that three variables are explicitly treated: the scalar unknown, its gradient, and its flux. Our analysis shows the method approximates the scalar unknown, its gradient,and its flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. A numerical example is presented to show that the scheme is of high performance.

  14. A Mixed Finite Volume Element Method for Flow Calculations in Porous Media

    Science.gov (United States)

    Jones, Jim E.

    1996-01-01

    A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.

  15. A mixed shear flexible finite element for the analysis of laminated plates

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1984-01-01

    A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.

  16. An approach to probabilistic finite element analysis using a mixed-iterative formulation

    Science.gov (United States)

    Dias, J. B.; Nakazawa, S.

    1988-01-01

    An efficient algorithm for computing the response sensitivity of finite element problems based on a mixed-iterative formulation is proposed. This method does not involve explicit differentiation of the tangent stiffness array and can be used with formulations for which a consistent tangent stiffness is not readily available. The method has been successfully applied to probabilistic finite element analysis of problems using the proposed mixed formulation, and this exercise has provided valuable insights regarding the extension of the method to a more general class of problems to include material and geometric nonlinearities.

  17. Mixed Finite Element Methods for the Poisson Equation Using Biorthogonal and Quasi-Biorthogonal Systems

    Directory of Open Access Journals (Sweden)

    Bishnu P. Lamichhane

    2013-01-01

    Full Text Available We introduce two three-field mixed formulations for the Poisson equation and propose finite element methods for their approximation. Both mixed formulations are obtained by introducing a weak equation for the gradient of the solution by means of a Lagrange multiplier space. Two efficient numerical schemes are proposed based on using a pair of bases for the gradient of the solution and the Lagrange multiplier space forming biorthogonal and quasi-biorthogonal systems, respectively. We also establish an optimal a priori error estimate for both finite element approximations.

  18. Mixed finite element formulation applied to shape optimization

    Science.gov (United States)

    Rodrigues, Helder; Taylor, John E.; Kikuchi, Noboru

    1988-01-01

    The development presented introduces a general form of mixed formulation for the optimal shape design problem. The associated optimality conditions are easily obtained without resorting to highly elaborate mathematical developments. Also, the physical significance of the adjoint problem is clearly defined with this formulation.

  19. Higher order temporal finite element methods through mixed formalisms.

    Science.gov (United States)

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

  20. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS.

    Science.gov (United States)

    Wang, Wansheng; Chen, Long; Zhou, Jie

    2016-05-01

    A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.

  1. Numerical research orthotropic geometrically nonlinear shell stability using the mixed finite element method

    Science.gov (United States)

    Stupishin, L.; Nikitin, K.; Kolesnikov, A.

    2017-05-01

    A methodology for shell stability research and determining buckling load, based on the mixed finite element method are proposed. Axisymmetric geometrically nonlinear shallow shells made of orthotropic material are considered. The results of numerical research of stability by changing the shape of shells, ratio of elastic modulus of the material and parameters of the support contour are presented.

  2. A stable and optimal complexity solution method for mixed finite element discretizations

    NARCIS (Netherlands)

    Brandts, J.; Stevenson, R.

    2001-01-01

    We outline a solution method for mixed finite element discretizations based on dissecting the problem into three separate steps. The first handles the inho- mogeneous constraint, the second solves the flux variable from the homogeneous problem, whereas the third step, adjoint to the first, finally g

  3. On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory

    Science.gov (United States)

    Badriev, I. B.; Banderov, V. V.; Lavrentyeva, E. E.; Pankratova, O. V.

    2016-11-01

    We construct the finite-element approximations for mixed variational inequalities with pseudomonotone operators and convex non-differentiable functionals in Sobolev spaces. Such variational inequalities arise in the mathematical description of the processes of an established filtration. The convergence of these approximations are investigated.

  4. A stable and optimal complexity solution method for mixed finite element discretizations

    NARCIS (Netherlands)

    Brandts, J.; Stevenson, R.

    2002-01-01

    We outline a solution method for mixed finite element discretizations based on dissecting the problem into three separate steps. The first handles the inho- mogeneous constraint, the second solves the flux variable from the homogeneous problem, whereas the third step, adjoint to the first, finally g

  5. ANALYSIS OF AUGMENTED THREE-FIELD MACRO-HYBRID MIXED FINITE ELEMENT SCHEMES

    Institute of Scientific and Technical Information of China (English)

    Gonzalo Alduncin

    2009-01-01

    On the basis of composition duality principles, augmented three-field macro-hybrid mixed variational problems and finite element schemes are analyzed. The compati-bility condition adopted here, for compositional dualization, is the coupling operator surjec-tivity, property that expresses in a general operator sense the Ladysenskaja-Babuska-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug-mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.

  6. Superconvergence of a New Nonconforming Mixed Finite Element Scheme for Elliptic Problem

    Directory of Open Access Journals (Sweden)

    Lifang Pei

    2013-01-01

    Full Text Available A new nonconforming mixed finite element scheme for the second-order elliptic problem is proposed based on a new mixed variational form. It has the lowest degrees of freedom on rectangular meshes. The superclose property is proven by employing integral identity technique. Then global superconvergence result is derived through interpolation postprocessing operators. At last, some numerical experiments are carried out to verify the theoretical analysis.

  7. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    KAUST Repository

    Wheeler, Mary

    2013-11-16

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.

  8. LEAST-SQUARES MIXED FINITE ELEMENT METHODS FOR THE INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Shao-qin Gao

    2005-01-01

    Least-squares mixed finite element methods are proposed and analyzed for the incompressible magnetohydrodynamic equations, where the two vorticities are additionally introduced as independent variables in order that the primal equations are transformed into the first-order systems. We show that there hold the coerciveness and the optimal error bound in appropriate norms for all variables under consideration, which can be approximated by all kinds of continuous element. Consequently, the Babuska-Brezzi condition (i.e. the inf-sup condition) and the indefiniteness are avoided which are essential features of the classical mixed methods.

  9. Mixed finite element methods for linear elasticity with weakly imposed symmetry

    Science.gov (United States)

    Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar

    2007-12-01

    In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger-Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been previously used by a number of authors, a key new ingredient here is a constructive derivation of the elasticity complex starting from the de Rham complex. By mimicking this construction in the discrete case, we derive new mixed finite elements for elasticity in a systematic manner from known discretizations of the de Rham complex. These elements appear to be simpler than the ones previously derived. For example, we construct stable discretizations which use only piecewise linear elements to approximate the stress field and piecewise constant functions to approximate the displacement field.

  10. A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Shi Dongyang; Ren Jincheng; Gong Wei

    2011-01-01

    In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.

  11. DYNAMIC MODELLING OF BAR-GEAR MIXED MULTIBODY SYSTEMS USING A SPECIFIC FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new dynamic model for mixed, flexible bar and gear multibody systems is developed based on a specific finite element method, and a new gear-element is proposed. The gear-element can take into account the time variant stiffness, the gear errors and mass unbalance. The model for geared multibody systems can couple the gear meshing and the flexibility of all contained components. The kinematic and dynamic analyses of the geared multibody systems are expounded and illustrated on an example composed of three gears, two bars and one slider.

  12. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials

    Science.gov (United States)

    Camanho, Pedro P.; Davila, Carlos G.

    2002-01-01

    A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.

  13. A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

    KAUST Repository

    Wheeler, Mary F.

    2011-01-01

    In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.

  14. Mixed Finite Element Formulation for Magnetic Fluid Oil Flow in Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Tan Phey Hoon

    2017-01-01

    Full Text Available Pressure depletion and high viscosity of crude oil in oil reservoir are the main challenges in oil recovery process. A potential solution is to employ electromagnetic heating coupled with magnetic fluid injection. The present work delivers a fundamental study on the interaction between magnetic fluid flow with electromagnetic field. The two-dimensional, incompressible flow is solved numerically using mixed finite element method. The velocity fields, temperature and pressure are the variables of interest, to be obtained by solving mass, momentum and energy equations coupled with Maxwell’ equations. The fluid stress arises simultaneously with the external magnetic force which mobilises and increases the temperature of the oil flow. Verification is made against available data obtained from different numerical method reported in literature. The results justify feasibility of the mixed finite element formulation as an alternative for the modelling of the magnetic fluid flow.

  15. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra

    KAUST Repository

    Wheeler, Mary

    2011-11-06

    In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields a positive definite cell-centered system for the pressure by eliminating local velocities. The method is shown to be accurate on highly distorted rough quadrilateral and hexahedral grids, including hexahedra with non-planar faces. Theoretical and numerical results indicate first-order convergence for the pressure and face fluxes. © 2011 Springer-Verlag.

  16. Error estimations of mixed finite element methods for nonlinear problems of shallow shell theory

    Science.gov (United States)

    Karchevsky, M.

    2016-11-01

    The variational formulations of problems of equilibrium of a shallow shell in the framework of the geometrically and physically nonlinear theory by boundary conditions of different main types, including non-classical, are considered. Necessary and sufficient conditions for their solvability are derived. Mixed finite element methods for the approximate solutions to these problems based on the use of second derivatives of the bending as auxiliary variables are proposed. Estimations of accuracy of approximate solutions are established.

  17. A Parallel Multiscale Mixed Finite-Element Method for the Matlab Reservoir Simulation Toolbox

    OpenAIRE

    2012-01-01

    We start by giving a brief introduction to reservoirs and reservoir modelling at different scales. We introduce a mathematical model for the two-phase flow, before we look at numerical discretizations. In particular we look at the Multiscale Mixed Finite-Element (MsMFE) Method from the Matlab Reservoir Simulation Toolbox (MRST), developed by SINTEF. Next we introduce a mimetic method, (with the inverse ip_simple inner product, wich is used for solving the local flow problems required to const...

  18. A MIXED FINITE ELEMENT METHOD FOR THE CONTACT PROBLEM IN ELASTICITY

    Institute of Scientific and Technical Information of China (English)

    Dong-ying Hua; Lie-heng Wang

    2005-01-01

    Based on the analysis of [7] and [10], we present the mixed finite element approximation of the variational inequality resulting from the contact problem in elasticity. The convergence rate of the stress and displacement field are both improved from O(hs/4) to quasi-optimal O(h|logh|1/4). If stronger but reasonable regularity is available, the convergence rate can be optimal O(h).

  19. MIXED FINITE ELEMENT METHODS BASED ON RIESZ-REPRESENTING OPERATORS FOR THE SHELL PROBLEM

    Institute of Scientific and Technical Information of China (English)

    段火元; 张大力

    2001-01-01

    To solve the shell problem, we propose a mixed finite element method with bubble-stabili -zation term and discrete Riesz-representation operators. It is shown that this new method is coercive, implying the well-known K-ellipticity and the Inf-Sup condition being circumvented,and the resulting linear system is symmetrically positively definite, with a condition number being at most O(h-2). Further, an optimal error bound is attained.

  20. Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems

    Directory of Open Access Journals (Sweden)

    Xuehai Huang

    2013-01-01

    Full Text Available Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are achieved. Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation, and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble function argument.

  1. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    Science.gov (United States)

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  2. Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics

    Science.gov (United States)

    Lafontaine, N. M.; Rossi, R.; Cervera, M.; Chiumenti, M.

    2015-03-01

    Low-order finite elements face inherent limitations related to their poor convergence properties. Such difficulties typically manifest as mesh-dependent or excessively stiff behaviour when dealing with complex problems. A recent proposal to address such limitations is the adoption of mixed displacement-strain technologies which were shown to satisfactorily address both problems. Unfortunately, although appealing, the use of such element technology puts a large burden on the linear algebra, as the solution of larger linear systems is needed. In this paper, the use of an explicit time integration scheme for the solution of the mixed strain-displacement problem is explored as an alternative. An algorithm is devised to allow the effective time integration of the mixed problem. The developed method retains second order accuracy in time and is competitive in terms of computational cost with the standard irreducible formulation.

  3. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity, and Lagrange multipliers. We use multiscale basis functions for both the velocity and the gradient of pressure. In the expanded mixed MsFEM framework, we consider both separable and nonseparable spatial scales. Specifically, we analyze the methods in three categories: periodic separable scales, G-convergent separable scales, and a continuum of scales. When there is no scale separation, using some global information can significantly improve the accuracy of the expanded mixed MsFEMs. We present a rigorous convergence analysis of these methods that includes both conforming and nonconforming formulations. Numerical results are presented for various multiscale models of flow in porous media with shale barriers that illustrate the efficacy of the proposed family of expanded mixed MsFEMs. © 2012 Society for Industrial and Applied Mathematics.

  4. A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Houde Han; Ming Yan

    2008-01-01

    In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 - P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtained for both the velocity and the pressure.Numerical examples are presented to illustrate the effectiveness of the proposed method.

  5. Mixed finite element models for free vibrations of thin-walled beams

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.; Min, Byung-Jin

    1989-01-01

    Simple, mixed finite element models are developed for the free vibration analysis of curved thin-walled beams with arbitrary open cross section. The analytical formulation is based on a Vlasov's type thin-walled beam theory with the effects of flexural-torsional coupling, transverse shear deformation and rotary inertia included. The fundamental unknowns consist of seven internal forces and seven generalized displacements of the beam. The element characteristic arrays are obtained by using a perturbed Lagrangian-mixed variational principle. Only C(sup o) continuity is required for the generalized displacements. The internal forces and the Lagrange multiplier are allowed to be discontinuous at interelement boundaries. Numerical results are presented to demonstrate the high accuracy and effectiveness of the elements developed. The standard of comparison is taken to be the solutions obtained by using 2-D plate/shell models for the beams.

  6. Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials

    KAUST Repository

    Huang, Yunqing

    2011-09-01

    Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.

  7. A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.

  8. A topology-motivated mixed finite element method for dynamic response of porous media

    CERN Document Server

    Lotfian, Zahrasadat

    2015-01-01

    In this paper, we propose a numerical method for computing solutions to Biot's fully dynamic model of incompressible saturated porous media [Biot;1956]. Our spatial discretization scheme is based on the three-field formulation (u-w-p) and the coupling of a lowest order Raviart-Thomas mixed element [Raviart,Thomas;1977] for fluid variable fields (w, p ) and a nodal Galerkin finite element for skeleton variable field (u). These mixed spaces are constructed based on the natural topology of the variables; hence, are physically compatible and able to exactly model the kind of continuity which is expected. The method automatically satisfies the well known LBB (inf-sup) stability condition and avoids locking that usually occurs in the numerical computations in the incompressible limit and very low hydraulic conductivity. In contrast to the majority of approaches, our three-field formulation can fully capture dynamic behavior of porous media even in high frequency loading phenomena with considerable fluid acceleratio...

  9. An Optimal Error Estimates of H1-Galerkin Expanded Mixed Finite Element Methods for Nonlinear Viscoelasticity-Type Equation

    Directory of Open Access Journals (Sweden)

    Haitao Che

    2011-01-01

    Full Text Available We investigate a H1-Galerkin mixed finite element method for nonlinear viscoelasticity equations based on H1-Galerkin method and expanded mixed element method. The existence and uniqueness of solutions to the numerical scheme are proved. A priori error estimation is derived for the unknown function, the gradient function, and the flux.

  10. Two-grid method for characteristisc mixed finite-element solutions of nonlinear convection-diffusion equations

    Institute of Scientific and Technical Information of China (English)

    QIN Xinqiang; MA Yichen; GONG Chunqiong

    2004-01-01

    A two-grid method for solving nonlinear convection-dominated diffusion equations is presented. The method use discretizations based on a characteristic mixed finite-element method and give the linearization for nonlinear systems by two steps. The error analysis shows that the two-grid scheme combined with the characteristic mixed finite-element method can decrease numerical oscillation caused by dominated convections and solve nonlinear advection-dominated diffusion problems efficiently.

  11. Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

    Science.gov (United States)

    Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.

    2016-09-01

    This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields ( P1 P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

  12. Residual-based a posteriori error estimation for multipoint flux mixed finite element methods

    KAUST Repository

    Du, Shaohong

    2015-10-26

    A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.

  13. The Time Discontinuous H1-Galerkin Mixed Finite Element Method for Linear Sobolev Equations

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2015-01-01

    Full Text Available We combine the H1-Galerkin mixed finite element method with the time discontinuous Galerkin method to approximate linear Sobolev equations. The advantages of these two methods are fully utilized. The approximate schemes are established to get the approximate solutions by a piecewise polynomial of degree at most q-1 with the time variable. The existence and uniqueness of the solutions are proved, and the optimal H1-norm error estimates are derived. We get high accuracy for both the space and time variables.

  14. IMPROVED ERROR ESTIMATES FOR MIXED FINITE ELEMENT FOR NONLINEAR HYPERBOLIC EQUATIONS: THE CONTINUOUS-TIME CASE

    Institute of Scientific and Technical Information of China (English)

    Yan-ping Chen; Yun-qing Huang

    2001-01-01

    Improved L2-error estimates are computed for mixed finite element methods for second order nonlinear hyperbolic equations. Results are given for the continuous-time case. The convergence of the values for both the scalar function and the flux is demonstrated. The technique used here covers the lowest-order Raviart-Thomas spaces, as well as the higherorder spaces. A second paper will present the analysis of a fully discrete scheme (Numer.Math. J. Chinese Univ. vol.9, no.2, 2000, 181-192).

  15. Domain decomposition for a mixed finite element method in three dimensions

    Science.gov (United States)

    Cai, Z.; Parashkevov, R.R.; Russell, T.F.; Wilson, J.D.; Ye, X.

    2003-01-01

    We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the reduction relies on a local basis, presented here, for the divergence-free subspace of the velocity space. We consider additive and multiplicative domain decomposition methods for solving the reduced elliptic problem, and their uniform convergence is established.

  16. CONVERGENCE OF A MIXED FINITE ELEMENT FOR THE STOKES PROBLEM ON ANISOTROPIC MESHES

    Institute of Scientific and Technical Information of China (English)

    Qingshan Li; Huixia Sun; Shaochun Chen

    2008-01-01

    The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works.

  17. OPTIMAL MIXED H- P FINITE ELEMENT METHODS FOR STOKES AND NON-NEWTONIAN FLOW

    Institute of Scientific and Technical Information of China (English)

    Ping-bing Ming; Zhong-ci Shi

    2001-01-01

    Based upon a new mixed variational formulation for the three-field Stokes equations and linearized Non-Newtonian flow, an h -p finite element method is presented with or without a stabilization. As to the variational formulation without stabilization, optimal error bounds in h as well as in p are obtained. As with stabilization, optimal error bounds are obtained which is optimal in h and one order deterioration in p for the pressure, that is consistent with numerical results in [9, 12] and therefore solved the problem therein.Moreover, we proposed a stabilized formulation which is optimal in both h and p.

  18. Topological Design for Acoustic-Structure Interaction Problems with a Mixed Finite Element Method

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (Vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz...

  19. Mixed Finite Element Method and Higher-Order Local Artificial Boundary Conditions for Exterior 3-D Poisson Equation

    Institute of Scientific and Technical Information of China (English)

    韩厚德; 郑春雄

    2002-01-01

    The mixed finite element method is used to solve the exterior Poisson equations with higher-order local artificial boundary conditions in 3-D space. New unknowns are introduced to reduce the order of the derivatives of the unknown to two. The result is an equivalent mixed variational problem which was solved using bilinear finite elements. The primary advantage is that special finite elements are not needed on the adjacent layer of the artificial boundary for the higher-order derivatives. Error estimates are obtained for some local artificial boundary conditions with prescibed orders. A numerical example demonstrates the effectiveness of this method.

  20. A mixed Eulerian-Lagrangian finite element method for simulation of thermo-mechanical forming processes

    Science.gov (United States)

    Huetink, J.; Vanderlugt, J.

    1988-08-01

    A mixed Eulerian-Lagrangian finite element method is developed by which nodal point locations can be adapted independently from the actual material displacements. Numerical difficulties due to large element distortions, as many occur when the updated Lagrange method is applied, can be avoided by this method. Movement of (free) surfaces can be taken into account by adapting nodal surface points in a way that they remain on the surface. Hardening and other deformation path dependent properties are determined by incremental treatment of convective terms. A local and a weighed global smoothing procedure is introduced in order to avoid numerical instabilities. The method has been applied to simulations of an upsetting process, a wire drawing process and a cold rolling process. In the simulation of the rolling process, both workpiece and roll are simultaneously analyzed in order to predict the flattening of the roll. Special contact-slip elements are developed for the tool-workpiece interface.

  1. Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An adaptive mesh finite element model has been developed to predict the crack propagation direction as well as to calculate the stress intensity factors (SIFs), under linear-elastic assumption for mixed mode loading application. The finite element mesh is generated using the advancing front method. In order to suit the requirements of the fracture analysis, the generation of the background mesh and the construction of singular elements have been added to the developed program. The adaptive remeshing process is carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. Previous works of the authors have proposed techniques for adaptive mesh generation of 2D cracked models. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the SIF. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The SIFs values for two different case studies were estimated and validated by direct comparisons with other researchers work.

  2. A mixed finite element scheme for viscoelastic flows with XPP model

    Institute of Scientific and Technical Information of China (English)

    Xianhong Han; Xikui Li

    2008-01-01

    A mixed finite element formulation for viscoe-lastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractio-nal step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitu-tive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpola-tion approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) consti-tutive model for describing viscoelastic behaviors is particu-larly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demons-trate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.

  3. Performance of mixed formulations for the particle finite element method in soil mechanics problems

    Science.gov (United States)

    Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio

    2017-07-01

    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.

  4. Performance of mixed formulations for the particle finite element method in soil mechanics problems

    Science.gov (United States)

    Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio

    2016-11-01

    This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.

  5. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    KAUST Repository

    Kou, Jisheng

    2015-10-11

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  6. 3D Finite Element Analysis of HMA Overlay Mix Design to Control Reflective Cracking

    CERN Document Server

    Ghauch, Ziad G

    2011-01-01

    One of the most common rehabilitation techniques of deteriorated pavements is the placement of an HMA overlay on top of the existing Asphalt Concrete (AC) or Portland Cement Concrete (PCC) pavement. However, shortly after pavement resurfacing, HMA overlays exhibit a cracking pattern similar to that of the underlying pavement. This phenomenon is known as reflective cracking. This study examines the effectiveness of several HMA overlay mix design strategies for the purpose of controlling the development of reflective cracking. A parametric study was conducted using a 3D Finite Element (FE) model of a rigid pavement section including a Linear Viscoelastic (LVE) model for Hot Mix Asphalt (HMA) materials and non-uniform tire-pavement contact stresses. Results obtained show that for the intermediate and surface courses, using a Dense Graded (DG) or Polymer Modified (PM) asphalt mixture instead of a Standard Binder (SB) mixture results in reduced tensile stresses at the bottom of the HMA overlay but higher levels of...

  7. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jens Stissing; Sigmund, Ole

    2007-01-01

    The paper presents a gradient-based topology optimization formulation that allows to solve acoustic-structure (vibro-acoustic) interaction problems without explicit boundary interface representation. In acoustic-structure interaction problems, the pressure and displacement fields are governed...... by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface-coupling integrals, however, such a formulation does not allow for free material re-distribution in connection with topology optimization schemes since the boundaries are not explicitly...... given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation...

  8. Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation

    Science.gov (United States)

    Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.

    2017-10-01

    We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.

  9. Implementation of Hybrid V-Cycle Multilevel Methods for Mixed Finite Element Systems with Penalty

    Science.gov (United States)

    Lai, Chen-Yao G.

    1996-01-01

    The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for the indefinite discrete systems which arise when a mixed finite element approximation is used to solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed indefinite system can be reduced to a symmetric positive definite system containing the small penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We demonstrate that the relative condition number of the preconditioner is bounded uniformly with respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long as they occur only across the edges of the coarsest elements.

  10. Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation

    Institute of Scientific and Technical Information of China (English)

    石东洋; 廖歆; 唐启立

    2014-01-01

    A highly effcient H 1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h2) for both the original variable u in H1(Ω) norm and the flux p=∇u in H(div,Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.

  11. Finite Element Solution of Unsteady Mixed Convection Flow of Micropolar Fluid over a Porous Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Diksha Gupta

    2014-01-01

    Full Text Available The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements.

  12. Finite element solution of unsteady mixed convection flow of micropolar fluid over a porous shrinking sheet.

    Science.gov (United States)

    Gupta, Diksha; Kumar, Lokendra; Singh, Bani

    2014-01-01

    The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements.

  13. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    Science.gov (United States)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  14. Towards a unified solution of localization failure with mixed finite elements

    Science.gov (United States)

    Benedetti, Lorenzo; Cervera, Miguel; Chiumenti, Michele; Zeidler, Antonia; Fischer, Jan-Thomas

    2015-04-01

    Notwithstanding computational scientists made significant steps in the numerical simulation of failure in last three decades, the strain localization problem is still an open question. Especially in a geotechnical setting, when dealing with stability analysis of slopes, it is necessary to provide correct distribution of displacements, to evaluate the stresses in the ground and, therefore, to be able to identify the slip lines that brings to progressive collapse of the slope. Finite elements are an attractive method of solution thanks to profound mathematical foundations and the possibility of describing generic geometries. In order to account for the onset of localization band, the smeared crack approach [1] is introduced, that is the strain localization is assumed to occur in a band of finite width where the displacements are continuous and the strains are discontinuous but bounded. It is well known that this kind of approach poses some challenges. The standard irreducible formulation of FEM is known to be heavily affected by spurious mesh dependence when softening behavior occurs and, consequently, slip lines evolution is biased by the orientation of the mesh. Moreover, in the case of isochoric behavior, unbounded pressure oscillations arise and the consequent locking of the stresses pollutes the numerical solution. Both problems can be shown not to be related to the mathematical statement of the continuous problem but instead to its discrete (FEM) counterpart. Mixed finite element formulations represent a suitable alternative to mitigate these drawbacks. As it has been shown in previous works by Cervera [2], a mixed formulation in terms of displacements and pressure not only provides a propitious solution to the problem of incompressibility, but also it was found to possess the needed robustness in case of strain concentration. This presentation introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement

  15. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.

    Science.gov (United States)

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R; Vande Geest, Jonathan P

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.

  16. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  17. A one-dimensional mixed porohyperelastic transport swelling finite element model with growth.

    Science.gov (United States)

    Harper, J L; Simon, B R; Vande Geest, J P

    2014-01-01

    A one-dimensional, large-strain, mixed porohyperelastic transport and swelling (MPHETS) finite element model was developed in MATLAB and incorporated with a well-known growth model for soft tissues to allow the model to grow (increase in length) or shrink (decrease in length) at constant material density. By using the finite element model to determine the deformation and stress state, it is possible to implement different growth laws in the program in the future to simulate how soft tissues grow and behave when exposed to various stimuli (e.g. mechanical, chemical, or electrical). The essential assumptions needed to use the MPHETS model with growth are clearly identified and explained in this paper. The primary assumption in this work, however, is that the stress upon which growth acts is the stress in the solid skeleton, i.e. the effective stress, S(eff). It is shown that significantly different amounts of growth are experienced for the same loading conditions when using a porohyperelastic model as compared to a purely solid model. In one particular example, approximately 51% less total growth occurred in the MPHETS model than in the solid model even though both problems were subjected to the same external loading. This work represents a first step in developing more sophisticated models capable of capturing the complex mechanical and biochemical environment in growing and remodeling tissues.

  18. Discrete formulation of mixed finite element methods for vapor deposition chemical reaction equations

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang

    2007-01-01

    The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.

  19. A Mixed Finite Element Formulation for the Conservative Fractional Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Suxiang Yang

    2016-01-01

    Full Text Available We consider a boundary-value problem of one-side conservative elliptic equation involving Riemann-Liouville fractional integral. The appearance of the singular term in the solution leads to lower regularity of the solution of the equation, so to the lower order convergence rate for the numerical solution. In this paper, by the dividing of equation, we drop the lower regularity term in the solution successfully and get a new fractional elliptic equation which has full regularity. We present a theoretical framework of mixed finite element approximation to the new fractional elliptic equation and derive the error estimates for unknown function, its derivative, and fractional-order flux. Some numerical results are illustrated to confirm the optimal error estimates.

  20. Topological Design for Acoustic-Structure Interaction Problems with a Mixed Finite Element Method

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (Vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... equation and the linear elasticity equation, respectively, and it is necessary that the governing equations should be properly evolved with respect to the design variables in the design domain. Moreover, all the boundary conditions obtained by computing surface coupling integrals should be properly imposed...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz...

  1. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    Science.gov (United States)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  2. The characteristic mixed finite element method and analysis for three-dimensional moving boundary value problem

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1996-01-01

    The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. This thesis, from actual conditions such as the effects of gravitation, buoyancy and capillary pressure, puts forward for the two class boundary value problem a kind of characteristic mixed finite element scheme by making use of the change of region, time step modified techniques of handling boundary value condition, negative norm estimate and the theory of prior estimates. Optimal order estimates in L2 norm are derived for the error in approximate solutions. Thus the well-known theoretical problem proposed by J. Douglas, Jr has been thoroughly and completely solved.

  3. AN ITERATIVE HYBRIDIZED MIXED FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    Dao-qi Yang; Jennifer Zhao

    2003-01-01

    An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems withstrongly discontinuous solutions, conormal derivatives, and coefficients. This algorithmiteratively solves small problems for each single phase with good accuracy and exchangeinformation at the interface to advance the iteration until convergence, following the ideaof Schwarz Alternating Methods. Error estimates are derived to show that this algorithmalways converges provided that relaxation parameters are suitably chosen. Numeric experiments with matching and non-matching grids at the interface from different phases areperformed to show the accuracy of the method for capturing discontinuities in the solutionsand coefficients. In contrast to standard numerical methods, the accuracy of our methoddoes not seem to deteriorate as the coefficient discontinuity increases.

  4. Scalable algorithms for three-field mixed finite element coupled poromechanics

    Science.gov (United States)

    Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano

    2016-12-01

    We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

  5. A simple introduction to the mixed finite element method theory and applications

    CERN Document Server

    Gatica, Gabriel N

    2014-01-01

    The main purpose of this book is to provide a simple and accessible introduction to the mixed finite element method as a fundamental tool to numerically solve a wide class of boundary value problems arising in physics and engineering sciences. The book is based on material that was taught in corresponding undergraduate and graduate courses at the Universidad de Concepcion, Concepcion, Chile, during the last 7 years. As compared with several other classical books in the subject, the main features of the present one have to do, on one hand, with an attempt of presenting and explaining most of the details in the proofs and in the different applications. In particular several results and aspects of the corresponding analysis that are usually available only in papers or proceedings are included here.

  6. Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    Science.gov (United States)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.

  7. Mixed variational formulation of finite element analysis of acoustoelastic/slosh fluid-structure interaction

    Science.gov (United States)

    Felippa, C. A.; Ohayon, R.

    1990-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derived semidiscrete equations of motion that account for such effects.

  8. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.

    Science.gov (United States)

    Yang, Taiseung; Spilker, Robert L

    2007-06-01

    A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head

  9. On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle

    Science.gov (United States)

    Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.

    1985-01-01

    The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.

  10. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang

    2014-01-01

    Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  11. Numerical analysis of an H1-Galerkin mixed finite element method for time fractional telegraph equation.

    Science.gov (United States)

    Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong

    2014-01-01

    We discuss and analyze an H(1)-Galerkin mixed finite element (H(1)-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H(1)-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H(1)-GMFE method. Based on the discussion on the theoretical error analysis in L(2)-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H(1)-norm. Moreover, we derive and analyze the stability of H(1)-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  12. A parallel mixed finite element implementation for approximation of eigenvalues and eigenvectors of fourth-order eigenvalue problems

    Science.gov (United States)

    Kulshreshtha, Kshitij; Nataraj, Neela

    2005-08-01

    The paper deals with a parallel implementation of a mixed finite element method of approximation of eigenvalues and eigenvectors of fourth order eigenvalue problems with variable/constant coefficients. The implementation has been done in Silicon Graphics Origin 3800, a four processor Intel Xeon Symmetric Multiprocessor and a beowulf cluster of four Intel Pentium III PCs. The generalised eigenvalue problem obtained after discretization using the mixed finite element method is solved using the package LANSO. The numerical results obtained are compared with existing results (if available). The time, speedup comparisons in different environments for some examples of practical and research interest and importance are also given.

  13. Superconvergence of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Compressible Miscible Displacement Problem

    Institute of Scientific and Technical Information of China (English)

    Ji-ming Yang; Yanping Chen

    2011-01-01

    A combined mixed finite element and discontinuous Galerkin method for a compressible miscible displacement problem which includes molecular diffusion and dispersion in porous media is investigated. That is to say, the mixed finite element method with Raviart-Thomas space is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin (SIPG) approximation. Based on projection interpolations and induction hypotheses, a superconvergence estimate is obtained. During the analysis, an extension of the Darcy velocity along the Gauss line is also used in the evaluation of the coefficients in the Galerkin procedure for the concentration.

  14. A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems

    Directory of Open Access Journals (Sweden)

    Zuliang Lu

    2014-01-01

    Full Text Available The aim of this work is to investigate the discretization of general linear hyperbolic convex optimal control problems by using the mixed finite element methods. The state and costate are approximated by the k order (k≥0 Raviart-Thomas mixed finite elements and the control is approximated by piecewise polynomials of order k. By applying the elliptic projection operators and Gronwall’s lemma, we derive a priori error estimates of optimal order for both the coupled state and the control approximation.

  15. A Rectangular Mixed Finite Element Method with a Continuous Flux for an Elliptic Equation Modelling Darcy Flow

    Directory of Open Access Journals (Sweden)

    Xindong Li

    2013-01-01

    Full Text Available We introduce a mixed finite element method for an elliptic equation modelling Darcy flow in porous media. We use a staggered mesh where the two components of the velocity and the pressure are defined on three different sets of grid nodes. In the present mixed finite element, the approximate velocity is continuous and the conservation law still holds locally. The LBB consistent condition is established, while the error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to confirm the theoretical analysis.

  16. A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for high Reynolds number laminar flows

    Science.gov (United States)

    Kim, Sang-Wook

    1988-01-01

    A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.

  17. Mixed-mode loading of the cement-bone interface: a finite element study.

    Science.gov (United States)

    Waanders, Daan; Janssen, Dennis; Bertoldi, Katia; Mann, Kenneth A; Verdonschot, Nico

    2011-02-01

    While including the cement-bone interface of complete cemented hip reconstructions is crucial to correctly capture their response, its modelling is often overly simplified. In this study, the mechanical mixed-mode response of the cement-bone interface is investigated, taking into account the effects of the well-defined microstructure that characterises the interface. Computed tomography-based plain strain finite element analyses models of the cement-bone interface are built and loaded in multiple directions. Periodic boundaries are considered and the failure of the cement and bone fractions by cracking of the bulk components are included. The results compare favourably with experimental observations. Surprisingly, the analyses reveal that under shear loading no failure occurs and considerable normal compression is generated to prevent interface dilation. Reaction forces, crack patterns and stress fields provide more insight into the mixed-mode failure process. Moreover, the cement-bone interface analyses provide details which can serve as a basis for the development of a cohesive law.

  18. The Mixed Finite Element Multigrid Preconditioned MINRES Method for Stokes Equations

    Directory of Open Access Journals (Sweden)

    Kizito Muzhinji

    2016-01-01

    Full Text Available The study considers the saddle point problem arising from the mixed finite element discretization of the steady state Stokes equations. The saddle point problem is an indefinite system of linear equations, a feature that degrades the performance of any iterative solver. The heart of the study is the construction of fast, robust and effective iterative solution methods for such systems. Specific attention is given to the preconditioned MINRES solver PMINRES which is carefully treated for the solution of the Stokes equations. The study concentrates on the block preconditioner applied to the MINRES to effectively solve the whole coupled system. We combine iterative techniques with the MINRES as preconditioner approximations to produce an efficient solver for indefinite system of equations. We consider different preconditioner approximations of the building blocks of the preconditioner and compare their effects in accelerating the MINRES iterative scheme. We give a detailed overview of the algorithmic aspects and the theoretical convergence analysis of our solver. We study the MINRES method with the following preconditioner approximations: diagonal, multigrid v-cycle, preconditioned conjugate gradient and Chebyshev semi iteration methods. A comparative analysis of the preconditioner approximations show that the multigrid method is a suitable accelerator for the MINRES method. The application of the preconditioner becomes mandatory as evidenced by poor performance of the MINRES as compared to PMINRES. We study the problem in a two dimensional setting using the Hood-Taylor Q2 − Q1 stable pair of finite elements. The incompressible flow iterative solution software(IFISS matlab toolbox is used to assemble the matrices. We present the numerical results to illustrate the efficiency and robustness of the MINRES scheme with the multigrid preconditioner.

  19. Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations

    Institute of Scientific and Technical Information of China (English)

    陈刚; 冯民富; 何银年

    2013-01-01

    A unified analysis is presented for the stabilized methods including the pres-sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa-tions. The existence and uniqueness of the solution and the optimal error estimates are proved.

  20. On a compact mixed-order finite element for solving the three-dimensional incompressible Navier-Stokes equations

    Science.gov (United States)

    Wang, Morten M. T.; Sheu, Tony W. H.

    1997-09-01

    Our work is an extension of the previously proposed multivariant element. We assign this refined element as a compact mixed-order element in the sense that use of this element offers a much smaller bandwidth. The analysis is implemented on quadratic hexahedral elements with a view to analysing a three-dimensional incompressible viscous flow problem using a method formulated within the mixed finite element context. The idea of constructing such a stable element is to bring the marker-and-cell (MAC) grid lay-out to the finite element context. This multivariant element can thus be classified as a discontinuous pressure element. We have several reasons for advocating the proposed multivariant element. The primary advantage gained is its ability to reduce the bandwidth of the matrix equation, as compared with its univariant counterparts, so that it can be effectively stored in a compressed row storage (CRS) format. The resulting matrix equation can be solved efficiently by a multifrontal solver owing to its reduced bandwidth. The coding is, however, complicated by the appearance of restricted degrees of freedom at mid-face nodes. Through analytic study this compact multivariant element has a marked advantage over the multivariant element of Gupta et al. in that both bandwidth and computation time have been drastically reduced.

  1. Simulation of thin slot spirals and dual circular patch antennas using the finite element method with mixed elements

    Science.gov (United States)

    Gong, Jian; Volakis, John L.; Nurnberger, Michael W.

    1995-01-01

    This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.

  2. Nonlinear simulation of arch dam cracking with mixed finite element method

    Directory of Open Access Journals (Sweden)

    Ren Hao

    2008-06-01

    Full Text Available This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.

  3. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation.

    Science.gov (United States)

    Wu, Tim; Hung, Alice P-L; Hunter, Peter; Mithraratne, Kumar

    2015-01-01

    This study addresses the issue of modelling material heterogeneity of incompressible bodies. It is seen that when using a mixed (displacement-pressure) finite element formulation, the basis functions used for pressure field may not be able to capture the nonlinearity of material parameters, resulting in pseudo-residual stresses. This problem can be resolved by modifying the constitutive relation using Flory's decomposition of the deformation gradient. A two-parameter Mooney-Rivlin constitutive relation is used to demonstrate the methodology. It is shown that for incompressible materials, the modification does not alter the mechanical behaviour described by the original constitutive model. In fact, the modified constitutive equation shows a better predictability when compared against analytical solutions. Two strategies of describing the material variation (i.e. linear and step change) are explained, and their solutions are evaluated for an ideal two-material interfacing problem. When compared with the standard tied coupling approach, the step change method exhibited a much better agreement because of its ability to capture abrupt changes of the material properties. The modified equation in conjunction with integration point-based material heterogeneity is then used to simulate the deformations of heterogeneous biological structures to illustrate its applications.

  4. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations.

    Science.gov (United States)

    Almeida, EDGARD S.; Spilker, ROBERT L.

    1997-01-01

    This paper addresses finite element-based computational models for the three-dimensional, (3-D) nonlinear analysis of soft hydrated tissues, such as the articular cartilage in diarthrodial joints, under physiologically relevant loading conditions. A biphasic continuum description is used to represent the soft tissue as a two-phase mixture of incompressible, inviscid fluid and a hyperelastic solid. Alternate mixed-penalty and velocity-pressure finite element formulations are used to solve the nonlinear biphasic governing equations, including the effects of a strain-dependent permeability and a hyperelastic solid phase under finite deformation. The resulting first-order nonlinear system of equations is discretized in time using an implicit finite difference scheme, and solved using the Newton-Raphson method. Using a discrete divergence operator, an equivalence is shown between the mixed-penalty method and a penalty method previously derived by Suh et al. [1]. In Part II [2], the mixed-penalty and velocity-pressure formulations are used to develop two-dimensional (2-D) quadrilateral and triangular elements and 3-D hexahedral and tetrahedral elements. Numerical examples, including those representative of soft tissue material testing and simple human joints, are used to validate the formulations and to illustrate their applications. A focus of this work is the comparison of alternate formulations for nonlinear problems. While it is demonstrated that both formulations produce a range of converging elements, the velocity-pressure formulation is found to be more efficient computationally.

  5. An A Posteriori Error Analysis of Mixed Finite Element Galerkin Approximations to Second Order Linear Parabolic Problems

    KAUST Repository

    Memon, Sajid

    2012-01-01

    In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.

  6. A mixed finite element method for nearly incompressible elasticity and Stokes equations using primal and dual meshes with quadrilateral and hexahedral grids

    OpenAIRE

    Bishnu P. Lamichhane

    2013-01-01

    We consider a mixed finite element method for approximating the solution of nearly incompressible elasticity and Stokes equations. The finite element method is based on quadrilateral and hexahedral triangulation using primal and dual meshes. We use the standard bilinear and trilinear finite element space enriched with element-wise defined bubble functions with respect to the primal mesh for the displacement or velocity, whereas the pressure space is discretised by using a piecewise constant f...

  7. Two-dimensional wood drying stress simulation using control-volume mixed finite element methods (CVFEM

    Directory of Open Access Journals (Sweden)

    Carlos Salinas

    2011-05-01

    Full Text Available  The work was aimed at simulating two-dimensional wood drying stress using the control-volume finite element method (CVFEM. Stress/strain was modeled by moisture content gradients regarding shrinkage and mechanical sorption in a cross-section of wood. CVFEM was implemented with triangular finite elements and lineal interpolation of the independent variable which were programmed in Fortran 90 language. The model was validated by contrasting results with similar ones available in the specialised literature. The present model’s results came from isothermal (20ºC drying of quaking aspen (Populus tremuloides: two-dimensional distribution of stress/strain and water content, 40, 80, 130, 190 and 260 hour drying time and evolution of normal stress (2.5 <σ͓ ͓ < 1.2, MPa, from the interior to the exterior of wood. 

  8. Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng

    2013-06-20

    We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Discrete Mixed Petrov-Galerkin Finite Element Method for a Fourth-Order Two-Point Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    L. Jones Tarcius Doss

    2012-01-01

    Full Text Available A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtained without any restriction on the mesh.

  10. MINOS: a nodal method; approximation by mixed dual finite elements in the Cronos code; La methode nodale de Cronos: MINOS, approximation par des elements mixtes duaux

    Energy Technology Data Exchange (ETDEWEB)

    Lautard, J.J.

    1994-05-01

    This paper presents new extension for the mixed dual finite element approximation of the diffusion equation in rectangular geometry. The mixed dual formulation has been extended in order to take into account discontinuity conditions. The iterative method is based on an alternating direction method which uses the current as unknown. This method is fully ``parallelizable`` and has very quick convergence properties. Some results for a 3D calculation on the CRAY computer are presented. (author). 6 refs., 8 figs., 4 tabs.

  11. The Superconvergence of Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    Imprioved L2-error estimates are computed for mixed finte element methods for second order nonlinear hyperbolic equations.Superconvergence results,L∞ in time and discrete L2 in space,are derived for both the solution and gradients on the rectangular domain.Results are given for the continuous-time case.

  12. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part II - Nonlinear Examples.

    Science.gov (United States)

    Almeida, EDGARD S.; Spilker, ROBERT L.

    1998-01-01

    This two-part paper addresses finite element-based computational models for the three-dimensional (3-D) nonlinear analysis of soft hydrated tissues, such as articular cartilage in diarthrodial joints, under physiologically relevant loading conditions. A biphasic continuum description is used to represent the soft tissue as a two-phase mixture of incompressible inviscid fluid and a hyperelastic, transversely isotropic solid. Alternate mixed-penalty and velocity-pressure finite element formulations are used to solve the nonlinear biphasic governing equations, including the effects of strain-dependent permeability and a hyperelastic solid phase under finite deformation. The resulting first-order, nonlinear system of equations is discretized in time using an implicit finite difference scheme, and solved using the Newton-Raphson method. Details of the formulations were presented in Part I [1]. In Part II, the two formulations are used to develop two-dimensional (2-D) quadrilateral and triangular elements and three-dimensional (3-D) hexahedral and tetrahedral elements. Numerical examples, including those representative of soft tissue material testing and simple human joints, are used to validate the formulations and to illustrate their applications. A focus of this work is the comparison of the alternate formulations for nonlinear problems. While it is demonstrated that both formulations produce a range of converging elements, the velocity-pressure formulation is found to be more efficient computationally.

  13. Finite element computational fluid mechanics

    Science.gov (United States)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  14. A new family of stable elements for the Stokes problem based on a mixed Galerkin/least-squares finite element formulation

    Science.gov (United States)

    Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro

    1989-01-01

    Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.

  15. Finite element procedures

    CERN Document Server

    Bathe, Klaus-Jürgen

    2015-01-01

    Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.

  16. On the stability analysis of hyperelastic boundary value problems using three- and two-field mixed finite element formulations

    Science.gov (United States)

    Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl

    2017-05-01

    In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).

  17. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  18. On mixed and displacement finite element models of a refined shear deformation theory for laminated anisotropic plates

    Science.gov (United States)

    Reddy, J. N.

    1986-01-01

    An improved plate theory that accounts for the transverse shear deformation is presented, and mixed and displacement finite element models of the theory are developed. The theory is based on an assumed displacement field in which the inplane displacements are expanded in terms of the thickness coordinate up to the cubic term and the transverse deflection is assumed to be independent of the thickness coordinate. The governing equations of motion for the theory are derived from the Hamilton's principle. The theory eliminates the need for shear correction factors because the transverse shear stresses are represented parabolically. A mixed finite element model that uses independent approximations of the displacements and moments, and a displacement model that uses only displacements as degrees of freedom are developed. A comparison of the numerical results for bending with the exact solutions of the new theory and the three-dimensional elasticity theory shows that the present theory (and hence the finite element models) is more accurate than other plate-theories of the same order.

  19. ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR A PHASE FIELD BENDING ELASTICITY MODEL OF VESICLE MEMBRANE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    Qiang Du; Liyong Zhu

    2006-01-01

    In this paper, we study numerical approximations of a recently proposed phase field model for the vesicle membrane deformation governed by the variation of the elastic bending energy. To overcome the challenges of high order nonlinear differential systems and the nonlinear constraints associated with the problem, we present the phase field bending elasticity model in a nested saddle point formulation. A mixed finite element method is then employed to compute the equilibrium configuration of a vesicle membrane with prescribed volume and surface area. Coupling the approximation results for a related linearized problem and the general theory of Brezzi-Rappaz-Raviart, optimal order error estimates for the finite element approximations of the phase field model are obtained. Numerical results areprovided to substantiate the derived estimates.

  20. Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids

    CERN Document Server

    Moortgat, Joachim

    2016-01-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...

  1. Finite element modeling and experimental studies on mixed mode-I/III fracture specimens

    Directory of Open Access Journals (Sweden)

    M. Bozkurt

    2016-01-01

    Full Text Available In this study, finite element modeling and experimental studies on a mode-I/III specimen similar to the compact tension specimen are presented. By using bolts, the specimen is attached to two loading apparatus that allow different levels of mode-I/III loading by changing the loading holes. Specimens having two different thicknesses are analyzed and tested. Modeling, meshing and the solution of the problem involving the whole assembly, i.e., loading devices, bolts and the specimen, with contact mechanics are performed using ANSYSTM. Then, the mode-I/III specimen is analyzed separately using a submodeling approach, in which threedimensional enriched finite elements are used in FRAC3D solver to calculate the resulting stress intensity factors along the crack front. In all of the analyses, it is clearly shown that although the loading is in the mode-I and III directions, mode-II stress intensity factors coupled with mode-III are also generated due to rotational relative deformations of crack surfaces. The results show that the mode-II stress intensity factors change sign along the crack front and their magnitudes are close to the mode-III stress intensity factors. It is also seen that magnitudes of the mode-III stress intensity factors do not vary much along the crack front. Fracture experiments also performed and, using the stress intensity factors from the analyses and crack paths and surfaces are shown.

  2. Existence and stability, and discrete BB and rank conditions, for general mixed-hybrid finite elements in elasticity

    Science.gov (United States)

    Xue, W.-M.; Atluri, S. N.

    1985-01-01

    In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.

  3. Parametric design of silo steel framework of concrete mixing station based on the finite element method and MATLAB

    Directory of Open Access Journals (Sweden)

    Long Hui

    2016-01-01

    Full Text Available When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational software for engineering staff who does not understand the three-dimensional software such as PROE and finite element analysis software. By the finite element methods(FEM, the parametric stress calculation modal of the silo steel framework of concrete mixing station is established, which includes dimension parameters, shape parameters, position parameters and applied load parameters of each beams, and then the parametric calculation program is written with MATLAB. The stress equations reflect the internal relationship between the stress of the silo steel frames with the dimension parameters, shape parameters, position parameters and load parameters. Finally, an example is presented, the calculation results show the stress of all members and the size and location of the maximum stress, which agrees well with realistic cases.

  4. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description.

    Science.gov (United States)

    Treyssède, Fabien; Gabard, Gwénaël; Ben Tahar, Mabrouk

    2003-02-01

    A nonstandard wave equation, established by Galbrun in 1931, is used to study sound propagation in nonuniform flows. Galbrun's equation describes exactly the same physical phenomenon as the linearized Euler's equations (LEE) but is derived from an Eulerian-Lagrangian description and written only in term of the Lagrangian perturbation of the displacement. This equation has interesting properties and may be a good alternative to the LEE: only acoustic displacement is involved (even in nonhomentropic cases), it provides exact expressions of acoustic intensity and energy, and boundary conditions are easily expressed because acoustic displacement whose normal component is continuous appears explicitly. In this paper, Galbrun's equation is solved using a finite element method in the axisymmetric case. With standard finite elements, the direct displacement-based variational formulation gives some corrupted results. Instead, a mixed finite element satisfying the inf-sup condition is proposed to avoid this problem. A first set of results is compared with semianalytical solutions for a straight duct containing a sheared flow (obtained from Pridmore-Brown's equation). A second set of results concerns a more complex duct geometry with a potential flow and is compared to results obtained from a multiple-scale method (which is an adaptation for the incompressible case of Rienstra's recent work).

  5. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    Science.gov (United States)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  6. Numerical simulation of strain localization and damage evolution in large plastic deformation using mixed finite element method

    Institute of Scientific and Technical Information of China (English)

    Zhanghua Chen; Jiajian Jin; Jiumei Xiao

    2004-01-01

    An investigation of computer simulation is presented to analyze the effects of strain localization and damage evolution in large plastic deformation. The simulation is carried out by using an elastic-plastic-damage coupling finite element program that is developed based on the concept of mixed interpolation of displacement/pressure. This program has been incorporated into a damage mechanics model as well as the corresponding damage criterion. To illustrate the performance of the proposed approach, a typical strain localization problem has been simulated. The results show that the proposed approach is of good capability to capture strain localization and predict the damage evolution.

  7. On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States

    Science.gov (United States)

    Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)

    1996-01-01

    Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.

  8. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  9. The hp version of Eulerian-Lagrangian mixed discontinuous finite element methods for advection-diffusion problems

    Directory of Open Access Journals (Sweden)

    Baoyan Li

    2003-09-01

    Full Text Available We study the hp version of three families of Eulerian-Lagrangian mixed discontinuous finite element (MDFE methods for the numerical solution of advection-diffusion problems. These methods are based on a space-time mixed formulation of the advection-diffusion problems. In space, they use discontinuous finite elements, and in time they approximately follow the Lagrangian flow paths (i.e., the hyperbolic part of the problems. Boundary conditions are incorporated in a natural and mass conservative manner. In fact, these methods are locally conservative. The analysis of this paper focuses on advection-diffusion problems in one space dimension. Error estimates are explicitly obtained in the grid size h, the polynomial degree p, and the solution regularity; arbitrary space grids and polynomial degree are allowed. These estimates are asymptotically optimal in both h and p for some of these methods. Numerical results to show convergence rates in h and p of the Eulerian-Lagrangian MDFE methods are presented. They are in a good agreement with the theory.

  10. Advanced finite element technologies

    CERN Document Server

    Wriggers, Peter

    2016-01-01

    The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

  11. Finite element mesh generation

    CERN Document Server

    Lo, Daniel SH

    2014-01-01

    Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques

  12. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.

    Science.gov (United States)

    Thorvaldsen, Tom; Osnes, Harald; Sundnes, Joakim

    2005-12-01

    In this paper we present a mixed finite element method for modeling the passive properties of the myocardium. The passive properties are described by a non-linear, transversely isotropic, hyperelastic material model, and the myocardium is assumed to be almost incompressible. Single-field, pure displacement-based formulations are known to cause numerical difficulties when applied to incompressible or slightly compressible material cases. This paper presents an alternative approach in the form of a mixed formulation, where a separately interpolated pressure field is introduced as a primary unknown in addition to the displacement field. Moreover, a constraint term is included in the formulation to enforce (almost) incompressibility. Numerical results presented in the paper demonstrate the difficulties related to employing a pure displacement-based method, applying a set of physically relevant material parameter values for the cardiac tissue. The same problems are not experienced for the proposed mixed method. We show that the mixed formulation provides reasonable numerical results for compressible as well as nearly incompressible cases, also in situations of large fiber stretches. There is good agreement between the numerical results and the underlying analytical models.

  13. Finite element analysis

    CERN Document Server

    2010-01-01

    Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.

  14. Interlaminar fracture toughness: Three-dimensional finite element modeling for end-notch and mixed-mode flexure

    Science.gov (United States)

    Murthy, P. L. N.; Chamis, C. C.

    1985-01-01

    A computational procedure is described for evaluating End-Notch-Flexure (ENF) and Mixed-Mode-Flexure (MMF) interlaminar fracture toughness in unidirectional fiber composites. The procedure consists of a three-dimensional finite element analysis in conjunction with the strain energy release rate concept and with composite micromechanics. The procedure is used to analyze select cases of ENF and MMF. The strain energy release rate predicted by this procedure is in good agreement with limited experimental data. The procedure is used to identify significant parameters associated with interlaminar fracture toughness. It is also used to determine the critical strain energy release rate and its attendant crack length in ENF and/or MMF. This computational procedure has considerable versatility/generality and provides extensive information about interlaminar fracture toughness in fiber composites.

  15. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti

    2013-05-01

    In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.

  16. Inside finite elements

    CERN Document Server

    Weiser, Martin

    2016-01-01

    All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.

  17. COMPUTATION OF STRESS INTENSITY FACTORS BY THE SUB-REGION MIXED FINITE ELEMENT METHOD OF LINES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the sub-region generalized variational principle, a sub-region mixed verposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

  18. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    Science.gov (United States)

    Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  19. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  20. Unified Framework for Finite Element Assembly

    CERN Document Server

    Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160

    2012-01-01

    At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.

  1. Study on Compressibility Control of Hyperelastic Material for Homogenization Method Using Mixed Finite Element Analysis

    Science.gov (United States)

    Okada, Jun-Ichi; Hisada, Toshiaki

    It is well known that the compressibility or incompressibility of biological tissue stems from its microscopic structure, which is generally composed of material with varied compressibility, including incompressibility. This paper proposes a framework for a homogenization method in which the compressibility/incompressibility of the macrostructure properly reflects that of the microstructure. The formulation is based on the mixed variational principle with a perturbed Lagrange-multiplier. It is shown that the rate of volumetric change of the macrostructure can be controlled through the homogenization procedure by introducing the constraint on the microstructure only. A couple of numerical examples are given to demonstrate the validity of the proposed method. By comparing the numerical results with theoretical solutions, the method is also confirmed to be free from locking.

  2. Numerical computation of transonic flows by finite-element and finite-difference methods

    Science.gov (United States)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  3. MIXED FINITE ELEMENT METHODS FOR THE SHALLOW WATER EQUATIONS INCLUDING CURRENT AND SILT SEDIMENTATION (Ⅰ)-THE CONTINUOUS-TIME CASE

    Institute of Scientific and Technical Information of China (English)

    罗振东; 朱江; 曾庆存; 谢正辉

    2004-01-01

    An initial-boundary value problem for shallow equation system consisting of water dynamics equations, silt transport equation, the equation of bottom topography change, and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element (MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived. The error estimates are optimal.

  4. Finite elements and finite differences for transonic flow calculations

    Science.gov (United States)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  5. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.

    Science.gov (United States)

    Weickenmeier, J; Jabareen, M

    2014-11-01

    The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery.

  6. Clarification of the mechanical behaviour of spinal motion segments through a three-dimensional poroelastic mixed finite element model.

    Science.gov (United States)

    Wu, J S; Chen, J H

    1996-04-01

    The purpose of this study is to clarify the mechanical behaviour of spinal motion segments through a proper numerical model. The model constructed can give correct information and provide medical fields with valuable guidance in solving clinical problems occurring in the spine. A three-dimensional poroelastic finite element model of spinal motion segments is constructed and a mixed formulation is introduced. The geometry of the model is automatically formed from a series of CT-scanning images. Vertebral column, intervertebral joint, facet joints and ligaments are all included in the model. The contact surface of facet joints is considered as the inclined boundary. Such inclination is imposed when the contact surface is under compression. Ligaments surrounding the vertebral body and the intervertebral disc are put into the model when they are under tension. Iteration is implemented in the computing process to meet such boundary characteristics of facet joints and ligaments. Prediction of the mechanical behaviour in the segment under long term creep loading, is demonstrated using the current algorithm. Results show that the model and corresponding numerical procedures developed here can simulate the mechanical behaviour of the spinal motion segments properly.

  7. Free Edge Mixed Mode Delamination Analysis of Laminated Composites with Wrap-Around Configuration: A Finite Element Study

    Science.gov (United States)

    Choudhury, Pannalal; Das, Subhankar; Halder, Sudipta; Pandey, Krishna Murari

    2016-10-01

    Finite element analyses of laminated composites were done in the present study with respect to suppression of free edge delamination by an innovative technique. Wrap-around configuration was considered to determine its effectiveness over the wrapper-less laminated configuration on laminated composites. Nodal stresses were generated ahead of the crack tip through finite element analysis. This was used for determining interlaminar normal stress and inter laminar shear stress distributions at the critical interface. Later virtual crack closure technique was used to estimate the strain energy release rate components for several sizes of virtual crack extensions through a single finite element analysis. Computational analysis predicts Mode-I delamination as dominant mode of failure. This mode of delamination was significantly suppressed with wrap-around configuration on laminated composites.

  8. A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    criterion and damage propagation with the linear energetic fracture criterion. For verification and validation purposes of the proposed laws and mixed-mode model, steel adherends have been adhesively bonded with a structural ductile adhesive material in order to fabricate a series of single and double strap......In this paper, a new traction-separation law is developed that represents the constitutive relation of ductile adhesive materials in Modes I, II, and III. The proposed traction-separation laws model the elastic, plastic, and failure material response of a ductile adhesive layer. Initially...

  9. Analysis of nonlinear frequency mixing in 1D waveguides with a breathing crack using the spectral finite element method

    Science.gov (United States)

    Joglekar, D. M.; Mitra, M.

    2015-11-01

    A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the

  10. Solving geometrically nonlinear tasks of the statics of hinged-rod systems basing on finite element method in the form of classical mixed method

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    2016-02-01

    Full Text Available The most widely used numerical method used in linear calculation of building structures is finite element method in traditional form of displacements. Different software is developed on its basis. Though it is only possible to check the certainty of these numerical solutions, especially of non-linear tasks of engineering structures’ deformation by the coincidence of the results obtained by two different methods. The authors solved geometrically nonlinear task of the static deformation of a flat hinged-rod system consisting of five linear elastic rods undergoing great tension-compression strains. The solution was obtained basing on the finite element method in the form of classical mixed method developed by the authors. The set of all equilibrium states of the system, both stable and unstable, and all the limit points were found. The certainty of the solution was approved by the coincidence of the results obtained by other authors basing on traditional finite element method in displacements.

  11. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  12. MIXED FINITE ELEMENT METHODS FOR THE SHALLOW WATER EQUATIONS INCLUDING CURRENT AND SILT SEDIMENTATION ( Ⅱ )-THE DISCRETE-TIME CASE ALONG CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    罗振东; 朱江; 曾庆存; 谢正辉

    2004-01-01

    The mixed finite element (MFE) methods for a shallow water equation system consisting of water dynamics equations, silt transport equation, and the equation of bottom topography change were derived. A fully discrete MFE scheme for the discrete-time along characteristics is presented and error estimates are established. The existence and convergence of MFE solution of the discrete current velocity, elevation of the bottom topography, thickness of fluid column, and mass rate of sediment is demonstrated.

  13. A new mixed discontinuous finite element formulation applied to neutron diffusion problems; Nova formulacao mista em elementos finitos discontinuos aplicada a problemas de difusao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Monica Barcellos Jansen; Carmo, Eduardo Gomes Dutra do [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear. E-mail: monica@lmn.com.ufrj.br; carmo@lmn.com.ufrj.br

    2000-07-01

    In this work, a new mixed discontinuous finite element formulation is applied to the solution of neutron diffusion problems posed in a heterogeneous section of a reactor, taking account of two energy groups. Numerical results of a model problem are presented herein, which demonstrate the efficiency of the method and the little mesh refinement necessary for a good approximation. The above-mentioned formulation has terms that guarantee its stability even without to use of the LBB (Ladyzhesnkaya-Babuska-Brezzi) condition. (author)

  14. MIXED FINITE ELEMENT METHOD-GALERKIN ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR NONSTATIONAL CONDUCTION CONVECTION PROBLEMS%非定常的热传导-对流问题的混合有限元-Galerkin交替方向有限元法

    Institute of Scientific and Technical Information of China (English)

    崔明

    2002-01-01

    Numerical methods for nonstational conduction-convection problemsare considered. Mixed finite element method for the velocity equation and alter-nating-direction finite element method for the temperature equation are adopted.Optimal error estimates for the temperature in L2-norm are obtained.

  15. Accounting rigid support at the border in a mixed model the finite element method in problems of ice cover destruction

    Directory of Open Access Journals (Sweden)

    V. V. Knyazkov

    2014-01-01

    Full Text Available To evaluate the force to damage the ice covers is necessary for estimation of icebreaking capability of vessels, as well as of hull strength of icebreakers, and navigation of ships in ice conditions. On the other hand, the use of ice cover support to arrange construction works from the ice is also of practical interest.By the present moment a great deal of investigations of ice cover deformation have been carried out to result, usually, in approximate calculations formula which was obtained after making a variety of assumptions. Nevertheless, we believe that it is possible to make further improvement in calculations. Application numerical methods, and, for example, FEM, makes possible to avoid numerous drawbacks of analytical methods dealing with both complex boundaries and load application areas and other problem peculiarities.The article considers an application of mixed models of FEM for investigating ice cover deformation. A simple flexible triangle element of mixed type was taken to solve this problem. Vector of generalized coordinates of the element contains apices flexures and normal bending moments in the middle of its sides. Compared to other elements mixed models easily satisfy compatibility requirements on the boundary of adjacent elements and do not require numerical displacement differentiation to define bending moments, because bending moments are included in vector of element generalized coordinates.The method of account of rigid support plate is proposed. The resulting ratio, taking into account the "stiffening", reduces the number of resolving systems of equations by the number of elements on the plate contour.To evaluate further the results the numerical realization of ice cover stress-strained problem it becomes necessary and correct to check whether calculation results correspond to accurate solution. Using an example of circular plate the convergence of numerical solutions to analytical solutions is showed.The article

  16. Solution of Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...

  17. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  18. Fuzzy interval Finite Element/Statistical Energy Analysis for mid-frequency analysis of built-up systems with mixed fuzzy and interval parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2016-10-01

    This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.

  19. quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    A. R. Bahadir

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  20. Programming the finite element method

    CERN Document Server

    Smith, I M; Margetts, L

    2013-01-01

    Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c

  1. 多孔介质中可压缩可混溶驱动问题的Potempa混合元方法%POTEMPA-MIXED FINITE ELEMENT METHODS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    王焕

    2004-01-01

    Potempa-mixed finite element methods are considered in this paper for computing the compressible miscible displacement in porous media. The concentration equation is treated by Potempa's scheme,while the pressure equation is treated by a mixed finite element procedure. A H1 error estimate for concentration with L2 for velocity is derived.The methods can provide the mass conservation and possesses minimal grid orientation.

  2. Finite-element solution for a combined radiative-conductive analysis with mixed diffuse-specular surface characteristics. [of spaceborne telescope

    Science.gov (United States)

    Lee, H.-P.; Jackson, C. E., Jr.

    1975-01-01

    The finite-element method has been applied to solve a combined radiative-conductive heat transfer problem for a large space telescope similar to those used in orbiting satellites. The derivation of the underlying matrices and associated solution algorithm for a 2-D triangular element is presented in detail. The resulting expressions for this triangular element typify such an analysis, which yields constitutive matrices when the heat equation is cast in the matrix form. The relevant matrices include those pertaining to thermal conductance, internal heat generation, radiative exchanges, and all possible external thermal loadings. Emphasis is placed on the treatment of non-linear radiative interchange between surfaces in an enclosure having mixed diffuse-specular surface characteristics. Essential differences in governing equations describing these distinctive surface characteristics are identified. Concluding remarks are drawn from an example simulating a Cassegrainian space telescope.

  3. Second order tensor finite element

    Science.gov (United States)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  4. Finite element methods for engineers

    CERN Document Server

    Fenner, Roger T

    2013-01-01

    This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...

  5. 鱼骨形网格上二阶方程混合元的超收敛%SUPERCONVERGENCE OF THE MIXED FINITE ELEMENT FOR SECOND ORDER EQUATION ON FISHBONE SHAPE MESHES

    Institute of Scientific and Technical Information of China (English)

    林甲富; 林群

    2004-01-01

    In this paper, superconvergence of the lowest order Raviart-Thomas mixed finite element approximation for second order Neumann boundary value problem on fishbone shape meshes is analyzed. The main term of the error between the exact solution and the finite element interpolating function is determined by Bramble-Hilbert lemma on the individual finite element. A part of the main term of the error on two adjacent finite elements can be cancelled along the special direction, and thus the higher order error estimate is obtained on the whole domain by summation. Compared with the general finite element error estimate,the convergence rate can be increased from order one to order two in L2-norm by postprocessing superconvergence technique.

  6. Finite elements of nonlinear continua

    CERN Document Server

    Oden, J T

    2000-01-01

    Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s

  7. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  8. The Relation of Finite Element and Finite Difference Methods

    Science.gov (United States)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  9. Error Estimates for Mixed Finite Element Methods for Sobolev Equation%Sobolev方程混合有限元方法的误差估计

    Institute of Scientific and Technical Information of China (English)

    姜子文; 陈焕祯

    2001-01-01

    The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation based on the Raviart-Thomas space Vh × Wh H(div; Ω) × L2(Ω). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L∞(0, T; L2(Ω)), L∞(0, T; L2(Ω)), L∞(0, T; L2(Ω)2), and L∞ (0, T; L2 (Ω)). Quasi-optimal order estimates are obtained for the approximations of u, ut in L∞(0,T;L∞(Ω)) and p in L∞(0,T;L∞(Ω)2).

  10. Application of mixed finite element method in elastic contact problems%混合有限元法在弹性接触问题中的应用

    Institute of Scientific and Technical Information of China (English)

    袁国良; 王忠东

    2000-01-01

    讨论了利用Hellinger-Reissner二类变量广义变分原理解决定边界接触问题的混合有限元法,并且给出这种计算方法的数值实例。数值结果表明该方法在定边界弹性接触问题中的应用行之有效。%Constant boundary contact problems in practical engineering often occur. It ismeaningful to precisely calculate stress and displacement in the contact area using an effec-tive method. A mixed finite element method for the contact problems with constant bound-ary by Hellinger-Reissner's general variation principle in two variates is studied and somenumerical examples are presented. These numerical results show that this proposed methodis effective.

  11. Parametric design of silo steel framework of concrete mixing station based on the finite element method and MATLAB

    OpenAIRE

    Long Hui; Huang Changzheng; Li Jing; Liu Feng

    2016-01-01

    When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational softwar...

  12. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  13. DOLFIN: Automated Finite Element Computing

    CERN Document Server

    Logg, Anders; 10.1145/1731022.1731030

    2011-01-01

    We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.

  14. Finite elements methods in mechanics

    CERN Document Server

    Eslami, M Reza

    2014-01-01

    This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...

  15. Automation of finite element methods

    CERN Document Server

    Korelc, Jože

    2016-01-01

    New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.

  16. Selective Smoothed Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.

  17. Composite interlaminar fracture toughness: Three-dimensional finite element modeling for mixed mode 1, 2 and 3 fracture

    Science.gov (United States)

    Murthy, P. L. N.; Chamis, C. C.

    1986-01-01

    A computational method/procedure is described which can be used to simulate individual and mixed mode interlaminar fracture progression in fiber composite laminates. Different combinations of Modes 1, 2, and 3 fracture are simulated by varying the crack location through the specimen thickness and by selecting appropriate unsymmetric laminate configurations. The contribution of each fracture mode to strain energy release rate is determined by the local crack closure methods while the mixed mode is determined by global variables. The strain energy release rates are plotted versus extending crack length, where slow crack growth, stable crack growth, and rapid crack growth regions are easily identified. Graphical results are presented to illustrate the effectiveness and versatility of the computational simulation for: (1) evaluating mixed-mode interlaminar fracture, (2) for identifying respective dominant parameters, and (3) for selecting possible simple test methods.

  18. Composite interlaminar fracture toughness - Three-dimensional finite-element modeling for mixed mode I, II, and fracture

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1988-01-01

    A computational method/procedure is described which can be used to simulate individual and mixed mode interlaminar fracture progression in fiber composite laminates. Different combinations of Modes 1, 2, and 3 fracture are simulated by varying the crack location through the specimen thickness and by selecting appropriate unsymmetric laminate configurations. The contribution of each fracture mode to strain energy release rate is determined by the local crack closure methods while the mixed mode is determined by global variables. The strain energy release rates are plotted versus extending crack length, where slow crack growth, stable crack growth, and rapid crack growth regions are easily identified. Graphical results are presented to illustrate the effectiveness and versatility of the computational simulation for: (1) evaluating mixed-mode interlaminar fracture, (2) for identifying respective dominant parameters, and (3) for selecting possible simple test methods.

  19. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    Science.gov (United States)

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  20. Infinite Possibilities for the Finite Element.

    Science.gov (United States)

    Finlayson, Bruce A.

    1981-01-01

    Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)

  1. Effect of Dynamic Center Region on the Flow and Mixing Efficiency in a New Tri-Screw Extruder Using 3D Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    X. Z. Zhu

    2013-01-01

    Full Text Available Three-dimensional finite element modeling of polymer melt flowing in a new co-rotating tri-screw extruder was established with mesh superposition technique. Based on the particle tracking technology, three typical particle trajectories in the tri-screw extruder were calculated using a 4th-order-Runge-Kutta method to study the dynamic motions of the particles. Then the flow visualizations in the local center region were carried out. Moreover, the dispersive, distributive and stretching mixing efficiencies of the tri-screw and twin-screw extruders were compared, respectively. The results show that when the particles move from one screw to another, there are great abrupt changes in the velocities and displacements, which induce the abrupt change in the stress magnitude. Most of particles, which are initially distributed in the inlet plane of the center region, fast flow out the outlet and don’t pass through any screw. This special phenomenon induces a series of new characteristics in the residence time distribution (RTD, flow number, segregation scale and time averaged efficiency. In comparison with the twin-screw extruder, the tri-screw extruder has better mixing efficiency.

  2. Crack tip fields in elastic-plastic and mixed mode I+II+III conditions, finite elements simulations and modeling

    Directory of Open Access Journals (Sweden)

    F. Fremy,

    2015-07-01

    Full Text Available This paper is devoted to the analysis of the load path effect on I+II+III mixed mode fatigue crack propagation in a 316L stainless steel. Experiments were conducted in mode I+II and in mode I+II+III. The same maximum, minimum and mean values of the stress intensity factors were used for each loading path in the experiments. The main result of this set of experiments is that very different crack growth rates and crack paths are observed for load paths that are however considered as equivalent in most fatigue criteria. The experiments conducted in mode I+II and in mode I+II+III, also allowed to show that the addition of mode III loading steps to a mode I+II loading sequence is increasing the fatigue crack growth rate, even when the crack path is not significantly modified.

  3. An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations

    Directory of Open Access Journals (Sweden)

    Aiwen Wang

    2012-01-01

    Full Text Available We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e., Q1−P0 and P1−P0. Firstly, in contrast to other stabilized methods, they are parameter free, no calculation of higher-order derivatives and edge-based data structures, implemented at the element level with minimal cost. In addition, the Oseen two-level stabilized method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, a large general Stokes equation on the fine mesh with mesh size h=O(H2. The Oseen two-level stabilized finite-element method provides an approximate solution (uh,ph with the convergence rate of the same order as the usual stabilized finite-element solutions, which involves solving a large Navier-Stokes problem on a fine mesh with mesh size h. Therefore, the method presented in this paper can save a large amount of computational time. Finally, numerical tests confirm the theoretical results. Conclusion can be drawn that the Oseen two-level stabilized finite-element method is simple and efficient for solving the 2D/3D steady Navier-Stokes equations.

  4. Finite element differential forms on cubical meshes

    CERN Document Server

    Arnold, Douglas N

    2012-01-01

    We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.

  5. Extension of the mixed dual finite element method to the solution of the SPN transport equation in 2D unstructured geometries composed by arbitrary quadrilaterals

    Energy Technology Data Exchange (ETDEWEB)

    Lautard, J.J.; Flumiani, T. [CEA Saclay, Direction de l' Energie Nucleaire (DEN/SERMA), Service d' Etude des Reacteurs et de Modelisations Avancees, 91 - Gif sur Yvette (France)

    2003-07-01

    The mixed dual finite element method is usually used for the resolution of the SPN transport equations (simplified PN equations) in 3D homogenized geometries (composed by homogenized rectangles or hexagons). This method produces fast results with little memory requirements. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals (for the moment limited to 2D), allowing us to treat geometries where fuel pins are exactly represented. The iterative resolution of the resulting matrix system is a generalization of the one already developed for the cartesian and the hexagonal geometries. In order to illustrate and to show the efficiency of this method, results on the NEA-C5G7-MOX benchmark are given. The previous benchmark has been extended for the hexagonal geometry and we provide here some results. This method is a first step towards the treatment of pin by pin core calculations without homogenization. The present solver is a prototype. It shows the efficiency of the method and it has to be extended to 3D calculations as well as to exact transport calculations. We also intend to extend the method to the treatment of unstructured geometries composed by quadrilaterals with curved edges (sectors of a circle).The iterative algorithm has yet to be accelerated using multigrid techniques through a coupling with the present homogenized solver (MINOS). In the future, it will be included in the next generation neutronic toolbox DESCARTES currently under development.

  6. Elements with Square Roots in Finite Groups

    Institute of Scientific and Technical Information of China (English)

    M.S. Lucido; M.R. Pournaki

    2005-01-01

    In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.

  7. Conforming finite elements with embedded strong discontinuities

    NARCIS (Netherlands)

    Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.

    2012-01-01

    The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi

  8. Mixed and mixed-hybrid elements for the diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, F.; Fedon-Magnaud, C.

    1988-11-01

    Among the classical methods used for solving the neutron diffusion equation, the Lagrange finite element method can be efficiently implemented to provide a fast numerical treatment. Mixed elements are used because they allow simultaneous approximations for the flux and its gradient of the same order. Although the linear systems produced are not positive definite, a solution ca be achieved after eliminating some of the unknowns. Numerical results include core calculations of two types of reactors.

  9. Mixed spectral finite elements and perfectly matched layers for elastic waves in time domain; Elements finis mixtes spectraux et couches absorbantes parfaitement adaptees pour la propagation d'ondes elastiques en regime transitoire

    Energy Technology Data Exchange (ETDEWEB)

    Fauqueux, S.

    2003-02-01

    We consider the propagation of elastic waves in unbounded domains. A new formulation of the linear elasticity system as an H (div) - L{sup 2} system enables us to use the 'mixed spectral finite element method', This new method is based on the definition of new spaces of approximation and the use of mass-lumping. It leads to an explicit scheme with reduced storage and provides the same solution as the spectral finite element method. Then, we model unbounded domains by using Perfectly Matched Layers. Instabilities in the PML in the case of particular 2D elastic media are pointed out and investigated. The numerical method is validated and tested in the case of acoustic and elastic realistic models. A plane wave analysis gives results about numerical dispersion and shows that meshes adapted to the physical and geometrical properties of the media are more accurate than the others. Then, an extension of the method to fluid-solid coupling is introduced for 2D seismic propagation. (author)

  10. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  11. Symmetric Matrix Fields in the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Gerard Awanou

    2010-07-01

    Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.

  12. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry; Elements finis mixtes duaux pour la resolution numerique de l'equation de la diffusion neutronique en geometrie hexagonale

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D

    2001-07-01

    The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P{sub N} approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

  13. Superconvergence for rectangular serendipity finite elements

    Institute of Scientific and Technical Information of China (English)

    CHEN; Chuanmiao(陈传淼)

    2003-01-01

    Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.

  14. Continuous finite element methods for Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.

  15. Element-topology-independent preconditioners for parallel finite element computations

    Science.gov (United States)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  16. Element-topology-independent preconditioners for parallel finite element computations

    Science.gov (United States)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  17. Why do probabilistic finite element analysis ?

    CERN Document Server

    Thacker, B H

    2008-01-01

    The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.

  18. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...

  19. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  20. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  1. An H1-Galerkin Nonconforming Mixed Finite Element Method for Integro-Differential Equation of Parabolic Type%抛物型积分微分方程的非协调H1-Galerkin混合有限元方法

    Institute of Scientific and Technical Information of China (English)

    石东洋; 王海红

    2009-01-01

    H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition.

  2. DUAL MIXED FINITE ELEMENT METHOD FOR CONTACT PROBLEM IN ELASTICITY%弹性接触问题的对偶混合有限元分析

    Institute of Scientific and Technical Information of China (English)

    王烈衡; 王光辉

    1999-01-01

    In this paper, based on the mixed variational formulation in [9], a dualmixed variational formulation for contact problem in elasticity ispresented. The existence and uniqueness of the solution of the dualvariational problem are discussed, and the error bound O(h3/4) is obtained for Raviart-Thomas (k=1) element approximation.

  3. Nonlinear Finite Element Analysis of Sloshing

    Directory of Open Access Journals (Sweden)

    Siva Srinivas Kolukula

    2013-01-01

    Full Text Available The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used as the external disturbance to the container. The results obtained are compared with published results to validate the numerical method developed.

  4. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...

  5. Finite element analysis of optical waveguides

    Science.gov (United States)

    Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.

    1981-06-01

    Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.

  6. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  7. Will Finite Elements Replace Structural Mechanics?

    Science.gov (United States)

    Ojalvo, I. U.

    1984-01-01

    This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.

  8. Superconvergence of tricubic block finite elements

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.

  9. Mixing subalgebras of finite von Neumann algebras

    CERN Document Server

    Cameron, Jan; Mukherjee, Kunal

    2010-01-01

    Jolissaint and Stalder introduced the definitions of mixing and weak mixing for von Neumann subalgebras of finite von Neumann algebras. In this paper, we study various algebraic and analytical properties of mixing and weakly mixing von Neumann subalgebras. We prove some basic results about mixing inclusions of von Neumann algebras and establish a connection between mixing properties and normalizers of von Neumann subalgebras. The special case of mixing subalgebras arising from inclusions of group von Neumann algebras finds applications to ergodic theory. For a finite von Neumann algebra $M$ and von Neumann subalgebras $A$, $B$ of $M$, we introduce a notion of weak mixing of $B\\subseteq M$ relative to $A$. If $B$ is abelian and $A\\subset B$, we show that weak mixing of $B \\subset M$ relative to $A$ is equivalent to the following property: if $x\\in M$ and $xAx^*\\subset B$ then $x\\in B$. In the general case, we show that weak mixing of $B\\subset M$ relative to $A$ is equivalent to the following property: if $x\\i...

  10. Finite element methods a practical guide

    CERN Document Server

    Whiteley, Jonathan

    2017-01-01

    This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.

  11. Moving Finite Elements in 2-D.

    Science.gov (United States)

    1984-08-06

    34 . - ; .-’- . - . -- .- -. . - -.. -- ; -. - - - - - ." . ,- . -••. - - ; . IOSR : TR. SAI-84/1299 (0 N MOVING FINITE ELEMENTS IN 2-I Final Report AFOSR Contract: F4962U-81-C-UO73 Program Manager

  12. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  13. Finite element modeling of corneal strip extensometry

    CSIR Research Space (South Africa)

    Botha, N

    2012-12-01

    Full Text Available numerically modelled in several studies, this study focusses on accurately modelling the strip extensiometry test. Two methods were considered to simulate the experimental conditions namely, a single phase and a two phase method. A finite element model...

  14. Infinite to finite: An overview of finite element analysis

    Directory of Open Access Journals (Sweden)

    Srirekha A

    2010-01-01

    Full Text Available The method of finite elements was developed at perfectly right times; growing computer capacities, growing human skills and industry demands for ever faster and cost effective product development providing unlimited possibilities for the researching community. This paper reviews the basic concept, current status, advances, advantages, limitations and applications of finite element method (FEM in restorative dentistry and endodontics. Finite element method is able to reveal the otherwise inaccessible stress distribution within the tooth-restoration complex and it has proven to be a useful tool in the thinking process for the understanding of tooth biomechanics and the biomimetic approach in restorative dentistry. Further improvement of the non-linear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.

  15. Finite element modeling of the human pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.

    1995-11-01

    A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.

  16. Surgery simulation using fast finite elements

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...

  17. The finite element method in electromagnetics

    CERN Document Server

    Jin, Jianming

    2014-01-01

    A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The

  18. A NOTE ON FINITE ELEMENT WAVELETS

    Institute of Scientific and Technical Information of China (English)

    谌秋辉; 陈翰麟

    2001-01-01

    The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.

  19. Finite element analysis of flexible, rotating blades

    Science.gov (United States)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  20. 非线性Sobolev型方程一个新的非协调混合有限元格式%A New Nonconforming Mixed Finite Element Scheme for Nonlinear Sobolev Equations

    Institute of Scientific and Technical Information of China (English)

    石东洋; 王乐乐

    2012-01-01

    A new mixed finite element scheme was established, by applying a Crouzeix-Raviart type non-conforming linear triangular finite element to the nonlinear Sobolev equations, which had the advantages of simple structure, BB condition to be satisfied automatically and so on. At the same time, the optimal error estimates of related variables were obtained directly by utilizing the special properties of the interpolation on the element, instead of the general Ritz projection which was the essential tool in the traditional finite element analysis.%将Crouzeix-Raviart型非协调线性三角形元应用于非线性Sobolev方程,建立了一种新的混合元格式,它具有构造简单且BB条件自动满足等优势.同时,在摆脱传统有限元分析中广义Ritz投影这一必不可少工具的情形下,直接利用单元上插值的特殊性质,得到了相关变量的最优误差估计.

  1. 一类具有吸收边界条件的二阶非线性双曲方程的混合元法分析%ANALYSIS OF MIXED FINITE ELEMENT METHOD FOR A KIND OF SECOND-ORDER NONLINEAR HYPERBOLIC EQUATIONS WITH ABSORBING BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    杜宁

    2001-01-01

    Mixed finite element method is used to treat a kind of second-order nonlinear hyperbolic equations with absorbing boundary conditions. explicit-intime procedures are formulated and analyzed. Optimal L2-in-space error estimates are derived.

  2. Quadrature representation of finite element variational forms

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...

  3. Finite Element Computational Dynamics of Rotating Systems

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.

  4. Error computation for adaptive finite element analysis

    CERN Document Server

    Khan, A A; Memon, I R; Ming, X Y

    2002-01-01

    The paper gives a simple numerical procedure for computations of errors generated by the discretisation process of finite element method. The procedure given is based on the ZZ error estimator which is believed to be reasonable accurate and thus can be readily implemented in any existing finite element codes. The devised procedure not only estimates the global energy norm error but also evaluates the local errors in individual elements. In the example, the given procedure is combined with an adaptive refinement procedure, which provides guidance for optimal mesh designing and allows the user to obtain a desired accuracy with a limited number of interaction. (author)

  5. Experimental Finite Element Approach for Stress Analysis

    Directory of Open Access Journals (Sweden)

    Ahmet Erklig

    2014-01-01

    Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.

  6. Finite element analysis of heat and mass transfer by MHD mixed convection stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface with radiation

    Directory of Open Access Journals (Sweden)

    Macha Madhu

    2016-07-01

    Full Text Available Magnetohydrodynamic mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface in the presence of thermal radiation is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. The basic transport equations are made dimensionless first and the coupled non linear differential equations are solved by finite element method. The numerical calculations for velocity, temperature and concentration profiles for different values of the physical parameters presented graphically and discussed. As well as for skin friction coefficient, local Nusselt and Sherwood numbers exhibited and examined.

  7. 一类物方程的 H1-Galerkin混合有限元分析%The H1 -Galerkin Mixed Finite Element Analysis for A Class of Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    王琳

    2013-01-01

      The nonconforming H1 -Galerkin mixed finite element method is analyzed for a class of semilinear parabolic equations .The same optimal error estimates are obtained without using Ritz projec‐tion .%  文章利用 H1-Galerkin非协调混合元方法分析了一类半线性抛物方程,在不采用传统的Ritz投影的情况下得到了与协调有限元方法相同的收敛阶。

  8. Exact finite elements for conduction and convection

    Science.gov (United States)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  9. A weak Hamiltonian finite element method for optimal control problems

    Science.gov (United States)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  10. Weak Hamiltonian finite element method for optimal control problems

    Science.gov (United States)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  11. An Object Oriented, Finite Element Framework for Linear Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J M

    2004-08-12

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  12. An Object Oriented, Finite Element Framework for Linear Wave Equations

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Joseph M. [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  13. Latest Trends in Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    L. S. Madhav

    1996-01-01

    Full Text Available This paper highlights the advances in computer graphics and the computational power of the processors which have promoted a method of analysis, applicable to almost all the fields of engineering. The advantages of the computers have been judiciously used in the design of algorithms, based on the principles of finite difference, finite element, boundary element, etc., intended for the analysis of engineering components. The concept of finite element method which has been generalised with the availability of commercial software, is also reviewed with a special emphasis on the future trends. The modelling and visualisation techniques have also been discussed with an inner perspective on future of visual display of multidimensional complex information. The application of these techniques in some fields is also indicated.

  14. Finite Element Methods and Their Applications

    CERN Document Server

    Chen, Zhangxin

    2005-01-01

    This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.

  15. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  16. Orthodontic treatment: Introducing finite element analysis

    NARCIS (Netherlands)

    Driel, W.D. van; Leeuwen, E.J. van

    1998-01-01

    The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e

  17. Interval Finite Element Analysis of Wing Flutter

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaojun; Qiu Zhiping

    2008-01-01

    The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.

  18. Fast finite elements for surgery simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1997-01-01

    This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...

  19. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET MIXED FINITE ELEMENT METHOD IN NUMERICAL COMPUTATION OF BEAMS%Daubechies条件小波混合有限元法在梁计算中的应用

    Institute of Scientific and Technical Information of China (English)

    陈雅琴; 张宏光; 党发宁

    2011-01-01

    常规的Daubechies小波有限元法是以挠度为基本未知量的单变量有限元法,其弯矩函数需要通过挠度函数的二阶求导间接求解,故弯矩的计算精度一般比挠度低。此外,目前常用的Daubechies小波有限元法需要借助于转换矩阵引入位移边界条件,大大影响了计算精度。结合广义变分原理,将边界条件作为附加条件构造修正泛函,以该修正泛函的驻值条件建立求解矩阵方程,进而解得未知场函数,可以有效提高计算精度,即为Daubechies条件小波有限元法。在此基础上,结合Hellinger-Reissner广义变分原理,以力和位移%The conventional Daubechies wavelet Finite Element Method is a kind of single variable Finite Element Method using a deflection function as a basic unknown function. Its bending moment function has to be calculated indirectly by calculating the second derivative of the deflection function. Thusly the accuracy of bending moments is always worse than deflection. Furthurmore, in the present Daubechies wavelet Finite Element Method, the leading of displacement boundary conditions has to draw a support from a converting matrix and then obviously influences the computation accuracy. Employing the Generalized Variational Principle, and taking a boundary condition as a subsidiary condition, a modified functional can be constructed. Consequently the solving matrix equation can be constructed utilizing the arrest point condition of the modified functional to obtain the unknown field function. This method can effectively promote the calculation accuracy, and it is called Daubeehies conditional wavelet Finite Element Method. Based on the method and leading HeUinger-Reissner Generalized Variational Principle, using force and displacement functions as interpolating functions, the Daubeehies conditional wavelet mixed Finite Element Method can be constructed. In this method, we can solve the force and displacement functions

  20. Galerkin-Petrov least squares mixed element method for stationary incompressible magnetohydrodynamics

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; MAO Yun-kui; ZHU Jiang

    2007-01-01

    The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented.And the existence and error estimates of its solution are derived. Through this method,the combination among the mixed finite element spaces does not demand the discrete Babu(s)ka-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.

  1. Finite Dynamic Elements and Modal Analysis

    Directory of Open Access Journals (Sweden)

    N.J. Fergusson

    1993-01-01

    Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.

  2. Revolution in Orthodontics: Finite element analysis

    Science.gov (United States)

    Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush

    2016-01-01

    Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948

  3. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  4. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    Science.gov (United States)

    2012-10-16

    comparison of stresses and strains by finite element analysis (FEA) and peridynamic solutions is performed for a ductile material. A multiscale...problems. One common benchmark problem characterized by the mixed mode fracture is the test of a double-edge-notched concrete specimen conducted by Nooru...Mohamed et al. [19]. The test of Nooru-Mohamed was adopted by De Borst [20] in the discussion of computational modeling of concrete fracture. For

  5. SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    G. Dziuk; C.M. Elliott

    2007-01-01

    In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.

  6. Finite element modeling of permanent magnet devices

    Science.gov (United States)

    Brauer, J. R.; Larkin, L. A.; Overbye, V. D.

    1984-03-01

    New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.

  7. Finite element modelling of solidification phenomena

    Indian Academy of Sciences (India)

    K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan

    2001-02-01

    The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.

  8. Finite element simulations with ANSYS workbench 16

    CERN Document Server

    Lee , Huei-Huang

    2015-01-01

    Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...

  9. Quantum Finite Elements for Lattice Field Theory

    CERN Document Server

    Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan

    2016-01-01

    Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.

  10. Finite element modelling of SAW correlator

    Science.gov (United States)

    Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek

    2007-12-01

    Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.

  11. FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS

    Directory of Open Access Journals (Sweden)

    URDEA Mihaela

    2015-06-01

    Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.

  12. Finite Element Simulation of Metal Quenching

    Institute of Scientific and Technical Information of China (English)

    方刚; 曾攀

    2004-01-01

    The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.

  13. FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon

    2002-01-01

    A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.

  14. Finite element analysis of human joints

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  15. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...

  16. Multiphase Transformer Modelling using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Nor Azizah Mohd Yusoff

    2015-03-01

    Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.

  17. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  18. The finite element modeling of spiral ropes

    Institute of Scientific and Technical Information of China (English)

    Juan Wu

    2014-01-01

    Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.

  19. Finite element contact analysis of fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)

    2007-07-21

    The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.

  20. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  1. Finite Element Simulation for Interfacial Evolutions

    Institute of Scientific and Technical Information of China (English)

    JianmingHUANG; WeiYANG

    1998-01-01

    A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.

  2. FINITE-ELEMENT MODELING OF SALT TECTONICS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2012-09-01

    Full Text Available  The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.

  3. Finite element model of needle electrode sensitivity

    Science.gov (United States)

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  4. Quick finite elements for electromagnetic waves

    CERN Document Server

    Pelosi, Giuseppe; Selleri, Stefano

    2009-01-01

    This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.

  5. EXODUS II: A finite element data model

    Energy Technology Data Exchange (ETDEWEB)

    Schoof, L.A.; Yarberry, V.R.

    1994-09-01

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).

  6. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  7. Finite Element Analysis of Reverberation Chambers

    Science.gov (United States)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  8. Nonlinear Finite Element Analysis of Ocean Cables

    Institute of Scientific and Technical Information of China (English)

    Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM

    2004-01-01

    This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.

  9. Finite Element Method in Machining Processes

    CERN Document Server

    Markopoulos, Angelos P

    2013-01-01

    Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...

  10. CHEBYSHEV SPECTRAL-FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL UNSTEADY NAVIER-STOKES EQUATION

    Institute of Scientific and Technical Information of China (English)

    Benyu Guo; Songnian He; Heping Ma

    2002-01-01

    A mixed Chebyshev spectral-finite element method is proposed for solving two-dimensionalunsteady Navier-Stokes equation. The generalized stability and convergence are proved.The numerical results show the advantages of this method.

  11. Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling

    Directory of Open Access Journals (Sweden)

    Karjalainen Matti

    2004-01-01

    Full Text Available Digital waveguides and finite difference time domain schemes have been used in physical modeling of spatially distributed systems. Both of them are known to provide exact modeling of ideal one-dimensional (1D band-limited wave propagation, and both of them can be composed to approximate two-dimensional (2D and three-dimensional (3D mesh structures. Their equal capabilities in physical modeling have been shown for special cases and have been assumed to cover generalized cases as well. The ability to form mixed models by joining substructures of both classes through converter elements has been proposed recently. In this paper, we formulate a general digital signal processing (DSP-oriented framework where the functional equivalence of these two approaches is systematically elaborated and the conditions of building mixed models are studied. An example of mixed modeling of a 2D waveguide is presented.

  12. A finite element parametric modeling technique of aircraft wing structures

    Institute of Scientific and Technical Information of China (English)

    Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu

    2013-01-01

    A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.

  13. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  14. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  15. Finite element modeling for materials engineers using Matlab

    CERN Document Server

    Oluwole, Oluleke

    2014-01-01

    Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.

  16. Stochastic finite elements: Where is the physics?

    Directory of Open Access Journals (Sweden)

    Ostoja-Starzewski Martin

    2011-01-01

    Full Text Available The micromechanics based on the Hill-Mandel condition indicates that the majority of stochastic finite element methods hinge on random field (RF models of material properties (such as Hooke’s law having no physical content, or even at odds with physics. At the same time, that condition allows one to set up the RFs of stiffness and compliance tensors in function of the mesoscale and actual random microstructure of the given material. The mesoscale is defined through a Statistical Volume Element (SVE, i.e. a material domain below the Representative Volume Element (RVE level. The paper outlines a procedure for stochastic scale-dependent homogenization leading to a determination of mesoscale one-point and two-point statistics and, thus, a construction of analytical RF models.

  17. A finite element method for growth in biological development.

    Science.gov (United States)

    Murea, Cornel M; Hentschel, H G E

    2007-04-01

    We describe finite element simulations of limb growth based on Stokes flow models with a nonzero divergence representing growth due to nutrients in the early stages of limb bud development. We introduce a "tissue pressure" whose spatial derivatives yield the growth velocity in the limb and our explicit time advancing algorithm for such tissue flows is described in de tail. The limb boundary is approached by spline functions to compute the curvature and the unit outward normal vector. At each time step, a mixed hybrid finite element problem is solved, where the condition that the velocity is strictly normal to the limb boundary is treated by a Lagrange multiplier technique. Numerical results are presented.

  18. Finite rotation shells basic equations and finite elements for Reissner kinematics

    CERN Document Server

    Wisniewski, K

    2010-01-01

    This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.

  19. Finite element modeling methods for photonics

    CERN Document Server

    Rahman, B M Azizur

    2013-01-01

    The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron

  20. The serendipity family of finite elements

    CERN Document Server

    Arnold, Douglas N

    2011-01-01

    We give a new, simple, dimension-independent definition of the serendipity finite element family. The shape functions are the span of all monomials which are linear in at least s-r of the variables where s is the degree of the monomial or, equivalently, whose superlinear degree (total degree with respect to variables entering at least quadratically) is at most r. The degrees of freedom are given by moments of degree at most r-2d on each face of dimension d. We establish unisolvence and a geometric decomposition of the space.

  1. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  2. Finite element modelingof spherical induction actuator

    OpenAIRE

    Galary, Grzegorz

    2005-01-01

    The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...

  3. A finite element model of ultrasonic extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  4. A finite element model of ultrasonic extrusion

    Science.gov (United States)

    Lucas, M.; Daud, Y.

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  5. A REGIONAL REFINEMENT FOR FINITE ELEMENT MESH DESIGN USING COLLAPSIBLE ELEMENT

    Directory of Open Access Journals (Sweden)

    Priyo Suprobo

    2000-01-01

    Full Text Available A practical algorithm for automated mesh design in finite element analysis is developed. A regional mixed mesh improvement procedure is introduced. The error control%2C algorithm implementation%2C code development%2C and the solution accuracy are discussed. Numerical example includes automated mesh designs for plane elastic media with singularities. The efficiency of the procedure is demonstrated. Abstract in Bahasa Indonesia : regional+refinement%2C+mesh+generation%2C+isoparametric+element%2C+collapsible+element

  6. Augmented weak forms and element-by-element preconditioners: Efficient iterative strategies for structural finite elements. A preliminary study

    Science.gov (United States)

    Muller, A.; Hughes, T. J. R.

    1984-01-01

    A weak formulation in structural analysis that provides well conditioned matrices suitable for iterative solutions is presented. A mixed formulation ensures the proper representation of the problem and the constitutive relations are added in a penalized form. The problem is solved by a double conjugate gradient algorithm combined with an element by element approximate factorization procedure. The double conjugate gradient strategy resembles Uzawa's variable-length type algorithms the main difference is the presence of quadratic terms in the mixed variables. In the case of shear deformable beams these terms ensure that the proper finite thickness solution is obtained.

  7. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  8. Finite element analysis of bolted flange connections

    Science.gov (United States)

    Hwang, D. Y.; Stallings, J. M.

    1994-06-01

    A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.

  9. Impeller deflection and modal finite element analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  10. Accurate finite element modeling of acoustic waves

    Science.gov (United States)

    Idesman, A.; Pham, D.

    2014-07-01

    In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.

  11. A Nonconforming Arbitrary Quadrilateral H1-Galerkin Mixed Finite Element Method for Hyperbolic Type Integro-differential Equation%双曲型积分微分方程的非协调任意四边形H1-Galerkin混合有限元方法

    Institute of Scientific and Technical Information of China (English)

    王海红; 郭城

    2012-01-01

    针对双曲型积分微分方程问题,研究了非协调任意四边形H1-Galerkin混合有限元方法.在半离散格式下,利用所选单元本身的特点,在不需要Ritz-Volterra投影的情况下得到了与传统协调混合有限元方法相同的误差估计.%A nonconforming arbitrary quadrilateral H1 -Galerkin mixed finite element method for hyperbolic type integro-differential equations problem was studied. By use of the characteristic of the chosen finite elements, the same error estimates as in the traditional conforming mixed finite elements methods were derived in semi-discrete formulation without using Ritz-Volterra projection.

  12. A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS

    Science.gov (United States)

    Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.

    1993-01-01

    Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).

  13. ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Shangyou Zhang

    2008-01-01

    The stability of the P1-P0 mixed-element is established on general Powell-Sabin triangular grids. The piecewise linear finite element solution approximating the velocity is divergence-free pointwise for the Stokes equations. The finite element solution approximating the pressure in the Stokes equations can be obtained as a byproduct if an iterative method is adopted for solving the discrete linear system of equations. Numerical tests are presented confirming the theory on the stability and the optimal order of convergence for the P1 Powell-Sabin divergence-free finite element method.

  14. Test Simulation using Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2011-02-15

    The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.

  15. Finite-Element Modelling of Biotransistors

    Directory of Open Access Journals (Sweden)

    Selvaganapathy PR

    2010-01-01

    Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.

  16. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  17. Finite element methods in resistivity logging

    Science.gov (United States)

    Lovell, J. R.

    1993-09-01

    Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.

  18. Optimizing the Evaluation of Finite Element Matrices

    CERN Document Server

    Kirby, Robert C; Logg, Anders; Scott, L Ridgway; 10.1137/040607824

    2012-01-01

    Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.

  19. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  20. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  1. Finite element simulation of wheel impact test

    Directory of Open Access Journals (Sweden)

    S.H. Yang

    2008-06-01

    Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel

  2. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    CHEN ShaoChun; XIAO LiuChao

    2008-01-01

    Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.

  3. Convergence of adaptive finite element methods for eigenvalue problems

    OpenAIRE

    Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos

    2008-01-01

    In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.

  4. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.

  5. Finite Element Program Generator and Its Application in Engineering

    Institute of Scientific and Technical Information of China (English)

    WANShui; HUHong; CHENJian-pin

    2004-01-01

    A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.

  6. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  7. The finite element method its basis and fundamentals

    CERN Document Server

    Zienkiewicz, Olek C; Zhu, JZ

    2013-01-01

    The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob

  8. Impact of new computing systems on finite element computations

    Science.gov (United States)

    Noor, A. K.; Storassili, O. O.; Fulton, R. E.

    1983-01-01

    Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.

  9. Radial flow of slightly compressible fluids: A finite element-finite ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Radial flow of slightly compressible fluids: A finite element-finite differences approach. JA Akpobi, ED Akpobi ...

  10. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    Science.gov (United States)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  11. Shear-flexible finite-element models of laminated composite plates and shells

    Science.gov (United States)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  12. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).

  13. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  14. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  15. LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Shiquan Zhang; Xiaoping Xie; Yumei Chen

    2009-01-01

    In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.

  16. An improved optimal elemental method for updating finite element models

    Institute of Scientific and Technical Information of China (English)

    Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)

    2004-01-01

    The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.

  17. A NONCONFORMING ANISOTROPIC FINITE ELEMENT APPROXIMATION WITH MOVING GRIDS FOR STOKES PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Dong-yang Shi; Yi-ran Zhang

    2006-01-01

    This paper is devoted to the five parameters nonconforming finite element schemes with moving grids for velocity-pressure mixed formulations of the nonstationary Stokes prob lem in 2-D. We show that this element has anisotropic behavior and derive anisotropic error estimations in some certain norms of the velocity and the pressure based on some novel techniques. Especially through careful analysis we get an interesting result on consistency error estimation,which has never been seen for mixed finite element methods in the previously literatures.

  18. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  19. MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Li-kang Li

    2004-01-01

    In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.

  20. Finite Element Analysis (FEA) in Design and Production.

    Science.gov (United States)

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  1. A Finite Element Analysis of Optimal Variable Thickness Sheets

    DEFF Research Database (Denmark)

    Petersson, Joakim S

    1996-01-01

    A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill...

  2. An iterative algorithm for finite element analysis

    Science.gov (United States)

    Laouafa, F.; Royis, P.

    2004-03-01

    In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.

  3. Finite Element Simulation for Springback Prediction Compensation

    Directory of Open Access Journals (Sweden)

    Agus Dwi Anggono

    2011-01-01

    Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of  Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It  is  this  second  step  of  springback compensation that is addressed in the current work. This paper presents an  evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a  part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.

  4. Studying a dental pathology by finite elements

    Directory of Open Access Journals (Sweden)

    Fernando Mejía Umaña

    2010-04-01

    Full Text Available Abfractives lesions or abfractions are non-cavity lesions of dental structures in which a biomechanical factor has been identified as being the most probable cause for it occurring. Even throught such lesion can be presented in any tooth, it occurs more frequently in people aged over 35. This article presents some results obtained by the Universidad Nacional de Colombia's multidisciplinary research group for studying "dental material's structure and propierties". The introduction describes such lesion's characteristics and possible causes. The results of various modelling exercises using finite elements (in two and three dimensions are presented regarding a first premolar tooth subjected to normal mastication load and also to abnormal loads produced by occlusion problems. The most important findings (accompanied by clinical observations were that: areas of high concentration of forces were identified where lesions were frequently presented, associated with loads whose line of action did not pass through the central part of the section of tooth at cervical level; a direct relationship between facets of wear being orientated with the direction of forces produced by a high concentration of force; and the presence of high compression forces in the cervical region.

  5. Finite element modeling of retinal prosthesis mechanics

    Science.gov (United States)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  6. Intra Plate Stresses Using Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Jayalakshmi S.

    2016-10-01

    Full Text Available One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo-Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma.

  7. Finite Element Analysis of Deformed Legs of Offshore Platform Structures

    Institute of Scientific and Technical Information of China (English)

    柳春图; 秦太验; 段梦兰

    2002-01-01

    The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.

  8. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  9. Vibration Analysis of Beams by Spline Finite Element

    Institute of Scientific and Technical Information of China (English)

    YANG Hao; SUN Li

    2011-01-01

    In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.

  10. Finite Element Model of Cardiac Electrical Conduction.

    Science.gov (United States)

    Yin, John Zhihao

    1994-01-01

    In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very

  11. Finite element analysis for general elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.

  12. THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2011-03-01

    Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.

  13. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  14. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  15. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  16. Viscoelastic finite-element analysis of human skull - dura mater ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... In the work, the dynamic characteristics of the human skull-dura mater ... Ansys' finite element processor, a simplified three-dimensional finite element ... brain, cerebrospinal fluid (CSF), and the brain's blood ... ICP is often not preventable. .... The creep of linear viscoelastic solid can be simulated by the.

  17. A geometric toolbox for tetrahedral finite element partitions

    NARCIS (Netherlands)

    Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.

    2011-01-01

    In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis. Spec

  18. ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS

    Institute of Scientific and Technical Information of China (English)

    江成顺; 刘蕴贤; 沈永明

    2004-01-01

    This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.

  19. OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +

    Institute of Scientific and Technical Information of China (English)

    马永其; 冯伟

    2002-01-01

    The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.

  20. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...

  1. The application of finite element analysis on polydimethylsiloxane

    Science.gov (United States)

    Halim, Siti Aisyah Abdul; Yahud, Shuhaida; Muhamad, Wan Zuki Azman Wan; Daud, Ruslizam; Zain, Noor Alia Md

    2015-05-01

    An artificial skin should have the similarities of the human skin in term of biomechanical properties. In this paper, Polydimethysiloxane (PDMS) have been chosen as artificial skin material. PDMS specimens were prepared and the hardness of the material will be altered by adding different percentages of diluents to the mixture of the base and a cross-linker component. It indicated that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio and strain rate. Tensile and compression test are conducted to find out the Hyperelastic (HE) coefficient and Young's modulus. These material coefficients will be used to define the constitutive model of PDMS for finite element analysis study. In this paper, three dimensional (3D) finite element (FE) stress and displacement analysis were used. Three types of models with different values of height were simulated in COMSOL MULTIPHYSICS. The analysis of the von Mises stress and surface deflection values revealed that maximum stress and maximum deflection concentration were located in the region near line load. PDMS polymer 10:1 is the softer product and can be commercialized as artificial skin material.

  2. Finite element simulation of thick sheet thermoforming

    Science.gov (United States)

    Mercier, Daniel

    This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.

  3. Finite element analysis of posterior cervical fixation.

    Science.gov (United States)

    Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q

    2015-02-01

    Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. NEW RSW & Wall Medium Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — RSW Medium Mixed Element Grid with Viscous Wind Tunnel Wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 18432 Tria Surface...

  5. NEW RSW & Wall Fine Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — RSW Fine Mixed Element Grid with viscous root wind tunnel wall. This grid is for a node-based unstructured solver. Quad Surface Faces= 38016 Tria Surface Faces=...

  6. NEW RSW & Wall Coarse Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Coarse Mixed Element Grid for the RSW with a viscous wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 9728 Tria...

  7. Thermal Analysis of Thin Plates Using the Finite Element Method

    Science.gov (United States)

    Er, G. K.; Iu, V. P.; Liu, X. L.

    2010-05-01

    The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.

  8. Finite Element Analysis of Fluid-Conveying Timoshenko Pipes

    Directory of Open Access Journals (Sweden)

    Chih-Liang Chu

    1995-01-01

    Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.

  9. PHG: A Toolbox for Developing Parallel Adaptive Finite Element Programs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linbo

    2011-01-01

    @@ Significance of the finite element method The finite element method (Feng, 1965) is mainly used for numerical solution of partial differential equations.It consists of partitioning the computational domain into a mesh composed of disjoint smaller sub-domains called elements which cover the whole domain, and approximating the solution in each element using simple functions (usually polynomials) so that the original problem can be turned into a suitable one to be solved on modern computers.The finite element method has a very wide range of applications as one of the most important methods in scientific and engineering computing.In the finite element method, two key factors which can affect the computational efficiency and precision of the computed solution are quality and distribution of the mesh elements.The adaptive finite element method, first proposed by I.Babuska and W.Rheinboldt in 1978 (Babuska et al., 1978), automatically adjusts and optimizes the distribution of mesh elements according to estimation on the distribution of the error of the computed solution, in order to improve the precision of the computed solution.Recent researches show that for many problems with locally singular solutions, by using mathematically rigorous a posteriori error estimates and suitable adaptive strategy, the adaptive finite element method can produce quasi-optimal meshes and dramatically improve the overall computational efficiency.

  10. FINITE ELEMENT METHOD AND ANALYSIS FOR CHEMICAL-FLOODING SIMULATION

    Institute of Scientific and Technical Information of China (English)

    YUAN Yirang

    2000-01-01

    This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactants, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problems. From the actual conditions such as the effect of cross interference and the three-dimensional characteristic of large-scale science-engineering computation, this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estimates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, R. E. Ewing.

  11. Finite element method for thermal analysis of concentrating solar receivers

    OpenAIRE

    Shtrakov, Stanko; Stoilov, Anton

    2006-01-01

    Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...

  12. PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Yun-qing Huang; Shi Shu; Xi-jun Yu

    2006-01-01

    We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.

  13. Finite Element Simulation of Blanking Process

    Directory of Open Access Journals (Sweden)

    Afzal Ahmed

    2012-10-01

    daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui  eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing

  14. Finite element method based on combination of "saddle point" variational formulations

    Institute of Scientific and Technical Information of China (English)

    周天孝

    1997-01-01

    A modified mixed/hybrid finite element method, which is no longer required to satisfy the Babuska-Brezzi condition, is referred to as a stabilized method Based on the duality of vanational principles in solid mechanics, a new type of stabilized method, called the combinatorially stabilized mixed/hybrid finite element method, is presented by weight-averaging both the primal and the dual "saddle-point" schemes. Through a general analysis of stability and convergence under an abstract framework, it is shown that for the methods only an inf-sup inequality much weaker than Babuska-Brezzi condition needs to be satisfied. As a concrete application, it is concluded that the combinatorially stabilized Raviart and Thomas mixed methods permit the C -elements to replace the H(div; Ω)-elements.

  15. Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices

    CERN Document Server

    Avron, Haim

    2011-01-01

    We define the notion of effective stiffness and show that it can used to build sparsifiers, algorithms that sparsify linear systems arising from finite-element discretizations of PDEs. In particular, we show that sampling $O(n\\log n)$ elements according to probabilities derived from effective stiffnesses yields an high quality preconditioner that can be used to solve the linear system in a small number of iterations. Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite elements problems is of considerably more interest than the solution of SDD linear systems, since the finite element method is frequently used to numerically solve PDEs arising in scientific and engineering applications. Unlike SDD systems, which are relatively easy to precondition, there has been limited success in designing fast solvers for finite element systems, and previous algorithms usually tar...

  16. Applications of finite element simulation in orthopedic and trauma surgery.

    Science.gov (United States)

    Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis

    2012-04-18

    Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints

  17. Essentials of finite element modeling and adaptive refinement

    CERN Document Server

    Dow, John O

    2012-01-01

    Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t

  18. Mortar Upwind Finite Volume Element Method with Crouzeix-Raviart Element for Parabolic Convection Diffusion Problems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.

  19. Partitions of nonzero elements of a finite field into pairs

    CERN Document Server

    Karasev, R N

    2010-01-01

    In this paper we prove two theorems. Informally, they claim that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. We also consider some generalizations of these results to packing translates in a finite or infinite field.

  20. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...

  1. Finite element analysis of elasto-plastic plate bending problems using transition rectangular plate elements

    Institute of Scientific and Technical Information of China (English)

    Bahattin Kanber; O.Yavuz Bozkurt

    2006-01-01

    In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.

  2. Finite Element Crash Simulations and Impact-Induced Injuries

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  3. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  4. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...

  5. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...

  6. Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...

  7. Structural analysis with the finite element method linear statics

    CERN Document Server

    Oñate, Eugenio

    2013-01-01

    STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...

  8. Finite Element Crash Simulations and Impact-Induced Injuries

    OpenAIRE

    Mackerle, Jaroslav

    1999-01-01

    This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  9. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  10. Finite element model updating using bayesian framework and modal properties

    CSIR Research Space (South Africa)

    Marwala, T

    2005-01-01

    Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...

  11. Accurate Parallel Algorithm for Adini Nonconforming Finite Element

    Institute of Scientific and Technical Information of China (English)

    罗平; 周爱辉

    2003-01-01

    Multi-parameter asymptotic expansions are interesting since they justify the use of multi-parameter extrapolation which can be implemented in parallel and are well studied in many papers for the conforming finite element methods. For the nonconforming finite element methods, however, the work of the multi-parameter asymptotic expansions and extrapolation have seldom been found in the literature. This paper considers the solution of the biharmonic equation using Adini nonconforming finite elements and reports new results for the multi-parameter asymptotic expansions and extrapolation. The Adini nonconforming finite element solution of the biharmonic equation is shown to have a multi-parameter asymptotic error expansion and extrapolation. This expansion and a multi-parameter extrapolation technique were used to develop an accurate approximation parallel algorithm for the biharmonic equation. Finally, numerical results have verified the extrapolation theory.

  12. COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES

    Institute of Scientific and Technical Information of China (English)

    Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey

    2009-01-01

    Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.

  13. SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION

    Institute of Scientific and Technical Information of China (English)

    MeiLiquan

    1999-01-01

    In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.

  14. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    Science.gov (United States)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  15. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  16. Finite Element Meshes Auto-Generation for the Welted Bifurcation

    Institute of Scientific and Technical Information of China (English)

    YUANMei; LIYa-ping

    2004-01-01

    In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.

  17. Engineering and Design: Geotechnical Analysis by the Finite Element Method

    Science.gov (United States)

    2007-11-02

    used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element

  18. On the error bounds of nonconforming finite elements

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We prove that the error estimates of a large class of nonconforming finite elements are dominated by their approximation errors, which means that the well-known Cea’s lemma is still valid for these nonconforming finite element methods. Furthermore, we derive the error estimates in both energy and L2 norms under the regularity assumption u ∈ H1+s(Ω) with any s > 0. The extensions to other related problems are possible.

  19. Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Hai-hong; GUO Cheng

    2008-01-01

    An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.

  20. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  1. A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi

    2003-01-01

    On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.

  2. THE DERIVATIVE PATCH INTERPOLATING RECOVERY TECHNIQUE FOR FINITE ELEMENT APPROXIMATIONS

    Institute of Scientific and Technical Information of China (English)

    TieZhang; Yan-pingLin; R.J.Tait

    2004-01-01

    A derivative patch interpolating recovery technique is analyzed for the finite element approximation to the second order elliptic boundary value problems in two dimensional case.It is shown that the convergence rate of the recovered gradient admits superc onvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate (ultracovergence) at an internal node point when even order finite element spaces and local uniform meshes are used.

  3. Integration of geometric modeling and advanced finite element preprocessing

    Science.gov (United States)

    Shephard, Mark S.; Finnigan, Peter M.

    1987-01-01

    The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.

  4. Finite element analysis to model complex mitral valve repair.

    Science.gov (United States)

    Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent

    2016-01-01

    Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.

  5. Determination of a synchronous generator characteristics via Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kolondzovski Zlatko

    2005-01-01

    Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.

  6. A finite element primer for beginners the basics

    CERN Document Server

    Zohdi, Tarek I

    2014-01-01

    The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th

  7. Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements

    KAUST Repository

    Bonito, Andrea

    2011-01-01

    We propose and analyze an approximation technique for the Maxwell eigenvalue problem using H1-conforming finite elements. The key idea consists of considering a mixed method controlling the divergence of the electric field in a fractional Sobolev space H-α with α ∈ (1/2, 1). The method is shown to be convergent and spectrally correct. © 2011 American Mathematical Society.

  8. Linearization of dynamic equations of flexible mechanisms - a finite element approach

    NARCIS (Netherlands)

    Jonker, Ben

    1991-01-01

    A finite element based method is presented for evaluation of linearized dynamic equations of flexible mechanisms about a nominal trajectory. The coefficient matrices of the linearized equations of motion are evaluated as explicit analytical expressions involving mixed sets of generalized co-ordinate

  9. Finite Element Model Updating Using Response Surface Method

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...

  10. 3-wave mixing Josephson dipole element

    Science.gov (United States)

    Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.

    2017-05-01

    Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.

  11. Enhanced patch test of finite element methods

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wanji

    2006-01-01

    Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.

  12. Time domain simulation of piezoelectric excitation of guided waves in rails using waveguide finite elements

    CSIR Research Space (South Africa)

    Loveday, PW

    2007-03-01

    Full Text Available conventional finite element methods available in commercial software, these models tend to be very large. An alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite Elements). Models using...

  13. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  14. THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    李宏; 刘儒勋

    2001-01-01

    Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.

  15. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo

  16. Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; FENG Hui

    2005-01-01

    The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.

  17. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex

  18. B Free Finite Element Approach for Saturated Porous Media: Consolidation

    Directory of Open Access Journals (Sweden)

    M. M. Stickle

    2016-01-01

    Full Text Available The B free finite element approach is applied to the governing equations describing the consolidation process in saturated poroelastic medium with intrinsically incompressible solid and fluid phases. Under this approach, where Voigt notation is avoided, the finite element equilibrium equations and the linearization of the coupled governing equations are fully derived using tensor algebra. In order to assess the B free approach for the consolidation equations, direct comparison with analytical solution of the response of a homogeneous and isotropic water-saturated poroelastic finite column under harmonic load is presented. The results illustrate the capability of this finite element approach of reproducing accurately the response of quasistatic phenomena in a saturated porous medium.

  19. Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation

    Directory of Open Access Journals (Sweden)

    W. Kanok-Nukulchai

    2009-01-01

    Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.

  20. An implicit discontinuous Galerkin finite element model for water waves

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno

    2005-01-01

    We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent

  1. Finite Element Vibration Analysis of Beams, Plates and Shells

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.

  2. A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Tian-xiao Zhou; Xiao-ping Xie

    2003-01-01

    In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.

  3. Efficient Finite Element Methods for Transient Analysis of Shells.

    Science.gov (United States)

    1985-04-01

    Triangular Shell Element with Improved Membrane Interpolation," Communications in Applied Numerical Methods , in press 1985. Results of this work were...in Applied Numerical Methods , to appear. G.R. Cowper, G.M. Lindberg and M.D. Olson (1970), "A Shallow Shell Finite Element of Triangular Shape," Int. J

  4. Research of Stamp Forming Simulation Based on Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    SU Xaio-ping; XU Lian

    2008-01-01

    We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.

  5. Finite element analysis of two disk rotor system

    Science.gov (United States)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  6. Preconditioned CG-solvers and finite element grids

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.; Selberherr, S. [Technical Univ. of Vienna (Austria)

    1994-12-31

    To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.

  7. Adaptive grid finite element model of the tokamak scrapeoff layer

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  8. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...... lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...

  9. Footbridge between finite volumes and finite elements with applications to CFD

    Science.gov (United States)

    Pascal, Frédéric; Ghidaglia, Jean-Michel

    2001-12-01

    The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright

  10. SUPERCONVERGENCE ANALYSIS OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS OF THE STATIONARY BENARD TYPE

    Institute of Scientific and Technical Information of China (English)

    Yanzhen Chang; Danping Yang

    2008-01-01

    In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Bénard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the superconvergence analysis for the control; it is proved that the approximation has a second-order rate of convergence. We further give the superconvergence analysis for the states and the co-states. Then we derive error estimates in L∞-norm and optimal error estimates in L2-norm.

  11. Finite quantum corrections to the tribimaximal neutrino mixing

    CERN Document Server

    Araki, Takeshi; Xing, Zhi-zhong

    2010-01-01

    We calculate finite quantum corrections to the tribimaximal neutrino mixing pattern V_TB in three generic classes of neutrino mass models. We show that three flavor mixing angles can all depart from their tree-level results described by V_TB, and the Dirac CP-violating phase can radiatively arise from two Majorana CP-violating phases. This theoretical scheme offers a new way to understand why one neutrino mixing angle is naturally small and how three CP-violating phases are presumably correlated.

  12. ELASTO-PLASTIC FINITE ELEMENT ANALYSIS OF HOOK'S JOINT

    Directory of Open Access Journals (Sweden)

    Adnan ATICI

    1996-03-01

    Full Text Available In this study, stress analysis has been done in Hooke's joint by the finite element method. In finite element meshing, isoparametric quadrilateral elements with four nodes has been chosen and Lagrange polynomial has been used as the interpolation function. The special computer program has been written for the automatic mesh generation. In addition the other program has been developed to solve the finite element problems. Elastoplastic stress analysis is done to calculate the residual stresses in hooke's joint. Elasto-plastic stress values are calculated under loading from 400 daN to 1000 daN with increment of 100 daN. In this analysis "The initial stress method" is used.

  13. Finite element analysis of piezoelectric underwater transducers for acoustic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)

    2009-02-15

    This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering

  14. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    Science.gov (United States)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  15. Effective Finite Elements for Shell Analysis.

    Science.gov (United States)

    1984-02-20

    conjunction with a shallow shell theory . It 2 should be noteJ that contrary to the results of earlier investigators [12,19], use of a shallow shell theory in...the inadequacy of the shallow shell theory for the relatively deep element emerging from such a coarse mesh. A considerable improvement is obtained

  16. Energy- and enstrophy-conserving schemes for the shallow-water equations, based on mimetic finite elements

    CERN Document Server

    McRae, Andrew T T

    2013-01-01

    This paper presents a family of spatial discretisations of the nonlinear rotating shallow-water equations that conserve both energy and potential enstrophy. These are based on two-dimensional mixed finite element methods, and hence, unlike some finite difference methods, do not require an orthogonal grid. Numerical verification of the aforementioned properties is also provided.

  17. A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications

    Science.gov (United States)

    Chi, Heng; Lopez-Pamies, Oscar; Paulino, Glaucio H.

    2016-02-01

    This paper presents a new variational principle in finite elastostatics applicable to arbitrary elastic solids that may contain constitutively rigid spatial domains (e.g., rigid inclusions). The basic idea consists in describing the constitutive rigid behavior of a given spatial domain as a set of kinematic constraints over the boundary of the domain. From a computational perspective, the proposed formulation is shown to reduce to a set of algebraic constraints that can be implemented efficiently in terms of both single-field and mixed finite elements of arbitrary order. For demonstration purposes, applications of the proposed rigid-body-constraint formulation are illustrated within the context of elastomers, reinforced with periodic and random distributions of rigid filler particles, undergoing finite deformations.

  18. FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Junping Wang; Xiaoshen Wang; Xiu Ye

    2008-01-01

    We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.

  19. Variational formulation of high performance finite elements: Parametrized variational principles

    Science.gov (United States)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  20. New triangular and quadrilateral plate-bending finite elements

    Science.gov (United States)

    Narayanaswami, R.

    1974-01-01

    A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.

  1. On Using Particle Finite Element for Hydrodynamics Problems Solving

    Directory of Open Access Journals (Sweden)

    E. V. Davidova

    2015-01-01

    Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \

  2. Finite Element Analysis of Circular Plate using SolidWorks

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeo Jin; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts

  3. Finite element analysis of dynamic response and structure borne noise of gearbox

    Institute of Scientific and Technical Information of China (English)

    LIU Wen; LIN Teng-jiao; LI Run-fang; DU Xue-song

    2007-01-01

    A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.

  4. COUPLING OF ASSUMED STRESS FINITE ELEMENT AND BOUNDARY ELEMENT METHODS WITH STRESS-TRACTION EQUILIBRIUM

    Institute of Scientific and Technical Information of China (English)

    GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah

    2004-01-01

    In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.

  5. Lepton and Quark Mixing Patterns from Finite Flavor Symmetries

    CERN Document Server

    Yao, Chang-Yuan

    2015-01-01

    We perform a systematical and analytical study of lepton mixing which can be derived from the subgroups of $SU(3)$ under the assumption that neutrinos are Dirac particles. We find that type D groups can predict lepton mixing patterns compatible with the experimental data at $3\\sigma$ level. The lepton mixing matrix turns out to be of the trimaximal form, and the Dirac CP violating phase is trivial. Moreover, we extend the flavor symmetry to the quark sector. The Cabibbo mixing between the first two generations of quarks can be generated by type D groups. Since all the finite subgroups of $U(3)$ which are not the subgroups of $SU(3)$ have not been classified, an exhaustive scan over all finite discrete groups up to order 2000 is performed with the help of the computer algebra system \\texttt{GAP}. We find that only 90 (10) groups for Dirac (Majorana) neutrinos can generate the lepton mixing angles in the experimentally preferred ranges. The lepton mixing matrix is still the trimaximal pattern and the Dirac CP p...

  6. Finite element code development for modeling detonation of HMX composites

    Science.gov (United States)

    Duran, Adam V.; Sundararaghavan, Veera

    2017-01-01

    In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.

  7. Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis

    Science.gov (United States)

    Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.

    2005-01-01

    A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.

  8. A Finite Element Method for Cracked Components of Structures

    Institute of Scientific and Technical Information of China (English)

    刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星

    2003-01-01

    In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.

  9. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  10. Finite element modeling for volume phantom in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    I. O. Rybina

    2011-10-01

    Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.

  11. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  12. Probabilistic finite elements for transient analysis in nonlinear continua

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  13. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  14. Finite element analysis of magnetization reversal in granular thin films

    CERN Document Server

    Spargo, A W

    2002-01-01

    This thesis develops a Galerkin finite element model of magnetisation dynamics in granular thin films. The governing equations of motion are the Gilbert equations with an effective magnetic field taking contributions from exchange interactions, magnetocrystalline anisotropy, applied magnetic field as well as the magnetostatic field given by Maxwells equations. The magnetostatic field is formulated as a scalar potential described by Poissons equation which is solved using a second order finite element method. The Gilbert equations are discretized in time using an implicit midpoint method which naturally conserves the magnitude of the magnetisation vector. An infinite thin film is approximated using periodic boundary conditions with material microstructure represented using the Voronoi tessellation. The effects of thermal fluctuations are modelled by the stochastic Langevin-Gilbert equations, again solved by a Galerkin finite element method. The implicit midpoint time-stepping scheme ensures that solutions conv...

  15. Finite element simulation of barge impact into a rigid wall

    Directory of Open Access Journals (Sweden)

    H.W. Leheta

    2014-03-01

    Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.

  16. INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    郭书祥; 吕震宙

    2001-01-01

    When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.

  17. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  18. Splitting extrapolation based on domain decomposition for finite element approximations

    Institute of Scientific and Technical Information of China (English)

    吕涛; 冯勇

    1997-01-01

    Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.

  19. Compatible finite element spaces for geophysical fluid dynamics

    CERN Document Server

    Natale, Andrea

    2016-01-01

    Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.

  20. Least-squares finite-element lattice Boltzmann method.

    Science.gov (United States)

    Li, Yusong; LeBoeuf, Eugene J; Basu, P K

    2004-06-01

    A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.

  1. NURBS-enhanced finite element method for Euler equations

    OpenAIRE

    Sevilla Cárdenas, Rubén; Fernandez Mendez, Sonia; Huerta, Antonio , coaut.

    2008-01-01

    This is the pre-peer reviewed version of the following article: Sevilla, R.; Fernandez, S.; Huerta, A. NURBS-enhanced finite element method for Euler equations. "International journal for numerical methods in fluids", Juliol 2008, vol. 57, núm. 9, p. 1051-1069., which has been published in final form at http://www3.interscience.wiley.com/journal/117905455/abstract In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous Galerkin (DG) formulation for t...

  2. Substructure System Identification for Finite Element Model Updating

    Science.gov (United States)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  3. FINITE ELEMENT IMPLEMENTATION OF DELAMINATION IN COMPOSITE PLATES

    Directory of Open Access Journals (Sweden)

    Milan Žmindák

    2012-12-01

    Full Text Available Modelling of composite structures by finite element (FE codes to effectively model certain critical failure modes such as delamination is limited. Previous efforts to model delamination and debonding failure modes using FE codes have typically relied on ad hoc failure criteria and quasi-static fracture data. Improvements to these modelling procedures can be made by using an approach based on fracture mechanics. A study of modelling delamination using the finite element code ANSYS was conducted. This investigation demonstrates the modelling of composites through improved delamination modelling. Further developments to this approach may be improved.

  4. THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Dongying Hua; Lieheng Wang

    2007-01-01

    We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from (O)(h3/4) to quasi-optimal (O)(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available,the convergence rate can be improved to the optimal (O)(h) as expected by the linear approximation.

  5. Matlab and C programming for Trefftz finite element methods

    CERN Document Server

    Qin, Qing-Hua

    2008-01-01

    Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th

  6. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  7. Two-dimensional finite-element temperature variance analysis

    Science.gov (United States)

    Heuser, J. S.

    1972-01-01

    The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.

  8. SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING

    Institute of Scientific and Technical Information of China (English)

    党发宁; 荣廷玉; 孙训方

    2001-01-01

    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  9. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  10. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  11. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    Science.gov (United States)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  12. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  13. The Finite Element Method An Introduction with Partial Differential Equations

    CERN Document Server

    Davies, A J

    2011-01-01

    The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. Co

  14. Local and Parallel Finite Element Algorithms for Eigenvalue Problems

    Institute of Scientific and Technical Information of China (English)

    Jinchao Xu; Aihui Zhou

    2002-01-01

    Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.

  15. Diffusive mesh relaxation in ALE finite element numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  16. Discontinuous Galerkin finite element methods for gradient plasticity.

    Energy Technology Data Exchange (ETDEWEB)

    Garikipati, Krishna. (University of Michigan, Ann Arbor, MI); Ostien, Jakob T.

    2010-10-01

    In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.

  17. SUPERCONVERGENCE ANALYSIS FOR CUBIC TRIANGULAR ELEMENT OF THE FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Qi-ding Zhu

    2000-01-01

    In this paper, we construct a projection interpolation for cubic triangular ele- ment by using othogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1 -e order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.

  18. Parallel finite element modeling of earthquake ground response and liquefaction

    Institute of Scientific and Technical Information of China (English)

    Jinchi Lu(陆金池); Jun Peng(彭军); Ahmed Elgamal; Zhaohui Yang(杨朝晖); Kincho H. Law

    2004-01-01

    Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors.

  19. Finite quantum corrections to the tribimaximal neutrino mixing

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Takeshi, E-mail: araki@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Geng, Chao-Qiang, E-mail: geng@phys.nthu.edu.t [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Xing Zhizhong, E-mail: xingzz@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-05-16

    We calculate finite quantum corrections to the tribimaximal neutrino mixing pattern V{sub TB} in three generic classes of neutrino mass models. We show that three flavor mixing angles can all depart from their tree-level results described by V{sub TB}, among which {theta}{sub 12} is most sensitive to such quantum effects, and the Dirac CP-violating phase can radiatively arise from two Majorana CP-violating phases. This theoretical scheme offers a new way to understand why {theta}{sub 13} is naturally small and how three CP-violating phases are presumably correlated.

  20. Finite element approach for transient analysis of multibody systems

    Science.gov (United States)

    Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.

    1992-01-01

    A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.