WorldWideScience

Sample records for mitigation project idaho

  1. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Katherine [Idaho Department of Fsh and Game

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  2. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  3. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  4. Special isotope separation project, Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    1988-02-01

    Construction and operation of a Special Isotope Separation (SIS) project using the Atomic Vapor Laser Isotope Separation (AVLIS) process technology at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho are proposed. The SIS project would process fuel-grade plutonium administered by the Department of Energy (DOE) into weapon-grade plutonium using AVLIS and supporting chemical processes. The SIS project would require construction and operation of a Laser Support Facility to house the laser system and a Plutonium Processing Facility. The SIS project would be integrated with existing support and waste management facilities at the selected site. The SIS project would provide DOE with the capability of segregating the isotopes of DOE-owned plutonium into specific isotopic concentrations. This capability would provide redundancy in production capacity, technological diversity, and flexibility in DOE's production of nuclear materials for national defense. Use of the INEL site would impact 151,350 square meters (37.4 acres) of land, of which more than 70% has been previously disturbed. During construction, plant and animal habitat associated with a sagebrush vegetation community would be lost. During operation of the SIS facilities, unavoidable radiation exposures would include occupational exposures and exposures to the public from normal atmospheric releases of radioactive materials that would be minimal compared to natural background radiation

  5. Mission Need Statement: Idaho Spent Fuel Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  6. Field review of fish habitat improvement projects in central Idaho

    International Nuclear Information System (INIS)

    Beschta, R.L.; Griffith, J.; Wesche, T.A.

    1993-05-01

    The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief period for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho

  7. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  8. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE's instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department's obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act

  9. Successful neural network projects at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Cordes, G.A.

    1991-01-01

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs

  10. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  11. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  12. Summaries of the Idaho National Engineering Laboratory Radioecology and Ecology Program research projects

    International Nuclear Information System (INIS)

    Markham, O.D.

    1987-06-01

    This report provides summaries of individual research projects conducted by the Idaho National Engineering Laboratory Radioecology and Ecology Program. Summaries include projects in various stages, from those that are just beginning, to projects that are in the final publication stage

  13. Aerial gamma ray and magnetic survey: Idaho Project, Hailey, Idaho Falls, Elk City quadrangles of Idaho/Montana and Boise quadrangle, Oregon/Idaho. Final report

    International Nuclear Information System (INIS)

    1979-09-01

    During the months of July and August, 1979, geoMetrics, Inc. collected 11561 line mile of high sensitivity airborne radiometric and magnetic data in Idaho and adjoining portions of Oregon and Montana over four 1 0 x 2 0 NTMS quadrangles (Boise, Hailey, Idaho Falls, and Elk City) as part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as five volumes (one Volume I and four Volume II's). Approximately 95 percent of the surveyed areas are occupied by exposures of intrusive and extrusive rocks. The Cretaceous-Tertiary Idaho Batholith dominates the Elk City and Hailey quadrangles. The Snake River volcanics of Cenozoic Age dominate the Idaho Falls quadrangle and southeast part of the Hailey sheet. Tertiary Columbia River basalts and Idaho volcanics cover the Boise quadrangle. There are only two uranium deposits within the four quadrangles. The main uranium producing areas of Idaho lie adjacent to the surveyed area in the Challis and Dubois quadrangles

  14. Idaho | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov (United States)

    % interest for solar PV projects. Low-interest financing Idaho Energy Resources Authority Solar PV project for financing through the Idaho Governor's Office and the Idaho Energy Resources Authority. Latest -owned community solar project for Idaho Power. Net Metering Idaho does not have statewide net metering

  15. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  16. Aerial gamma ray and magnetic survey: Idaho Project, Idaho Falls quadrangle, Idaho. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Idaho Falls quadrangle in southeastern Idaho lies at the juncture of the Snake River Plain, the Northern Rocky Mountains, and the Basin-Range Province. Quaternary basalts of the Snake River Plain occupy 70% of the quadrangle. The rest of the area is covered by uplifted Paleozoic, Mesozoic, and Cenozoic rocks of the Pre-Late Cenozoic Orogenic Complex. Magnetic data apparently show contributions from both shallow and deep sources. The apparent expression of intrusive and extrusive rocks of late Mesozoic and Cenozoic age tends to mask the underlying structural downtrap thought to exist under the Snake River Plain. The Idaho Falls quadrangle has been unproductive in terms of uranium mining. A single claim exists in the Sawtooth Mountains, but no information was found concerning its present status at the time of this study. A total of 169 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle, though one large group appears to relate to unnatural radiation sources in the Reactor Test Site area. The most distinctive anomalies occur in the Permian Phosphoria Formation and the Starlight Volcanics in the Port Neuf Mountains

  17. Idaho National Laboratory Ten-Year Site Plan Project Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2012-03-01

    This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

  18. 76 FR 28024 - Swan Falls Hydroelectric Project, Idaho Power Company; Notice of Teleconference

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 503-048-ID] Swan Falls Hydroelectric Project, Idaho Power Company; Notice of Teleconference a. Date and Time of Meeting: Tuesday, May 24, 2011 at 10 a.m. (Mountain Time). b. Place: By copy of this notice we are inviting all interested parties to attend a teleconference from...

  19. Mitigating for nature in Danish infrastructure projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Christensen, Per

    2015-01-01

    his paper presents results of a Danish study of mitigation efforts directed at nature protection in EIA of Danish infrastructure projects. The projects included in the study comprise road, rail, bridges, tunnels cables and oil- and gas-pipes. The study is based on a document analysis of EIA reports......, a workshop held with EIA professionals, a study of two cases and a survey among EIA professionals. The study reveals whether and how the mitigation hierarchy has been adhered to and what types of mitigation measures have been suggested. The study digs a bit deeper in discussing the dynamics in which...

  20. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  1. Idaho habitat/natural production monitoring: Part 1. Annual report 1995

    International Nuclear Information System (INIS)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-11-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game's 1992--1996 Anadromous Fish Management Plan

  2. Aerial gamma ray and magnetic survey: Idaho Project, Hailey quadrangle of Idaho. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Hailey quadrangle in central Idaho lies at the boundary between the Northern Rocky Mountains and the western Cordilleran Physiographic Provinces. The area is dominated by intrusives of the Idaho and Sawtooth Batholiths, but contains considerable exposures of Tertiary and Quaternary volcanics, and Paleozoic sedimentary rocks. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Paleozoic and Tertiary rocks appear to express themselves as roughly defined regions of high frequency/high amplitude wavelengths. The Hailey quadrangle has been unproductive in terms of uranium mining, though some prospects do exist south of the town of Hailey. The quadrangle contains significant exposures of the Tertiary Challis Formation (primarily volcanics) which has been productive in other areas to the north. A total of 161 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive groups of anomalies are associated with Tertiary igneous rocks in the mountainous areas

  3. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  4. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  5. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  6. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  7. The Idaho Spent Fuel Project Update-January, 2003

    International Nuclear Information System (INIS)

    Roberts, R.; Tulberg, D.; Carter, C.

    2003-01-01

    The Department of Energy awarded a privatized contract to Foster Wheeler Environmental Corporation in May 2000 for the design, licensing, construction and operation of a spent nuclear fuel repackaging and storage facility. The Foster Wheeler Environmental Team consists of Foster Wheeler Environmental Corp. (the primary contractor), Alstec, RWE-Nukem, RIO Technical Services, Winston and Strawn, and Utility Engineering. The Idaho Spent Fuel (ISF) facility is an integral part of the DOE-EM approach to accelerating SNF disposition at the Idaho National Engineering and Environmental Laboratory (INEEL). Construction of this facility is also important in helping DOE to meet the provisions of the Idaho Settlement Agreement. The ISF Facility is a substantial facility with heavy shielding walls in the repackaging and storage bays and state-of-the-art features required to meet the provisions of 10 CFR 72 requirements. The facility is designed for a 40-year life

  8. Albeni Falls wildlife mitigation project: annual report of mitigation activities

    International Nuclear Information System (INIS)

    Terra-Burns, Mary

    2002-01-01

    The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres (∼4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002

  9. Distributed Wind Energy in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, John [Boise State Univ., ID (United States); Johnson, Kathryn [Colorado School of Mines, Golden, CO (United States); Haynes, Todd [Boise State Univ., ID (United States); Seifert, Gary [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  10. After Action Report: Idaho National Laboratory Annual Exercise June 10, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Vernon Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    On June 10, 2015, Idaho National Laboratory (INL), in coordination with the State of Idaho, local jurisdictions, Department of Energy Idaho Operations Office (DOE-ID), and DOE Headquarters (DOE HQ), conducted the annual emergency exercise to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.” The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with other INL contractors, conducted operations and demonstrated appropriate response measures to mitigate an event and protect the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  11. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  12. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  13. Idaho forest carbon projections from 2017 to 2117 under forest disturbance and climate change scenarios

    Science.gov (United States)

    Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.

    2017-12-01

    Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and

  14. A summary of the environmental restoration program retrieval demonstration project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-02-01

    This report provides a summary of the Environmental Restoration Program's Retrieval Demonstration Project at the Idaho National Engineering Laboratory. This project developed concepts for demonstrating facilities and equipment for the retrieval of buried transuranic mixed waste at the INEL. Included is a brief assessment of the viability, cost effectiveness, and safety of retrieval based on the developed concept. Changes made in Revision 1 reflect editorial changes only. 31 refs., 1 fig

  15. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  16. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  17. Aerial gamma ray and magnetic survey: Idaho Project, Elk City quadrangle of Idaho/Montana. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Elk City quadrangle in north central Idaho and western Montana lies within the Northern Rocky Mountain province. The area is dominated by instrusives of the Idaho and Sawtooth Batholiths, but contains significant exposures of Precambrian metamorphics and Tertiary volcanics. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Precambrian and Tertiary rocks appear to express themselves as well defined regions of high frequency and high amplitudes wavelengths. The Elk City quadrangle has been unproductive in terms of uranium mining, though it contains significant exposures of the Challis Formation, which has been productive in other areas south of the quadrangle. A total of 238 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive group of anomalies with peak apparent uranium concentrations of 10.0 ppM eU or greater

  18. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Soults, Scott [Kootenai Tribe of Idaho

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  19. Project management best practices: forging win-win partnerships and mitigating power project risk

    International Nuclear Information System (INIS)

    Trowsdale, R.

    2006-01-01

    This paper discusses aspects of project management to mitigate power project risk. end-to-end project development involves development phase, permitting phase, implementation phase, and operational phase. Each phase involves a number of different elements. In renewable energy project good management requires maintaining project discipline and schedule throughout all phases. Project success requires commercial competitiveness, fuel availability, power sales contracts, stake holder support, permitting, effective execution, construction and good technical performance

  20. Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Murthy, I.K.; Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.; Sahana, C.A.; Srivathsa, K.G.; Khan, H.

    2007-06-01

    There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the area haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.

  1. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    Energy Technology Data Exchange (ETDEWEB)

    CROCKETT, JOHN

    2006-12-31

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  2. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    Science.gov (United States)

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  3. Wildlife Impact Assessment Palisades Project, Idaho, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather-Blair, Signe

    1985-02-01

    The Habitat Evaluation Procedures were used to evaluate pre- and post-construction habitat conditions of the US Bureau of Reclamation's Palisades Project in eastern Idaho. Eight evaluation species were selected with losses expressed in the number of Habitat Units (HU's). One HU is equivalent to one acre of prime habitat. The evaluation estimated that a loss of 2454 HU's of mule deer habitat, 2276 HU's of mink habitat, 2622 HU's of mallard habitat, 805 HU's of Canada goose habitat, 2331 HU's of ruffed grouse habitat, 5941 and 18,565 HU's for breeding and wintering bald eagles, and 1336 and 704 HU's for forested and scrub-shrub wetland nongame species occurred as a result of the project. The study area currently has 29 active osprey nests located around the reservoir and the mudflats probably provide more feeding habitat for migratory shore birds and waterfowl than was previously available along the river. A comparison of flow conditions on the South Fork of the Snake River below the dam between pre- and post-construction periods also could not substantiate claims that water releases from the dam were causing more Canada goose nest losses than flow in the river prior to construction. 41 refs., 16 figs., 9 tabs.

  4. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, John D.; Marshall, Margaret A.; Gorham, Mackenzie L.; Christensen, Joseph; Turnbull, James C.; Clark, Kim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) (1) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (2) were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  5. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  6. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  7. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    International Nuclear Information System (INIS)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER ampersand WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG ampersand G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL's roadmapping efforts

  8. 75 FR 31418 - Intermountain Region, Payette National Forest, Council Ranger District; Idaho; Mill Creek-Council...

    Science.gov (United States)

    2010-06-03

    ... Ranger District; Idaho; Mill Creek--Council Mountain Landscape Restoration Project AGENCY: Forest Service... the Mill Creek--Council Mountain Landscape Restoration Project. The approximate 51,900 acre project area is located about two miles east of Council, Idaho. The Mill Creek--Council Mountain Landscape...

  9. Evaluating aggregate terrestrial impacts of road construction projects for advanced regional mitigation.

    Science.gov (United States)

    Thorne, James H; Girvetz, Evan H; McCoy, Michael C

    2009-05-01

    This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.

  10. Evaluating Aggregate Terrestrial Impacts of Road Construction Projects for Advanced Regional Mitigation

    Science.gov (United States)

    Thorne, James H.; Girvetz, Evan H.; McCoy, Michael C.

    2009-05-01

    This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.

  11. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  12. Wildlife Loss Estimates and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume Three, Hungry Horse Project.

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Daniel

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlife species incurring positive impacts attributable to the project were identified.

  13. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  14. Hellsgate Winter Range: Wildlife mitigation project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs

  15. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  16. After Action Report: Idaho National Laboratory Annual Exercise August 1, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Scott V. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    On August 1, 2014, Idaho National Laboratory (INL), in coordination with the State of Idaho, local jurisdictions, Department of Energy (DOE) Idaho Operations Office, and DOE Headquarters (DOE-HQ), conducted the annual emergency exercise to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.” The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with other INL contractors, conducted operations and demonstrated appropriate response measures to mitigate an event and protect the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures. Report data were collected from multiple sources, which included documentation generated during exercise response, player critiques conducted immediately after terminating the exercise, personnel observation sheets, and evaluation critiques. Evaluation of this exercise served as a management assessment of the performance of the INL Emergency Management Program (IAS141618).

  17. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  18. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

    1994-01-01

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  19. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  20. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  1. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  2. Idaho National Engineering Laboratory decontamination and decommissioning summary

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1981-01-01

    Topics covered concern the decontamination and decommissioning (D and D) work performed at the Idaho National Engineering Laboratory (INEL) during FY 1979 and include both operations and development projects. Briefly presented are the different types of D and D projects planned and the D and D projects completed. The problems encountered on these projects and the development program recommended are discussed

  3. ICPP injection well alternative project, Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    The Idaho Chemical Processing Plant (ICPP) portion of the Idaho National Engineering Laboratory (INEL) has been obtaining water needed for its operations from the Snake River aquifer, which occupies the entire region underlying the site. Most of this water has been used for cooling operating equipment, while a small portion has found various process uses. After passing through the ICPP process area, these waters are then returned to the aquifer. A small portion (about 1%) of the returned stream contains measurable amounts of radioactivity derived from the miscellaneous process users. This report and the recommendations contained herein are based upon stream flows projected for 1985 as supplied by DOE for the ICPP. 26 different alternatives for handling cooling water, chemical, and low level radioactive water disposal are examined. These cases are considered from technical, environmental, safety, and economic points of view. The level of detail is sufficient to eliminate non-viable cases, and to identify those which offer improvements over present practice. The Environmental/Safety Risk Factors were evaluated on a qualitative comparison basis only. Before a recommended improvement is incorporated into the waste disposal system, a conceptual design study should be made which would evaluate all those secondary effects and environmental factors that, by the very nature of the screening process, this study has not provided. Certain synergistic combinations have been noted and are discussed. This report does note whether the operations considered are in regulatory compliance, or are likely to be capable of providing lasting improvement to the waste water system. Qualitative comparisons were made between the various alternatives to confirm their relationship with applicable standards

  4. Long term performance of radon mitigation systems

    International Nuclear Information System (INIS)

    Prill, R.; Fisk, W.J.

    2002-01-01

    Researchers installed radon mitigation systems in 12 houses in Spokane, Washington and Coeur d'Alene, Idaho during the heating season 1985--1986 and continued to monitor indoor radon quarterly and annually for ten years. The mitigation systems included active sub-slab ventilation, basement over-pressurization, and crawlspace isolation and ventilation. The occupants reported various operational problems with these early mitigation systems. The long-term radon measurements were essential to track the effectiveness of the mitigation systems over time. All 12 homes were visited during the second year of the study, while a second set 5 homes was visited during the fifth year to determine the cause(s) of increased radon in the homes. During these visits, the mitigation systems were inspected and measurements of system performance were made. Maintenance and modifications were performed to improve system performance in these homes

  5. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  6. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  7. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  8. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  9. Evaluating experience with electricity generating GHG mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    2003-07-01

    Several programmes have been initiated to encourage the development of projects that mitigate emissions of greenhouse gases. Recent programmes have been undertaken at the national level, such as the Dutch five-track approach, including contracts with multilateral institutions, regional development banks, private banks, bilateral contracts with countries, participation in carbon funds and the ERUPT and CERUPT tenders, Japanese Clean Development Mechanism (CDM) feasibility studies, and the more recent Finnish, Austrian and Italian JI/CDM programmes. International programmes, such as the World Bank's Prototype Carbon Fund (and other WB carbon funds), have also been initiated. Individual projects not belonging to particular programmes have also been initiated under the pilot phase of 'activities implemented jointly' (AIJ) under the United Nations Framework Convention on Climate Change (UNFCCC), or developed as CDM or Joint Implementation (JI) projects. Some CDM project activities have been formally submitted to the CDM's Executive Board (EB), who approved the first set of baseline and monitoring methodologies for CDM project activities in July 2003. There is a large variety in the type of projects that have been put forward. These include energy, industry, forestry and waste projects. This paper will focus on CDM-type projects that generate grid-connected electricity for several reasons: demand for electricity is growing rapidly in many potential host countries; many projects in the electricity sector have been developed as potential CDM and JI projects; assessing additionality and baselines is arguably more difficult for projects in the electricity sector (where a range of project types may occur as part of business-as-usual activities) than for end-of-pipe projects such as landfill gas capture and flaring or decomposition of F-gases; much work has been done on assessing appropriate methods to determine baselines in the electricity sector, at the

  10. Hellsgate Winter Range: Wildlife Mitigation Project. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-03-01

    BPA proposes to fund the Hellsgate Winter Range: Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The Project is intended to mitigate for wildlife and wildlife habitat adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs. The Project would allow the sponsors to secure land and conduct wildlife habitat improvement and long-term management activities within the boundaries of the Colville Indian Reservation. BPA has prepared an Environmental Assessment (EA) (DOE/EA-0940) evaluating the potential environmental effects of the proposed Project (Alternative B) and No Action (Alternative A). Protection and re-establishment of riparian and upland habitat on the Colville Indian Reservation, under Alternative B, would not have a significant adverse environmental impact because: (1) there would be only limited, mostly short-term adverse impacts on soils, water quality, air quality, vegetation, and wildlife (including no effect on endangered species); and (2) there would be no adverse effect on water quantity, cultural resources, or land use. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI

  11. IDF Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2008-09-01

    This document provides a review and status of activities conducted in support of the CH2MHill Hanford Group (CHG) Compensatory Mitigation Implementation Plan (MIP) for the Integrated Disposal Facility (IDF). It includes time-zero monitoring results for planting activities conducted in December 2007, annual survival monitoring for all planting years, a summary of artificial burrow observations, and recommendations for the successful completion of DOE mitigation commitments for this project.

  12. Mitigation of socio-economic impacts due to the construction of energy projects in rural communities: an evaluation of the Hartsville nuclear power plant transportation-mitigation program

    International Nuclear Information System (INIS)

    Whitney, T.C.

    1982-01-01

    This study analyzes the effects of a commuter ride-sharing program in mitigating the harmful socio-economic impacts of a short-term, labor-intensive nuclear-power-plant construction project. The major hypothesis is that transportation-mitigation programs are more cost-effective in reducing the undesirable socio-economic impacts of large-scale construction projects than programs designed to mitigate impacts through the provision of public services for migrating workers. The dissertation begins by delineating the socio-economic effects of large-scale construction projects in rural areas. It proceeds to show how some of the deleterious impacts were mitigated using a commuter ride-sharing program. After the range of potential socio-economic impacts was established, a framework was developed to evaluate the effects of the transportation-mitigation program in mediating the harmful impacts. The framework involved the integration of the cost-benefit technique with social-impact assessment. The evaluation was grounded in a comparative framework whereby the Hartsville project community was compared with a similar community undergoing the construction of a nuclear power plant but without a commuter ride-sharing program, and a community not experiencing a major construction project. The research findings indicated that the transportation-mitigation program substantially reduced the in-migration of construction workers into the Hartsville-Trousdale County area. Further, the program was cost effective, with a benefit-cost ratio of 2.5 and net benefits totalling 28 million dollars

  13. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  14. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  15. Washington wildlife mitigation projects. Final programmatic environmental assessment and finding of no significant impact

    International Nuclear Information System (INIS)

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities

  16. Blue Creek Winter Range: Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  17. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1992-06-01

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained

  18. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    Science.gov (United States)

    Hilliard, L. M.; Rajagopalan, Ganesh; Turner, Charles; Stevenson, Thomas; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  19. Performance evaluation of chip seals in Idaho.

    Science.gov (United States)

    2010-08-01

    The intent of this research project is to identify a wide variety of parameters that influence the performance of pavements treated via chip seals within the State of Idaho. Chip sealing is currently one of the most popular methods of maintenance for...

  20. A review on disaster risk mitigation in the oil and gas project

    Science.gov (United States)

    Rodhi, N. N.; Anwar, N.; Wiguna, I. P. A.

    2018-01-01

    In addition to the very complex risks, hazards potentially lead to disasters in the oil and gas projects. These risks can certainly be anticipated with the application of risk management, but an unsystematic and ineffective implementation of risk management will still bring adverse impacts. According to the eleven risk management principles in ISO 31000:2009, the application of risk management must pay attention to all aspects, both internal and external factors. Thus, this paper aims to identify variables that could affect the disaster mitigation efforts of oil and gas projects. This research began with literature study to determine the problems of risk management in oil and gas projects, so the affecting variables as the study objectives can be specified subsequently based on the literature review as well. The variables that must be considered in the efforts of disaster risk mitigation of oil and gas project are the risk factors and sustainability aspect.

  1. After Action Report:Idaho National Laboratory (INL) 2014 Multiple Facility Beyond Design Basis (BDBE) Evaluated Drill October 21, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, V. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    On October 21, 2014, Idaho National Laboratory (INL), in coordination with local jurisdictions, and Department of Energy (DOE) Idaho Operations Office (DOE ID) conducted an evaluated drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System” when responding to a beyond design basis event (BDBE) scenario as outlined in the Office of Health, Safety, and Security Operating Experience Level 1 letter (OE-1: 2013-01). The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with CH2M-WG Idaho, LLC (CWI), and Idaho Treatment Group LLC (ITG), successfully demonstrated appropriate response measures to mitigate a BDBE event that would impact multiple facilities across the INL while protecting the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  2. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES ampersand H/quality assurance programs was conducted

  3. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  4. Conforth Ranch (Wanaket) Wildlife Mitigation Project. Draft Management Plan and Draft Environmental Assessment

    International Nuclear Information System (INIS)

    1995-03-01

    Bonneville Power Administration (BPA) proposes to mitigate for loss of wildlife habitat caused by the development of Columbia River Basin hydroelectric projects, including McNary dam. The proposed wildlife mitigation project involves wildlife conservation on 1140 hectares (ha)(2817 acres) of land (including water rights) in Umatilla County, Oregon. BPA has prepared an Environmental Assessment (EA)(DOE/EA- 1016) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI)

  5. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane and willow). Study shows that carbon mitigation assessment through LCA is possible and that it could be a useful tool for decision makers as it can compare different projects regardless of their original context. Case...

  6. Academy of Program/Project & Engineering Leadership Orbital Debris Management and Risk Mitigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Academy of Program/Project & Engineering Leadership (APPEL) is excited to announce the public release of Orbital Debris Management and Risk Mitigation,...

  7. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.W.

    1979-07-01

    Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

  8. Towards a private-public synergy in financing climate change mitigation projects

    NARCIS (Netherlands)

    Zhang, ZX; Maruyama, A

    2001-01-01

    Funding for greenhouse gas mitigation projects in developing countries is crucial for addressing the global climate change problem. By examining current climate change-related financial mechanisms and their limitations, this paper indicates that their roles are limited in affecting developing

  9. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  10. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  11. Safety equipment list for the 241-SY-101 RAPID mitigation project

    Energy Technology Data Exchange (ETDEWEB)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  12. Safety equipment list for the 241-SY-101 RAPID mitigation project

    International Nuclear Information System (INIS)

    Morris, K.L.

    1999-01-01

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein

  13. Willow Creek Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    Today's notice announces BPA's proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA's obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council's 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI

  14. Cost control and risk mitigation of major projects

    International Nuclear Information System (INIS)

    Caddy, D.G.

    1993-01-01

    In this paper and presentation, the four major types of estimates will be discussed, i.e., capacity factored, equipment factored, semi-detailed and detailed. Key relationships between particular portions of estimates will be discussed such as the relationship between direct field labor and indirect field costs. Having set the basis for developing a project's cost through estimating, the paper will then list and discuss the fifteen key steps which must be followed to control the costs of a project. Next, the subject of allowances and contingency will be discussed and defined and the differences between the two will be highlighted. Having established exactly what contingency is, the subject of risk analysis through RANGE estimating will be discussed. The methods used to establish a precise contingency and probability of an over/under run will be discussed. Finally, the paper will discuss the methods by which a project manager, owner or contractor can mitigate risks; that is to eliminate, transfer or minimize their effect

  15. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonid species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The Snake

  16. Evaluation of impacts and mitigation assessments for the UMTRA Project: Gunnison and Durango pilot studies. Final report

    International Nuclear Information System (INIS)

    Beranich, S.J.

    1994-01-01

    This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed for mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process

  17. 77 FR 24505 - Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings

    Science.gov (United States)

    2012-04-24

    ...] Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings AGENCY... for Wind Retrofit Projects for Existing Residential Buildings. DATES: Comments must be received by... must include the agency name and docket ID. Regardless of the method used for submitting comments or...

  18. Lower Red River Meadow Stream Restoration Project

    International Nuclear Information System (INIS)

    1996-05-01

    As part of a continuing effort to restore anadromous fish populations in the South Fork Clearwater River basin of Idaho, Bonneville Power Administration (BPA) proposes to fund the Lower Red River Meadow Restoration Project (Project). The Project is a cooperative effort with the Idaho Soil and Water Conservation District, Nez Perce National Forest, Idaho Department of Fish and Game (IDFG), and the Nez Perce Tribe of Idaho. The proposed action would allow the sponsors to perform stream bank stabilization, aquatic and riparian habitat improvement activities on IDFG's Red River Management Area and to secure long-term conservation contracts or agreements for conducting streambank and habitat improvement activities with participating private landowners located in the Idaho County, Idaho, study area. This preliminary Environmental Assessment (EA) examines the potential environmental effects of stabilizing the stream channel, restoring juvenile fish rearing habitat and reestablishing a riparian shrub community along the stream

  19. Long-term surveillance plan for the Lowman, Idaho, disposal site

    International Nuclear Information System (INIS)

    1993-09-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992)

  20. Environmental surveillance for the EG and G Idaho Radioactive Waste Management areas at the Idaho National Engineering Laboratory. Annual report 1985

    International Nuclear Information System (INIS)

    Reyes, B.D.; Case, M.J.; Wilhelmsen, R.N.

    1986-08-01

    The 1985 environmental surveillance report for the EG and G Idaho, Inc., radioactive waste management areas at the Idaho National Engineering Laboratory describes the environmental monitoring activities at the Radioactive Waste Management Complex (RWMC), the Waste Experimental Reduction Facility (WERF), the Process Experimental Pilot Plant (PREPP), and two surplus facilities. The purpose of these monitoring activities is to provide for continuous evaluation and awareness of environmental conditions resulting from current operations, to detect significant trends, and to project possible future conditions. This report provides a public record comparing RWMC, WERF, PREPP, and surplus facility environmental data with past results and radiation protection standards or concentration guides established for operation of Department of Energy facilities

  1. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  2. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McNeece, S.G.; Truitt, R.W.

    1994-01-01

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers

  3. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  4. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  5. 75 FR 57266 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Science.gov (United States)

    2010-09-20

    ...) is located on the Snake River in Gooding, Twin Falls and Elmore Counties, Idaho. The Lower Salmon Falls Project (P-2061) is located on the Snake River in Gooding and Twin Falls Counties, Idaho. Both.... Locations of the Application: A copy of the application is available for inspection and reproduction at the...

  6. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia.

    Science.gov (United States)

    Palmer, Margaret A; Hondula, Kelly L

    2014-09-16

    Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.

  7. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Lowman, Idaho: Remedial action selection report for the Lowman UMTRA project site, Idaho

    International Nuclear Information System (INIS)

    Matthews, M.L.; Nagel, J.

    1991-09-01

    The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho

  8. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  9. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  10. Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers

    Science.gov (United States)

    Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.

    2018-04-01

    Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.

  11. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1990--91

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Knobel, L.L.; Tucker, B.J.

    1993-01-01

    The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 12 wells as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. Sixty samples were collected from eight groundwater monitoring wells and four production wells. Ten quality-assurance samples also were collected and analyzed. Most of the samples contained concentrations of total sodium and dissolved anions that exceeded reporting levels. The predominant category of nitrogen-bearing compounds was nitrite plus nitrate as nitrogen. Concentrations of total organic carbon ranged from less than 0.1 to 2.2 milligrams per liter. Total phenols in 52 of 69 samples ranged from 1 to 8 micrograms per liter. Extractable acid and base/neutral organic compounds were detected in water from 16 of 69 samples. Concentrations of dissolved gross alpha- and gross beta-particle radioactivity in all samples exceeded the reporting level. Radium-226 concentrations were greater than the reporting level in 63 of 68 samples

  12. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  13. Fish passage mitigation of impacts from hydroelectric power projects in the United States

    International Nuclear Information System (INIS)

    Cada, G.F.

    1996-01-01

    Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy's Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality

  14. Amchitka Island Environmental Analysis at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Gracy Elias; W. F. Bauer; J.G. Eisenmenger; C.C. Jensen; B.K. Schuetz; T. C. Sorensen; B.M. White; A. L. Freeman; M. E. McIlwain

    2005-01-01

    The Idaho National Laboratory (INL) provided support to Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in their activities which is supported by the Department of Energy (DOE) to assess the impact of past nuclear testing at Amchitka Island on the ecosystem of the island and surrounding ocean. INL participated in this project in three phases, Phase 1, Phase 2 and Phase 3

  15. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  16. Mitigation and Compensation under EU Nature Conservation Law in the Flemish Region: Beyond the Deadlock for Development Projects?

    Directory of Open Access Journals (Sweden)

    Hendrik Schoukens

    2014-05-01

    Full Text Available For years, the predicament of many of the European protected habitats and species in the Flemish Region, as in many other Member States, passed relatively unnoticed. The lack of proper rules and clear implementation rules fuelled the impression amongst project developers and planning authorities that the impacts of project developments on biodiversity did not really warrant closer assessment. However, in the past ten years, strict national case law has significantly altered this view. Faced with tighter judicial scrutiny, the Habitats and Birds Directives were seen as an important obstacle to project development. Hence mitigation and compensation have now come up as novel approaches to better align spatial aspirations with the conservation of nature. In reality, mitigation was often used as a cover-up for projects that would not fit the strict requirements enshrined in the derogatory clauses. Interestingly, the Belgian Council of State showed itself quite cautious in reasserting the lax view of some planning authorities on mitigation and compensation. In reviewing the legality of several new approaches to mitigation and compensation, the Belgian Council of State, which was initially very cautious in quashing decisions that would actually jeopardise major infrastructure developments, has rendered some compelling rulings on the specific application of mitigation and compensatory measures in a spatial planning context. By letting the objectives of EU nature conservation law prevail in the face of economic interests, the recent case law of the Belgian Council of State can be seen as a remarkable example of judicial environmental activism.

  17. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  18. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  19. Measuring, Reporting and Verifying Nationally Appropriate Mitigation Actions. Reflecting experiences under the Mitigation Momentum Project. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    De Vit, C.; Roeser, F.; Fekete, H.; Hoehne, N.; Wartmann, S.; Van Tilburg, X.; Larkin, J.; Escalante, D.; Haensel, G.; Veum, K.; Cameron, L.; Halcomb, J.

    2013-06-15

    The Mitigation Momentum project aims to support the development of Nationally Appropriate Mitigation Actions (NAMAs). It contributes to the concrete design of NAMA proposals in five countries (Peru, Chile, Indonesia, Tunisia and Kenya). A further aim is to foster cooperation and knowledge exchange within the NAMA community while advancing the international climate policy debate on mitigation and related issues, including approaches for the Measurement, Reporting and Verification (MRV) of NAMAs. MRV enables the assessment of the effectiveness of both internationally supported NAMAs (supported NAMAs) and domestically supported NAMAs (unilateral NAMAs) by tracking NAMA impacts including greenhouse gas (GHG) emission reductions and non-GHG related impacts such as sustainable development benefits. MRV also supports improved policy design and decision making through systematic progress reporting and is a key tool to ensure accountability of NAMA stakeholders. Both host countries and funders share the common interest of having strong, implementable MRV systems in place. From both perspectives, this raises a number of questions, as well as potential challenges, on how to adapt the MRV approach to the specific circumstances of each NAMA. The objective of this paper is to identify open issues for the MRV of impacts of NAMAs, understood here as implementable actions, i.e. a project, a policy, a programme or a strategy. It pays particular attention to NAMAs with a supported component and reflects relevant initial experiences with developing NAMA proposals in the five Mitigation Momentum countries (i.e. using country examples where appropriate). As MRV systems for these NAMAs are still under development or at their preliminary stage, we hope to share further lessons learned in a subsequent discussion paper. Key challenges analysed in this paper include: How to design a MRV system that satisfies both the host country's and funder's expectations while complying with

  20. Mitigations for Security Vulnerabilities Found in Control System Networks

    Energy Technology Data Exchange (ETDEWEB)

    Trent D. Nelson

    2006-05-01

    Industry is aware of the need for Control System (CS) security, but in on-site assessments, Idaho National Laboratory (INL) has observed that security procedures and devices are not consistently and effectively implemented. The Department of Homeland Security (DHS), National Cyber Security Division (NCSD), established the Control Systems Security Center (CSSC) at INL to help industry and government improve the security of the CSs used in the nation's critical infrastructures. One of the main CSSC objectives is to identify control system vulnerabilities and develop effective mitigations for them. This paper discusses common problems and vulnerabilities seen in on-site CS assessments and suggests mitigation strategies to provide asset owners with the information they need to better protect their systems from common security flows.

  1. Partnerships in cleanup at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hula, G.A.

    1995-01-01

    Environmental Restoration activities at the Idaho National Engineering Laboratory (INEL) are currently being conducted under a Federal Facility Agreement and Consent Order (FFA/CO). The FFA/CO was signed by the US Department of Energy-Idaho Operations Office (DOE-ID), the Environmental Protection Agency-Region 10 (EPA), and the state of Idaho Department of Health and Welfare (IDHW) in December 1991. The INEL FFA/CO has been successfully implemented due to the coordination, integration and communication among the DOE-ID, IDHW and EPA Project and WAG Managers. Successful implementation of this Tri-party Agreement hinges on one key concept: ownership of the agreement, including the routine and unexpected problems and conflicting schedules typically associated with three separate agencies. Other factors, such as (1) open and frequent communication, (2) trust among all players, (3) ''giving'' in order to ''get,'' (4) clear, concise documentation surrounding key decisions during implementation and (5) little turnover among the implementers of the Agreement, i.e., good institutional knowledge, will enhance implementation of the Agreement, but without ownership, successful implementation of the agreement may be jeopardized. This sense of ownership, as well as a sound professional working relationship between the Project and WAG Managers from each agency, has resulted in avoidance of the need for invoking the formal ''dispute resolution'' process outlined in the INEL Agreement. This facilitates timely decision-making (10 Record of Decisions have been signed to date at the INEL) which has quickly progressed the program from an ''assessment'' phase to a ''cleanup'' phase

  2. Incorporating the Technology Roadmap Uncertainties into the Project Risk Assessment

    International Nuclear Information System (INIS)

    Bonnema, B.E.

    2002-01-01

    This paper describes two methods, Technology Roadmapping and Project Risk Assessment, which were used to identify and manage the technical risks relating to the treatment of sodium bearing waste at the Idaho National Engineering and Environmental Laboratory. The waste treatment technology under consideration was Direct Vitrification. The primary objective of the Technology Roadmap is to identify technical data uncertainties for the technologies involved and to prioritize the testing or development studies to fill the data gaps. Similarly, project management's objective for a multi-million dollar construction project includes managing all the key risks in accordance to DOE O 413.3 - ''Program and Project Management for the Acquisition of Capital Assets.'' In the early stages, the Project Risk Assessment is based upon a qualitative analysis for each risk's probability and consequence. In order to clearly prioritize the work to resolve the technical issues identified in the Technology Roadmap, the issues must be cross- referenced to the project's Risk Assessment. This will enable the project to get the best value for the cost to mitigate the risks

  3. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    Directory of Open Access Journals (Sweden)

    John W. Shervais

    2013-03-01

    Full Text Available HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP. The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. Theprimary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho.Project HOTSPOT has completed three drill holes. (1 The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2 The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperaturerhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3 The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments.We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.

  4. 78 FR 68466 - BLM Director's Response to the Idaho Governor's Appeal of the BLM Idaho State Director's Governor...

    Science.gov (United States)

    2013-11-14

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is denying the...] BLM Director's Response to the Idaho Governor's Appeal of the BLM Idaho State Director's Governor's... (Finding) to the BLM Idaho State Director (State Director). The State Director determined the Governor's...

  5. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  6. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    Engelbrecht, Francois; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Adegoke, Jimmy; Thatcher, Marcus; McGregor, John; Katzfey, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  7. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    International Nuclear Information System (INIS)

    Quigley, K.D.; Wessman, D.

    2003-01-01

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and

  8. Prototypical Consolidation Demonstration Project: Final report

    International Nuclear Information System (INIS)

    Gili, J.A.; Poston, V.K.

    1993-11-01

    This is the final report of the Prototypical Consolidation Demonstration Project, which was funded by the US Department of Energy's Office of Civilian Radioactive Waste Management. The project had two objectives: (a) to develop and demonstrate a prototype of production-scale equipment for the dry, horizontal consolidation and packaging of spent nuclear fuel rods from commercial boiling water reactor and pressurized water reactor fuel assemblies, and (b) to report the development and demonstration results to the US Department of Energy, Idaho Operations Office. This report summarizes the activities and conclusions of the project management contractor, EG ampersand G Idaho, Inc., and the fabrication and testing contractor, NUS Corporation (NUS). The report also presents EG ampersand G Idaho's assessments of the equipment and procedures developed by NUS

  9. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2011-13

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2015-01-01

    From 2011 to 2013, the U.S. Geological Survey’s Idaho National Laboratory (INL) Project Office, in cooperation with the U.S. Department of Energy, collected depth-discrete measurements of fluid pressure and temperature in 11 boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system (MLMS) consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers.

  10. 78 FR 12714 - Intermountain Region, Payette National Forest, New Meadows Ranger District, Idaho; Lost Creek...

    Science.gov (United States)

    2013-02-25

    ...) reduce the risk of uncharacteristic and undesirable wildland fire; (4) restore habitat connectivity..., in Adams County Idaho. The project is designed to improve wildlife habitat, reduce forest fuels, and... and Need for Action The purpose of the project is to: (1) Improve habitat for specific wildlife...

  11. Technical assistance efforts at EG and G Idaho, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Engen, I.A.; Toth, W.J.

    1981-01-01

    As part of DOE's geothermal outreach program, EG and G Idaho has been funded since 1977 to provide technical information and assistance to parties interested in the direct applications of geothermal energy. In this time information has been provided to over 1000 requestors and technical assistance and analyses have been supplied to over 250 parties interested in developing geothermal resources. Many of the latter efforts are leading to direct-use projects that use geothermal resources to replace fossil fuels. A few of the more promising projects are discussed.

  12. 2001 annual report for the Pend Oreille wetlands wildlife mitigation projects; ANNUAL

    International Nuclear Information System (INIS)

    Entz, Ray D.

    2001-01-01

    The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie

  13. Transuranic-waste program at EG and G Idaho, Inc. Annual technical report

    International Nuclear Information System (INIS)

    McKinley, K.B.

    1982-11-01

    This report summarizes the objectives and accomplishments of Transuranic (TRU) Waste Program conducted at EG and G Idaho, Inc., during FY 1982. The TRU Waste Program included: (1) Preparation of a revised draft of the Recommendation of a Long-Term Strategy (RLTS) document; (2) Preparation of environmental documentation, including a technical report, Environmental and Other Evaluations of Alternatives for Management of Defense Transuranic Waste at the Idaho National Engineering Laboratory, IDO-10103, as well as two environmental evaluations; (3) Preparation of a certification plan and procedures; (4) A nondestructive examination (NDE) project, which includes development of real-time radiography for waste certification, and container integrity equipment for waste container certification; (5) Development of an assay system; (6) Completion of a conceptual design for the Stored Waste Examination Pilot Plant (SWEPP) and SWEPP Support; and (7) Gas-generation analyses and tests. These TRU waste projects were funded at $1640K

  14. Long-term land use future scenarios for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    In order to facilitate decision regarding environmental restoration activities at the Idaho National Engineering Laboratory (INEL), the United States Department of Energy, Idaho Operations Office (DOE-ID) conducted analyses to project reasonable future land use scenarios at the INEL for the next 100 years. The methodology for generating these scenarios included: review of existing DOE plans, policy statements, and mission statements pertaining to the INEL; review of surrounding land use characteristics and county developments policies; solicitation of input from local, county, state and federal planners, policy specialists, environmental professionals, and elected officials; and review of environmental and development constraints at the INEL site that could influence future land use

  15. Boise State's Idaho Eclipse Outreach Program

    Science.gov (United States)

    Davis, Karan; Jackson, Brian

    2017-10-01

    The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.

  16. Strategies for successful mitigation of socioeconomic impacts

    International Nuclear Information System (INIS)

    Moore, R.C.

    1987-01-01

    The successful mitigation of socioeconomic impacts requires careful planning for project inception through project completion. Although mitigation of socioeconomic impacts imposes additional responsibilities on project sponsors, benefits derived through increased productivity of the work force can offset costs involved. Cost effective impact mitigation plans can be developed which are flexible to respond to changing circumstances and which focus on prevention of adverse effects. Mitigation plans must, by necessity, begin with proper project planning. Project location and the schedule for various construction activities can have significant effect on impacts. Particular attention should be given to labor requirements, contracting procedures and hiring practices. The effects of layoffs at project completion should also be considered. Accurate forecasts of revenues available to local governments are essential to the development of fair mitigation programs. Increased revenues created as a result of proposed projects should be the basis for mitigation planning. Housing and worker transportation issues should be considered jointly. Depending upon the proximity of a proposed site to different communities, impacts can be radically different given different housing and transportation plans. Housing requirements should be considered by type and location. Per diem and other allowances can be utilized to influence the housing choices made by workers

  17. Transuranic waste program at EG and G Idaho, Inc. Annual technical report

    International Nuclear Information System (INIS)

    Smith, T.H.; Tolman, C.R.

    1980-12-01

    This document summarizes the objectives and technical achievements of the transuranic (TRU) waste research and development program conducted at EG and G Idaho, Inc., during fiscal year 1980. The TRU waste activities covered in this report include: INEL TRU Waste EIS (Environmental Impact Statement), including preparation of the EIS, Support Studies, and the Public Participation Program; INEL TRU Waste Projects, including System Analysis, Stored Waste projects, and Buried Waste projects; and Waste Management Materials Studies, including Process Control and Durability studies

  18. Modeling ecohydrological impacts of land management and water use in the Silver Creek Basin, Idaho

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Gross, Dayna; Unnasch, Robert

    2014-01-01

    . The results indicate that temperature dynamics, rather than point statistics, determine optimal growth conditions for fish. Temperature dynamics are influenced by surface water-groundwater interactions. Combined restoration strategies that can achieve ecosystem stability under climate change should be further...... the reproductive capability of fish under different conditions. We applied the model to Silver Creek, Idaho, a stream highly valued for its world-renowned trout fishery. The simulations indicated that intensive water use by agriculture and climate change are both major contributors to habitat degradation...... in the study area. Agricultural practices that increase water use efficiency and mitigate drainage runoff are feasible and can have positive impacts on the ecosystem. All of the mitigation strategies simulated reduced stream temperatures to varying degrees; however, not all resulted in increases in fish growth...

  19. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  20. Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

    1996-06-01

    Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated during the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities

  1. Field Methods and Quality-Assurance Plan for Quality-of-Water Activities, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Knobel, LeRoy L.; Tucker, Betty J.; Rousseau, Joseph P.

    2008-01-01

    Water-quality activities conducted by the staff of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation's water resources. The activities are conducted in cooperation with the U.S. Department of Energy's (DOE) Idaho Operations Office. Results of the water-quality investigations are presented in various USGS publications or in refereed scientific journals. The results of the studies are highly regarded, and they are used with confidence by researchers, regulatory and managerial agencies, and interested civic groups. In its broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the 'state-of-the-art' technology, and quality assurance ensures that quality control is maintained within specified limits.

  2. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  3. Economic Cost of Crashes in Idaho

    Science.gov (United States)

    2016-06-01

    The Idaho Transportation Departments Office of Highway Safety contracted with Cambridge Systematics (CS) for an assessment of the feasibility of calculating the Idaho-specific economic and comprehensive costs associated with vehicle crashes. Resea...

  4. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  5. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-09-30

    This report summarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  6. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    International Nuclear Information System (INIS)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-01-01

    This report/SUMmarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  7. Geothermal development in southwest Idaho: the socioeconomic data base

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    This report inventories, analyzes, and appraises the exiting socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  8. Geothermal development in southwest Idaho: the socioeconomic data base

    Energy Technology Data Exchange (ETDEWEB)

    Spencer,S.G.; Russell, B.F. (eds.)

    1979-09-01

    This report inventories, analyzes, and appraises the existing socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  9. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... determinations for a transportation plan or TIP and are included in the project design concept and scope which is...

  10. 78 FR 23522 - Idaho Roadless Rule

    Science.gov (United States)

    2013-04-19

    ... occur in T47N, R6E, sections 29, 31, and 32, Boise Meridian and were part of the Lucky Swede Land... List of designated Idaho Roadless Areas. * * * * * Forest Idaho roadless area Number WLR Primitive BCR...

  11. Wildlife mitigation program. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  12. Wildlife mitigation program final environmental impact statement

    International Nuclear Information System (INIS)

    1997-03-01

    BPA is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and improvement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative, i.e., not to establish program-wide standards. Five standardizing (action) alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  13. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics...

  14. 75 FR 32210 - United States v. Idaho Orthopaedic Society, Timothy Doerr, Jeffrey Hessing, Idaho Sports Medicine...

    Science.gov (United States)

    2010-06-07

    ..., Jeffrey Hessing, Idaho Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins; Proposed... Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins, Civil Case No. 10-268. On May 28..., Jeffrey Hessing, Idaho Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins, Defendants...

  15. 77 FR 38620 - Idaho Power Company; Notice of Application for Amendment of License And Soliciting Comments...

    Science.gov (United States)

    2012-06-28

    ... Falls Hydroelectric Project. f. Location: The project is located in south-central Idaho on the Snake... reproduction at the Commission's Public Reference Room, located at 888 First Street NE., Room 2A, Washington... inspection and reproduction at the address in item (h) above. m. Individuals desiring to be included on the...

  16. 77 FR 38618 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Science.gov (United States)

    2012-06-28

    ... Hydroelectric Project. f. Location: The project is located in south-western Idaho on the Snake River from river... application is available for inspection and reproduction at the Commission's Public Reference Room, located at... available for inspection and reproduction at the address in item (h) above. m. Individuals desiring to be...

  17. Idaho supplementation studies : five year report : 1992-1996

    International Nuclear Information System (INIS)

    Walters, Jody P.; Idaho. Dept. of Fish and Game; United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake

  18. Modern Approaches to Wildfire Mitigation by Air and by Ground: An Interdisciplinary Perspective

    Science.gov (United States)

    Duffin, J.; Lindquist, E.; Pierce, J. L.; Wuerzer, T.; Lawless, B.; McCoy, J.

    2013-12-01

    In 2012, 1.7 million acres of land burned in Idaho--more than any other state. Boise, Idaho, is situated at the base of the Boise Foothills; this physiographic setting places the area at risk of not only fires along on the Wildland-Urban Interface (WUI), but also at risk for post-fire floods and debris flows in the lower lying neighborhoods adjacent to steep hillslopes. In 1959 and 1994, fires and post-fire debris flows devastated areas of the foothills, and inundated residences with water and mud. Anthropogenically-induced climate change is projected to increased summer temperatures and decrease summer precipitation; the associated increase in fire risk necessitates enhanced wildfire planning in Boise's WUI. Temporal uncertainty with varying weather and vegetation conditions poses problems in defining wildfire risk and requires new methods to address the WUI challenges. Unmanned aerial systems (UAS) could identify and characterize fire hazards to be mapped and used as a management tool. This technology would allow for repeat flights to update risk analysis as the hazards change both annually and multiple times within each fire season. With aerial photography obtained from flights, Structure from Motion software can be used to compile the images and render a 3D model to help quantify biomass. Aerial photographs would also allow for the ability to track seasonal changes in fire risk from vegetation height and inferred moisture content. Boise State University's departments of Geoscience, Community and Regional Planning, and the Public Policy Center are examining the risks and impacts of fire along the Boise WUI. The research integrates the perspectives of the geosciences and social sciences by combining physically-based fire hazards, effective fire management policies, and urban/regional planning in the WUI to provide better spatially-appropriate data and resources to the community and a common reference to assist in unifying the local efforts for fire mitigation

  19. Remedial design and remedial action guidance for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-10-01

    The US Department of Energy, Idaho Operations Office (DOE-ID), the US Environmental Protection Agency, Region X (EPA), and the Idaho Department of Health and Welfare (IDHW) have developed this guidance on the remedial design and remedial action (RD/RA) process. This guidance is applicable to activities conducted under the Idaho National Engineering Laboratory (INEL) Federal Facility Agreement and Consent Order (FFA/CO) and Action Plan. The INEL FFA/CO and Action Plan provides the framework for performing environmental restoration according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The guidance is intended for use by the DOE-ID, the EPA, and the IDHW Waste Area Group (WAG) managers and others involved in the planning and implementation of CERCLA environmental restoration activities. The scope of the guidance includes the RD/RA strategy for INEL environmental restoration projects and the approach to development and review of RD/RA documentation. Chapter 2 discusses the general process, roles and responsibilities, and other elements that define the RD/RA strategy. Chapters 3 through 7 describe the RD/RA documents identified in the FFA/CO and Action Plan. Chapter 8 provides examples of how this guidance can be applied to restoration projects. Appendices are included that provide excerpts from the FFA/CO pertinent to RD/RA (Appendix A), a applicable US Department of Energy (DOE) orders (Appendix B), and an EPA Engineering ''Data Gaps in Remedial Design'' (Appendix C)

  20. Geothermal Direct Use Program Opportunity Notice Projects Lessons Learned Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.

    1986-01-01

    The use of geothermal energy for direct-use applications was aided through the development of a number of successful field experiment projects funded on a cost-shared basis by the US Department of Energy, Division of Geothermal Technology. This document provides a summary of the projects administered by the US Department of Energy's Idaho Operations Office and technically monitored through the Idaho National Engineering Laboratory (EG and G Idaho, Inc.). An overview of significant findings and conclusions is provided, as are project descriptions and activities, resource development, design, construction, and operational features. Legal and institutional considerations are also discussed.

  1. 77 FR 38621 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Science.gov (United States)

    2012-06-28

    ... Hydroelectric Project. f. Location: The project is located in south-central Idaho on the Snake River from river... inspection and reproduction at the Commission's Public Reference Room, located at 888 First Street, NE., Room... inspection and reproduction at the address in item (h) above. m. Individuals desiring to be included on the...

  2. 77 FR 38619 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Science.gov (United States)

    2012-06-28

    ... Hydroelectric Project. f. Location: The project is located in south-central Idaho on the Snake River in Gooding... reproduction at the Commission's Public Reference Room, located at 888 First Street NE., Room 2A, [email protected] , for TTY, call (202) 502- 8659. A copy is also available for inspection and reproduction at...

  3. Idaho National Engineering Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities

  4. Wildlife Mitigation Program. Record of Decision

    International Nuclear Information System (INIS)

    1997-06-01

    Bonneville Power Administration (BPA) has decided to adopt a set of Descriptions (goals, strategies, and procedural requirements) that apply to future BPA-funded wildlife mitigation projects. Various. sources-including Indian tribes, state agencies, property owners, private conservation groups, or other Federal agencies-propose wildlife mitigation projects to the Northwest Power Planning Council (Council) for BPA funding. Following independent scientific and public reviews, Council then selects projects to recommend for BPA funding. BPA adopts this set of prescriptions to standardize the planning and implementation of individual wildlife mitigation projects. This decision is based on consideration of potential environmental impacts evaluated in BPA's Wildlife Mitigation Program Final Environmental Impact Statement (DOE/EIS-0246) published March, 20, 1997, and filed with the Environmental Protection Agency (EPA) the week of March 24, 1997 (EPA Notice of Availability Published April 4, 1997, 62 FR 65, 16154). BPA will distribute this Record of Decision to all known interested and affected persons, groups, tribes, and agencies

  5. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  6. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    Science.gov (United States)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  7. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  8. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  9. Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

  10. Weed hosts Globodera pallida from Idaho

    Science.gov (United States)

    The potato cyst nematode, Globodera pallida (PCN), a restricted pest in the USA, was first reported in Bingham and Bonneville counties of Idaho in 2006. The US government and Idaho State Department of Agriculture hope to eradicate it from infested fields. Eradicating PCN will require depriving the n...

  11. Observational studies to mitigate seismic risks in mines: a new Japanese-South African collaborative research project

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2010-10-01

    Full Text Available and High Stress Mining, 6-8 October 2010, Santiago CHILE 1 Observational studies to mitigate seismic risks in mines: a new Japanese - South African collaborative research project R.J. Durrheim SATREPS*, CSIR Centre for Mining Innovation.... 3. To upgrade the South African national seismic network. The project is carried out under the auspices of the SATREPS (Science and Technology Research Partnership for Sustainable Development) program "Countermeasures towards Global Issues through...

  12. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    International Nuclear Information System (INIS)

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  13. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  14. Idaho Transportation Department 2011 customer satisfaction survey.

    Science.gov (United States)

    2011-10-01

    In the spring and summer of 2011, the Idaho Transportation Department (ITD) commissioned a statewide customer satisfaction survey of Idaho residents to assess their perception of ITDs performance in several key areas of customer service. The areas...

  15. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J.

    1993-05-01

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho's INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ''Data'' section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ''Data'' section does not include actual values or data

  16. Idaho Transportation Department 2016 Customer Communication Survey

    Science.gov (United States)

    2017-06-23

    In 2016, the Idaho Transportation Department contracted with the University of Idaho's Social Science Research Unit to conduct a survey on the general public's engagement and communication with the department. The goal of conducting this survey was t...

  17. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    International Nuclear Information System (INIS)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.; Pierce, G.A.; Egidi, P.V.; Mather, S.K.

    1993-01-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site's compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiation scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building's interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor's report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for 60 Co were below the detection limit. The highest 137 Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g

  18. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 2002

    Science.gov (United States)

    Rattray, Gordon W.; Campbell, Linford J.

    2004-01-01

    The U.S. Geological Survey, Idaho Department of Water Resources, and the State of Idaho INEEL Oversight Program, in cooperation with the U.S. Department of Energy, sampled water from 17 sites as part of the sixth round of a long-term project to monitor water quality of the eastern Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were collected from eight irrigation wells, three domestic wells, one stock well, one dairy well, one commercial well, one observation well, and two springs and analyzed for selected radiochemical and chemical constituents. One quality-assurance sample, a sequential replicate, also was collected and analyzed. Many of the radionuclide and inorganic-constituent concentrations were greater than the reporting levels and most of the organic-constituent concentrations were less than the reporting levels. However, none of the reported radiochemical- or chemical-constituent concentrations exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Statistical evaluation of the replicate sample pair indicated that, with 95 percent confidence, 132 of the 135 constituent concentrations of the replicate pair were equivalent.

  19. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    Science.gov (United States)

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  20. Water Integration Project Science Strategies White Paper

    International Nuclear Information System (INIS)

    Alan K. Yonk

    2003-01-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document

  1. Water Integration Project Science Strategies White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  2. Legacy sample disposition project. Volume 2: Final report

    International Nuclear Information System (INIS)

    Gurley, R.N.; Shifty, K.L.

    1998-02-01

    This report describes the legacy sample disposition project at the Idaho Engineering and Environmental Laboratory (INEEL), which assessed Site-wide facilities/areas to locate legacy samples and owner organizations and then characterized and dispositioned these samples. This project resulted from an Idaho Department of Environmental Quality inspection of selected areas of the INEEL in January 1996, which identified some samples at the Test Reactor Area and Idaho Chemical Processing Plant that had not been characterized and dispositioned according to Resource Conservation and Recovery Act (RCRA) requirements. The objective of the project was to manage legacy samples in accordance with all applicable environmental and safety requirements. A systems engineering approach was used throughout the project, which included collecting the legacy sample information and developing a system for amending and retrieving the information. All legacy samples were dispositioned by the end of 1997. Closure of the legacy sample issue was achieved through these actions

  3. Idaho Transportation Department 2009 customer satisfaction survey.

    Science.gov (United States)

    2010-02-01

    In the summer and fall of 2009, the Idaho Transportation Department (ITD) commissioned a statewide customer satisfaction survey of Idaho residents in order to assess the overall level of satisfaction with several key areas of service provided by the ...

  4. A summary of the environmental restoration program Retrieval Demonstration Project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-01-01

    This document summarizes the of retrieval techniques developed to excavate buried transuranic (TRU) mixed waste from the Subsurface Disposal Area (SDA). The SDA is located at the Idaho National Engineering Laboratory (INEL) in the Radioactive Waste Management Complex (RWMC). 31 refs., 1 fig

  5. Idaho supplementation studies. Annual progress report, January 1--December 31, 1993

    International Nuclear Information System (INIS)

    Leitzinger, E.J.; Plaster, K.; Hassemer, P.; Sankovich, P.

    1996-12-01

    Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon, Oncorhynchus tshawytscha, in Idaho as part of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. The objectives are to: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; and (3) determine which supplementation strategies provide the quickest and highest response in natural production without adverse effects on productivity. Field work began in 1991 with the collection of baseline data from treatment and some control streams. Full implementation began in 1992 with baseline data collection on treatment and control streams and releases of supplementation fish into several treatment streams. Field methods included snorkeling to estimate chinook salmon parr populations, PIT tagging summer parr to estimate parr-to-smolt survival, multiple redd counts to estimate spawning escapement and collect carcass information. Screw traps were used to trap and PIT tag outmigrating chinook salmon during the spring and fall outmigration. Weirs were used to trap and enumerate returning adult salmon in select drainages

  6. Northeast Oregon Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1996-08-01

    Development of the hydropower system in the Columbia River Basin has had far-reaching effects on many species of wildlife. The Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the Federal portion of this system, as allocated to the purpose of power production. BPA needs to mitigate for loss of wildlife habitat in the Snake River Subbasin

  7. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  8. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    Science.gov (United States)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    climate change in order to develop a realistic prediction for the two treatments. Results from objective 1 indicate that Biome-BGC can adequately simulate the study site: measured leaf area index (LAI) is not significantly different from maximum LAI predicted by the model. Results from objective 2 indicate that marine-derived nitrogen may increase NEE by up to eight times relative to no nutrient addition, whereas the continued loss of marine nitrogen may lead to a decrease in NEE relative to historical conditions. MDN may become even more important to maintaining a positive carbon balance under a climate warming scenario: model results show a decline in NEE with climate change, which is mitigated by the presence of the added marine nitrogen. Understanding the long-term impacts of marine-derived nutrients to inland Idaho watersheds will help inform forest management and nutrient-loss mitigation efforts.

  9. 2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Johnson; K. A. Gano

    2006-10-03

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

  10. Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Rita Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frickey, Steven Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due to its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.

  11. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  12. Implications of Climate Mitigation for Future Agricultural Production

    Science.gov (United States)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many

  13. Implications of climate mitigation for future agricultural production

    International Nuclear Information System (INIS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A M; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  14. Integration of Regional Mitigation Assessment and Conservation Planning

    Directory of Open Access Journals (Sweden)

    James H. Thorne

    2009-06-01

    Full Text Available Government agencies that develop infrastructure such as roads, waterworks, and energy delivery often impact natural ecosystems, but they also have unique opportunities to contribute to the conservation of regional natural resources through compensatory mitigation. Infrastructure development requires a planning, funding, and implementation cycle that can frequently take a decade or longer, but biological mitigation is often planned and implemented late in this process, in a project-by-project piecemeal manner. By adopting early regional mitigation needs assessment and planning for habitat-level impacts from multiple infrastructure projects, agencies could secure time needed to proactively integrate these obligations into regional conservation objectives. Such practice can be financially and ecologically beneficial due to economies of scale, and because earlier mitigation implementation means potentially developable critical parcels may still be available for conservation. Here, we compare the integration of regional conservation designs, termed greenprints, with early multi-project mitigation assessment for two areas in California, USA. The expected spatial extent of habitat impacts and associated mitigation requirements from multiple projects were identified for each area. We used the reserve-selection algorithm MARXAN to identify a regional greenprint for each site and to seek mitigation solutions through parcel acquisition that would contribute to the greenprint, as well as meet agency obligations. The two areas differed in the amount of input data available, the types of conservation objectives identified, and local land-management capacity. They are representative of the range of conditions that conservation practitioners may encounter, so contrasting the two illustrates how regional advanced mitigation can be generalized for use in a wide variety of settings. Environmental organizations can benefit from this approach because it provides a

  15. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries

  16. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay (USGS); L. M. Williams (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1998-12-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected and analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  17. Assessing the Idaho Transportation Department's customer service performance.

    Science.gov (United States)

    2011-10-23

    This report assesses customer satisfaction with the Idaho Transportation Department. It also compares and contrasts the results of customer satisfaction surveys conducted for the Idaho Transportation Department with the results from other state trans...

  18. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2009-08-06

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  19. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2008-12-22

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  20. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  1. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

  2. EG and G Idaho Environmental Protection Implementation Plan (1991)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.F.

    1991-11-01

    This report describes the EG G Idaho, Inc. strategy for implementation of the Department of Energy (DOE) Order 5400.1 (a DOE-Headquarters directive establishing environmental protection program requirements, authorities, and responsibilities). Preparation of this Environmental Protection Implementation Plan is a requirement of DOE Order 5400.1. Additionally, this report is intended to supplement the Department of Energy -- Field Office Idaho (DOE-ID) Environmental Protection Implementation Plan by detailing EG G Idaho Environmental Protection Program activities. This report describes the current status of the EG G Idaho Program, and the strategies for enhancing, as necessary, the current program to meet the requirements of DOE Order 5400.1. Aspects of the Environmental Protection Program included in this report are the assignment of responsibilities to specific EG G Idaho organizations, a schedule for completion of enhancements, if necessary, and requirements for documentation and reporting. 4 figs., 1 tab.

  3. EG and G Idaho Environmental Protection Implementation Plan (1991)

    International Nuclear Information System (INIS)

    Graham, J.F.

    1991-11-01

    This report describes the EG ampersand G Idaho, Inc. strategy for implementation of the Department of Energy (DOE) Order 5400.1 (a DOE-Headquarters directive establishing environmental protection program requirements, authorities, and responsibilities). Preparation of this Environmental Protection Implementation Plan is a requirement of DOE Order 5400.1. Additionally, this report is intended to supplement the Department of Energy -- Field Office Idaho (DOE-ID) Environmental Protection Implementation Plan by detailing EG ampersand G Idaho Environmental Protection Program activities. This report describes the current status of the EG ampersand G Idaho Program, and the strategies for enhancing, as necessary, the current program to meet the requirements of DOE Order 5400.1. Aspects of the Environmental Protection Program included in this report are the assignment of responsibilities to specific EG ampersand G Idaho organizations, a schedule for completion of enhancements, if necessary, and requirements for documentation and reporting. 4 figs., 1 tab

  4. Robotic applications at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Griebenow, B.E.; Marts, D.J.

    1990-01-01

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

  5. North Idaho E. coli Infections Linked to Raw Clover Sprouts > Idaho

    Science.gov (United States)

    About Establishing Legal Fatherhood Genetic Testing Ending Services Fees for Services Child Support and Children's Special Health Program Genetic/Metabolic Services Genetic Condition Information Health Care Healthcare Associated Infections Antibiotic Resistance Epidemiology Idaho Disease Bulletin Data and

  6. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1996-02-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Pressure transducers mounted in the straddle-packer assembly were used to monitor the response of the Snake River Plain aquifer to pumping at the ICPP production wells, located 2600 to 4200 feet from the observation wells. The time-drawdown data from these tests were used to evaluate various conceptual models of the aquifer. Aquifer properties were estimated by matching time-drawdown data to type curves for partially penetrating wells in an unconfined aquifer. This approach assumes a homogeneous and isotropic aquifer. The hydraulic properties of the aquifer obtained from the type curve analyses were: (1) Storativity = 3 x 10 -5 , (2) Specific Yield = 0.01, (3) Transmissivity = 740 ft 2 /min, (4) Anisotropy (Kv:Kh)= 1:360

  7. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  8. Growing the Idaho economy : moving into the future.

    Science.gov (United States)

    2010-08-13

    A report on transportation and the possible future economy of the State of Idaho from 2010 to 2030, including : current assets to leverage, driving forces shaping the future, long-range economic opportunities for Idaho including : four future scenari...

  9. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  10. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  11. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  12. Secondary cleanup of Idaho Chemical Processing Plant solvent

    International Nuclear Information System (INIS)

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate

  13. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; B. V. Twining (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of the reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.

  14. EG and G Idaho environmental protection implementation plan

    International Nuclear Information System (INIS)

    Stump, R.C.

    1989-11-01

    This report describes the EG ampersand G Idaho strategy for implementation of the Department of Energy (DOE) Order 5400.1 (a DOE-Headquarters directive establishing environmental protection program requirements, authorities, and responsibilities). Preparation of this Environmental Protection Implementation Plan is a requirement of DOE Order 5400.0 Additionally, this report is intended to supplement the Department of Energy -- Idaho Operations Office (DOE-ID) Environmental Protection Implementation Plan by detailing EG ampersand G Idaho Environmental Protection Program activities. This report describes the current status of the EG ampersand G Idaho Program, and the strategies for enhancing, as necessary, the current program to meet the requirements of DOE Order 5400.1. Aspects of the Environmental Protection Program included in this report are the assignment of responsibilities to specific EG ampersand G organizations, a schedule for completion of enhancements, if necessary, and requirements for documentation and reporting. 3 figs., 1 tab

  15. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-01-01

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump's ability to mitigate the SY-101 tank hydrogen gas hazard

  16. Supplemental investigations in support of environmental assessments by the Idaho INEL Oversight Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    This document reports on the status of supplemental investigations in support of environmental assessments by the Idaho INEL Oversight Program at the Idaho National Engineering Laboratory. Included is information on hydrology studies in wells open through large intervals, unsaturated zone contamination and transport processes, surface water-groundwater interactions, regional groundwater flow, and independent testing of air quality data

  17. 44 CFR 201.6 - Local Mitigation Plans.

    Science.gov (United States)

    2010-10-01

    ..., require a local mitigation plan for the Repetitive Flood Claims Program. A local government must have a... eligible for FMA project grants. However, these plans must be clearly identified as being flood mitigation... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Local Mitigation Plans. 201.6...

  18. 77 FR 54557 - Eastern Idaho Resource Advisory Committee

    Science.gov (United States)

    2012-09-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Easern Idaho Resource Advisory Committee will meet... between 8 a.m. and 8 p.m., Eastern Standard Time, Monday through Friday. SUPPLEMENTARY INFORMATION: The...

  19. Albeni Falls Wildlife Mitigation : Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Terra-Berns, Mary

    2003-01-01

    The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue to center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.

  20. Review of mitigation methods for fish passage, instream flows, and water quality

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    This paper reports on current environmental mitigation practices at nonfederal hydropower projects. Information was obtained from project operators on dissolved oxygen (DO) mitigation, instream flows, upstream fish passage facilities, and downstream fish passage facilities. The most common method for DO mitigation is the use of spill flows, which are costly because of lost power generation. DO concentrations are commonly monitored, but biological effects of DO mitigation are not. At many projects, instream flow requirements have been set without reference to formalized methods. About half of the projects with instream flow requirements monitor flow rates, but few monitor fish populations to verify that instream flows are effective. Angled bar racks are the most commonly used downstream fish passage devices and fish ladders are the most commonly used upstream fish passage devices. Fish passage rates or populations have been monitored to verify the effectiveness of passage mitigation at few projects. This analysis is the first phase of an evaluation of the costs, benefits, and effectiveness of mitigation measures

  1. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  2. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-08-01

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  3. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  4. Observational studies in South African mines to mitigate seismic risks: a mid-project progress report

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-10-01

    Full Text Available such as Japan. A 5-year collaborative project entitled "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience... network in the mining districts. Figure 1. Schematic illustration of the research design. Jpn - Japanese researchers; CSIR - Council for Scientific and Industrial Research; CGS - Council for Geoscience The knowledge gained during the course...

  5. Report of the Project Research on Disaster Reduction using Disaster Mitigating Information Sharing Technology

    Science.gov (United States)

    Suzuki, Takeyasu

    For the purpose of reducing disaster damage by applying information sharing technologies, "the research on disaster reduction using crisis-adaptive information sharing technologies" was carried out from July, 2004 through March 2007, as a three year joint project composed of a government office and agency, national research institutes, universities, lifeline corporations, a NPO and a private company. In this project, the disaster mitigating information sharing platform which is effective to disaster response activities mainly for local governments was developed, as a framework which enables information sharing in disasters. A prototype of the platform was built by integrating an individual system and tool. Then, it was applied to actual local governments and proved to be effective to disaster responses. This paper summarizes the research project. It defines the platform as a framework of both information contents and information systems first and describes information sharing technologies developed for utilization of the platform. It also introduces fields tests in which a prototype of the platform was applied to local governments.

  6. Technology evaluation report for the Buried Waste Robotics Program Subsurface Mapping Project

    International Nuclear Information System (INIS)

    Griebenow, B.E.

    1992-01-01

    This document presents a summary of the work performed in support of the Buried Waste Robotics Program Subsurface Mapping Project. The project objective was to demonstrate the feasibility of remotely characterizing buried waste sites. To fulfill this objective, a remotely-operated vehicle, equipped with several sensors, was deployed at the Idaho National Engineering Laboratory. Descriptions of the equipment and areas involved in the project are included in this report. Additionally, this document provides data that was obtained during characterization operations at the Cold Test Pit and the Subsurface Disposal Area, both at the Idaho National Engineering Laboratory's Radioactive Waste Management Complex, and at the Idaho Chemical Processing Plant. The knowledge gained from the experience, that can be applied to the next generation remote-characterization system, is extensive and is presented in this report

  7. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  8. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  9. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  10. Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.; Bartholomay, R.C.

    1994-08-01

    The US Geological Survey's (USGS) Project Office at the Idaho National Engineering Laboratory (INEL) analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal

  11. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  12. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    International Nuclear Information System (INIS)

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location

  13. Environmental surveillance for EG ampersand G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG ampersand G Idaho, Inc., performed at EG ampersand G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years

  14. Annual report -- 1992: Environmental surveillance for EG ampersand G Idaho Waste Management Facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.

    1993-08-01

    This report describes the 1992 environmental surveillance activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G Idaho-operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are some results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1992 environmental surveillance data with DOE derived concentration guides, and with data from previous years

  15. New Nutrition Standards for Idaho School Meals. Nourishing News. Volume 4, Issue 1

    Science.gov (United States)

    Idaho State Department of Education, 2009

    2009-01-01

    Idaho Child Nutrition Programs (CNP) released the New Nutrition Standards for Idaho School Meals in January 2009 with the recommendation that all School Food Authorities fully implement the New Nutrition Standards for Idaho School Meals into their programs starting August 2009. Along with the release of the New Nutrition Standards for Idaho School…

  16. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level

  17. Solent Disturbance and Mitigation Project Phase II: Predicting the impact of human disturbance on overwintering birds in the Solent.

    OpenAIRE

    Stillman, Richard A.; West, Andrew D.; Clarke, Ralph T.; Liley, D.

    2012-01-01

    The Solent coastline provides feeding grounds for internationally protected populations of overwintering waders and wildfowl, and is also extensively used for recreation. In response to concerns over the impact of recreational pressure on birds within protected areas in the Solent, the Solent Forum initiated the Solent Disturbance and Mitigation Project to determine visitor access patterns around the coast and how their activities may influence the birds. The project has been divided into two...

  18. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  19. Idaho Safety Manual.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This manual is intended to help teachers, administrators, and local school boards develop and institute effective safety education as a part of all vocational instruction in the public schools of Idaho. This guide is organized in 13 sections that cover the following topics: introduction to safety education, legislation, levels of responsibility,…

  20. Logging utilization in Idaho: Current and past trends

    Science.gov (United States)

    Eric A. Simmons; Todd A. Morgan; Erik C. Berg; Stanley J. Zarnoch; Steven W. Hayes; Mike T. Thompson

    2014-01-01

    A study of commercial timber-harvesting activities in Idaho was conducted during 2008 and 2011 to characterize current tree utilization, logging operations, and changes from previous Idaho logging utilization studies. A two-stage simple random sampling design was used to select sites and felled trees for measurement within active logging sites. Thirty-three logging...

  1. Geothermometric evaluation of geothermal resources in southeastern Idaho

    Science.gov (United States)

    Neupane, G.; Mattson, E. D.; McLing, T. L.; Palmer, C. D.; Smith, R. W.; Wood, T. R.; Podgorney, R. K.

    2016-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water from oil and gas test wells that indicate a potential for geothermal development in the area. We have estimated reservoir temperatures from chemical composition of thermal waters in southeastern Idaho using an inverse geochemical modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. The temperature estimates in the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho, resulted in the highest reservoir temperature estimates in the region.

  2. Idaho's forest products industry and timber harvest, 2011

    Science.gov (United States)

    Eric A. Simmons; Steven W. Hayes; Todd A. Morgan; Charles E. Keegan; Chris Witt

    2014-01-01

    This report traces the flow of Idaho’s 2011 timber harvest through the primary industries; provides a description of the structure, capacity, and condition of Idaho’s industry; and quantifies volumes and uses of wood fiber. Historical wood products industry trends are discussed, as well as changes in harvest, production, employment, and sales.

  3. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    International Nuclear Information System (INIS)

    Peelle, E.; Schweitzer, M.; Scharre, P.; Pressman, B.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability

  4. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Schweitzer, M.; Scharre, P.; Pressman, B.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability.

  5. EG and G Idaho Environmental Protection Implementation Plan (1990)

    Energy Technology Data Exchange (ETDEWEB)

    Wickham, L.E.

    1990-11-01

    This report describes the EG G Idaho strategy for implementation of the Department of Energy (DOE) Order 5400.1 (a DOE-Headquarters directive establishing environmental protection program requirements, authorities, and responsibilities). Preparation of this Environmental Protection Implementation Plan is a requirement of DOE Order 5400.1. Additionally, this report is intended to supplement the Department of Energy--Idaho Operations Office (DOE-ID) Environmental Protection Implementation Plan by detailing EG G Idaho Environmental Protection Program activities. This report describes the current status of the EG G Idaho program, and the strategies for enhancing, as necessary, the current program to meet the requirements of DOE Order 5400.1. Aspects of the Environmental Protection Program included in this report are the assignment of responsibilities to specific EG G organizations, a schedule for completion of enhancements, if necessary, and requirements for documentation and reporting. 4 figs., 1 tab.

  6. Idaho's Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  7. The Status of Physical Activity Opportunities in Idaho Schools

    Science.gov (United States)

    Berei, Catherine P.; Karp, Grace Goc; Kauffman, Katie

    2018-01-01

    Recent literature indicates that low percentages of Idaho adolescents report being physically active on a daily basis. Research examines school PA, however, little focuses on Comprehensive School Physical Activity Programs (CSPAPs) from the perspectives of physical educators. This study explored Idaho physical educators' perceptions and…

  8. Industry initiatives in impact mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.C.

    1982-08-01

    The author concludes that mitigation is the focus of conflicting opinions regarding responsibility, strategy, and effort. There are no hard, fast, or tried and true rules for company involvement in mitigation efforts. Each mitigation effort must be tailored and negotiated to match the unique characteristics of individual projects and circumstances of specific locales. Companies must assume financial responsibility for the temporary impacts and area needs created by their projects. They must also offer financial and technical assistance to impact areas, not just the host political jurisdiction, when local, state, federal, and special fund sources of revenue or technical assistance are not available or insufficient. But, local, state, and federal governments must also recognize their responsibilities and make adjustments in tax jurisdiction boundaries and disbursement formulas so that impacted areas are properly defined and receive an adequate share of lease, royalty, severance tax, permit fee, special use and service charges, and sales tax payments. Laws need to allow innovative uses of tax pre-payments, housing mortgage bonds, changeable debt and bounding limits, industrial loans with delayed prepayment, and revised revenue assistance formulas. Enabling legislation is required in most states to allow impact areas to negotiate the mitigation efforts. A review of 7 types of mitigation effort is presented: transportation; housing; public utilities; health, public safety and recreation; miscellaneous; and company-community interaction. (PBS)

  9. Forest inventory, Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final report

    International Nuclear Information System (INIS)

    Narolski, S.W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area

  10. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Narolski, Steven W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  11. Core Activities Program. TMI-2 Core Receipt and Storage Project Plan

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-12-01

    The TMI-2 Core Receipt and Storage Project is funded by the US Department of Energy and managed by the Technical Support Branch of EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). As part of the Core Activities Program, this project will include: (a) preparations for receipt and storage of the Three Mile Island Unit 2 core debris at INEL; and (b) receipt and storage operations. This document outlines procedures; project management; safety, environment, and quality; safeguards and security; deliverables; and cost and schedule for the receipt and storage activities at INEL

  12. Semiannual progress report for the Idaho Geothermal Program, April 1--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Blake, G.L. (ed.)

    1978-11-01

    Research and development performed by the Idaho Geothermal Program between April 1 and September 30, 1978 are discussed. Well drilling and facility construction at the Raft River geothermal site are described. Efforts to understand the geothermal reservoir are explained, and attempts to predict the wells' potential are summarized. Investigations into the direct uses of geothermal water, such as for industrial drying, fish farming, and crop irrigation, are reported. The operation of the facility's first electrical generator is described. Construction of the first 5-megawatt power plant is recounted. The design effort for the second pilot power plant is also described. University of Utah work with direct-contact heat exchangers is outlined. Special environmental studies of injection tests, ferruginous hawks, and dental fluorisis are summarized. The regional planning effort for accelerated commercialization is described. Demonstration projects in Oregon, Utah, and South Dakota are noted. A bibliographical appendix lists each internal and external report the Idaho Geothermal Program has published since its beginning in 1973.

  13. Appalachian Stream Mitigation Workshop

    Science.gov (United States)

    A 5 day workshop in 2011 developed for state and federal regulatory and resource agencies, who review, comment on and/or approve compensatory mitigation plans for surface coal mining projects in Appalachia

  14. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  15. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  16. Mitigation by design

    International Nuclear Information System (INIS)

    Cairns, W.J.

    1992-01-01

    Mitigation or 'the act of bringing together' is not to be confused with applied architectural or landscape cosmetics to render development which has been predesigned in terms of engineering parameters to be more 'seemly' or 'attractive'. It is more profoundly an exercise in simultaneous engineering and environmental analysis in which the level of synthesis between the elements of construction and the elements of the physical environment is fundamental to the ultimate design success of projects. This text, having looked firstly at the nature of design and the characteristics of design processes and procedures, considers the linkages and interaction between design and the statutory land use planning system through which major development projects in Scotland are authorised. A case study of the development of the oil handling terminal at Flotta, Orkney, is included to demonstrate the implications of certain problems related to mitigation by design. (author)

  17. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  18. Next Generation Nuclear Plant Project Preliminary Project Management Plan

    International Nuclear Information System (INIS)

    Dennis J. Harrell

    2006-01-01

    This draft preliminary project management plan presents the conceptual framework for the Next Generation Nuclear Plant (NGNP) Project, consistent with the authorization in the Energy Policy Act of 2005. In developing this plan, the Idaho National Laboratory has considered three fundamental project planning options that are summarized in the following section. Each of these planning options is literally compliant with the Energy Policy Act of 2005, but each emphasizes different approaches to technology development risks, design, licensing and construction risks, and to the extent of commercialization support provided to the industry. The primary focus of this draft preliminary project management plan is to identify those activities important to Critical Decision-1, at which point a decision on proceeding with the NGNP Project can be made. The conceptual project framework described herein is necessary to establish the scope and priorities for the technology development activities. The framework includes: A reference NGNP prototype concept based on what is judged to be the lowest risk technology development that would achieve the needed commercial functional requirements to provide an economically competitive nuclear heat source and hydrogen production capability. A high-level schedule logic for design, construction, licensing, and acceptance testing. This schedule logic also includes an operational shakedown period that provides proof-of-principle to establish the basis for commercialization decisions by end-users. An assessment of current technology development plans to support Critical Decision-1 and overall project progress. The most important technical and programmatic uncertainties (risks) are evaluated, and potential mitigation strategies are identified so that the technology development plans may be modified as required to support ongoing project development. A rough-order-of-magnitude cost evaluation that provides an initial basis for budget planning. This

  19. Economic aspects of hydro geological risk mitigation measures management in Italy: the ReNDiS project experience

    Science.gov (United States)

    Spizzichino, D.; Campobasso, C.; Gallozzi, P. L.; Dessi', B.; Traversa, F.

    2009-04-01

    ReNDiS project is a useful tool for monitoring, analysis and management of information data on mitigation measures and restoration works of soil protection at national scale. The main scope of the project, and related monitoring activities, is to improve the knowledge about the use of national funds and efforts against floods and landslides risk and, as a consequence, to better address the preventive policies in future. Since 1999 after the disastrous mudflow event occurred in Sarno in 1998, which caused the loss of 160 human lives, an extraordinary effort was conducted by the Italian Government in order to promote preventive measures against the hydro geological risk over the entire Italian territory. The Italian Ministry for the Environment promoted several and annual soil protection programmes. The ReNDiS project (Repertory of mitigation measures for National Soil Protection) is carried out by ISPRA - Institute for Environmental protection and Research, with the aim of improving the knowledge about the results of preventive policies against floods and landslides in order to better address national funds as requested by the Minister itself. The repertory is composed by a main archive and two secondary interface, the first for direct data management (ReNDiS-ist) and the latter (ReNDiS-web) for the on-line access and public consultation. At present, ReNDiS database contains about 3000 records concerning those programmes, focused on restoration works but including also information on landslide typologies and processes. The monitoring project is developed taking into account all the information about each step of every mitigation measure from the initial funding phase until the end of the work. During present work, we have statistically analyzed the ReNDiS database in order to highlight the conformity between the characteristic and type of the hazard (identified in a specific area) and the corresponding mitigation measures adopted for risk reduction. Through specific

  20. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  1. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  2. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  3. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Idaho. Moving to the 2015 IECC from the 2015 Idaho State Code base code is cost-effective for residential buildings in all climate zones in Idaho.

  5. Project Management Plan for the INEL technology logic diagrams

    International Nuclear Information System (INIS)

    Rudin, M.J.

    1992-10-01

    This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ''Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG ampersand G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project

  6. 75 FR 66746 - Idaho Power Company and Milner Dam, Inc; Notice of Application for Amendment of License, and...

    Science.gov (United States)

    2010-10-29

    .... Location: The project is located on the Snake River in Twin Falls and Cassia Counties, Idaho. g. Filed... the Upper Snake Water Supply Bank. l. Locations of the Application: A copy of the application is available for inspection and reproduction at the Commission's Public Reference Room, located at 888 First...

  7. 76 FR 61070 - Disaster Assistance; Hazard Mitigation Grant Program

    Science.gov (United States)

    2011-10-03

    ...) to revise the categories of projects eligible for funding under the Hazard Mitigation Grant Program (HMGP). The NPRM proposed to define eligible mitigation activities under the HMGP to include minor flood... FEMA-2011-0004] RIN 1660-AA02;Formerly 3067-AC69 Disaster Assistance; Hazard Mitigation Grant Program...

  8. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  9. Quality-assurance plan for water-resources activities of the U.S. Geological Survey in Idaho

    Science.gov (United States)

    Packard, F.A.

    1996-01-01

    To ensure continued confidence in its products, the Water Resources Division of the U.S. Geological Survey implemented a policy that all its scientific work be performed in accordance with a centrally managed quality-assurance program. This report establishes and documents a formal policy for current (1995) quality assurance within the Idaho District of the U.S. Geological Survey. Quality assurance is formalized by describing district organization and operational responsibilities, documenting the district quality-assurance policies, and describing district functions. The districts conducts its work through offices in Boise, Idaho Falls, Twin Falls, Sandpoint, and at the Idaho National Engineering Laboratory. Data-collection programs and interpretive studies are conducted by two operating units, and operational and technical assistance is provided by three support units: (1) Administrative Services advisors provide guidance on various personnel issues and budget functions, (2) computer and reports advisors provide guidance in their fields, and (3) discipline specialists provide technical advice and assistance to the district and to chiefs of various projects. The district's quality-assurance plan is based on an overall policy that provides a framework for defining the precision and accuracy of collected data. The plan is supported by a series of quality-assurance policy statements that describe responsibilities for specific operations in the district's program. The operations are program planning; project planning; project implementation; review and remediation; data collection; equipment calibration and maintenance; data processing and storage; data analysis, synthesis, and interpretation; report preparation and processing; and training. Activities of the district are systematically conducted under a hierarchy of supervision an management that is designed to ensure conformance with Water Resources Division goals quality assurance. The district quality

  10. 76 FR 18214 - Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project...

    Science.gov (United States)

    2011-04-01

    ...-western Idaho on the Snake River from river mile 525 near Hammett to river mile 493 near Grand View in... available for inspection and reproduction at the Commission's Public Reference Room, located at 888 First... and reproduction at the address in item (h) above. m. Individuals desiring to be included on the...

  11. Idaho National Engineering Laboratory installation roadmap assumptions document

    International Nuclear Information System (INIS)

    1993-05-01

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

  12. Characterizing aquifer hydrogeology and anthropogenic chemical influences on groundwater near the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Fromm, J.M.

    1995-01-01

    A conceptual model of the Eastern Snake River Plain aquifer in the vicinity of monitoring well USGS-44, downgradient of the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL), was developed by synthesis and comparison of previous work (40 years) and new investigations into local natural hydrogeological conditions and anthropogenic influences. Quantitative tests of the model, and other recommendations are suggested. The ICPP recovered fissionable uranium from spent nuclear fuel rods and disposed of waste fluids by release to the regional aquifer and lithosphere. Environmental impacts were assessed by a monitoring well network. The conceptual model identifies multiple, highly variable, interacting, and transient components, including INEL facilities multiple operations and liquid waste handling, systems; the anisotropic, in homogeneous aquifer; the network of monitoring and production wells, and the intermittent flow of the Big Lost River. Pre anthropogenic natural conditions and early records of anthropogenic activities were sparsely or unreliably documented making reconstruction of natural conditions or early hydrologic impacts impossible or very broad characterizations

  13. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

  14. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Bartholomay, R.C.

    1990-08-01

    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs

  15. Severe fuel damage projects

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-10-01

    After the descriptions of the generation of a Severe Fuel Damage Accident in a LWR the hypothetical course of such an accident is explained. Then the most significant projects are described. At each project the experimental facility, the most important results and the concluding models and codes are discussed. The selection of the projects is concentrated on the German Projekt Nukleare Sicherheit (PNS), tests performed at the Idaho National Engineering Laboratory (INEL) and smaller projects in France and Great Britain. 25 refs., 26 figs. (Author)

  16. 76 FR 18213 - Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project...

    Science.gov (United States)

    2011-04-01

    ... located in south-central Idaho on the Snake River from river mile 612.5 to river mile 617.1 in Twin Falls... inspection and reproduction at the Commission's Public Reference Room, located at 888 First Street, NE., Room... reproduction at the address in item (h) above. m. Individuals desiring to be included on the Commission's...

  17. Idaho State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Idaho State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Idaho. The profile is the result of a survey of NRC licensees in Idaho. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Idaho

  18. Operational and engineering developments in the management of low-level radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Kendall, E.W.; McKinney, J.D.; Wehmann, G.

    1979-01-01

    The Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory is a site for shallow land disposal and storage of solid radioactive waste. It is currently operated for ERDA by EG and G Idaho, Inc. The facility has accepted radioactive waste since July 1952. Both transuranic and non-transuranic wastes are handled at the complex. This document describes the operational and engineering developments in waste handling and storage practices that have been developed during the 25 years of waste handling operations. Emphasis is placed on above-ground transuranic waste storage, subsurface transuranic waste retrieval, and beta/gamma compaction disposal. The proposed future programs for the RWMC including a Molten Salt Combustion Facility and Production Scale Retrieval Project are described

  19. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  20. Radionuclides, inorganic constitutents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1992

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. The samples were collected from 13 irrigation wells, 1 domestic well, 1 spring, 2 stock wells, and 1 public supply well. Quality assurance samples also were collected and analyzed. None of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. Most of the samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting levels. None of the samples contained reportable concentrations of purgeable organic compounds or pesticides. Total coliform bacteria was present in nine samples

  1. The Implementation of Pay for Performance in Idaho Schools: A Case Study of Teacher Perceptions

    Science.gov (United States)

    Staniec, Shelly Ann

    2013-01-01

    This is a qualitative narrative case study set in an Idaho high school where twelve educators offered their viewpoints on the implementation of Idaho's pay-for-performance legislation. In the spring of 2011, Idaho legislators passed laws aimed at increasing student performance and college or career readiness. These laws, known as Idaho's Students…

  2. 76 FR 20652 - Idaho Power Company; Notice of Application of Land Management Plan Update for the Bliss, Upper...

    Science.gov (United States)

    2011-04-13

    ... projects are located in south-central Idaho on the Snake River from river mile 551 near Bliss to river mile... and reproduction at the Commission's Public Reference Room, located at 888 First Street, NE., Room [email protected] , for TTY, call (202) 502-8659. A copy is also available for inspection and reproduction at...

  3. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    International Nuclear Information System (INIS)

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-01-01

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP)

  4. Compilation and analysis of multiple groundwater-quality datasets for Idaho

    Science.gov (United States)

    Hundt, Stephen A.; Hopkins, Candice B.

    2018-05-09

    Groundwater is an important source of drinking and irrigation water throughout Idaho, and groundwater quality is monitored by various Federal, State, and local agencies. The historical, multi-agency records of groundwater quality include a valuable dataset that has yet to be compiled or analyzed on a statewide level. The purpose of this study is to combine groundwater-quality data from multiple sources into a single database, to summarize this dataset, and to perform bulk analyses to reveal spatial and temporal patterns of water quality throughout Idaho. Data were retrieved from the Water Quality Portal (https://www.waterqualitydata.us/), the Idaho Department of Environmental Quality, and the Idaho Department of Water Resources. Analyses included counting the number of times a sample location had concentrations above Maximum Contaminant Levels (MCL), performing trends tests, and calculating correlations between water-quality analytes. The water-quality database and the analysis results are available through USGS ScienceBase (https://doi.org/10.5066/F72V2FBG).

  5. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  6. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Data summary report on short-term turbidity monitoring of pipeline river crossings in the Moyie River, Boundary County, Idaho: PGT-PG&E Pipeline Expansion Project

    Energy Technology Data Exchange (ETDEWEB)

    Gowdy, M.J.; Smits, M.P.; Wilkey, P.L.; Miller, S.F.

    1994-03-01

    A water-quality monitoring program was implemented for Bechtel Corporation to measure the short-term increases in turbidity in the Moyie River caused by construction activities of the Pacific Gas Transmission-Pacific Gas & Electric Pipeline Expansion Project. Construction of the buried, 42-in.-diameter, steel pipeline, during the summer of 1992, involved eight wet crossings of the Moyie River along the 13-mi section of pipeline immediately south of the Canadian-United States border in Boundary County, Idaho. This report summarizes the sampling and analysis protocol used and gives the results and observations for each of the eight crossings. The data obtained from this monitoring program, in addition to satisfying regulatory requirements for the Pipeline Expansion Project, will contribute to an ongoing long-term study of the Moyie River crossings being performed for the Gas Research Institute by Argonne National Laboratory. The purpose of this document is strictly limited to reporting the results of the monitoring program. Interpretation of the data is not within the scope of this report.

  8. Develop an asset management tool for collecting and tracking commitments on selected environmental mitigation features.

    Science.gov (United States)

    2009-05-01

    Wisconsin has constructed many environmental mitigation projects in conjunction with transportation projects that have been implemented according : to the National Environmental Policy Act. Other mitigation projects have been constructed pursuant to ...

  9. Industrial application of geothermal energy in Southeast Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  10. Assessment of indirect losses and costs of emergency for project planning of alpine hazard mitigation

    Science.gov (United States)

    Amenda, Lisa; Pfurtscheller, Clemens

    2013-04-01

    By virtue of augmented settling in hazardous areas and increased asset values, natural disasters such as floods, landslides and rockfalls cause high economic losses in Alpine lateral valleys. Especially in small municipalities, indirect losses, mainly stemming from a breakdown of transport networks, and costs of emergency can reach critical levels. A quantification of these losses is necessary to estimate the worthiness of mitigation measures, to determine the appropriate level of disaster assistance and to improve risk management strategies. There are comprehensive approaches available for assessing direct losses. However, indirect losses and costs of emergency are widely not assessed and the empirical basis for estimating these costs is weak. To address the resulting uncertainties of project appraisals, a standardized methodology has been developed dealing with issues of local economic effects and emergency efforts needed. In our approach, the cost-benefit-analysis for technical mitigation of the Austrian Torrent and Avalanche Control (TAC) will be optimized and extended using the 2005-debris flow as a design event, which struggled a small town in the upper Inn valley in southwest Tyrol (Austria). Thereby, 84 buildings were affected, 430 people were evacuated and due to this, the TAC implemented protection measures for 3.75 million Euros. Upgrading the method of the TAC and analyzing to what extent the cost-benefit-ratio is about to change, is one of the main objectives of this study. For estimating short-run indirect effects and costs of emergency on the local level, data was collected via questionnaires, field mapping, guided interviews, as well as intense literature research. According to this, up-to-date calculation methods were evolved and the cost-benefit-analysis of TAC was recalculated with these new-implemented results. The cost-benefit-ratio will be more precise and specific and hence, the decision, which mitigation alternative will be carried out

  11. Mitigation assessment results and priorities in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongxin; Wei Zhihong [Tsinghua Univ., Beijing (China)

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  12. 23 CFR 777.9 - Mitigation of impacts.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Mitigation of impacts. 777.9 Section 777.9 Highways... IMPACTS TO WETLANDS AND NATURAL HABITAT § 777.9 Mitigation of impacts. (a) Actions eligible for Federal funding. There are a number of actions that can be taken to minimize the impact of highway projects on...

  13. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  14. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site's contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b)

  15. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  16. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    International Nuclear Information System (INIS)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory

  17. Evaluation of the varying Naturally Occurring Asbestos mitigation measures at School and Commercial construction projects in California

    Science.gov (United States)

    Kalika, S.

    2012-12-01

    In commercial development or K-12 school construction, project sites are often purchased and much of the planning process completed prior to an assessment of the soils proposed for excavation or potential offhaul. Geologic maps, while initially helpful for identifying potential hazards such as landslides and earthquake faults, are less helpful in the identification of naturally occurring hazardous minerals, such as the seven regulated minerals currently classified as asbestos. Geologic maps identify mafic and ultramafic bedrock zones; however, a skilled geologist with knowledge of asbestos hazards will further visualize the earth-shaping processes that may have resulted in the deposition of naturally occurring asbestos in locations outside mapped ultramafic zones including the base of an alluvial fan or within streambed channels. When sampled as an afterthought prior to disposal, property owners are surprised by the budget-crippling costs of waste handling and disposal of NOA, as well as mitigations required to protect the health of construction workers, the public, and future site occupants. The California Air Resources Board (CARB) continues to lead the way in evaluation and regulation of NOA, through development of the CARB 435 preparation and laboratory analytical method, local enforcement of the Asbestos Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Mining Operations (ATCM), and implementation of dust control measures to protect public health. A thorough site evaluation and construction design includes utilization of the sampling methods developed by the California Geological Survey, laboratory analytical methods within CARB 435, and mitigation measures required by CARB, DTSC, and OSHA for the protection of worker and public health after NOA is discovered. The site evaluation should additionally include an assessment of the future site usage, as regulations differ based on potential health affects to future occupants

  18. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    Science.gov (United States)

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  19. Echinococcus granulosus in gray wolves and ungulates in Idaho and Montana, USA.

    Science.gov (United States)

    Foreyt, William J; Drew, Mark L; Atkinson, Mark; McCauley, Deborah

    2009-10-01

    We evaluated the small intestines of 123 gray wolves (Canis lupus) that were collected from Idaho, USA (n=63), and Montana, USA (n=60), between 2006 and 2008 for the tapeworm Echinococcus granulosus. The tapeworm was detected in 39 of 63 wolves (62%) in Idaho, USA, and 38 of 60 wolves (63%) in Montana, USA. The detection of thousands of tapeworms per wolf was a common finding. In Idaho, USA, hydatid cysts, the intermediate form of E. granulosus, were detected in elk (Cervus elaphus), mule deer (Odocoileus hemionus), and a mountain goat (Oreamnos americanus). In Montana, USA, hydatid cysts were detected in elk. To our knowledge, this is the first report of adult E. granulosus in Idaho, USA, or Montana, USA. It is unknown whether the parasite was introduced into Idaho, USA, and southwestern Montana, USA, with the importation of wolves from Alberta, Canada, or British Columbia, Canada, into Yellowstone National Park, Wyoming, USA, and central Idaho, USA, in 1995 and 1996, or whether the parasite has always been present in other carnivore hosts, and wolves became a new definitive host. Based on our results, the parasite is now well established in wolves in these states and is documented in elk, mule deer, and a mountain goat as intermediate hosts.

  20. Transport policies related to climate change mitigation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Kappel, Jannik

    and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report......This report presents the Danish national policies on reducing the emissions of greenhouse gasses and reducing Denmark’s dependency on fossil fuels in the transport sector, as well as some of the results of the policies. Systematic focus on efficient transport and climate mitigation started in 2008...... challenges for the transport sectors, which has not yet been systematically analysed from any Governmental body. In this report we list projects which have done so. The first chapter describes policies and initiatives of international relevance within climate mitigation. The following chapters explain...

  1. Blue Creek Winter Range: Wildlife Mitigation Project

    International Nuclear Information System (INIS)

    1994-01-01

    This preliminary Environmental Assessment examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities are analyzed: Habitat protection; Habitat enhancement; Operation and maintenance; and Monitoring and evaluation. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  2. Linking Mitigation and Adaptation in Carbon Forestry Projects: Evidence from Belize

    DEFF Research Database (Denmark)

    Kongsager, Rico; Corbera, Esteve

    2015-01-01

    that linking mitigation and adaptation has not been possible, because the mandate of forest carbon markets does not incorporate adaptation concerns. The projects’ contribution to forest ecosystems’ adaptation, for instance, by reducing human encroachments and by increasing ecosystem connectivity, has been...... instead to promote more holistic and territorial-based approaches targeting both mitigation and adaptation goals....

  3. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination

  4. Environmental monitoring for EG and G Idaho facilities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tkachyk, J.W.; Wright, K.C.; Wilhelmsen, R.N.

    1990-08-01

    This report describes the 1989 environmental-monitoring activities of the Environmental Monitoring Unit of EG ampersand G Idaho, Inc., at EG ampersand G-operated facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Additional monitoring activities performed by Environmental Monitoring are also discussed, including drinking-water monitoring and nonradiological liquid-effluent monitoring, as well as data management. The primary purposes of monitoring are to evaluate environmental conditions and to provide and interpret data, in compliance with applicable regulations, to ensure protection of human health and the environment. This report compares 1989 environmental-monitoring data with derived concentration guides and with data from previous years. This report also presents results of sampling performed by the Radiological and Environmental Sciences Laboratory and by the United States Geological Survey. 17 refs., 49 figs., 11 tabs

  5. Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems

    Science.gov (United States)

    Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.

    2011-12-01

    The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.

  6. Insects of the Idaho National Laboratory: A compilation and review

    Science.gov (United States)

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  7. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, Jim [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Carlson, Richard [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Garretson, Thomas [Electric Applications Incorporated, Phoenix, AZ (United States); Gourley, LauraLee [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Karner, Donal [Electric Applications Incorporated, Phoenix, AZ (United States); McGuire, Patti [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Kirkpatrick, Mindy [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Shrik, Matthew [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Schey, Stephen [Electric Applications Incorporated, Phoenix, AZ (United States); Smart, John [Idaho National Laboratory (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Wishard, Jeffery [Intertek Center for the Evaluation of Clean Energy Technology, Phoenix, AZ (United States)

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  8. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  9. Additions and corrections to the bibliography of geologic studies, Columbia Plateau (Columbia River Besalt) and adjacent Areas, in Idaho, 1980

    International Nuclear Information System (INIS)

    Strowd, W.

    1980-01-01

    This bibliography is an update to Idaho Bureau of Mines and Geology Open-File Report 78-6, Bibliography of Geological Studies, Columbia Plateau (Columbia River Basalt Group) and adjacent areas in Idaho (also known as Rockwell Hanford Operations' contractor report RHO-BWI-C-44). To keep the original document current, this additions and corrections report was prepared for the Basalt Waste Isolation Project of Rockwell Hanford Operations. This update is supplementary; therefore, references cited in the original document have not been included here. What is included are materials that have become available since the original publication and pertinent literature that had originally been overlooked. Accompany this updated bubliography are index maps that show locations of geologic studies and geochemical petrographic, remanent paleomagnetic, and radiometric age-dated sites within the Columbia River Basalt Group field within Idaho; also identified are archeological sites, test wells, mines, quarries, and other types of excavations. References on the index maps are keyed to the bibliography and cover the Spokane, Pullman, Hamilton, Grangeville, Elk City, Baker, Boise, and Jordan Valley Army Map Service two-degree quadrangles

  10. 76 FR 10018 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Science.gov (United States)

    2011-02-23

    ... Idaho's 2015 Cleanup Vision Government Budget Cycle American Recovery and Reinvestment Act Idaho Cleanup.... The Deputy Designated Federal Officer is empowered to conduct the meeting in a fashion that will...

  11. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  12. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  13. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  14. West Valley demonstration project: Implementation of the kerosene mitigation plan

    International Nuclear Information System (INIS)

    Blickwedehl, R.R.; Goodman, J.; Valenti, P.J.

    1987-05-01

    An aggressive program was implemented to mitigate the migration of radioactive kerosene believed to have originated from the West Valley NRC-Licensed Disposal Area (NDA) disposal trenches designated as SH-10 and SH-11 (Special Holes 10 and 11). This report provides a historical background of the events leading to the migration problem, the results of a detailed investigation to determine the location and source of the kerosene migration, the remediation plan to mitigate the migration, and the actions taken to successfully stabilize the kerosene. 7 refs., 19 figs., 1 tab

  15. Historic American Landscapes Survey: Arco Naval Proving Ground (Idaho National Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Christina [Idaho National Lab. (INL), Idaho Falls, ID (United States); Holmer, Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gilbert, Hollie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    Based on historical evaluations in 1993 and 1997, historians determined that the then-remaining Arco NPG structures were significant to the nation’s history through their association with World War II . Through ensuing discussions with the SHPO, it was further determined that the infrastructure and associated landscape were also significant. According to provisions of INL’s Cultural Resource Management Plan (CRMP) as legitimized through a 2004 Programmatic Agreement between DOE-ID, the Idaho State Historic Preservation Office (SHPO), and Advisory Council on Historic Preservation (ACHP) historians identified the World War II structures as DOE “Signature Properties”. As defined by DOE-HQ, Signature Properties “denote its [DOE’s] most historically important properties across the complex…and/or those properties that are viewed as having tourism potential.” The INL is a secure site and the INL land and structures are not accessible to the public and, therefore have no “tourism potential”. Although DOE-ID actively sought other uses for the vacant, unused buildings, none were identified and the buildings present safety and health concerns. A condition assessment found lead based paint, asbestos, rodent infestation/droppings, small animal carcasses, mold, and, in CF-633, areas of radiological contamination. In early 2013, DOE-ID notified the Idaho SHPO, ACHP, and, as required by the INL CRMP and PA, DOE-Headquarters Federal Preservation Officer, of their intent to demolish the vacant buildings (CF-606, CF-607, CF-613, CF-632, and CF-633). The proposed “end-state” of the buildings will be either grass and/or gravel pads. Through the NHPA Section 106 consultation process, measures to mitigate the adverse impacts of demolition were determined and agreed to through a Memorandum of Agreement (MOA) between DOE-ID, SHPO, and ACHP. The measures include the development and installation of interpretive signs to be placed at a publicly accessible location

  16. Public private partnerships for climate change mitigation – An Indian case

    Directory of Open Access Journals (Sweden)

    Tharun Dolla

    2017-01-01

    Full Text Available Cities are one of the major contributors to greenhouse gas emissions. Climate change poses serious threat to urban infrastructure, quality of life, and entire urban systems. Cities need to adopt an integrated approach for improvement of city services in order to adapt to climate change and reduce their greenhouse emissions. However, the magnitude of investment required to bridge the widening infrastructure service provision demand-supply gap along with the additional investment to mitigate climate change demands the need to look for innovative financing solutions. Private investments through public private partnership (PPP route offer an innovative mechanism for meet both the goals of infrastructure development and climate change mitigation. Private parties in PPP, however, focuses on the project economics only though they have the potential to provide innovative technical, financial and managerial solutions. The paper aims to answer the question how to integrate climate change mitigation objective in procurement process of PPP projects. The study has focused only on PPP projects in Municipal Solid Waste Management sector. The integration of climate change mitigation objective has been through design of a modified procurement protocol which promote private sector to devise project structure that fulfil both the objectives of climate change mitigation and provision of quality infrastructure services.

  17. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-05-18

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

  18. Government programs for climate change mitigation in Japan. An analysis based on public budget documents and Government Project Review Sheets

    International Nuclear Information System (INIS)

    Kimura, Osamu

    2016-01-01

    The Japanese government has been spending huge public budgets for various programs to mitigate climate change, such as subsidy programs for energy efficient and renewable technologies, and R and D programs to develop innovative low carbon technologies. This report makes a comprehensive review of government projects and expenditure related to climate change mitigation in order to grasp their total expenditure and to analyze portfolio of supported technology and activity types, outcome, and the cost-effectiveness. It is estimated that the total expenditure for climate change mitigation excluding nuclear energy and forest sink projects amounts to 4.8 trillion JPY (approximately 40 billion USD) in the period of 2008 to 2014. 40% of the total expenditure went to only three largest programs, namely the Eco Car Subsidy, the Eco Point Programs for Appliances and Houses, all of which have gone through virtually no or only poor evaluations by the implementing ministries. While some programs had decent cost-effectiveness of reducing carbon dioxide emission at below 10,000 JPY/t-CO 2 (approximately 90 USD), there are also programs with very low cost-effectiveness at more than 100,000 JPY/t-CO 2 . Moreover, all of the evaluation was based on 'gross' reduction, not on 'net' of freeriders, rebound and other factors, which may lead to overestimation of performances. The result shows the need for a much larger resource for evaluation activities by the government. (author)

  19. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  20. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    Science.gov (United States)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  1. Methodological issues in developing a community forestry greenhouse gas emissions mitigation project in Mancherial forest division of Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Murthy, I.K.; Hegde, G.T.; Sudha, P.; Ravindranath, N.H.

    2006-01-01

    There are several contentious issues related to forestry mitigation projects. The special report of the IPCC and literature published so far have shown that permanence, leakage, baseline establishment, measurement, monitoring, etc., could be addressed satisfactorily using existing scientific methods and accounting rules. To understand the methodological issues of developing community forestry projects, a case study was conducted in Mancherial forest division of Adilabad district in Andhra Pradesh, India. This paper addresses: the setting of project boundaries, baseline selection, establishment of additionality and the calculation of carbon sequestration as a result of the project, prior to project implementation. The steps involved in development of the project and the different methods used for establishing baseline, estimating leakage and transaction cost of developing a community forestry project are presented. The stock is projected to increase by 1480 x 10 3 t C during 2000-2012 over the baseline scenario under the modeling approach and the cost of establishing a baseline and project formulation for a project extending over 32,956 ha is estimated to be US$ 1.25 ha -1 and US$ 4 t C -1

  2. Idaho Marketing Education Core Curriculum. Career Sustaining Level, Specialist Level, Supervisory Level, Entrepreneurial Level.

    Science.gov (United States)

    Miller, Linda Wise; Winn, Richard

    This document contains Idaho's marketing education (ME) core curriculum. Presented first are a list of 22 ME strategies that are aligned with the Idaho State Division of Vocational-Technical Education's strategic plan and a chart detailing the career pathways of ME in Idaho (arts and communication, business and management, health services, human…

  3. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

  4. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  5. Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site

    International Nuclear Information System (INIS)

    B. G. Meagher

    2007-01-01

    This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the public's information needs are met and that the Agencies can use the public's input for decisions regarding remediation activities

  6. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water

  7. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    Science.gov (United States)

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  8. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control Systemm (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable

  9. Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  10. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  11. 75 FR 7440 - Notice of Idaho Panhandle Resource Advisory Committee Meeting

    Science.gov (United States)

    2010-02-19

    ... Self-Determination Act of 2000 (Public Law 110-343) the Idaho Panhandle National Forest's Idaho... for a business meeting. The business meeting is open to the public. DATES: February 19, 2010... business meeting. The public forum begins at 11 a.m. Dated: February 10, 2010. Ranotta K. McNair, Forest...

  12. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Kass, Michael D [ORNL; FINNEY, Charles E A [ORNL; Lewis, Samuel [Oak Ridge National Laboratory (ORNL); Kaul, Brian C [ORNL; Besmann, Theodore M [ORNL; Thomas, John F [ORNL; Rogers, Hiram [ORNL; Sepaniak, Michael [University of Tennessee, Knoxville (UTK)

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  13. Idaho National Engineering Laboratory installation roadmap document

    International Nuclear Information System (INIS)

    1993-01-01

    The roadmapping process was initiated by the US Department of Energy's office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included

  14. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.V.

    1979-07-01

    A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

  15. The VUELCO project consortium: new interdisciplinary research for improved risk mitigation and management during volcanic unrest

    Science.gov (United States)

    Gottsmann, J.

    2012-04-01

    Volcanic unrest is a complex multi-hazard phenomenon of volcanism. The fact that unrest may, but not necessarily must lead to an imminent eruption contributes significant uncertainty to short-term hazard assessment of volcanic activity world-wide. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, inadequate to deal effectively with crises of volcanic unrest. This results predominantly from the uncertainties in identifying the causative processes of unrest and as a consequence in forecasting its short-term evolution. However, key for effective risk mitigation and management during unrest is the early and reliable identification of changes in the subsurface dynamics of a volcano and their assessment as precursors to an impending eruption. The VUELCO project consortium has come together for a multi-disciplinary attack on the origin, nature and significance of volcanic unrest from the scientific contributions generated by collaboration of ten partners in Europe and Latin America. Dissecting the science of monitoring data from unrest periods at six type volcanoes in Italy, Spain, the West Indies, Mexico and Ecuador the consortium will create global strategies for 1) enhanced monitoring capacity and value, 2) mechanistic data interpretation and 3) identification of reliable eruption precursors; all from the geophysical, geochemical and geodetic fingerprints of unrest episodes. Experiments will establish a mechanistic understanding of subsurface processes capable of inducing unrest and aid in identifying key volcano monitoring parameters indicative of the nature of unrest processes. Numerical models will help establish a link between the processes and volcano monitoring data to inform on the causes of unrest and its short-term evolution. Using uncertainty assessment and new short

  16. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  17. Idaho Transportation Department 2009 partnership survey.

    Science.gov (United States)

    2010-06-01

    The report discusses the results of an electronic survey of 1,500 individual stakeholders of the Idaho Transportation Department (ITD). The purpose of this survey, which was conducted in August and September 2009, was to gauge stakeholders satisfa...

  18. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  19. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  20. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  1. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  2. Mitigating Reptile Road Mortality: Fence Failures Compromise Ecopassage Effectiveness

    Science.gov (United States)

    Baxter-Gilbert, James H.; Riley, Julia L.; Lesbarrères, David; Litzgus, Jacqueline D.

    2015-01-01

    Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road

  3. Mitigating reptile road mortality: fence failures compromise ecopassage effectiveness.

    Directory of Open Access Journals (Sweden)

    James H Baxter-Gilbert

    Full Text Available Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures. Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively

  4. Idaho Batholith Study Area Density Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer terrace-density grid for the Idaho batholith study area. Number of columns is 331 and number of rows is 285. The order of the data is from the lower...

  5. 44 CFR 78.12 - Eligible types of projects.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...

  6. 36 CFR 294.23 - Road construction and reconstruction in Idaho Roadless Areas.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Road construction and..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.23 Road construction and... Significance, or Primitive. Road construction and reconstruction are prohibited in Idaho Roadless Areas...

  7. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  8. U.S. hydropower resource assessment for Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  9. Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho was...

  10. Water information bulletin No. 30 geothermal investigations in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  11. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-01-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  12. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-03-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  13. Quality-assurance plan and field methods for quality-of-water activities, U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Mann, L.J.

    1996-10-01

    Water-quality activities at the Idaho National Engineering Laboratory (INEL) Project Office are part of the US Geological Survey's (USGS) Water Resources Division (WRD) mission of appraising the quantity and quality of the Nation's water resources. The purpose of the Quality Assurance Plan (QAP) for water-quality activities performed by the INEL Project Office is to maintain and improve the quality of technical products, and to provide a formal standardization, documentation, and review of the activities that lead to these products. The principles of this plan are as follows: (1) water-quality programs will be planned in a competent manner and activities will be monitored for compliance with stated objectives and approaches; (2) field, laboratory, and office activities will be performed in a conscientious and professional manner in accordance with specified WRD practices and procedures by qualified and experienced employees who are well trained and supervised, if or when, WRD practices and procedures are inadequate, data will be collected in a manner that its quality will be documented; (3) all water-quality activities will be reviewed for completeness, reliability, credibility, and conformance to specified standards and guidelines; (4) a record of actions will be kept to document the activity and the assigned responsibility; (5) remedial action will be taken to correct activities that are deficient

  14. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures

  15. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  16. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  17. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  18. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  19. Risk assessment for transportation of radioactive material within the state of Idaho

    International Nuclear Information System (INIS)

    Deng, C.; Oberg, S.G.; Downs, J.L.

    1996-01-01

    The State of Idaho and the U.S. DOE have agreed to a one year pilot program to review and analyze DOE's off-site transportation of radioactive materials within Idaho on a shipping-campaign basis. As a part of that effort, the State of Idaho INEL Oversight Program conducts independent transportation risk assessments. These risk assessments are performed for both highway and railroad shipments using the computer codes RADTRAN4 ,and RISKIND 1.11. Some input parameters are customized with. Idaho-specific data, such as population density, accident rates and meteorological data. The dose and risk (to the public, handlers, crew, etc.) are estimated for both incident free and accident scenarios. Source term files are being built for past, current, and future shipments in Idaho. These include transuranic waste. shipments to WIPP, low level waste, mixed waste, spent fuel, and high level waste. Each shipment is analyzed for two types of transportation route segments: county segments and ten-mile segments. Risk estimation for each county segment provides information for allocation of emergency preparedness resources. Risk estimation for each ten-mile segment helps to identify higher risk segments. The dose and risk results are presented in appropriate formats for various audiences. The quantitative risk measures are used to guide appropriate levels of emergency preparedness. GIS tools are being used to graphically present risk information to elected officials and to the general public

  20. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Ghanashyam [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Mattson, Earl D. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); McLing, Travis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Center for Advanced Energy Studies; Palmer, Carl D. [Univ. of Idaho, Idaho Falls, ID (United States); Smith, Robert W. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Wood, Thomas R. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Podgorney, Robert K. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States)

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  1. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    International Nuclear Information System (INIS)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 - 61 °C/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  2. Sustainable and non-conventional monitoring systems to mitigate natural hazards in low income economies: the 4onse project approach.

    Science.gov (United States)

    Cannata, Massimiliano; Ratnayake, Rangajeewa; Antonovic, Milan; Strigaro, Daniele

    2017-04-01

    Environmental monitoring systems in low economies countries are often in decline, outdated or missing with the consequence that there is a very scarce availability and accessibility to these information that are vital for coping and mitigating natural hazards. Non-conventional monitoring systems based on open technologies may constitute a viable solution to create low cost and sustainable monitoring systems that may be fully developed, deployed and maintained at local level without lock-in dependances on copyrights or patents or high costs of replacements. The 4onse research project , funded under the Research for Development program of the Swiss National Science Foundation and the Swiss Office for Development and Cooperation, propose a complete monitoring system that integrates Free & Open Source Software, Open Hardware, Open Data, and Open Standards. After its engineering, it will be tested in the Deduru Oya catchment (Sri Lanka) to evaluate the system and develop a water management information system to optimize the regulation of artificial basins levels and mitigate flash floods. One of the objective is to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. Results, challenges and experiences from the first six months of the projects will be presented with particular focus on the activities of synergies building and data collection and dissemination system advances.

  3. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  4. 5 Steps to Food Preservation Program Meets the Needs of Idaho Families

    Science.gov (United States)

    Dye, Lorie; Hoffman, Katie

    2014-01-01

    University of Idaho FCS Extension Educators in southeastern Idaho developed a five-lesson condensed version of safe food preservation classes, driven by participants' interest to meet the needs of everyday home preservers. A post-test survey revealed that participants took the course to be self-reliant, use their own produce, and be in control of…

  5. Water resources data, Idaho, 2002; Volume 2. Upper Columbia River basin and Snake River basin below King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  6. Compensatory stream and wetland mitigation in North Carolina: an evaluation of regulatory success.

    Science.gov (United States)

    Hill, Tammy; Kulz, Eric; Munoz, Breda; Dorney, John R

    2013-05-01

    Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). "Success" was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program's design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.

  7. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J.; Nash, C.L.

    1992-01-01

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO)

  8. Advanced CO2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Phillips, Adrienne [Montana State Univ., Bozeman, MT (United States)

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  9. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  10. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  11. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    Science.gov (United States)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  12. Improving Decision Making about Natural Disaster Mitigation Funding in Australia—A Framework

    Directory of Open Access Journals (Sweden)

    Robin C. van den Honert

    2016-09-01

    Full Text Available Economic losses from natural disasters pose significant challenges to communities and to the insurance industry. Natural disaster mitigation aims to reduce the threat to people and assets from natural perils. Good decisions relating to hazard risk mitigation require judgments both about the scientific and financial issues involved, i.e., the efficacy of some intervention, and the ethical or value principles to adopt in allocating resources. A framework for selecting a set of mitigation options within a limited budget is developed. Project selection about natural disaster mitigation options needs to trade off benefits offered by alternative investments (e.g., fatalities and injuries avoided, potential property and infrastructure losses prevented, safety concerns of citizens, etc. against the costs of investment. Such costs include capital and on-going operational costs, as well as intangible costs, such as the impact of the project on the visual landscape or the loss of societal cohesion in the event of the relocation of part of a community. Furthermore, dollar costs of any potential project will need to be defined within some prescribed budget and time frame. Taking all of these factors into account, this paper develops a framework for good natural hazard mitigation decision making and selection.

  13. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    Ferguson, F.G.

    1994-02-01

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  14. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G A; Turkson, J K; Davidson, O R [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  15. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  16. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  17. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    Science.gov (United States)

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  18. Navy Radon Assessment and Mitigation Program: Work/quality assurance project plan screening phase

    International Nuclear Information System (INIS)

    1991-03-01

    In 1987, the military services of the United States were tasked to take appropriate action to establish an indoor radon assessment and mitigation program. As a result, the Naval Facilities Engineering Command (NAVFACENGCOM) was assigned the responsibility of identifying potential hazards to personnel from exposure to naturally occurring radon gas and prioritizing corrective actions and to coordinating these actions with the major claimants. NAVRAMP is based upon current US Environmental Protection Agency (EPA) guidelines. The program has been separated into four phases. The screening phase will concentrate on evaluating radon levels, based on statistical samples, in those buildings that have been determined to be at most at risk to elevated levels of radon, such as base housing, schools, day-care centers, hospitals, brigs, Base Officer Quarters, and Base Enlisted Quarters. During the assessment phase, every building that contains personnel for over 4 h/day will be evaluated. Mitigation work will be accomplished by Navy or Navy-contracted personnel. HAZWRAP services during the mitigation phase will consist of determining the extent of reduction in radon levels after the mitigation effort. 7 refs., 11 figs

  19. Net climate change mitigation of the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Erickson, Peter; Lazarus, Michael; Spalding-Fecher, Randall

    2014-01-01

    The Clean Development Mechanism (CDM) has allowed industrialized countries to buy credits from developing countries for the purpose of meeting targets under the Kyoto Protocol. In principle, the CDM simply shifts the location of emission reductions, with no net mitigation impact. Departing from this zero-sum calculus, the Cancun Agreements reached at the sixteenth session of the Conference of the Parties (COP) in 2010 called for “one or more market-based mechanisms” capable of “ensuring a net decrease and/or avoidance of global greenhouse gas emissions”, an intention reiterated at COP 17 and COP 18. This article explores the extent to which the CDM may or may not already lead to such a “net decrease.” It finds that the CDM's net mitigation impact likely hinges on the additionality of large-scale power projects, which are expected to generate the majority of CDM credits going forward. If these projects are truly additional and continue to operate well beyond the credit issuance period, they will decrease global greenhouse gas emissions. However, if they are mostly non-additional, as research suggests, they could increase global greenhouse gas emissions. The article closes with a discussion of possible means to increase mitigation benefit. - Highlights: • The CDM's method for assessing additionality remains controversial and contested. • We develop two scenarios of the net emissions impact of the CDM. • The integrity of the CDM hinges on the emissions impact of power supply projects. • Additionality is hard to demonstrate with confidence for most power-supply projects. • A number of options are available to increase the mitigation benefit of the CDM

  20. Moving from awareness to action: Advancing climate change vulnerability assessments and adaptation planning for Idaho and Montana National Forests

    Science.gov (United States)

    Kershner, Jessi; Woodward, Andrea; Torregrosa, Alicia

    2016-01-01

    The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project will support climate-smart conservation and management across forests of northern Idaho and western Montana through three main components: (1) fostering partnerships among scientists, land managers, regional landowners, conservation practitioners, and the public; (2) assessing the vulnerability of a suite of regionally important resources to climate change and other stressors; and (3) creating a portfolio of adaptation strategies and actions to help resource managers prepare for and respond to the likely impacts of climate change. The results of this project will be used to inform the upcoming land management plan revisions for national forests, helping ensure that the most effective and robust conservation and management strategies are implemented to preserve our natural resources.

  1. 78 FR 63394 - Approval and Promulgation of Implementation Plans; Idaho: State Board Requirements

    Science.gov (United States)

    2013-10-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R10-OAR-2013-0548, FRL-9901-76-Region 10] Approval and Promulgation of Implementation Plans; Idaho: State Board Requirements AGENCY: Environmental..., dated June 26, 2013, and Idaho Code Sec. Sec. 59-701 through 705, Ethics in Government Act, and...

  2. Risk and mitigation in the privately financed hydropower project Birecik, Turkey; Privat finanzierte Wasserkraft, Birecik, Tuerkei - Risiken und Risikoverteilung

    Energy Technology Data Exchange (ETDEWEB)

    Koselleck, F.; Ishay, D. [PH Ventures GmbH, Neu-Isenburg (Germany)

    2003-07-01

    The 627 MW Hydroelectric Power Plant Birecik, Turkey, is the largest privately financed hydropower project realized wordwide under a BOT (Build Operate Transfer) scheme. The total investment volume adds up to almost 1 Bll Euro. Ther financial structure of the project mostly relies on export credits, which have been arranged under an international consortium of 50 banks. A complex contractual structure between the government, the investors and the contractors succeeded in establishing a fair risk mitigation mechanism, which was a central factor for the overall success of the project. [German] Das 672 MW Wasserkraftwerk Birecik, Tuerkei, ist mit einem Investitionsvolumen von rund Euro 1 Mrd. das bisher weltweit groesste Wasserkraftprojekt, das nach dem BOT-Modell realisiert wurde. Die auf Exportkredite basierende Finanzierung wurde ueber ein internationales Konsortium von 50 Banken dargestellt. Eine komplexe Vertragsstruktur zwischen dem Staat, den Investoren und den Auftragsnehmern fuehrte zu einem ausgeglichenen Risikoverteilungsmechanismus, der ausschlaggebend fuer den Erfolg des Projektes war. (orig.)

  3. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

  4. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  5. Idaho Batholith Study Area Isostatic Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer isostatic gravity grid for the Idaho batholith study area. Number of columns is 331 and number of rows is 285. The order of the data is from the lower...

  6. Idaho Batholith Study Area Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Bouguer gravity anomaly grid for the Idaho batholith study area. Number of columns is 331 and number of rows is 285. The order of the data is from the...

  7. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  8. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  9. ISU Team Project: An Integral View on Space Debris Mitigation and Removal

    Science.gov (United States)

    Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki

    2013-08-01

    The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.

  10. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    Science.gov (United States)

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  11. 78 FR 46549 - Approval and Promulgation of Implementation Plans; Idaho: State Board Requirements

    Science.gov (United States)

    2013-08-01

    ..., 2013, and Idaho Code Sec. Sec. 59-701 through 705, Ethics in Government Act, and requested parallel... for public officials, specifically, Idaho Code Sec. Sec. 59-701 through 59-705, Ethics in Government... governmental entity by virtue of formal appointment as required by law'' and ``any person holding public office...

  12. 36 CFR 294.24 - Timber cutting, sale, or removal in Idaho Roadless Areas.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Timber cutting, sale, or..., DEPARTMENT OF AGRICULTURE SPECIAL AREAS Idaho Roadless Area Management § 294.24 Timber cutting, sale, or removal in Idaho Roadless Areas. (a) Wild Land Recreation. The cutting, sale, or removal of timber is...

  13. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  14. Mixed waste treatment at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Larsen, M.M.; Hunt, L.F.; Sanow, D.J.

    1988-01-01

    The Idaho Operations Office of the Department of Energy (DOE) made the decision in 1984 to prohibit the disposal of mixed waste (MW) (combustible waste-toxic metal waste) in the Idaho National Engineering Laboratory (INEL) low-level radioactive waste (LLW) disposal facility. As a result of this decision and due to there being no EPA-permitted MW treatment/storage/disposal (T/S/D) facilities, the development of waste treatment methods for MW was initiated and a storage facility was established to store these wastes while awaiting development of treatment systems. This report discusses the treatment systems developed and their status. 3 refs., 2 figs., 1 tab

  15. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  16. 44 CFR 78.11 - Minimum project eligibility criteria.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...

  17. Cost-time management for environmental restoration activities at the Department of Energy`s Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Nash, C.L. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy`s goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  18. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios.

    Science.gov (United States)

    Xu, Peng; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Luan, Shengji

    2017-12-31

    China's rapid urbanization, large population, and increasing consumption of calorie-and meat-intensive diets, have resulted in China becoming the world's largest source of ammonia (NH 3 ) emissions from livestock production. This is the first study to use provincial, condition-specific emission factors based on most recently available studies on Chinese manure management and environmental conditions. The estimated NH 3 emission temporal trends and spatial patterns are interpreted in relation to government policies affecting livestock production. Scenario analysis is used to project emissions and estimate mitigation potential of NH 3 emissions, to year 2030. We produce a 1km×1km gridded NH 3 emission inventory for 2008 based on county-level activity data, which can help identify locations of highest NH 3 emissions. The total NH 3 emissions from manure generated by livestock production in 2008 were 7.3TgNH 3 ·yr -1 (interquartile range from 6.1 to 8.6TgNH 3 ·yr -1 ), and the major sources were poultry (29.9%), pigs (28.4%), other cattle (27.9%), and dairy cattle (7.0%), while sheep and goats (3.6%), donkeys (1.3%), horses (1.2%), and mules (0.7%) had smaller contributions. From 1978 to 2008, annual NH 3 emissions fluctuated with two peaks (1996 and 2006), and total emissions increased from 2.2 to 7.3Tg·yr -1 increasing on average 4.4%·yr -1 . Under a business-as-usual (BAU) scenario, NH 3 emissions in 2030 are expected to be 13.9TgNH 3 ·yr -1 (11.5-16.3TgNH 3 ·yr -1 ). Under mitigation scenarios, the projected emissions could be reduced by 18.9-37.3% compared to 2030 BAU emissions. This study improves our understanding of NH 3 emissions from livestock production, which is needed to guide stakeholders and policymakers to make well informed mitigation decisions for NH 3 emissions from livestock production at the country and regional levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  20. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  1. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  2. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    Energy Technology Data Exchange (ETDEWEB)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  3. Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

    1986-02-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs

  4. The Effect of Ambient Water Quality on Lakefront Property Values: Evidence from Coeur d'Alene, Idaho

    Science.gov (United States)

    Liao, H.

    2015-12-01

    Climate warming is causing water temperatures to increase and subsequent changes in water quality. To develop innovative approaches for mitigating the possible negative social consequences of such changes, more research efforts are needed to investigate how people perceive and respond to ambient water quality. This research examines the amenity value of water quality in the areas centered on Lake Coeur d'Alene of Northern Idaho. Through a hedonic analysis, we find that two important water-quality variables have had significant effects on lakefront property values, including Secchi disc reading, a technical measure of water clarity, and the presence of Eurasian watermilfoil, an aquatic invasive species. We further explore the spatial heterogeneity of water-quality benefits along the urban-rural gradient and find that access to urban amenities has strengthened the water-quality benefits in the lakefront housing market. Our findings could be used to incentivize private property owners and stakeholders to commit time and funding to cope with the potential degradation of water quality under climate change.

  5. Mitigative measures for the Laforge-2 hydroelectric development

    International Nuclear Information System (INIS)

    Faucher, O.; Gagnon, R.

    1995-01-01

    Corrective, preventive and enhancement measures undertaken as part of the development of the Laforge-2 Hydroelectric Power Plant, were described. The environment into which the project has been integrated was also described. General background information and technical characteristics of the Laforge-2 and Caniapiscau-Laforge diversion were provided. The Laforge-2 Mitigative Master Plan's measures for improving wildlife potential, cleaning-up of tributaries, protecting wildlife habitats, seeding around ponds and humid zones, installing platforms to encourage and facilitate the nesting of ospreys, and promoting proper harvesting of the territory, were described as corrective measures that will promote sustainable development. Contractual obligations to protect the environment were outlined. Enhancement measures described included reclamation of areas disturbed during construction, landscaping around main structures and construction of scenic lookouts. It was fully expected that the mitigative measures described for the Laforge-2 project will minimize negative impacts of the project and will maximize positive ones by improving wildlife potential in areas near the reservoir. 5 figs

  6. Mineralogy and depositional sources of sedimentary interbeds beneath the Idaho National Engineering Laboratory; eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.

    1994-01-01

    Idaho State University, in cooperation with the U.S. Geological Survey, and the U.S. Department of Energy, collected 57 samples of sedimentary interbeds at 19 sites at the Idaho National Engineering Laboratory (INEL) for mineralogical analysis. Previous work by the U.S. Geological Survey on surficial sediments showed that ratios detrital of quartz, total feldspars, and calcite can be used to distinguish the sedimentary mineralogy of specific stream drainages at the INEL. Semi-quantitative x-ray diffraction analyses were used to determine mineral abundances in the sedimentary interbeds. Samples were collected from wells at the New Production Reactor (NPR) area, Idaho Chemical Processing Plant (ICPP), Test Reactor Area (TRA), miscellaneous sites, Radioactive Waste Management Complex (RWMC), Naval Reactors Facility (NRF), and Test Area North (TAN). Normalized mean percentages of quartz, feldspar, and carbonate were calculated from sample data sets at each site. Percentages for quartz, feldspar, and carbonate from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF ranged from 37 to 59, 26 to 40, and 5 to 25, respectively. Percentages for quartz, feldspar, and carbonate from wells at Test Area North (TAN) were 24, 10, and 66, respectively. Mineralogical data indicate that sedimentary interbed samples collected from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF correlate with surficial sediment samples from the present day Big Lost River. Sedimentary interbeds from TAN sites correlate with surficial sediment samples from Birch Creek. These correlations suggest that the sources for the sediments at and near the INEL have remained relatively consistent for the last 580,000 years. 12 refs., 4 figs., 3 tabs

  7. CONTRACTUAL RISKS IN THE NEW ZEALAND CONSTRUCTION INDUSTRY: ANALYSIS AND MITIGATION MEASURES

    Directory of Open Access Journals (Sweden)

    Jasper Mbachu

    2014-12-01

    Full Text Available While tendering for jobs, a contractor is expected to analyse the various risks in each prospective project and price them appropriately. Contingencies are included in the tender price to cater for the various risks based on their impacts on the project targets and profit margin. Currently in New Zealand (NZ, there is little or no information on the various contractual risks and their mitigation measures. This has led to contractors over compensating or under compensating for risks with costly consequences. This study aimed to establish priority contractual risks in the NZ construction industry, and their mitigation measures. The research was based on a questionnaire survey of consultants and contractors. Descriptive statistics and multi-attribute techniques were used in the data analysis. Results showed 21 risk factors which were segregated into 6 broad categories in diminishing levels of significance as follows: Site conditions, main contractor, pricing, subcontractor, external and client- related risks. Putting tags and conditions to risky price items in the tender bids, and transferring the risks onto other parties were analysed as the 2 most effective out of the 5 key risk mitigation measures identified. Being cautious of the priority risks and application of the identified effective risk mitigation measures could guide contractors and the project team to more appropriately budget for and respond to risks, thereby ensuring more satisfactory project outcomes.

  8. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1992-05-01

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  9. Forestry for mitigating the greenhouse effect : an ecological and economic assessment of the potential of land use to mitigate CO2 emissions in the Highlands of Chiapas, Mexico

    NARCIS (Netherlands)

    Jong, de B.H.J.

    2000-01-01

    The present study intends to answer some of the important questions that arise when translating projects that have an ecological potential to mitigate carbon excesses, into actual implementation of these projects in a farmer-dominated landscape. Farm and community forestry projects for

  10. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  11. Buried waste remote survey of the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Richardson, B.S.; Noakes, M.W.; Griebenow, B.E.; Josten, N.E.

    1991-01-01

    Burial site characterization is an important first step in the restoration of subsurface disposal sites. Testing and demonstration of technology for remote buried waste site characterization were performed at the Idaho National Engineering Laboratory (INEL) by a team from five US Department of Energy (DOE) laboratories. The US Army's Soldier Robot Interface Project (SRIP) vehicle, on loan to the Oak Ridge National Laboratory (ORNL), was used as a remotely operated sensor platform. The SRIP was equipped with an array of sensors including terrain conductivity meter, magnetometer, ground-penetrating radar (GPR), organic vapor detector, gamma-based radar detector, and spectrum analyzer. The testing and demonstration were successfully completed and provided direction for future work in buried waste site characterization

  12. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Carl J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  13. Critical success factors in infrastructure projects

    Science.gov (United States)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; Mohd Rahim, E. M. Roodienyanto

    2017-11-01

    Construction of infrastructure project is different from buildings. The main difference is term of project site where infrastructure project need to command a long stretch while building mostly confine to a limited area. As such factors that are critical to infrastructure project may not be that significant to building project and vice versa. Flood mitigation can be classified under infrastructure projects under which their developments are planned by the government with the specific objective to reduce or avoid the negative effects of flood to the environment and livelihood. One of the indicators in project success is delay. The impact of project delay in construction industry is significant that it decelerates the projects implementation, specifically the government projects. This study attempted to identify and compare the success factors between infrastructure and building projects, as such comparison rarely found in the current literature. A model of flood mitigation projects' success factors was developed by merging the experts' views and reports from the existing literature. The experts' views were obtained from the responses to open-ended questions on the required fundamentals to achieve successful completion of flood mitigation projects. An affinity analysis was applied to these responses to develop the model. The developed model was then compared to the established success factors found in building project, extracted from the previous studies to identify the similarities and differences between the two models. This study would assist the government and construction players to become more effective in constructing successful flood mitigation projects for the future practice in a flood-prone country like Malaysia.

  14. FEMA Hazard Mitigation Assistance Severe Repetitive Loss (SRL) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Severe Repetitive Loss (SRL). The...

  15. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  16. Projected impacts to the production of outdoor recreation opportunities across US state park systems due to the adoption of a domestic climate change mitigation policy

    International Nuclear Information System (INIS)

    Smith, Jordan W.; Leung, Yu-Fai; Seekamp, Erin; Walden-Schreiner, Chelsey; Miller, Anna B.

    2015-01-01

    Highlights: • A technical efficiency model identifies where state park systems can be improved. • The technical efficiency model is joined with output of CC policy simulations. • Shifts in operating expenditure under the CC mitigation policy are estimated. • Results reveal substantial variability across states. • Increasing technical efficiency is the best solution to adapt to CC policy impacts. - Abstract: Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the

  17. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  18. Cost-time management for environmental restoration activities at the Department of Energy's Idaho National Engineering Laboratory, Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fourr, B.R.; Owen, A.H.; Williamson, D.J. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); Nash, C.L. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1992-05-22

    Cost-time management methods have been developed by Westinghouse to examine business applications from a cost-time perspective. The initial application of cost-time management within Westinghouse was targeted at reducing cycle time in the manufacturing sector. As a result of the tremendous success of reduced cycle time in manufacturing, Westinghouse initiated application of the management technique to Environmental Restoration activities at its Government Owned Contractor Operated facilities. The Westinghouse initiative was proposed in support of the Department of Energy's goals for cost effective Environmental Restoration activities. This paper describes the application of the cost-time method to Environmental Restoration work currently being performed at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE) by Westinghouse Idaho Nuclear Company (WINCO).

  19. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates

  20. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  1. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  2. A Spatial Analysis of the Potato Cyst Nematode Globodera pallida in Idaho.

    Science.gov (United States)

    Dandurand, Louise-Marie; Contina, Jean Bertrand; Knudsen, Guy R

    2018-03-13

    The potato cyst nematode (PCN), Globodera pallida, is a globally regulated and quarantine potato pest. It was detected for the first time in the U.S. in the state of Idaho in 2006. A spatial analysis was performed to: (i) understand the spatial arrangement of PCN infested fields in southern Idaho using spatial point pattern analysis; and (ii) evaluate the potential threat of PCN for entry to new areas using spatial interpolation techniques. Data point locations, cyst numbers and egg viability values for each infested field were collected by USDA-APHIS during 2006-2014. Results showed the presence of spatially clustered PCN infested fields (P = 0.003). We determined that the spread of PCN grew in diameter from the original center of infestation toward the southwest as an ellipsoidal-shaped cluster. Based on the aggregated spatial pattern of distribution and the low extent level of PCN infested fields in southern Idaho, we determined that PCN spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, probably through soil contaminated agricultural equipment or tubers. We determined that the recent PCN presence in southern Idaho is unlikely to be associated with new PCN entry from outside the state of Idaho. The relative aggregation of PCN infested fields, the low number of cysts recovered, and the low values in egg viability facilitate quarantine activities and confine this pest to a small area, which, in 2017, is estimated to be 1,233 hectares. The tools and methods provided in this study should facilitate comprehensive approaches to improve PCN control and eradication programs as well as to raise public awareness about this economically important potato pest.

  3. Hearth monitoring project annual report for FY-1981

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Lawrence, R.S.

    1981-08-01

    Progress during FY 1981 in the Hearth Monitoring project for the Idaho National Engineering Laboratory Transuranic Waste Treatment Facility is reported. Results of calculational, experimental and instrumental phases of the program are presented. Recommendations and plans for continuation of the program are displayed. Schedules for future efforts are included

  4. Family-based risk reduction of obesity and metabolic syndrome: an overview and outcomes of the Idaho Partnership for Hispanic Health.

    Science.gov (United States)

    Schwartz, Rachel; Powell, Linda; Keifer, Matthew

    2013-01-01

    Mexican American women have the highest incidence of metabolic syndrome among all U.S. demographic groups. This paper details an innovative approach to reducing the risks for metabolic syndrome among Hispanic families in rural Idaho. Compañeros en Salud (CeS) is a promotora-led wellness program and community-based participatory research project from the Idaho Partnership for Hispanic Health. As behavior change is the first line of prevention and treatment of obesity and metabolic syndrome, the program aimed to improve nutrition and physical activity behaviors as well as increase community support and infrastructure for healthy living. CeS has demonstrated substantial improvement in health outcomes, with statistically significant reductions in weight, BMI, metabolic syndrome risk, A1c, glucose, blood pressure, and cholesterol, from pre-intervention to post-intervention and/or pre-intervention to one-year follow-up. These outcomes suggest the CeS model as a promising best practice for effecting individual and family-level physiologic and behavioral outcomes for obesity prevention.

  5. Nationally Appropriate Mitigation Action: Understanding NAMA Cycle

    DEFF Research Database (Denmark)

    Sharma, Sudhir; Desgain, Denis DR

    There is no internationally defined or agreed Nationally Appropriate Mitigation Action(NAMA) cycle, as was the case, for example, with the Clean Development Mechanisms (CDM) project cycle. However, there are some common steps that NAMA identification, formulation, and implementation will all go...

  6. Libby/Hungry Horse Dams Wildlife Mitigation Habitat Protection : Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1991-04-01

    The Columbia River Basin Fish and Wildlife Program identified mitigation goals for Hungry Horse and Libby dams (1987). Specific programs goals included: (1) protect and/or enhance 4565 acres of wetland habitat in the Flathead Valley; (2) protect 2462 acres of prairie habitat within the vicinity of the Tobacco Plains Columbian sharp-tailed grouse; (3) protect 8590 acres riparian habitat in northwest Montana for grizzly and black bears; and (4) protect 11,500 acres of terrestrial furbearer habitat through cooperative agreements with state and federal agencies and private landowners. The purpose of this project is to continue to develop and obtain information necessary to evaluate and implement specific wildlife habitat protection actions in northwestern Montana. This report summarizes project work completed between May 1, 1990, and December 31, 1990. There were three primary project objectives during this time: obtain specific information necessary to develop the mitigation program for Columbian sharp-tailed grouse; continue efforts necessary to develop, refine, and coordinate the mitigation programs for waterfowl/wetlands and grizzly/black bears; determine the opportunity and appropriate strategies for protecting terrestrial furbearer habitat by lease or management agreements on state, federal and private lands. 19 refs., 1 tab.

  7. Cost estimate of grouting the proposed test pits at Idaho National Engineering Laboratory using the ORNL-recommended grouts

    International Nuclear Information System (INIS)

    Spence, R.D.

    1987-08-01

    EG and G Idaho will construct three experimental pits to simulate the TRU waste trenches at Idaho National Engineering Laboratory (INEL). Two of these pits will be grouted and then one will be destructively examined as soon as the grout cures and the other will be monitored for 10 years. Oak Ridge National Laboratory (ORNL) is evaluating grouts and will recommend a grout to EG and G Idaho to reduce the permeability of the pit, fill the large voids, and encapsulate the waste. A previous ORNL report (ORNL/TM-9881) discusses the grouts evaluated and the grout recommended based on those evaluations. This report evaluates the economics of grouting the experimental pits. The cost of double grouting two of the EG and G Idaho design pits at the Idaho National Engineering Laboratory using lance injection was estimated to be $100,000. Jet grouting the same two pits was estimated to cost $85,000. Both should be tried as part of the test EG and G Idaho is conducting

  8. Mountain Home Geothermal Project: geothermal energy applications in an integrated livestock meat and feed production facility at Mountain Home, Idaho. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Longyear, A.B.; Brink, W.R.; Fisher, L.A.; Matherson, R.H.; Neilson, J.A.; Sanyal, S.K.

    1979-02-01

    The Mountain Home Geothermal Project is an engineering and economic study of a vertically integrated livestock meat and feed production facility utilizing direct geothermal energy from the KGRA (Known Geothermal Resource Area) southeast of Mountain Home, Idaho. A system of feed production, swine raising, slaughter, potato processing and waste management was selected for study based upon market trends, regional practices, available technology, use of commercial hardware, resource characteristics, thermal cascade and mass flow considerations, and input from the Advisory Board. The complex covers 160 acres; utilizes 115 million Btu per hour (34 megawatts-thermal) of geothermal heat between 300/sup 0/F and 70/sup 0/F; has an installed capital of $35.5 million;produces 150,000 hogs per year, 28 million lbs. of processed potatoes per year, and on the order of 1000 continuous horsepower from methane. The total effluent is 200 gallons per minute (gpm) of irrigation water and 7300 tons per year of saleable high grade fertilizer. The entire facility utilizes 1000 gpm of 350/sup 0/F geothermal water. The economic analysis indicates that the complex should have a payout of owner-invested capital of just over three years. Total debt at 11% per year interest would be paid out in 12 (twelve) years.

  9. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  10. Stress analysis and mitigation measures for floating pipeline

    Science.gov (United States)

    Wenpeng, Guo; Yuqing, Liu; Chao, Li

    2017-03-01

    Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.

  11. Environmental Assessment of Alternate Training Area Jack Pine Flats Idaho Department of Lands Near Coolin, Idaho

    Science.gov (United States)

    2009-05-01

    habitats within the proposed permit/lease area are not suitable for full support of these species, particularly reproduction and are not considered...restricting harvest has a more substantial positive effect on bull trout reproduction and survival over any other factor. Hence, the proposed action will...growth mesic conifer forests. They are known to use other habitat types such as openings and riparian areas. Populations in Idaho have decreased from

  12. Decommissioning of the MTR-605 process water building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Browder, J.H.; Wills, E.L.

    1985-01-01

    Decontamination and decommissioning (D and D) of the unused radioactively contaminated portions of the MTR-605 building at the Test Reactor Area of the Idaho National Engineering Laboratory has been completed; this final report describes the D and D project. The building is a two-story concrete structure that was used to house piping systems to channel and control coolant water flow for the Materials Testing Reactor (MTR), a 40 MW (thermal) light water test reactor that was operated from 1952 until 1970 and then deactivated. D and D project objectives were to reduce potential environmental and radioactive contamination hazards to levels as low a reasonably achievable. Primary tasks of the D and D project were: to remove contaminated piping (about 400 linear ft of 36- and 30-in.-dia stainless steel pipe) and valves from the primary coolant pipe tunnels, to remove a primary coolant pump and piping, and to remove the three 8-ft-dia by 25-ft-long evaporators from the building second floor

  13. Water quality mitigation banking : final report, December 2009.

    Science.gov (United States)

    2009-12-01

    Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...

  14. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  15. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  16. Drainage filter technologies to mitigate site-specific phosphorus losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    2014-01-01

    -specific nutrient losses in drainage. The “SUPREME-TECH” project (2010-2015), funded by the Danish Strategic Research Council, aims at providing the scientific basis for developing cost-effective drainage filter technologies to retain P in agricultural drainage waters. The project studies different approaches...... high risks areas of P loss and applying site-specific measures therefore seems a more cost-efficient approach. The Danish Commission for Nature and Agriculture has now called for a shift of paradigm towards targeted mitigation and development of new, cost-efficient technologies to mitigate site......-scale surface-flow constructed wetland. In the former, various natural and industrial P filter substrates have been tested for their ability to reduce inlet P concentrations to below environmental threshold values (

  17. Employment Discrimination Based on Sexual Orientation and Gender Identity in Idaho

    OpenAIRE

    Hasenbush, Amira; Mallory, Christy

    2014-01-01

    Approximately 21,000 LGBT workers in Idaho are vulnerable to employment discrimination absent state or federal legal protections. Boise, Coeur d’Alene, Idaho Falls, Ketchum, Moscow, Pocatello and Sandpoint have local ordinancesthat prohibit employment and housing discrimination against LGBT people, but they do not provide as much protection for LGBT people as the state’s law, which is enforced by a fully funded Commission on Human Rights. Approximately 72% of Idaho’s workforce is not covered ...

  18. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Christopher

    1993-04-01

    This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

  19. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Julie B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

  20. Impact assessment and mitigation in existing lake regulation projects in the Oulujoki river system

    International Nuclear Information System (INIS)

    Kaatra, K.; Marttunen, M.

    1993-01-01

    The objective of the project was to determine how regulation practices and shore zone maintenance and improvement should be developed in order to give more attention to recreational requirements and factors affecting the aquatic environment. The proposals must not, however, cause flooding damage or significant energy economy losses. The effects of four alternative regulation practices on hydrology flooding damage, recreational utilization, the aquatic, environment, fisheries and the hydropower production were compared in lakes Oulujaervi, Kiantajaervi, Vuokkijaervi, Ontojaervi and Sotkamonjaervi. An extensive sub-study was made on the maintenance and improvement of the shore zones of the regulated lakes. Ways of reducing excessive vegetation were studied in Lake Oulujaervi, and experiments testing the feasibility of various plants in protecting and landscaping the littoral zone were conducted in Lake Ontojaervi. Enquiries in to the perceptions of and the needs for mitigating harmful impacts, as experienced by the people living within the area affected by the river development projects, were also included in the analysis. The alternative regulation practices for Lake Oulujaervi were compared using the decision analysis interview method, in which the data acquired through the environmental impact analysis of effects were combined with the values of the local people and interest groups. The impact of alternative regulation practices was also weighed from the viewpoint of sustainability in various scales. Recommendations were made for regulation patterns and maintenance and improvement programmes for individual lakes

  1. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    International Nuclear Information System (INIS)

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities

  2. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  3. Energy mitigation, adaptation and biodiversity: Synergies and antagonisms

    International Nuclear Information System (INIS)

    Berry, P M; Paterson, J S

    2009-01-01

    In this paper we review the current impacts of different energy producers (and energy conservation) on biodiversity and investigate the potential for achieving positive biodiversity effects along with mitigation and adaptation objectives. Very few energy producers achieve all three aims - although it may be possible with careful choice of location and management. In some instances, energy conservation can provide mitigation, adaptation and biodiversity benefits. There is still a gap in knowledge regarding the effects of newer energy technologies on biodiversity. There is an additional concern that many supposedly 'green' renewable energy projects may actually harm biodiversity to such a degree that their overall human benefits are negated. The increasing understanding that ecosystem services are vital for human well-being though means that attempting positive mitigation, adaptation and biodiversity conservation in the energy sector should be an imperative goal for international policy. Whilst research into synergies between mitigation and adaptation is established, there has been very little that has examined the impacts on biodiversity as well. Further work is required to identify and provide evidence of the best ways of optimising mitigation, adaptation and biodiversity in the energy sector.

  4. Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Putnam, Scott

    2008-12-01

    The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

  5. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period

  6. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    Science.gov (United States)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  7. Leapfrogging over development? Promoting rural renewables for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Zerriffi, Hisham [Liu Institute for Global Issues, 6476 NW Marine Dr., University of British Columbia, Vancouver BC (Canada); Wilson, Elizabeth [Hubert Humphrey Institute of Public Affairs, University of Minnesota, Minneapolis MN (United States)

    2010-04-15

    Renewable energy technologies have the potential to help solve two pressing problems. On one hand, carbon-free energy sources must play a role in climate change mitigation. On the other hand, renewables might help meet needs of rural people without access to modern energy services. However, if renewables are deployed to combat climate change (primarily resulting from emissions in the developed economies) then providing basic energy services in the developing world may be compromised. The tendency to conflate the two drivers by installing renewables in rural areas for carbon mitigation reasons rather than for development reasons could compromise both goals. The danger is supporting sub-optimal policies for mitigating carbon and for rural energy. This is problematic given the limited funds available for energy development and reducing greenhouse gases. This paper analyzes how these goals have been balanced by the Global Environment Facility (GEF). Project documents are used to determine whether incremental costs of installing renewables were covered by GEF funds and whether the costs are comparable with other carbon mitigation options. The results raise concerns about the effectiveness and appropriateness of GEF funding of such projects and highlight the importance of post-Kyoto framework design to reduce emissions and promote development. (author)

  8. Leapfrogging over development? Promoting rural renewables for climate change mitigation

    International Nuclear Information System (INIS)

    Zerriffi, Hisham; Wilson, Elizabeth

    2010-01-01

    Renewable energy technologies have the potential to help solve two pressing problems. On one hand, carbon-free energy sources must play a role in climate change mitigation. On the other hand, renewables might help meet needs of rural people without access to modern energy services. However, if renewables are deployed to combat climate change (primarily resulting from emissions in the developed economies) then providing basic energy services in the developing world may be compromised. The tendency to conflate the two drivers by installing renewables in rural areas for carbon mitigation reasons rather than for development reasons could compromise both goals. The danger is supporting sub-optimal policies for mitigating carbon and for rural energy. This is problematic given the limited funds available for energy development and reducing greenhouse gases. This paper analyzes how these goals have been balanced by the Global Environment Facility (GEF). Project documents are used to determine whether incremental costs of installing renewables were covered by GEF funds and whether the costs are comparable with other carbon mitigation options. The results raise concerns about the effectiveness and appropriateness of GEF funding of such projects and highlight the importance of post-Kyoto framework design to reduce emissions and promote development.

  9. 1983 Environmental monitoring program report for Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Dickson, R.L.

    1984-05-01

    The results of the various monitoring programs for 1983 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. 11 figures, 14 tables

  10. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  11. 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2014. It also provides detailed information for new, modified, and decommissioned wells and holes. One new well was drilled and completed in Calendar Year 2014. No modifications were performed on any wells. No wells were decommissioned in Calendar Year 2014. Detailed construction information and a location map for the new well is provided. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990), the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003, and the Final Unified Decree issued August 26, 2014.

  12. Hydrologic conditions at the Idaho National Engineering Laboratory, Idaho - emphasis: 1974-1978

    International Nuclear Information System (INIS)

    Barraclough, J.T.; Lewis, B.D.; Jensen, R.G.

    1982-09-01

    The Idaho National Engineering Laboratory (INEL) site covers about 890 square miles of the eastern Snake River Plain and overlies the Snake River Plain aquifer. Low concentrations of aqueous chemical and radioactive wastes have been discharged to shallow ponds and to shallow or deep wells on the site since 1952. A large body of perched ground water has formed in the basalt underlying the waste disposal ponds in the Test Reactor Area. This perched zone contains tritium, chromium-51, cobalt-60, strontium-90, and several nonradioactive ions. Tritium is the only mappable waste constituent in that portion of the Snake River Plain aquifer directly underlying this perched zone. Low concentrations of chemical and low-level radioactive wastes enter directly into the Snake River Plain aquifer through the Idaho Chemical Processing Plant (ICPP) disposal well. Tritium has been discharged to the well since 1953 and has formed the largest waste plume, about 28 square miles in area, in the regional aquifer, and minute concentrations have migrated downgradient a horizontal distance of 7.5 miles. Other waste plumes south of the ICPP contain sodium, chloride, nitrate, and the resultant specific conductance. These plumes have similar configurations and flow southward; the contaminants are in general laterally dispersed in that portion of the aquifer underlying the INEL. Other waste plumes, containing strontium-90 and iodine-129, cover small areas near their points of discharge because strontium-90 is sorbed from solution as it moves through the aquifer and iodine-129 is discharged in very low quantities. Cesium-137 is also discharged through the well but it is strongly sorbed from solution and has never been detected in a sample of ground water at the INEL

  13. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  14. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  15. Japanese-South African collaboration to mitigate seismic risks in deep gold mines

    CSIR Research Space (South Africa)

    Ogasawara, H

    2009-09-01

    Full Text Available Japanese-South African collaborative project entitled "Observational study to mitigate seismic risks in mines". The project will build on previous studies carried out by Japanese seismologists in South African mines, and will develop human and instrumental...

  16. Mitigation - how to buy time

    International Nuclear Information System (INIS)

    Gunasekera, D.

    2007-01-01

    Full text: Full text: There is growing consensus in the global scientific community that human induced greenhouse gas emissions have increased the atmospheric concentration of these gases which has led, and will continue to lead to changes in regional and global climate. Climate change is projected to impact on Australian and global economic, biophysical, social and environmental systems. The impacts of climate change can be reduced by implementing a range of mitigation and adaptation strategies. The optimal policy response will depend on the relative costs and benefits of climate change impacts, and mitigation and adaptation responses. The focus in this presentation is to identify the key determinants that can reduce the cost of international mitigation responses. It is important to recognise that since cumulative emissions are the primary driver of atmospheric concentrations, mitigation policies should be assessed against their capacity to reduce cumulative emissions overtime, rather than at given time points only. If global greenhouse gas abatement costs are to be minimised, it is desirable that the coverage of countries, emission sources and technologies that are a part of any multilateral effort be as wide as possible. In this context the development and diffusion of clean technologies globally can play a key role in the future reduction of greenhouse gas emissions, according to scenarios analysed by ABARE. Furthermore, technology 'push' (for example, research and development policies) and 'pull' (for example, emission trading) policies will be required to achieve such an outcome

  17. Columbia River wildlife mitigation habitat evaluation procedures report: Scotch Creek Wildlife Area, Berg Brothers, and Douglas County pygmy rabbit projects

    International Nuclear Information System (INIS)

    Ashley, P.R.; Ratassepp, J.; Berger, M.; Judd, S.L.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites

  18. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  19. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  20. Prehistoric Rock Structures of the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R Pace

    2007-04-01

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  1. Libby/Hungry Horse Dams Wildlife Mitigation : Montana Wildlife Habitat Protection : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1992-12-01

    The purpose of this project was to develop and obtain information necessary to evaluate and undertake specific wildlife habitat protection/enhancement actions in northwest Montana as outlined in the Columbia River Basin Fish and Wildlife Program. Three waterfowl projects were evaluated between September 1989 and June 1990. Weaver's Slough project involved the proposed acquisition of 200 acres of irrigated farmland and a donated conservation easement on an additional 213 acres. The proposal included enhancement of the agricultural lands by conversion to upland nesting cover. This project was rated the lowest priority based on limited potential for enhancement and no further action was pursued. The Crow Creek Ranch project involved the proposed acquisition of approximately 1830 acres of grazing and dryland farming lands. The intent would be to restore drained potholes and provide adjacent upland nesting cover to increase waterfowl production. This project received the highest rating based on the immediate threat of subdivision, the opportunity to restore degraded wetlands, and the overall benefits to numerous species besides waterfowl. Ducks Unlimited was not able to participate as a cooperator on this project due to the jurisdiction concerns between State and tribal ownership. The USFWS ultimately acquired 1,550 acres of this proposed project. No mitigation funds were used. The Ashley Creek project involved acquisition of 870 acres adjacent to the Smith Lake Waterfowl Production Area. The primary goal was to create approximately 470 acres of wetland habitat with dikes and subimpoundments. This project was rated second in priority due to the lesser threat of loss. A feasibility analysis was completed by Ducks Unlimited based on a concept design. Although adequate water was available for the project, soil testing indicated that the organic soils adjacent to the creek would not support the necessary dikes. The project was determined not feasible for mitigation

  2. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.

    1998-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment

  3. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  4. Ecology studies at the Idaho National Engineering Laboratory Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1978-01-01

    In September 1977 a radioecological research program was initiated at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex in the southcentral Idaho. The primary goals of the research are to: (1) determine floral and faunal composition in the area; (2) sample various ecosystem components for radionuclides; (3) determine impacts of small mammal burrowing and vegetation growth on movement of radioactive materials; (4) compare ambient radiation exposures to radiation doses received by animals inhabiting the area; and (5) understand the interrelationships between the organisms and their role in radionuclide transport

  5. Field guide to forest plants of northern Idaho

    Science.gov (United States)

    Patricia A. Patterson; Kenneth E. Neiman; Jonalea K. Tonn

    1985-01-01

    This field guide -- designed for use by people with minimal botanical training -- is an identification aid for nearly 200 plant species having ecological indicator value in northern Idaho forest habitat types. It contains line drawings, simplified taxonomic descriptions , characteristics tables, conspectuses, and keys. It emphasizes characteristics useful for field...

  6. 44 CFR 201.5 - Enhanced State Mitigation Plans.

    Science.gov (United States)

    2010-10-01

    ... to State and regional agencies. (2) Documentation of the State's project implementation capability, identifying and demonstrating the ability to implement the plan, including: (i) Established eligibility...) Demonstration that the State has the capability to effectively manage the HMGP as well as other mitigation grant...

  7. Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-04-01

    This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the

  8. The European PASSAM project. R and D outcomes towards enhanced severe accident source term mitigation

    International Nuclear Information System (INIS)

    Albiol, T.; Herranz, L.; Riera, E.; Dalibart, C.; Lind, T.; Corno, A. Del; Kärkelä, T.; Losch, N.; Azambre, B.

    2017-01-01

    The European PASSAM project (Passive and Active Systems on Severe Accident source term Mitigation) involved nine partners from six countries during four year (2013 - 2016): IRSN (project coordinator), EDF and University of Lorraine (France); CIEMAT and CSIC (Spain); PSI (Switzerland); RSE (Italy); VTT (Finland) and AREVA GmbH (Germany). It was mainly of an R and D experimental nature and aimed at investigating phenomena that might enhance source term mitigation in case of a severe accident in a LWR. Both already existing systems and innovative ones were experimentally studied. This paper presents the main outcomes of this project, including experimental results, understanding of phenomena and corresponding models and correlations with some preliminary analyses for potential use in severe accident management strategies, taking into account the passive or non-passive nature of the systems studied. Pool scrubbing represented the most studied domain of the PASSAM project. As an example of results, it was shown that gas hydrodynamics, at least in some relevant scenarios, is significantly different from what is nowadays encapsulated in severe accident analysis codes, particularly at high velocities and, that in the long run, maintaining an alkaline pH in the scrubber solution is absolutely necessary for preventing a delayed iodine release. Regarding sand bed filters plus metallic pre-filters, implemented on all French nuclear power plants, filtration efficiency for gaseous molecular and organic iodine was checked. Other experiments showed that under severe accident conditions, cesium iodide aerosols trapped in the sand filter are unstable and may constitute a delayed source term, which is not the case for CsI particles trapped on the metallic pre-filter. As innovative processes, both acoustic agglomeration and high pressure spray systems were studied mainly in the aim of leading to bigger particles upstream of filtered containment venting systems (FCVS), and so enhancing

  9. 78 FR 20316 - Final Issuance of General NPDES Permits (GP) for Small Suction Dredges in Idaho

    Science.gov (United States)

    2013-04-04

    ... System (NPDES) General Permit (IDG-37-0000) to placer mining operations in Idaho for small suction... Small Suction Dredges in Idaho AGENCY: Environmental Protection Agency, Region 10. ACTION: Final notice... significant economic impact on a substantial number of small entities.'' EPA has concluded that NPDES general...

  10. Aerial radiological survey of the Idaho National Engineering Laboratory, Idaho Falls, Idaho. Date of survey: June 1982

    International Nuclear Information System (INIS)

    1984-02-01

    An aerial radiological survey of the Idaho National Engineering Laboratory (INEL) was conducted during June 1982 by EG and G Energy Measurements, Inc. for the United States Department of Energy (DOE). The survey consisted of airborne measurements of both natural and man-made gamma radiation from the terrain surface in and around the INEL site. These measurements allowed an estimate of the distribution of isotopic concentrations in the survey area. Results are reported as isopleths superimposed on maps and photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. The survey was designed to cover all of the area within a 2 mile radius of any facility at the INEL. Several areas of man-made activity were detected. These areas are all known working or storage areas which are associated with normal operations at the INEL. 3 references, 48 figures, 5 tables

  11. Mitigation options in forestry, land-use change and biomass burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.L. [Univ. of California, Lawrence Berkeley National Lab. (United States)

    1998-10-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs.

  12. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    International Nuclear Information System (INIS)

    Makundi, Willy R.

    1998-01-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries.; copyrighted ; Y

  13. Mitigation options in forestry, land-use change and biomass burning in Africa

    International Nuclear Information System (INIS)

    Makundi, Willy R.L.

    1998-01-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs

  14. Idaho Operations Office: Technology summary, June 1994

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD's technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets

  15. Idaho Operations Office: Technology summary, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  16. 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Teresa R. Meachum

    2004-02-01

    The 2003 Wastewater Land Application Site Performance Reports for the Idaho National Engineering and Environmental Laboratory describe the conditions for the facilities with State of Idaho Wastewater Land Application Permits. Permit-required monitoring data are summarized, and permit exceedences or environmental impacts relating to the operations of the facilities during the 2003 permit year are discussed.

  17. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    Science.gov (United States)

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    The Idaho statewide surface-water-quality monitoring network consists of 56 sites that have been monitored from 1989 through 2002 to provide data to document status and changes in the quality of Idaho streams. Sampling at 33 sites has covered a wide range of flows and seasons that describe water-quality variations representing both natural conditions and human influences. Targeting additional high- or low-flow sampling would better describe conditions at 20 sites during hydrologic extremes. At the three spring site types, sampling covered the range of flow conditions from 1989 through 2002 well. However, high flows at these sites since 1989 were lower than historical high flows as a result of declining ground-water levels in the Snake River Plain. Summertime stream temperatures at 45 sites commonly exceeded 19 and 22 degrees Celsius, the Idaho maximum daily mean and daily maximum criteria, respectively, for the protection of coldwater aquatic life. Criteria exceedances in stream basins with minimal development suggest that such high temperatures may occur naturally in many Idaho streams. Suspended-sediment concentrations were generally higher in southern Idaho than in central and northern Idaho, and network data suggest that the turbidity criteria are most likely to be exceeded at sites in southern Idaho and other sections of the Columbia Plateaus geomorphic province. This is probably because this province has more fine-grained soils that are subject to erosion and disturbance by land uses than the Northern Rocky Mountains province of northern and central

  18. Stabilization of mixed waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Gillins, R.L.; Larsen, M.M.

    1989-01-01

    EG and G Idaho, Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory. Laboratory-scale testing has shown that extraction procedure toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal as either landfill waste or low-level radioactive waste, depending upon the radioactivity content. This paper presents the results of drum-scale solidification testing conducted on hazardous, low-level incinerator flyash generated at the Waste Experimental Reduction Facility. The drum-scale test program was conducted to verify that laboratory-scale results could be successfully adapted into a production operation

  19. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  20. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  1. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  2. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  3. 77 FR 71842 - Exemption of Material for Proposed Disposal Procedures at the US Ecology Idaho Resource...

    Science.gov (United States)

    2012-12-04

    ... Proposed Disposal Procedures at the US Ecology Idaho Resource Conservation and Recovery Act Subtitle C... water solidified with clay containing low-activity radioactive material, at the US Ecology Idaho (USEI... and 10 CFR 70.17 Exemption of Humboldt Bay Power Plant Waste For Disposal at US Ecology, Inc'' [ADAMS...

  4. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    Science.gov (United States)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  5. Larry Echo Hawk: A Rising Star from Idaho.

    Science.gov (United States)

    Wisecarver, Charmaine

    1993-01-01

    Larry Echo Hawk, Idaho attorney general and former state legislator, discusses success factors in college and law school; early experiences as an Indian lawyer; first election campaign; and his views on tribal sovereignty, state-tribal relationship, gambling, and his dual responsibility to the general public and Native American issues. (SV)

  6. Mitigating the Insider Threat Using High-Dimensional Search and Modeling

    National Research Council Canada - National Science Library

    Van Den Berg, Eric; Uphadyaya, Shambhu; Ngo, Phi H; Muthukrishnan, Muthu; Palan, Rajago

    2006-01-01

    In this project a system was built aimed at mitigating insider attacks centered around a high-dimensional search engine for correlating the large number of monitoring streams necessary for detecting insider attacks...

  7. Market research for Idaho Transportation Department linear referencing system.

    Science.gov (United States)

    2009-09-02

    For over 30 years, the Idaho Transportation Department (ITD) has had an LRS called MACS : (MilePoint And Coded Segment), which is being implemented on a mainframe using a : COBOL/CICS platform. As ITD began embracing newer technologies and moving tow...

  8. GREENGRASS. Sources and sinks of greenhouse gases from managed European grasslands and mitigation strategies. Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F. [Institut National de la Recherche Agronomique INRA Clermont-Ferrand, 63122 Saint-Genes-Champanelle (FR)] (and others)

    2005-03-15

    In support of the European post-Kyoto policy, the GREENGRASS project will measure the net global warming potential resulting from the exchange of CO2, N2O and Twitch managed European grasslands and assess the European wide mitigation potential of key field and farm management scenarios. Long-term micrometeorological measurements at sites in a European wide network will be complemented by experimental assessment of the effects of management options bonnet fluxes. The results will be used to refine emission factors used in national inventories and to evaluate farm-level mitigation scenarios with respect to tenet global warming potential associated to grassland management. These evaluations will be conducted at the field and farm level, and by upscaling simulation results to the Europe scale. (Contributions by Risoe National Laboratory (Denmark), INRA Clermont Ferrand (France), INRA Grignon (France), INRA Dijon (France), Institut de l'Elevage Angers (France), LSCE Gif-sur-Yvette (France), Cetre Interprofessionel Technique d'Etudes de la Pollution Atmospherique (France), Forest Research Institute (Hungary), Szent Istvan University (Hungary), Eoetvoes Lorand University Elte (Hungary), Trinity College of Dublin (Ireland), Istituto di Biometeorologia (IBIMET) del Consiglio Nazionale delle Ricerche (Italy), University of Tuscia (Italy), Energy research Centre of the Netherlands ECN (Netherlands), Wageningen University (Netherlands), Plant Research International (Netherlands), Centre of Ecology and Hydrology (United Kingdom), Scottish Agricultural College (Scotland), University of Aberdeen (Scotland), Federal Research Station for Agroecology and Agriculture (Switzerland))

  9. 44 CFR 201.4 - Standard State Mitigation Plans.

    Science.gov (United States)

    2010-10-01

    ... resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... location of all natural hazards that can affect the State, including information on previous occurrences of... updating the plan. (ii) A system for monitoring implementation of mitigation measures and project closeouts...

  10. Mitigation measures for the La Grande 1 hydroelectric development

    International Nuclear Information System (INIS)

    Faucher, O.; Gagnon, R.

    1992-01-01

    Measures to mitigate environmental impacts of the La Grande 1 hydroelectric development are described. An overview is presented of the La Grande 1 project, its surrounding environment, and the principle environmental repercussions of the reservoir, hydrological changes between the dam and river mouth, construction activities and permanent and temporary structures, and presence of workers. Mitigation measures including compensation, corrective measures (deforestation, selective cutting, fish populations, wildlife populations, land rehabilitation, access roads, fisheries, and erosion control), protective measures, enhancement measures, and contract and employment opportunities for the Cree population are described. 10 refs., 2 figs

  11. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  12. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    International Nuclear Information System (INIS)

    1997-01-01

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns

  13. Technologies for climate change mitigation - Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Uprety, D.C.; Dhar, S.; Hongmin, D.; Kimball, B.A.; Garg, A.; Upadhyay, J.

    2012-07-15

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts in the areas of crops, livestock, emissions, and economics, and we are grateful for their efforts in producing this cross disciplinary work. This publication is part of a technical guidebook series produced by the UNEP Risoe Centre on Energy, Climate and Sustainable Development (URC) as part of the Technology Needs Assessment (TNA) project (http://tech-action.org) that is assisting developing countries in identifying and analysing the priority technology needs for mitigating and adapting to climate change. The TNA process involves different stakeholders in a consultative process, enabling all stakeholders to understand their technology needs in a cohesive manner, and prepare Technology Action Plans (TAPs) accordingly. The TNA project is funded by the Global Environment Facility (GEF) and is being implemented by UNEP and the URC in 36 developing countries. (Author)

  14. Project Report on Development of a Safeguards Approach for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean

    2010-09-01

    The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

  15. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  16. Laboratory testing of glasses for Lockheed Idaho Technology Co. - fiscal year 1994 report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Wolf, S.F.; Bates, J.K.

    1995-04-01

    The purpose of this project is to measure the intermediate and long-term durability of vitrified waste forms developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes at Idaho National Engineering Laboratory. Two vitreous materials referred to as Formula 127 and Formula 532, have been subjected to accelerated durability tests to measure their long-term performance. Formula 127 consists of a glass matrix containing 5-10 vol % fluorite (CaF 2 ) as a primary crystalline phase. It shows low releases of glass components to solution in 7-, 28-, 70-, and 140-day Product Consistency Tests performed at 2000 m -1 at 90 degrees C. In these tests, release rates for glass-forming components were similar to those found for durable waste glasses. The Ca and F released by the glass as it corrodes appear to reprecipitate as fluorite. Formula 532 consists of a glass matrix containing 5-10 vol % of an Al-Si-rich primary crystalline phase. The release rates for components other than aluminum are relatively low, but aluminum is released at a much higher rate than is typical for durable waste glasses. Secondary crystalline phases form relatively early during the corrosion of Formula 532 and appear to consist almost entirely of the Al-Si-rich primary phase (or a crystal with the same Al:Si ratio) and a sodium-bearing zeolite. Future test results are expected to highlight the relative importance of primary and secondary crystalline phases to the rate of corrosion of Formula 127 and Formula 532

  17. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R. Pace

    2007-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodale’s Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor –I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex – CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location.

  18. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2007

    International Nuclear Information System (INIS)

    Brenda R. Pace

    2007-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory's (INL) Cultural Resource Management (CRM) Office during fiscal year 2007 (FY 2007). In FY 2007, 40 localities were revisited: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, three butte/craters, twelve prehistoric archaeological sites, two historic stage stations, nine historic homesteads, a portion of Goodale's Cutoff of the Oregon Trail, a portion of historic trail T-16, one World War II dump, four buildings from the World War II period, and Experimental Breeder Reactor-I, a modern scientific facility and National Historic Landmark. Several INL project areas were also monitored in FY 2007. This included direct observation of ground disturbing activities within the Power Burst Facility (PBF, now designated as the Critical Infrastructure Test Range Complex-CITRC), backfilling operations associated with backhoe trenches along the Big Lost River, and geophysical surveys designed to pinpoint subsurface unexploded ordnance in the vicinity of the Naval Ordnance Disposal Area. Surprise checks were also made to three ongoing INL projects to ensure compliance with INL CRM Office recommendations to avoid impacts to cultural resources. Although some impacts were documented, no significant adverse effects that would threaten the National Register eligibility of any resource were observed at any location

  19. Development of waste minimization and decontamination technologies at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ferguson, R.L.; Archibald, K.E.; Demmer, R.L.

    1995-01-01

    Emphasis on the minimization of decontamination secondary waste has increased because of restrictions on the use of hazardous chemicals and Idaho Chemical Processing Plant (ICPP) waste handling issues. The Lockheed Idaho Technologies Co. (LITCO) Decontamination Development Subunit has worked to evaluate and introduce new performed testing, evaluations, development and on-site demonstrations for a number of novel decontamination techniques that have not yet previously been used at the ICPP. This report will include information on decontamination techniques that have recently been evaluated by the Decontamination Development Subunit

  20. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.