WorldWideScience

Sample records for minimum energy routing

  1. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks.

    Science.gov (United States)

    Katiravan, Jeevaa; Sylvia, D; Rao, D Srinivasa

    2015-01-01

    In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  2. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jeevaa Katiravan

    2015-01-01

    Full Text Available In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  3. WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs

    Directory of Open Access Journals (Sweden)

    Ki-Hyung Kim

    2013-05-01

    Full Text Available Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR, a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs.

  4. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  5. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  6. An Energy-aware Routing Scheme in Delay Tolerant Mobile Sensor Networking

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2014-08-01

    Full Text Available In Delay Tolerant Mobile Sensor Networking (DTMSN, mobile sensor nodes are usually limited to their energy capacity, one important concern in routing design of DTMSN is energy consumption. This paper presents a number of variations of the Epidemic Routing Protocol (ERP to extend the DTMSN lifetime. It introduces the analytical model for ERP, after introducing the concepts behind the Target Delivery Probability and Minimum Delivery Probability, it defines the network lifetime. In this paper, it firstly studies many variations of the Epidemic Routing Protocol to extend the lifetime of the DTMSN. Secondly, based on the Epidemic Routing Protocol, three schemes are introduced. Those schemes rely on the limiting the times of message allowed for propagation (LT scheme, directly controlling the number of the copies (LC scheme, split the copies to the residual energies of the nodes (LE scheme. Finally, with the experiment and the validation of the simulation, the LE scheme can significantly maximize the lifetime of DTMSN, because it minimizes the number of copies and that shifts the generation of the copies to the nodes with larger residual energy.

  7. Distributed Multi-Commodity Network Flow Algorithm for Energy Optimal Routing in Wireless Sensor Networks.

    Directory of Open Access Journals (Sweden)

    J. Trdlicka

    2010-12-01

    Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.

  8. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  9. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    Directory of Open Access Journals (Sweden)

    Thirumoorthy Palanisamy

    Full Text Available Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  10. Topology control of tactical wireless sensor networks using energy efficient zone routing

    Directory of Open Access Journals (Sweden)

    Preetha Thulasiraman

    2016-02-01

    Full Text Available The US Department of Defense (DoD routinely uses wireless sensor networks (WSNs for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE, Low Energy Adaptive Cluster Head routing (LEACH, and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.

  11. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  12. Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.

    Science.gov (United States)

    Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin

    2018-05-03

    Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.

  13. Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks

    Directory of Open Access Journals (Sweden)

    Farhan Aadil

    2018-05-01

    Full Text Available Flying ad-hoc networks (FANETs are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.

  14. A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

    Science.gov (United States)

    Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani

    2012-01-01

    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

  15. Energy Efficient Routing and Node Activity Scheduling in the OCARI Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2010-08-01

    Full Text Available Sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. Energy efficient strategies are required in such networks to maximize network lifetime. In this paper, we focus on a solution integrating energy efficient routing and node activity scheduling. The energy efficient routing we propose, called EOLSR, selects the route and minimizes the energy consumed by an end-to-end transmission, while avoiding nodes with low residual energy. Simulation results show that EOLSR outperforms the solution selecting the route of minimum energy as well as the solution based on node residual energy. Cross-layering allows EOLSR to use information from the application layer or the MAC layer to reduce its overhead and increase network lifetime. Node activity scheduling is based on the following observation: the sleep state is the least power consuming state. So, to schedule node active and sleeping periods, we propose SERENA that colors all network nodes using a small number of colors, such that two nodes with the same color can transmit without interfering. The node color is mapped into a time slot during which the node can transmit. Consequently, each node is awake during its slot and the slots of its one-hop neighbors, and sleeps in the remaining time. We evaluate SERENA benefits obtained in terms of bandwidth, delay and energy. We also show how cross-layering with the application layer can improve the end-to-end delays for data gathering applications.

  16. Energy Efficient Routing in Nomadic Networks

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2007-01-01

    We present an evaluation of a novel energy-efficient routing protocol for mobile ad-hoc networks. We combine two techniques for optimizing energy levels with a well-known routing protocol. We examine the behavior of this combination in a nomadic network setting, where some nodes are stationary...

  17. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time.

    Science.gov (United States)

    Avellar, Gustavo S C; Pereira, Guilherme A S; Pimenta, Luciano C A; Iscold, Paulo

    2015-11-02

    This paper presents a solution for the problem of minimum time coverage of ground areas using a group of unmanned air vehicles (UAVs) equipped with image sensors. The solution is divided into two parts: (i) the task modeling as a graph whose vertices are geographic coordinates determined in such a way that a single UAV would cover the area in minimum time; and (ii) the solution of a mixed integer linear programming problem, formulated according to the graph variables defined in the first part, to route the team of UAVs over the area. The main contribution of the proposed methodology, when compared with the traditional vehicle routing problem's (VRP) solutions, is the fact that our method solves some practical problems only encountered during the execution of the task with actual UAVs. In this line, one of the main contributions of the paper is that the number of UAVs used to cover the area is automatically selected by solving the optimization problem. The number of UAVs is influenced by the vehicles' maximum flight time and by the setup time, which is the time needed to prepare and launch a UAV. To illustrate the methodology, the paper presents experimental results obtained with two hand-launched, fixed-wing UAVs.

  18. Energy Aware Simple Ant Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sohail Jabbar

    2015-01-01

    Full Text Available Network lifetime is one of the most prominent barriers in deploying wireless sensor networks for large-scale applications because these networks employ sensors with nonrenewable scarce energy resources. Sensor nodes dissipate most of their energy in complex routing mechanisms. To cope with limited energy problem, we present EASARA, an energy aware simple ant routing algorithm based on ant colony optimization. Unlike most algorithms, EASARA strives to avoid low energy routes and optimizes the routing process through selection of least hop count path with more energy. It consists of three phases, that is, route discovery, forwarding node, and route selection. We have improved the route discovery procedure and mainly concentrate on energy efficient forwarding node and route selection, so that the network lifetime can be prolonged. The four possible cases of forwarding node and route selection are presented. The performance of EASARA is validated through simulation. Simulation results demonstrate the performance supremacy of EASARA over contemporary scheme in terms of various metrics.

  19. Energy-Aware Routing Protocol for Ad Hoc Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mann Raminder P

    2005-01-01

    Full Text Available Wireless ad hoc sensor networks differ from wireless ad hoc networks from the following perspectives: low energy, lightweight routing protocols, and adaptive communication patterns. This paper proposes an energy-aware routing protocol (EARP suitable for ad hoc wireless sensor networks and presents an analysis for its energy consumption in various phases of route discovery and maintenance. Based on the energy consumption associated with route request processing, EARP advocates the minimization of route requests by allocating dynamic route expiry times. This paper introduces a unique mechanism for estimation of route expiry time based on the probability of route validity, which is a function of time, number of hops, and mobility parameters. In contrast to AODV, EARP reduces the repeated flooding of route requests by maintaining valid routes for longer durations.

  20. Minimum energy consumption process synthesis for energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping, Jia [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Fang, Wang; Shu-Guang, Xiang; Xin-Sun, Tan; Fang-Yu, Han [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China)

    2008-05-15

    The paper presents a synthesis strategy for the chemical processes with energy saving. The concept of minimum energy consumption process (MECP) is proposed. Three characteristics of MECP are introduced, including thermodynamic minimum energy demand, energy consumption efficiency and integration degree. These characteristics are evaluated according to quantitative thermodynamic analysis and qualitative knowledge rules. The procedure of synthesis strategy is proposed to support the generation of MECP alternatives, which combine flowsheet integration and heat integration. The cases studies will focus on how integration degrees of a process affect the energy-saving results. The separation sequences of the hydrodealkylation of toluene (HDA) process and ethanol distillation process as case studies are used to illustrate. (author)

  1. Game-Theory-Based Approach for Energy Routing in a Smart Grid Network

    Directory of Open Access Journals (Sweden)

    June S. Hong

    2016-01-01

    Full Text Available Small power plants and buildings with renewable power generation capability have recently been added to traditional central power plants. Through these facilities, prosumers appear to have a concurrent role in both energy production and consumption. Based on bidirectional power transfers by large numbers of prosumers, a smart microgrid has become an important factor in efficiently controlling the microgrids used in power markets and in conducting effective power trades among grids. In this paper, we present an approach utilizing the game theory for effective and efficient energy routing, which is a novel and challenging procedure for a smart microgrid network. First, we propose strategies for choosing the desired transaction price for both electricity surpluses and shortages to maximize profits through energy transactions. An optimization scheme is utilized to search for an energy route with minimum cost using the solving method used in a traditional transportation problem by treating the sale and purchase quantities as transportation supply and demand, respectively. To evaluate the effect of the proposed decision strategies, we simulated our mechanism, and the results proved that our mechanism yields results pursued by each strategy. Our proposed strategies will contribute to spreading a smart microgrid for enhancing the utilization of microgrids.

  2. Energy Aware Cluster Based Routing Scheme For Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Roy Sohini

    2015-09-01

    Full Text Available Wireless Sensor Network (WSN has emerged as an important supplement to the modern wireless communication systems due to its wide range of applications. The recent researches are facing the various challenges of the sensor network more gracefully. However, energy efficiency has still remained a matter of concern for the researches. Meeting the countless security needs, timely data delivery and taking a quick action, efficient route selection and multi-path routing etc. can only be achieved at the cost of energy. Hierarchical routing is more useful in this regard. The proposed algorithm Energy Aware Cluster Based Routing Scheme (EACBRS aims at conserving energy with the help of hierarchical routing by calculating the optimum number of cluster heads for the network, selecting energy-efficient route to the sink and by offering congestion control. Simulation results prove that EACBRS performs better than existing hierarchical routing algorithms like Distributed Energy-Efficient Clustering (DEEC algorithm for heterogeneous wireless sensor networks and Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network (EEHC.

  3. Energy Efficient MANET Routing Using a Combination of Span and BECA/AFECA

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents some novel approaches for energy efficient routing in mobile ad-hoc networks. Two known energy preserving techniques, Span and BECA/AFECA, are combined with a well-known re-active routing protocol, AODV, to create a new energy efficient routing protocol. Furthermore, the proto......This paper presents some novel approaches for energy efficient routing in mobile ad-hoc networks. Two known energy preserving techniques, Span and BECA/AFECA, are combined with a well-known re-active routing protocol, AODV, to create a new energy efficient routing protocol. Furthermore...

  4. A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Matheswaran Saravanan

    2014-01-01

    Full Text Available Wireless sensor network (WSN consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST. The proposed algorithm computes the distance-based Minimum Spanning Tree (MST of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm.

  5. Energy neutral protocol based on hierarchical routing techniques for energy harvesting wireless sensor network

    Science.gov (United States)

    Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.

    2017-06-01

    Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.

  6. Energy Reduction Multipath Routing Protocol for MANET Using Recoil Technique

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Sahu

    2018-04-01

    Full Text Available In Mobile Ad-hoc networks (MANET, power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation and utilization should be done judiciously for the effective functioning of the network. In this paper, a novel protocol namely Energy Reduction Multipath Routing Protocol for MANET using Recoil Technique (AOMDV-ER is proposed, which conserves the energy along with optimal network lifetime, routing overhead, packet delivery ratio and throughput. It performs better than any other AODV based algorithms, as in AOMDV-ER the nodes transmit packets to their destination smartly by using a varying recoil off time technique based on their geographical location. This concept reduces the number of transmissions, which results in the improvement of network lifetime. In addition, the local level route maintenance reduces the additional routing overhead. Lastly, the prediction based link lifetime of each node is estimated which helps in reducing the packet loss in the network. This protocol has three subparts: an optimal route discovery algorithm amalgamation with the residual energy and distance mechanism; a coordinated recoiled nodes algorithm which eliminates the number of transmissions in order to reduces the data redundancy, traffic redundant, routing overhead, end to end delay and enhance the network lifetime; and a last link reckoning and route maintenance algorithm to improve the packet delivery ratio and link stability in the network. The experimental results show that the AOMDV-ER protocol save at least 16% energy consumption, 12% reduction in routing overhead, significant achievement in network lifetime and packet delivery ratio than Ad hoc on demand multipath distance vector routing protocol (AOMDV, Ad hoc on demand multipath distance vector routing protocol life

  7. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    Directory of Open Access Journals (Sweden)

    Ailian Jiang

    2018-03-01

    Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  8. Vibrant Energy Aware Spray and Wait Routing in Delay Tolerant Network

    Directory of Open Access Journals (Sweden)

    Viren G. Patel

    2013-01-01

    Full Text Available Delay tolerant networks (DTN are wireless networks where disconnections arise often due to the mobility of nodes, failures of energy, the low density of nodes, or when the network extends over long distances. In these situations, traditional routing protocols that have been developed for mobile ad hoc networks prove to be unsuccessful to the scope of transmitting messages between nodes. The Spray and Wait routing may achieve low routing and energy efficiency due to the blindness in the spray phase. To deal with this situation, we propose an opportunistic routing with enclosed message copies, called the Vibrant Energy aware Spray and Wait (VESW, which utilizes the information about vibrancy of node and remaining energy to allocate the number of copies between the corresponding pair nodes in the spray phase.

  9. Energy-Aware Routing Optimization in Dynamic GMPLS Controlled Optical Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Ricciardi, Sergio; Fagertun, Anna Manolova

    2012-01-01

    In this paper, routing optimizations based on energy sources are proposed in dynamic GMPLS controlled optical networks. The influences of re-routing and load balancing factors on the algorithm are evaluated, with a focus on different re-routing thresholds. Results from dynamic network simulations...

  10. Selecting the minimum risk route in the transportation of hazardous materials

    Directory of Open Access Journals (Sweden)

    Marijan Žura

    1992-12-01

    Full Text Available The transportation of hazardous materials is a broad and complex topic. Percent and iveight of accidents of vehicles carrying dangerous goods are growing fast. Modern computer based information system for dangerous materials management is becoming more and more important. In this paper I present an interactive software system for minimum risk route selection based on the PC ARC/INFO. The model computes optimal path based on accident probability is computed from traffic accident rates, highway operational speed, traffic volume and technical characteristic of the roadwidth, radius and slope. Dangerous goods are classified into nine classes according to their impact to different sensible environment elements. Those sensible elements are drinking water resourses, natural heritage, forestry, agricultural areas, cultural heritage, urban areas and tourist resorts. Some results of system implementation on Slovenia road network are be presented.

  11. Cluster chain based energy efficient routing protocol for moblie WSN

    Directory of Open Access Journals (Sweden)

    WU Ziyu

    2016-04-01

    Full Text Available With the ubiquitous smart devices acting as mobile sensor nodes in the wireless sensor networks(WSNs to sense and transmit physical information,routing protocols should be designed to accommodate the mobility issues,in addition to conventional considerations on energy efficiency.However,due to frequent topology change,traditional routing schemes cannot perform well.Moreover,existence of mobile nodes poses new challenges on energy dissipation and packet loss.In this paper,a novel routing scheme called cluster chain based routing protocol(CCBRP is proposed,which employs a combination of cluster and chain structure to accomplish data collection and transmission and thereafter selects qualified cluster heads as chain leaders to transmit data to the sink.Furthermore,node mobility is handled based on periodical membership update of mobile nodes.Simulation results demonstrate that CCBRP has a good performance in terms of network lifetime and packet delivery,also strikes a better balance between successful packet reception and energy consumption.

  12. Energy-Aware Routing in Multiple Domains Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Adriana FERNÁNDEZ-FERNÁNDEZ

    2016-12-01

    Full Text Available The growing energy consumption of communication networks has attracted the attention of the networking researchers in the last decade. In this context, the new architecture of Software-Defined Networks (SDN allows a flexible programmability, suitable for the power-consumption optimization problem. In this paper we address the issue of designing a novel distributed routing algorithm that optimizes the power consumption in large scale SDN with multiple domains. The solution proposed, called DEAR (Distributed Energy-Aware Routing, tackles the problem of minimizing the number of links that can be used to satisfy a given data traffic demand under performance constraints such as control traffic delay and link utilization. To this end, we present a complete formulation of the optimization problem that considers routing requirements for control and data plane communications. Simulation results confirm that the proposed solution enables the achievement of significant energy savings.

  13. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  14. A Novel Linear Programming Formulation of Maximum Lifetime Routing Problem in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Cetin, Bilge Kartal; Prasad, Neeli R.; Prasad, Ramjee

    2011-01-01

    In wireless sensor networks, one of the key challenge is to achieve minimum energy consumption in order to maximize network lifetime. In fact, lifetime depends on many parameters: the topology of the sensor network, the data aggregation regime in the network, the channel access schemes, the routing...... protocols, and the energy model for transmission. In this paper, we tackle the routing challenge for maximum lifetime of the sensor network. We introduce a novel linear programming approach to the maximum lifetime routing problem. To the best of our knowledge, this is the first mathematical programming...

  15. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  16. DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN) USING PASCAL GRAPH

    OpenAIRE

    Deepali Panwar; Subhrendu Guha Neogi

    2013-01-01

    Development of energy efficient Wireless Sensor Network (WSN) routing protocol is nowadays main area of interest amongst researchers. This research is an effort in designing energy efficient Wireless Sensor Network (WSN) routing protocol under certain parameters consideration. Research report discusses various existing WSN routing protocols and propose a new WSN energy efficient routing protocol. Results show a significant improvement in life cycle of the nodes and enhancement ...

  17. An Energy Balanced and Lifetime Extended Routing Protocol for Underwater Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Lu, Luxi

    2018-05-17

    Energy limitation is an adverse problem in designing routing protocols for underwater sensor networks (UWSNs). To prolong the network lifetime with limited battery power, an energy balanced and efficient routing protocol, called energy balanced and lifetime extended routing protocol (EBLE), is proposed in this paper. The proposed EBLE not only balances traffic loads according to the residual energy, but also optimizes data transmissions by selecting low-cost paths. Two phases are operated in the EBLE data transmission process: (1) candidate forwarding set selection phase and (2) data transmission phase. In candidate forwarding set selection phase, nodes update candidate forwarding nodes by broadcasting the position and residual energy level information. The cost value of available nodes is calculated and stored in each sensor node. Then in data transmission phase, high residual energy and relatively low-cost paths are selected based on the cost function and residual energy level information. We also introduce detailed analysis of optimal energy consumption in UWSNs. Numerical simulation results on a variety of node distributions and data load distributions prove that EBLE outperforms other routing protocols (BTM, BEAR and direct transmission) in terms of network lifetime and energy efficiency.

  18. Improvement In MAODV Protocol Using Location Based Routing Protocol

    Directory of Open Access Journals (Sweden)

    Kaur Sharnjeet

    2016-01-01

    Full Text Available Energy saving is difficult in wireless sensor network (WSN due to limited resources. Each node in WSN is constrained by their limited battery power for their energy. The energy is reduced as the time goes off due to the packet transmission and reception. Energy management techniques are necessary to minimize the total power consumption of all the nodes in the network in order to maximize its life span. Our proposed protocol Location based routing (LBR aimed to find a path which utilizes the minimum energy to transmit the packets between the source and the destination. The required energy for the transmission and reception of data is evaluated in MATLAB. LBR is implemented on Multicast Ad hoc On Demand Distance Vector Routing Protocol (MAODV to manage the energy consumption in the transmission and reception of data. Simulation results of LBR show the energy consumption has been reduced.

  19. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  20. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  1. Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adamu Murtala Zungeru

    2013-01-01

    Full Text Available The main problem for event gathering in wireless sensor networks (WSNs is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR algorithm, based on the ant colony optimization (ACO metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1 a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2 intelligent update of routing tables in case of a node or link failure, and (3 reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC and Beesensor.

  2. Management of Energy Consumption on Cluster Based Routing Protocol for MANET

    Science.gov (United States)

    Hosseini-Seno, Seyed-Amin; Wan, Tat-Chee; Budiarto, Rahmat; Yamada, Masashi

    The usage of light-weight mobile devices is increasing rapidly, leading to demand for more telecommunication services. Consequently, mobile ad hoc networks and their applications have become feasible with the proliferation of light-weight mobile devices. Many protocols have been developed to handle service discovery and routing in ad hoc networks. However, the majority of them did not consider one critical aspect of this type of network, which is the limited of available energy in each node. Cluster Based Routing Protocol (CBRP) is a robust/scalable routing protocol for Mobile Ad hoc Networks (MANETs) and superior to existing protocols such as Ad hoc On-demand Distance Vector (AODV) in terms of throughput and overhead. Therefore, based on this strength, methods to increase the efficiency of energy usage are incorporated into CBRP in this work. In order to increase the stability (in term of life-time) of the network and to decrease the energy consumption of inter-cluster gateway nodes, an Enhanced Gateway Cluster Based Routing Protocol (EGCBRP) is proposed. Three methods have been introduced by EGCBRP as enhancements to the CBRP: improving the election of cluster Heads (CHs) in CBRP which is based on the maximum available energy level, implementing load balancing for inter-cluster traffic using multiple gateways, and implementing sleep state for gateway nodes to further save the energy. Furthermore, we propose an Energy Efficient Cluster Based Routing Protocol (EECBRP) which extends the EGCBRP sleep state concept into all idle member nodes, excluding the active nodes in all clusters. The experiment results show that the EGCBRP decreases the overall energy consumption of the gateway nodes up to 10% and the EECBRP reduces the energy consumption of the member nodes up to 60%, both of which in turn contribute to stabilizing the network.

  3. Minimum wall pressure coefficient of orifice plate energy dissipater

    Directory of Open Access Journals (Sweden)

    Wan-zheng Ai

    2015-01-01

    Full Text Available Orifice plate energy dissipaters have been successfully used in large-scale hydropower projects due to their simple structure, convenient construction procedure, and high energy dissipation ratio. The minimum wall pressure coefficient of an orifice plate can indirectly reflect its cavitation characteristics: the lower the minimum wall pressure coefficient is, the better the ability of the orifice plate to resist cavitation damage is. Thus, it is important to study the minimum wall pressure coefficient of the orifice plate. In this study, this coefficient and related parameters, such as the contraction ratio, defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter; the relative thickness, defined as the ratio of the orifice plate thickness to the tunnel diameter; and the Reynolds number of the flow through the orifice plate, were theoretically analyzed, and their relationships were obtained through physical model experiments. It can be concluded that the minimum wall pressure coefficient is mainly dominated by the contraction ratio and relative thickness. The lower the contraction ratio and relative thickness are, the larger the minimum wall pressure coefficient is. The effects of the Reynolds number on the minimum wall pressure coefficient can be neglected when it is larger than 105. An empirical expression was presented to calculate the minimum wall pressure coefficient in this study.

  4. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tran Dinh Hieu

    2016-05-01

    Full Text Available A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio.

  5. Energy- Efficient Routing Protocols For Wireless Sensor Network A Review

    Directory of Open Access Journals (Sweden)

    Pardeep Kaur

    2017-12-01

    Full Text Available There has been plenty of interest in building and deploying sensor networks. Wireless sensor network is a collection of a large number of small nodes which acts as routers also. These nodes carry very limited power source which is non-rechargeable and non-replaceable which makes energy consumption an significant issue. Energy conservation is a very important issue for prolonging the lifetime of the network. As the sensor nodes act like routers as well the determination of routing technique plays a key role in controlling the consumption of energy. This paper describes the framework of wireless sensor network and the analysis and study of various research work related to Energy Efficient Routing in Wireless Sensor Networks.

  6. La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Sun, Guodong; Shang, Xinna; Zuo, Yan

    2018-02-02

    In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user's burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency.

  7. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  8. SD-EAR: Energy Aware Routing in Software Defined Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Anuradha Banerjee

    2018-06-01

    Full Text Available In today’s internet-of-things (IoT environment, wireless sensor networks (WSNs have many advantages, with broad applications in different areas including environmental monitoring, maintaining security, etc. However, high energy depletion may lead to node failures in WSNs. In most WSNs, nodes deplete energy mainly because of the flooding and broadcasting of route-request (RREQ packets, which is essential for route discovery in WSNs. The present article models wireless sensor networks as software-defined wireless sensor networks (SD-WSNs where the network is divided into multiple clusters or zones, and each zone is controlled by a software-defined network (SDN controller. The SDN controller is aware of the topology of each zone, and finds out the optimum energy efficient path from any source to any destination inside the zone. For destinations outside of the zone, the SDN controller of the source zone instructs the source to send a message to all of the peripheral nodes in that zone, so that they can forward the message to the peripheral nodes in other zones, and the process goes on until a destination is found. As far as energy-efficient path selection is concerned, the SDN controller of a zone is aware of the connectivity and residual energy of each node. Therefore, it is capable of discovering an optimum energy efficient path from any source to any destination inside as well as outside of the zone of the source. Accordingly, flow tables in different routers are updated dynamically. The task of route discovery is shifted from individual nodes to controllers, and as a result, the flooding of route-requests is completely eliminated. Software-defined energy aware routing (SD-EARalso proposes an innovative sleeping strategy where exhausted nodes are allowed to go to sleep through a sleep request—sleep grant mechanism. All of these result in huge energy savings in SD-WSN, as shown in the simulation results.

  9. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  11. Improved initial guess for minimum energy path calculations

    International Nuclear Information System (INIS)

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes

    2014-01-01

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used

  12. GRAdient Cost Establishment (GRACE for an Energy-Aware Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Noor M. Khan

    2009-01-01

    Full Text Available In Wireless Sensor Network (WSN, the nodes have limitations in terms of energy-constraint, unreliable links, and frequent topology change. In this paper we propose an energy-aware routing protocol, that outperforms the existing ones with an enhanced network lifetime and more reliable data delivery. Major issues in the design of a routing strategy in wireless sensor networks are to make efficient use of energy and to increase reliability in data delivery. The proposed approach reduces both energy consumption and communication-bandwidth requirements and prolongs the lifetime of the wireless sensor network. Using both analysis and extensive simulations, we show that the proposed dynamic routing helps achieve the desired system performance under dynamically changing network conditions. The proposed algorithm is compared with one of the best existing routing algorithms, GRAB. Moreover, a modification in GRAB is proposed which not only improves its performance but also prolongs its lifetime.

  13. Bistable minimum energy structures (BiMES) for binary robotics

    International Nuclear Information System (INIS)

    Follador, M; Conn, A T; Rossiter, J

    2015-01-01

    Bistable minimum energy structures (BiMES) are devices derived from the union of the concepts of dielectric elastomer minimum energy structures and bistable systems. This article presents this novel approach to active, elastic and bistable structures. BiMES are based on dielectric elastomer actuators (DEAs), which act as antagonists and provide the actuation for switching between the two equilibrium positions. A central elastic beam is the backbone of the structure and is buckled into the minimum energy configurations by the action of the two DEAs. The theory and the model of the device are presented, and also its fabrication process. BiMES are considered as fundamental units for more complex structures, which are presented and fabricated as proof of concept. Two different ways of combining the multiple units are proposed: a parallel configuration, to make a simple gripper, and a serial configuration, to generate a binary device. The possibility of using the bistable system as a continuous bender actuator, by modulating the actuation voltage of the two DEAs, was also investigated. (paper)

  14. Energy Efficient Routing in Wireless Sensor Networks Through Balanced Clustering

    Directory of Open Access Journals (Sweden)

    Christos Douligeris

    2013-01-01

    Full Text Available The wide utilization of Wireless Sensor Networks (WSNs is obstructed by the severely limited energy constraints of the individual sensor nodes. This is the reason why a large part of the research in WSNs focuses on the development of energy efficient routing protocols. In this paper, a new protocol called Equalized Cluster Head Election Routing Protocol (ECHERP, which pursues energy conservation through balanced clustering, is proposed. ECHERP models the network as a linear system and, using the Gaussian elimination algorithm, calculates the combinations of nodes that can be chosen as cluster heads in order to extend the network lifetime. The performance evaluation of ECHERP is carried out through simulation tests, which evince the effectiveness of this protocol in terms of network energy efficiency when compared against other well-known protocols.

  15. Energy and environmental norms on Minimum Vital Flux

    International Nuclear Information System (INIS)

    Maran, S.

    2008-01-01

    By the end of the year will come into force the recommendations on Minimum Vital flow and operators of hydroelectric power plants will be required to make available part of water of their derivations in order to protect river ecosystems. In this article the major energy and environmental consequences of these rules, we report some quantitative evaluations and are discusses the proposals for overcoming the weaknesses of the approach in the estimation of Minimum Vital Flux [it

  16. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  17. DEHAR: a Distributed Energy Harvesting Aware Routing Algorithm for Ad-hoc Multi-hop Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Koefoed; Madsen, Jan; Hansen, Michael Reichhardt

    2010-01-01

    One of the key design goals in Wireless Sensor Networks is long lasting or even continuous operation. Continuous operation is made possible through energy harvesting. Keeping the network operational imposes a demand to prevent network segmentation and power loss in nodes. It is therefore important...... that the best energy-wise route is found for each data transfer from a source node to the sink node. We present a new adaptive and distributed routing algorithm for finding energy optimised routes in a wireless sensor network with energy harvesting. The algorithm finds an energy efficient route from each source...

  18. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  19. What is the most energy efficient route for biogas utilization: Heat, electricity or transport?

    International Nuclear Information System (INIS)

    Hakawati, Rawan; Smyth, Beatrice M.; McCullough, Geoffrey; De Rosa, Fabio; Rooney, David

    2017-01-01

    Highlights: •The paper developed an assessment tool for analyzing biogas utilization routes. •The LCA methodology was used to allow a uniform assessment of the biogas system. •“% energy efficiency” was used as the functional unit for assessment. •49 biogas-to-energy routes were assessed based on their final useful energy form. •The framework aids policy makers in the decision process for biogas exploitation. -- Abstract: Biogas is a renewable energy source that can be used either directly or through various pathways (e.g. upgrading to bio-methane, use in a fuel cell or conversion to liquid fuels) for heat, electricity generation or mechanical energy for transport. However, although there are various options for biogas utilization, there is limited guidance in the literature on the selection of the optimum route, and comparison between studies is difficult due to the use of different analytical frameworks. The aim of this paper was to fill that knowledge gap and to develop a consistent framework for analysing biogas-to-energy exploitation routes. The paper evaluated 49 biogas-to-energy routes using a consistent life cycle analysis method focusing on energy efficiency as the chosen crtierion. Energy efficiencies varied between 8% and 54% for electricity generation; 16% and 83% for heat; 18% and 90% for electricity and heat; and 4% and 18% for transport. Direct use of biogas has the highest efficiencies, but the use of this fuel is typically limited to sites co-located with the anaerobic digestion facility, limiting available markets and applications. Liquid fuels have the advantage of versatility, but the results show consistently low efficiencies across all routes and applications. The energy efficiency of bio-methane routes competes well with biogas and comes with the advantage that it is more easily transported and used in a wide variety of applications. The results were also compared with fossil fuels and discussed in the context of national

  20. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks

    Science.gov (United States)

    Tan, Yanxia; Gu, Rentao; Ji, Yuefeng

    2017-07-01

    With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.

  1. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  2. Minimum critical values of uranyl and plutonium nitrate solutions calculated by various routes of the french criticality codes system CRISTAL using the new isopiestic nitrate density law

    International Nuclear Information System (INIS)

    Anno, Jacques; Rouyer, Veronique; Leclaire, Nicolas

    2003-01-01

    This paper provides for various cases of 235 U enrichment or Pu isotopic vectors, and different reflectors, new minimum critical values of uranyl nitrate and plutonium nitrate solutions (H + =0) obtained by the standard IRSN calculation route and the new isopiestic density laws. Comparisons are also made with other more accurate routes showing that the standard one's results are most often conservative and usable for criticality safety assessments. (author)

  3. Energy efficient routing protocols for wireless sensor networks: comparison and future directions

    Directory of Open Access Journals (Sweden)

    Loganathan Murukesan

    2017-01-01

    Full Text Available Wireless sensor network consists of nodes with limited resources. Hence, it is important to design protocols or algorithms which increases energy efficiency in order to improve the network lifetime. In this paper, techniques used in the network layer (routing of the internet protocol stack to achieve energy efficiency are reviewed. Usually, the routing protocols are classified into four main schemes: (1 Network Structure, (2 Communication Model, (3 Topology Based, and (4 Reliable Routing. In this work, only network structure based routing protocols are reviewed due to the page constraint. Besides, this type of protocols are much popular among the researchers since they are fairly simple to implement and produce good results as presented in this paper. Also, the pros and cons of each protocols are presented. Finally, the paper concludes with possible further research directions.

  4. A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route

    Directory of Open Access Journals (Sweden)

    Shaobo Xie

    2017-09-01

    Full Text Available When developing a real-time energy management strategy for a plug-in hybrid electric vehicle, it is still a challenge for the Equivalent Consumption Minimum Strategy to achieve near-optimal energy consumption, because the optimal equivalence factor is not readily available without the trip information. With the help of realistic speeding profiles sampled from a plug-in hybrid electric bus running on a fixed commuting line, this paper proposes a convenient and effective approach of determining the equivalence factor for an adaptive Equivalent Consumption Minimum Strategy. Firstly, with the adaptive law based on the feedback of battery SOC, the equivalence factor is described as a combination of the major component and tuning component. In particular, the major part defined as a constant is applied to the inherent consistency of regular speeding profiles, while the second part including a proportional and integral term can slightly tune the equivalence factor to satisfy the disparity of daily running cycles. Moreover, Pontryagin’s Minimum Principle is employed and solved by using the shooting method to capture the co-state dynamics, in which the Secant method is introduced to adjust the initial co-state value. And then the initial co-state value in last shooting is taken as the optimal stable constant of equivalence factor. Finally, altogether ten successive driving profiles are selected with different initial SOC levels to evaluate the proposed method, and the results demonstrate the excellent fuel economy compared with the dynamic programming and PMP method.

  5. Reliable Adaptive Data Aggregation Route Strategy for a Trade-off between Energy and Lifetime in WSNs

    Directory of Open Access Journals (Sweden)

    Wenzhong Guo

    2014-09-01

    Full Text Available Mobile security is one of the most fundamental problems in Wireless Sensor Networks (WSNs. The data transmission path will be compromised for some disabled nodes. To construct a secure and reliable network, designing an adaptive route strategy which optimizes energy consumption and network lifetime of the aggregation cost is of great importance. In this paper, we address the reliable data aggregation route problem for WSNs. Firstly, to ensure nodes work properly, we propose a data aggregation route algorithm which improves the energy efficiency in the WSN. The construction process achieved through discrete particle swarm optimization (DPSO saves node energy costs. Then, to balance the network load and establish a reliable network, an adaptive route algorithm with the minimal energy and the maximum lifetime is proposed. Since it is a non-linear constrained multi-objective optimization problem, in this paper we propose a DPSO with the multi-objective fitness function combined with the phenotype sharing function and penalty function to find available routes. Experimental results show that compared with other tree routing algorithms our algorithm can effectively reduce energy consumption and trade off energy consumption and network lifetime.

  6. ENERGY EFFICIENT ROUTING PROTOCOLS FOR WIRELESS AD HOC NETWORKS – A SURVEY

    Directory of Open Access Journals (Sweden)

    K. Sankar

    2012-06-01

    Full Text Available Reducing energy consumption, primarily with the goal of extending the lifetime of battery-powered devices, has emerged as a fundamental challenge in wireless communication. The performance of the medium access control (MAC scheme not only has a fairly significant end-result on the behaviour of the routing approach employed, but also on the energy consumption of the wireless network interface card (NIC. We investigate the inadequacies of the MAC schemes designed for ad hoc wireless networks in the context of power awareness herein. The topology changes due to uncontrollable factors such as node mobility, weather, interference, noise, as well as on controllable parameters such as transmission power and antenna direction results in significant amount of energy loss. Controlling rapid topology changes by minimizing the maximum transmission power used in ad hoc wireless networks, while still maintaining networks connectivity can prolong battery life and hence network lifetime considerably. In addition, we systematically explore the potential energy consumption pitfalls of non–power-based and power based routing schemes. We suggest a thorough energy-based performance survey of energy aware routing protocols for wireless mobile ad-hoc networks. We also present the statistical performance metrics measured by our simulations.

  7. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, S.; Priest, E. R.

    2008-01-01

    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  8. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates......V. Spice simulations indicate a gain of 52.58% in throughput because of asynchronous operation. By trading the throughput improvement, energy dissipation is reduced by 16.8% at the energy-minimum supply voltage....

  9. Energy Balance Routing Algorithm Based on Virtual MIMO Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jianpo Li

    2014-01-01

    Full Text Available Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.

  10. Optimization of the Municipal Waste Collection Route Based on the Method of the Minimum Pairing

    Directory of Open Access Journals (Sweden)

    Michal Petřík

    2016-01-01

    Full Text Available In the present article is shown the use of Maple program for processing of data describing the position of municipal waste sources and topology of collecting area. The data are further processed through the use of graph theory algorithms, which enable creation of collection round proposal. In this case study is described method of waste pick-up solution in a certain village of approx. 1,600 inhabitants and built-up area of approx. 30 hectares. Village has approx. 11.5 kilometers of ride able routes, with approx. 1 kilometer without waste source. The first part shows topology of the village in light of location of waste sources and capacity of the routes. In the second part are topological data converted into data that can be processed by use of the Graph Theory and the correspondent graph is shown. Optimizing collection route in a certain graph means to find the Euler circle. However, this circle can be constructed only on condition that all the vertices of the graph are of an even degree. Practically this means that is necessary to introduce auxiliary edges – paths that will be passed twice. These paths will connect vertices with odd values. The optimal solution then requires that the total length of the inserted edges was minimal possible, which corresponds to the minimum pairing method. As it is a problem of exponential complexity, it is necessary to make some simplifications. These simplifications are depicted graphically and the results are displayed in the conclusion. The resulting graph with embedded auxiliary edges can be used as a basic decision making material for creation of real collection round that respects local limitations such as one way streets or streets where is the waste collection is not possible from both sides at the same time.

  11. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  12. Delay Tolerance in Underwater Wireless Communications: A Routing Perspective

    Directory of Open Access Journals (Sweden)

    Safdar Hussain Bouk

    2016-01-01

    Full Text Available Similar to terrestrial networks, underwater wireless networks (UWNs also aid several critical tasks including coastal surveillance, underwater pollution detection, and other maritime applications. Currently, once underwater sensor nodes are deployed at different levels of the sea, it is nearly impossible or very expensive to reconfigure the hardware, for example, battery. Taking this issue into account, considerable amount of research has been carried out to ensure minimum energy costs and reliable communication between underwater nodes and base stations. As a result, several different network protocols were proposed for UWN, including MAC, PHY, transport, and routing. Recently, a new paradigm was introduced claiming that the intermittent nature of acoustic channel and signal resulted in designing delay tolerant routing schemes for the UWN, known as an underwater delay tolerant network. In this paper, we provide a comprehensive survey of underwater routing protocols with emphasis on the limitations, challenges, and future open issues in the context of delay tolerant network routing.

  13. DRUG: An Energy-Efficient Data-Centric Routing Protocol for Wireless Sensor Networks

    OpenAIRE

    Sahoo, B. P. S.; Puthal, Deepak

    2014-01-01

    In general, sensor nodes are deployed in left unattended area. In such situation feeding energy to the batteries or replacing the batteries is difficult or even sometimes impossible too. Therefore, prolonging the network lifetime is an important optimization goal in this aspect. In this paper, we propose a new Energy-efficient Datacentric RoUtinG protocol called DRUG. In this paper, we propose an adaptive Data centric approach to find an optimal routing path from source to sink when the senso...

  14. Energy Aware GPSR Routing Protocol in a Wireless Sensor Network ...

    African Journals Online (AJOL)

    Energy is the scarce resource in wireless sensor networks (WSNs), and it determines the lifetime of WSNs. For this reason, WSN algorithms and routing protocols should be selected in a manner which fulfills these energy requirements. This paper presents a solution to increase the lifetime of WSNs by decreasing their ...

  15. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in the first

  16. Minimum Energy Requirements in Complex Distillation Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Ivar J.

    2001-07-01

    Distillation is the most widely used industrial separation technology and distillation units are responsible for a significant part of the total heat consumption in the world's process industry. In this work we focus on directly (fully thermally) coupled column arrangements for separation of multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a particular implementation is the dividing wall column. Energy savings in the range of 20-40% have been reported with ternary feed mixtures. In addition to energy savings, such integrated units have also a potential for reduced capital cost, making them extra attractive. However, the industrial use has been limited, and difficulties in design and control have been reported as the main reasons. Minimum energy results have only been available for ternary feed mixtures and sharp product splits. This motivates further research in this area, and this thesis will hopefully give some contributions to better understanding of complex column systems. In the first part we derive the general analytic solution for minimum energy consumption in directly coupled columns for a multicomponent feed and any number of products. To our knowledge, this is a new contribution in the field. The basic assumptions are constant relative volatility, constant pressure and constant molar flows and the derivation is based on Underwood's classical methods. An important conclusion is that the minimum energy consumption in a complex directly integrated multi-product arrangement is the same as for the most difficult split between any pair of the specified products when we consider the performance of a conventional two-product column. We also present the Vmin-diagram, which is a simple graphical tool for visualisation of minimum energy related to feed distribution. The Vmin-diagram provides a simple mean to assess the detailed flow requirements for all parts of a complex directly coupled arrangement. The main purpose in

  17. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery

    Directory of Open Access Journals (Sweden)

    Efthymios Rodias

    2017-10-01

    Full Text Available Various types of sensors technologies, such as machine vision and global positioning system (GPS have been implemented in navigation of agricultural vehicles. Automated navigation systems have proved the potential for the execution of optimised route plans for field area coverage. This paper presents an assessment of the reduction of the energy requirements derived from the implementation of optimised field area coverage planning. The assessment regards the analysis of the energy requirements and the comparison between the non-optimised and optimised plans for field area coverage in the whole sequence of operations required in two different cropping systems: Miscanthus and Switchgrass production. An algorithmic approach for the simulation of the executed field operations by following both non-optimised and optimised field-work patterns was developed. As a result, the corresponding time requirements were estimated as the basis of the subsequent energy cost analysis. Based on the results, the optimised routes reduce the fuel energy consumption up to 8%, the embodied energy consumption up to 7%, and the total energy consumption from 3% up to 8%.

  18. Effective climate-energy solutions, escape routes and peak oil

    International Nuclear Information System (INIS)

    Bergh, Jeroen C.J.M. van den

    2012-01-01

    Many well-intended climate-energy strategies are ineffective in the absence of serious environmental regulation. This holds, among others, for direct support of clean energy, voluntary energy conservation, technical standards on a limited set of products, unilateral stringent carbon pricing, and awaiting peak oil as a climate strategy. All of these suffer from “escape routes” that indirectly increase CO 2 emissions and thus make the original strategy ineffective. On the other hand, environmental regulation alone may lead to a myopia-bias, stimulating early dominance of cost-effective technologies and a focus on incremental innovations associated with such technologies rather than on radical innovations. Although adopting a partial viewpoint keeps the analysis simple, we urgently need a more inclusive systems perspective on climate solutions. This will allow the formulation of an effective climate policy package that addresses the various escape routes. - Highlights: ► Many well-intended climate-energy strategies are ineffective because of escape routes. ► In this context the relationship between peak oil and climate policy receives attention. ► Environmental regulation alone creates myopia-bias, the resolution of which requires technology-specific policies. ► To formulate an effective climate policy package an inclusive systems perspective is needed.

  19. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.

  20. Minimum beam-energy spread of a high-current rf linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Fraser, J.S.

    1987-01-01

    Energy spread is an important parameter of an electron linac and, usually, is determined by the time dependence of the external rf accelerating field. By using a combination of fundamental and higher harmonic frequencies, the accelerating field can be maintained approximately constant over a beam bunch with the resultant energy spread approximately zero. This technique is no longer adequate when the longitudinal wake field of the beam bunch is taken into account. The wake-field variation along the bunch length introduces an energy spread that cannot be exactly compensated for with the use of fundamental and higher harmonic frequencies. The achievable minimum energy spread including the wake-field effect is therefore limited. In this paper, we report the minimum energy spreads achievable using the fundamental and third-harmonic frequencies, calculated using a least-squares algorithm, for some typical structures in use at Los Alamos National Laboratory. The dependence of these results on bunch shape, bunch charge, and structure frequency is discussed. Also included are discussions of schemes for implementing the third-harmonic frequency and their effectiveness

  1. RELIABLE DYNAMIC SOURCE ROUTING PROTOCOL (RDSRP FOR ENERGY HARVESTING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    B. Narasimhan

    2015-03-01

    Full Text Available Wireless sensor networks (WSNs carry noteworthy pros over traditional communication. Though, unkind and composite environments fake great challenges in the reliability of WSN communications. It is more vital to develop a reliable unipath dynamic source routing protocol (RDSRPl for WSN to provide better quality of service (QoS in energy harvesting wireless sensor networks (EH-WSN. This paper proposes a dynamic source routing approach for attaining the most reliable route in EH-WSNs. Performance evaluation is carried out using NS-2 and throughput and packet delivery ratio are chosen as the metrics.

  2. A Distributed Routing Scheme for Energy Management in Solar Powered Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.; Shamma, Jeff S.; Claudel, Christian G.

    2017-01-01

    Energy management is critical for solar-powered sensor networks. In this article, we consider data routing policies to optimize the energy in solar powered networks. Motivated by multipurpose sensor networks, the objective is to find the best

  3. Towards designing energy-efficient routing protocol for wireless mesh networks

    CSIR Research Space (South Africa)

    Dludla, AG

    2009-08-01

    Full Text Available Different studies have proposed number of routing protocols to overcome data transmission challenges. Very few of these protocols consider node energy. In this study, the state of art work from various studies is reviewed and compared based...

  4. Optimized energy-delay sub-network routing protocol development and implementation for wireless sensor networks

    International Nuclear Information System (INIS)

    Fonda, James W; Zawodniok, Maciej; Jagannathan, S; Watkins, Steve E

    2008-01-01

    The development and the implementation issues of a reactive optimized energy-delay sub-network routing (OEDSR) protocol for wireless sensor networks (WSN) are introduced and its performance is contrasted with the popular ad hoc on-demand distance vector (AODV) routing protocol. Analytical results illustrate the performance of the proposed OEDSR protocol, while experimental results utilizing a hardware testbed under various scenarios demonstrate improvements in energy efficiency of the OEDSR protocol. A hardware platform constructed at the University of Missouri-Rolla (UMR), now the Missouri University of Science and Technology (MST), based on the Generation 4 Smart Sensor Node (G4-SSN) prototyping platform is also described. Performance improvements are shown in terms of end-to-end (E2E) delay, throughput, route-set-up time and drop rates and energy usage is given for three topologies, including a mobile topology. Additionally, results from the hardware testbed provide valuable lessons for network deployments. Under testing OEDSR provides a factor of ten improvement in the energy used in the routing session and extends network lifetime compared to AODV. Depletion experiments show that the time until the first node failure is extended by a factor of three with the network depleting and network lifetime is extended by 6.7%

  5. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    Science.gov (United States)

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree

  6. Lower Bounds on the Maximum Energy Benefit of Network Coding for Wireless Multiple Unicast

    NARCIS (Netherlands)

    Goseling, J.; Matsumoto, R.; Uyematsu, T.; Weber, J.H.

    2010-01-01

    We consider the energy savings that can be obtained by employing network coding instead of plain routing in wireless multiple unicast problems. We establish lower bounds on the benefit of network coding, defined as the maximum of the ratio of the minimum energy required by routing and network coding

  7. Lower bounds on the maximum energy benefit of network coding for wireless multiple unicast

    NARCIS (Netherlands)

    Goseling, Jasper; Matsumoto, Ryutaroh; Uyematsu, Tomohiko; Weber, Jos H.

    2010-01-01

    We consider the energy savings that can be obtained by employing network coding instead of plain routing in wireless multiple unicast problems. We establish lower bounds on the benefit of network coding, defined as the maximum of the ratio of the minimum energy required by routing and network coding

  8. PERFORMANCE ANALYSIS OF DSR ROUTING PROTOCOL UNDER ENERGY BASED SELFISH ATTACK IN MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    T.V.P.Sundararajan

    2010-06-01

    Full Text Available Mobile Ad hoc Networks (MANETs rely on the cooperation of all participating nodes to provide the fundamental operations such as routing and data forwarding. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist.[1]. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. This paper pointed out Energy based selfish nodes (EBSN where these selfish nodes tend to use the network but do not cooperate, saving battery life for their own communications [2],[3]. We present a simulation study of the effects of Energy based selfish nodes (EBSN on DSR routing protocol and its impact over network performance in terms of throughput and delay of a mobile ad hoc network where a defined percentage of nodes were misbehaving.

  9. An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Hosen, A S M Sanwar; Cho, Gi Hwan

    2018-05-11

    Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head's role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks' information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime.

  10. An Optimization Routing Algorithm for Green Communication in Underground Mines

    Directory of Open Access Journals (Sweden)

    Heng Xu

    2018-06-01

    Full Text Available With the long-term dependence of humans on ore-based energy, underground mines are utilized around the world, and underground mining is often dangerous. Therefore, many underground mines have established networks that manage and acquire information from sensor nodes deployed on miners and in other places. Since the power supplies of many mobile sensor nodes are batteries, green communication is an effective approach of reducing the energy consumption of a network and extending its longevity. To reduce the energy consumption of networks, all factors that negatively influence the lifetime should be considered. The degree constraint minimum spanning tree (DCMST is introduced in this study to consider all the heterogeneous factors and assign weights for the next step of the evaluation. Then, a genetic algorithm (GA is introduced to cluster sensor nodes in the network and balance energy consumption according to several heterogeneous factors and routing paths from DCMST. Based on a comparison of the simulation results, the optimization routing algorithm proposed in this study for use in green communication in underground mines can effectively reduce the network energy consumption and extend the lifetimes of networks.

  11. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  12. Sigma Routing Metric for RPL Protocol

    Directory of Open Access Journals (Sweden)

    Paul Sanmartin

    2018-04-01

    Full Text Available This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX. However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.

  13. A Practical Route Search System for Amusement Parks Navigation

    Directory of Open Access Journals (Sweden)

    Takahiro Shibuya

    2013-12-01

    Full Text Available It is very difficult to find the minimum route to travel in amusement park navigation. A searching system for visitors would be useful. Therefore, we constructed a system to find the route with the minimum total traveling time. Facility visitors can employ this system on a smart phone. The system is composed of Java and a Java Servlet. We conclude that our system is useful and can greatly shorten travel time within a typical amusement park.

  14. Collective network routing

    Science.gov (United States)

    Hoenicke, Dirk

    2014-12-02

    Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.

  15. Blind Cooperative Routing for Scalable and Energy-Efficient Internet of Things

    KAUST Repository

    Bader, Ahmed; Alouini, Mohamed-Slim

    2016-01-01

    Multihop networking is promoted in this paper for energy-efficient and highly-scalable Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, the use of blind cooperation

  16. Energy expenditure, economic growth, and the minimum EROI of society

    International Nuclear Information System (INIS)

    Fizaine, Florian; Court, Victor

    2016-01-01

    We estimate energy expenditure for the US and world economies from 1850 to 2012. Periods of high energy expenditure relative to GDP (from 1850 to 1945), or spikes (1973–74 and 1978–79) are associated with low economic growth rates, and periods of low or falling energy expenditure are associated with high and rising economic growth rates (e.g. 1945–1973). Over the period 1960–2010 for which we have continuous year-to-year data for control variables (capital formation, population, and unemployment rate) we estimate that, statistically, in order to enjoy positive growth, the US economy cannot afford to spend more than 11% of its GDP on energy. Given the current energy intensity of the US economy, this translates in a minimum societal EROI of approximately 11:1 (or a maximum tolerable average price of energy of twice the current level). Granger tests consistently reveal a one way causality running from the level of energy expenditure (as a fraction of GDP) to economic growth in the US between 1960 and 2010. A coherent economic policy should be founded on improving net energy efficiency. This would yield a “double dividend”: increased societal EROI (through decreased energy intensity of capital investment), and decreased sensitivity to energy price volatility. - Highlights: •We estimate energy expenditures as a fraction of GDP for the US, the world (1850–2012), and the UK (1300–2008). •Statistically speaking, the US economy cannot afford to allocate more than 11% of its GDP to energy expenditures in order to have a positive growth rate. •This corresponds to a maximum tolerable average price of energy of twice the current level. •In the same way, US growth is only possible if its primary energy system has at least a minimum EROI of approximately 11:1.

  17. Lower Bound of Energy-Latency Tradeoff of Opportunistic Routing in Multihop Networks

    Directory of Open Access Journals (Sweden)

    Gorce Jean-Marie

    2011-01-01

    Full Text Available Opportunistic networking aims at exploiting sporadic radio links to improve the connectivity of multihop networks and to foster data transmissions. The broadcast nature of wireless channels is an important feature that can be exploited to improve transmissions by using several potential receivers. Opportunistic relaying is thus the first brick for opportunistic networking. However, the advantage of opportunistic relaying may be degraded due to energy increase related to having multiple active receivers. This paper proposes a thorough analysis of opportunistic relaying efficiency under different realistic radio channel conditions. The study is intended to find the best tradeoff between two objectives: energy and latency minimizations, with a hard reliability constraint. We derive an optimal bound, namely, the Pareto front of the related optimization problem, which offers a good insight into the benefits of opportunistic routings compared with classical multihop routing schemes. Meanwhile, the lower bound provides a framework to optimize the parameters at the physical layer, MAC layer, and routing layer from the viewpoint of cross layer during the design or planning phase of a network.

  18. A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems

    International Nuclear Information System (INIS)

    Dittrich, R.; Schrefl, T.; Suess, D.; Scholz, W.; Forster, H.; Fidler, J.

    2002-01-01

    Minimum energy paths and energy barriers are calculated for complex micromagnetic systems. The method is based on the nudged elastic band method and uses finite-element techniques to represent granular structures. The method was found to be robust and fast for both simple test problems as well as for large systems such as patterned granular media. The method is used to estimate the energy barriers in CoCr-based perpendicular recording media

  19. Blind Cooperative Routing for Scalable and Energy-Efficient Internet of Things

    KAUST Repository

    Bader, Ahmed

    2016-02-26

    Multihop networking is promoted in this paper for energy-efficient and highly-scalable Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, the use of blind cooperation in conjunction with multihop communications is advocated herewith. Blind cooperation however is actually shown to be inefficient unless power control is applied. Inefficiency in this paper is projected in terms of the transport rate normalized to energy consumption. To that end, an uncoordinated power control mechanism is proposed whereby each device in a blind cooperative cluster randomly adjusts its transmit power level. An upper bound is derived for the mean transmit power that must be observed at each device. Finally, the uncoordinated power control mechanism is demonstrated to consistently outperform the simple point-to-point routing case. © 2015 IEEE.

  20. Energy efficient motion control of the electric bus on route

    Science.gov (United States)

    Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.

    2018-02-01

    At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.

  1. Secure energy efficient routing protocol for wireless sensor network

    Directory of Open Access Journals (Sweden)

    Das Ayan Kumar

    2016-03-01

    Full Text Available The ease of deployment of economic sensor networks has always been a boon to disaster management applications. However, their vulnerability to a number of security threats makes communication a challenging task. This paper proposes a new routing technique to prevent from both external threats and internal threats like hello flooding, eavesdropping and wormhole attack. In this approach one way hash chain is used to reduce the energy drainage. Level based event driven clustering also helps to save energy. The simulation results show that the proposed scheme extends network lifetime even when the cluster based wireless sensor network is under attack.

  2. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jiawei Tang

    2018-03-01

    Full Text Available The Internet of things (IoT is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs. The main contributions of a TBSR are (a the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of

  3. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Tang, Jiawei; Liu, Anfeng; Zhang, Jian; Xiong, Neal N; Zeng, Zhiwen; Wang, Tian

    2018-03-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery

  4. Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2015-01-01

    Full Text Available This paper is aimed at crowding phenomenon in the subway. As passengers are inclined to choose the route with minimum disutility, we put forward a route choice model which is constructed to achieve minimum objective function of feasibility for the optimal solution. Meanwhile we set passenger volume threshold values according to capacity of facilities. In the case of actual capacity exceeding the threshold, the decision node of constrained route will be selected; computing procedure about searching decision points will be presented. Then we should set rational restrictions at the decision node of the minimum utility function route to prevent too many passengers’ access to platform. Through certification, this series of methods can effectively ensure the safety of the station efficient operation.

  5. A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network

    Science.gov (United States)

    Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun

    2014-04-01

    Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.

  6. A Novel Cooperative Opportunistic Routing Scheme for Underwater Sensor Networks.

    Science.gov (United States)

    Ghoreyshi, Seyed Mohammad; Shahrabi, Alireza; Boutaleb, Tuleen

    2016-02-26

    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes' collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance.

  7. Robust against route failure using power proficient reliable routing in MANET

    Directory of Open Access Journals (Sweden)

    M. Malathi

    2018-03-01

    Full Text Available The aim of this paper was to propose a novel routing protocol for Mobile Adhoc Network communication which reduces the route failure during transmission. The proposed routing protocol uses 3 salient parameters to discover the path which ensure the reliable communication. The quality of the channel, link quality and energy level of the node are the major reasons for unintentional node failure in mobile Adhoc network. So the proposed routing protocol considers these three parameters to select the best forwarder node in the path. The reliable data communication is achieved by transmitting data via path selected by the proposed routing scheme has been proven using network simulator (NS2. Keywords: Channel quality, Link quality, Mobile Adhoc Network (MANET, Residual energy

  8. Multihop Wireless Networks Opportunistic Routing

    CERN Document Server

    Zeng, Kai; Li, Ming

    2011-01-01

    This book provides an introduction to opportunistic routing an emerging technology designed to improve the packet forwarding reliability, network capacity and energy efficiency of multihop wireless networks This book presents a comprehensive background to the technological challenges lying behind opportunistic routing. The authors cover many fundamental research issues for this new concept, including the basic principles, performance limit and performance improvement of opportunistic routing compared to traditional routing, energy efficiency and distributed opportunistic routing protocol desig

  9. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  10. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  11. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  12. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  13. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    Directory of Open Access Journals (Sweden)

    Srinivas Kanakala

    2014-01-01

    Full Text Available In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing protocol to further reduce the energy consumption. The proposed energy-efficient coding-aware cluster based routing protocol (ECCRP scheme applies network coding at cluster heads to reduce number of transmissions. We also modify the queue management procedure of COPE protocol to further improve coding opportunities. We also use an energy efficient scheme while selecting the cluster head. It helps to increase the life time of the network. We evaluate the performance of proposed energy efficient cluster based protocol using simulation. Simulation results show that the proposed ECCRP algorithm reduces energy consumption and increases life time of the network.

  14. Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks – Tabuk Flood Monitoring System Case Study

    Directory of Open Access Journals (Sweden)

    Ammar Babiker

    2017-10-01

    Full Text Available Energy efficiency has been considered as the most important issue in wireless sensor networks. As in many applications, wireless sensors are scattered in a wide harsh area, where the battery replacement or charging will be quite difficult and it is the most important challenge. Therefore, the design of energy saving mechanism becomes mandatory in most recent research. In this paper, a new energy efficient clustered routing protocol is proposed: the proposed protocol is based on analyzing the data collected from the sensors in a base-station. Based on this analysis the cluster head will be selected as the one with the most useful data. Then, a variable time slot is specified to each sensor to minimize the transmission of repetitive and un-useful data. The proposed protocol Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks (DCRP was compared with the famous energy efficient LEACH protocol and also with one of the recent energy efficient routing protocols named Position Responsive Routing Protocol (PRRP. DCRP has been used in monitoring the floods in Tabuk area –Saudi Arabia. It shows comparatively better results.

  15. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2015-01-01

    : View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can

  16. NQAR: Network Quality Aware Routing in Error-Prone Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jaewon Choi

    2010-01-01

    Full Text Available We propose a network quality aware routing (NQAR mechanism to provide an enabling method of the delay-sensitive data delivery over error-prone wireless sensor networks. Unlike the existing routing methods that select routes with the shortest arrival latency or the minimum hop count, the proposed scheme adaptively selects the route based on the network qualities including link errors and collisions with minimum additional complexity. It is designed to avoid the paths with potential noise and collision that may cause many non-deterministic backoffs and retransmissions. We propose a generic framework to select a minimum cost route that takes the packet loss rate and collision history into account. NQAR uses a data centric approach to estimate a single-hop delay based on processing time, propagation delay, packet loss rate, number of backoffs, and the retransmission timeout between two neighboring nodes. This enables a source node to choose the shortest expected end-to-end delay path to send a delay-sensitive data. The experiment results show that NQAR reduces the end-to-end transfer delay up to approximately 50% in comparison with the latency-based directed diffusion and the hop count-based directed diffusion under the error-prone network environments. Moreover, NQAR shows better performance than those routing methods in terms of jitter, reachability, and network lifetime.

  17. The graph-theoretic minimum energy path problem for ionic conduction

    Directory of Open Access Journals (Sweden)

    Ippei Kishida

    2015-10-01

    Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  18. Competitive energy markets. The effective route to improving the environment

    International Nuclear Information System (INIS)

    Swinden, D.J.

    1996-01-01

    Market forces, operating in an increasingly competitive energy market, are a preferred route to achieving environmental and energy efficiency benefits, than those which can be achieved through a managed approach adopted by many governments. It is shown, through examples, how electricity is a catalyst for change at several levels in business, the community and the general economy. Experience in the United Kingdom indicates that free market forces and inter-energy competition not only help improve the regional and therefore national economy, but they offer a very effective way of introducing improvements in energy efficiency and the environment. Governments should establish the framework for competition and regulation but not attempt to manage an industry, which is invariably done more effectively by those who run them. (author)

  19. Minimum free-energy paths for the self-organization of polymer brushes.

    Science.gov (United States)

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  20. Secure energy efficient routing protocol for wireless sensor network

    OpenAIRE

    Das Ayan Kumar; Chaki Rituparna; Dey Kashi Nath

    2016-01-01

    The ease of deployment of economic sensor networks has always been a boon to disaster management applications. However, their vulnerability to a number of security threats makes communication a challenging task. This paper proposes a new routing technique to prevent from both external threats and internal threats like hello flooding, eavesdropping and wormhole attack. In this approach one way hash chain is used to reduce the energy drainage. Level based event driven clustering also helps to s...

  1. The Time Window Vehicle Routing Problem Considering Closed Route

    Science.gov (United States)

    Irsa Syahputri, Nenna; Mawengkang, Herman

    2017-12-01

    The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model

  2. Projected electricity savings from implementing minimum energy efficiency standard for household refrigerators in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Choudhury, I.A.; NoorLeha, A.R.

    2003-01-01

    The Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances, especially refrigerator-freezers. Almost every house in Malaysia owns a refrigerator-freezer. The Malaysia Energy Center considered implementing a minimum energy efficiency standard for household refrigerator-freezers sometime in the coming year. This paper attempts to predict the amount of energy savings in the residential sector by implementing a minimum energy efficiency standard for household refrigerator-freezers. The calculations are based on the growth of refrigerator-freezer ownership data in Malaysian households. By implementing the programs in 2004, about 8722 GWh will be saved in the year 2013. Therefore, efficiency improvement of this appliance will provide a significant impact in future electricity consumption in Malaysia

  3. A routing protocol based on energy and link quality for Internet of Things applications.

    Science.gov (United States)

    Machado, Kássio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A F; Neto, Augusto; Souza, José Neuman de

    2013-02-04

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

  4. A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications

    Directory of Open Access Journals (Sweden)

    Antonio A. F. Loureiro

    2013-02-01

    Full Text Available The Internet of Things (IoT is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

  5. A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications

    Science.gov (United States)

    Machado, Kassio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A. F.; Neto, Augusto; de Souza, José Neuman

    2013-01-01

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare,environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols. PMID:23385410

  6. An Evolutionary Real-Time 3D Route Planner for Aircraft

    Institute of Scientific and Technical Information of China (English)

    郑昌文; 丁明跃; 周成平

    2003-01-01

    A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time,with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.

  7. A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Directory of Open Access Journals (Sweden)

    Jamal N. Al-Karaki

    2011-04-01

    Full Text Available The new characteristics of Wireless Multimedia Sensor Network (WMSN and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption.

  8. StateGEN/StateNET - A structured method to perform route comparisons

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Erickson, C.M.

    1989-01-01

    StateGEN/StateNET is a modeling structure and routing algorithm designed expressly to address the needs of state and local governments to perform analyses of routing alternatives. StateGEN/StateNET is designed to permit the user to construct a network and assign attributes of interest to the network on a personal computer (PC). The completed network is then transferred via a modem to the TRANSNET system and the preferred route is determined based upon attribute weights assigned by the user. This modeling structure permits the state or local government to perform a routing analysis, such as that required by the US Department of Transportation (DOT) for Highway Route-Controlled Quantity shipments of radioactive materials, with a minimum of resources. StateGEN/StateNET provides a computerized version of the DOT guidelines or allows the user to structure their own network parameters. Sandia National Laboratories (SNL) is the Department of Energy (DOE) lead organization for transportation research and development. The DOE Office of Defense Programs has been the prime sponsor of development of models and associated databases used to analyze the impacts of the transportation of radioactive materials. The routing algorithms used in StateGEN/StateNET were based on the existing models on TRANSNET, a system which was developed to enable outside users to access analytical codes and associated data developed for the DOE

  9. StateGEN/StateNET--A structured method to perform route comparisons

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Erickson, C.M.

    1989-01-01

    StateGEN/StateNET is a modelling structure and routing algorithm designed expressly to address the needs of state and local governments to perform analyses of routing alternatives. StateGEN/StateNET is designed to permit the user to construct a network and assign attributes of interest to the network on a personal computer (PC). The completed network is then transferred via a modem to the TRANSNET system (Cashwell, 1989) and the preferred route is determined based upon attribute weights assigned by the user. This modelling structure permits the state or local to perform a routing analysis, such as that required by the US Department of Transportation (DOT) for Highway Route-Controlled Quantity shipments of radioactive materials, with a minimum of resources. StateGEN/StateNET provides a computerized version of the DOT guidelines (Cashwell, 1989) or allows the user to structure their own network parameters. Sandia national Laboratories (SNL) is the Department of Energy's (DOE) lead organization for transportation research and development. The DOE Office of Defense Programs has been the prime sponsor of development of models and associated databases used to analyze the impacts of the transportation of radioactive materials. The routing algorithms used in StateGEN/StateNET were based on the existing models on TRANSNET, a system which was developed to enable outside users to access analytical codes and associated data developed for the DOE. 2 refs

  10. Expected Transmission Energy Route Metric for Wireless Mesh Senor Networks

    Directory of Open Access Journals (Sweden)

    YanLiang Jin

    2011-01-01

    Full Text Available Mesh is a network topology that achieves high throughput and stable intercommunication. With great potential, it is expected to be the key architecture of future networks. Wireless sensor networks are an active research area with numerous workshops and conferences arranged each year. The overall performance of a WSN highly depends on the energy consumption of the network. This paper designs a new routing metric for wireless mesh sensor networks. Results from simulation experiments reveal that the new metric algorithm improves the energy balance of the whole network and extends the lifetime of wireless mesh sensor networks (WMSNs.

  11. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  12. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  13. Solving Minimum Cost Multi-Commodity Network Flow Problem ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-23

    Mar 23, 2018 ... network-based modeling framework for integrated fixed and mobile ... Minimum Cost Network Flow Problem (MCNFP) and some ..... Unmanned Aerial Vehicle Routing in Traffic. Incident ... Ph.D. Thesis, Dept. of Surveying &.

  14. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  15. Scripted Mobile Network Routing in a Contested Environment

    National Research Council Canada - National Science Library

    Otto, Anthony R

    2008-01-01

    Mobile wireless network protocols currently run on optimistic routing algorithms, adjusting node connectivity only when the chosen connectivity metrics, such as signal strength, pass beyond minimum thresholds...

  16. Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation

    International Nuclear Information System (INIS)

    Rochedo, Pedro R.R.; Szklo, Alexandre

    2013-01-01

    Highlights: • This work defines the minimum work of separation (MWS) for a capture process. • Findings of the analysis indicated a MWS of 0.158 GJ/t for post-combustion. • A review of commercially available processes based on chemical absorption was made. • A review of learning models was conducted, with the addition on a novel model. • A learning curve for post-combustion carbon capture was successfully designed. - Abstract: Carbon capture is one of the most important alternatives for mitigating greenhouse gas emissions in energy facilities. The post-combustion route based on chemical absorption with amine solvents is the most feasible alternative for the short term. However, this route implies in huge energy penalties, mainly related to the solvent regeneration. By defining the minimum work of separation (MWS), this study estimated the minimum energy required to capture the CO 2 emitted by coal-fired thermal power plants. Then, by evaluating solvents and processes and comparing it to the MWS, it proposes the learning model with the best fit for the post-combustion chemical absorption of CO 2 . Learning models are based on earnings from experience, which can include the intensity of research and development. In this study, three models are tested: Wright, DeJong and D and L. Findings of the thermochemical analysis indicated a MWS of 0.158 GJ/t for post-combustion. Conventional solvents currently present an energy penalty eight times the MWS. By using the MWS as a constraint, this study found that the D and L provided the best fit to the available data of chemical solvents and absorption plants. The learning rate determined through this model is very similar to the ones found in the literature

  17. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  18. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  19. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  20. 76 FR 5580 - Eagle Crest Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed...

    Science.gov (United States)

    2011-02-01

    ... Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed Eagle Mountain Pumped... Hydroelectric Project (Eagle Mountain Project). This notice describes the water supply pipeline route proposed... property that would be crossed by the proposed water supply pipeline. We are currently soliciting comments...

  1. Deformed special relativity with an energy barrier of a minimum speed

    International Nuclear Information System (INIS)

    Nassif, Claudio

    2011-01-01

    Full text: This research aims to introduce a new principle of symmetry in the flat space-time by means of the elimination of the classical idea of rest, and by including a universal minimum limit of speed in the quantum world. Such a limit, unattainable by the particles, represents a preferred inertial reference frame associated with a universal background field that breaks Lorentz symmetry. So there emerges a new relativistic dynamics where a minimum speed forms an inferior energy barrier. One of the interesting implications of the existence of such a minimum speed is that it prevents the absolute zero temperature for an ultracold gas, according to the third law of thermodynamics. So we will be able to provide a fundamental dynamical explanation for the third law by means of a connection between such a phenomenological law and the new relativistic dynamics with a minimum speed. In other words we say that our relevant investigation is with respect to the problem of the absolute zero temperature in the thermodynamics of an ideal gas. We have made a connection between the 3 rd law of Thermodynamics and the new dynamics with a minimum speed by means of a relation between the absolute zero temperature (T = 0 deg K) and a minimum average speed (V) for a gas with N particles (molecules or atoms). Since T = 0 deg K is thermodynamically unattainable, we have shown this is due to the impossibility of reaching V from the new dynamics standpoint. (author)

  2. Load Balancing Routing with Bounded Stretch

    Directory of Open Access Journals (Sweden)

    Chen Siyuan

    2010-01-01

    Full Text Available Routing in wireless networks has been heavily studied in the last decade. Many routing protocols are based on classic shortest path algorithms. However, shortest path-based routing protocols suffer from uneven load distribution in the network, such as crowed center effect where the center nodes have more load than the nodes in the periphery. Aiming to balance the load, we propose a novel routing method, called Circular Sailing Routing (CSR, which can distribute the traffic more evenly in the network. The proposed method first maps the network onto a sphere via a simple stereographic projection, and then the route decision is made by a newly defined "circular distance" on the sphere instead of the Euclidean distance in the plane. We theoretically prove that for a network, the distance traveled by the packets using CSR is no more than a small constant factor of the minimum (the distance of the shortest path. We also extend CSR to a localized version, Localized CSR, by modifying greedy routing without any additional communication overhead. In addition, we investigate how to design CSR routing for 3D networks. For all proposed methods, we conduct extensive simulations to study their performances and compare them with global shortest path routing or greedy routing in 2D and 3D wireless networks.

  3. Energy Threshold-based Cluster Head Rotation for Routing Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hadi Raheem Ali

    2018-05-01

    Full Text Available Energy efficiency represents a fundamental issue in WSNs, since the network lifetime period entirely depends on the energy of sensor nodes, which are usually battery-operated. In this article, an unequal clustering-based routing protocol has been suggested, where parameters of energy, distance, and density are involved in the cluster head election. Besides, the sizes of clusters are unequal according to distance, energy, and density. Furthermore, the cluster heads are not changed every round unless the residual energy reaches a specific threshold of energy. The outcomes of the conducted simulation confirmed that the performance of the suggested protocol achieves improvement in energy efficiency.

  4. On Energy-Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2007-01-01

    Full Text Available A hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.

  5. On Energy-Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Cristina Comaniciu

    2007-03-01

    Full Text Available A hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.

  6. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  7. Optimizing well intervention routes

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Ronaldo O. [PETROBRAS S.A., Vitoria, ES (Brazil); Schiozer, Denis J.; Bordalo, Sergio N. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Centro de Estudo do Petroleo (CEPETRO)]. E-mail: denis@dep.fem.unicamp.br; bordalo@dep.fem.unicamp.br

    2000-07-01

    This work presents a method for optimizing the itinerary of work over rigs, i.e., the search for the route of minimum total cost, and demonstrates the importance of the dynamics of reservoir behaviour. The total cost of a route includes the rig expenses (transport, assembly and operation), which are functions of time and distances, plus the losses of revenue in wells waiting for the rig, which are also dependent of time. A reservoir simulator is used to evaluate the monetary influence of the well shutdown on the present value of the production curve. Finally, search algorithms are employed to determine the route of minimal cost. The Simulated Annealing algorithm was also successful in optimizing the distribution of a list of wells among different work over rigs. The rational approach presented here is recommended for management teams as a standard procedure to define the priority of wells scheduled for work over. (author)

  8. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...... depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0....

  9. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0.......We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...

  10. Understanding individual routing behaviour.

    Science.gov (United States)

    Lima, Antonio; Stanojevic, Rade; Papagiannaki, Dina; Rodriguez, Pablo; González, Marta C

    2016-03-01

    Knowing how individuals move between places is fundamental to advance our understanding of human mobility (González et al. 2008 Nature 453, 779-782. (doi:10.1038/nature06958)), improve our urban infrastructure (Prato 2009 J. Choice Model. 2, 65-100. (doi:10.1016/S1755-5345(13)70005-8)) and drive the development of transportation systems. Current route-choice models that are used in transportation planning are based on the widely accepted assumption that people follow the minimum cost path (Wardrop 1952 Proc. Inst. Civ. Eng. 1, 325-362. (doi:10.1680/ipeds.1952.11362)), despite little empirical support. Fine-grained location traces collected by smart devices give us today an unprecedented opportunity to learn how citizens organize their travel plans into a set of routes, and how similar behaviour patterns emerge among distinct individual choices. Here we study 92 419 anonymized GPS trajectories describing the movement of personal cars over an 18-month period. We group user trips by origin-destination and we find that most drivers use a small number of routes for their routine journeys, and tend to have a preferred route for frequent trips. In contrast to the cost minimization assumption, we also find that a significant fraction of drivers' routes are not optimal. We present a spatial probability distribution that bounds the route selection space within an ellipse, having the origin and the destination as focal points, characterized by high eccentricity independent of the scale. While individual routing choices are not captured by path optimization, their spatial bounds are similar, even for trips performed by distinct individuals and at various scales. These basic discoveries can inform realistic route-choice models that are not based on optimization, having an impact on several applications, such as infrastructure planning, routing recommendation systems and new mobility solutions. © 2016 The Author(s).

  11. Lower Bounds on the Maximum Energy Benefit of Network Coding for Wireless Multiple Unicast

    Directory of Open Access Journals (Sweden)

    Matsumoto Ryutaroh

    2010-01-01

    Full Text Available We consider the energy savings that can be obtained by employing network coding instead of plain routing in wireless multiple unicast problems. We establish lower bounds on the benefit of network coding, defined as the maximum of the ratio of the minimum energy required by routing and network coding solutions, where the maximum is over all configurations. It is shown that if coding and routing solutions are using the same transmission range, the benefit in d-dimensional networks is at least . Moreover, it is shown that if the transmission range can be optimized for routing and coding individually, the benefit in 2-dimensional networks is at least 3. Our results imply that codes following a decode-and-recombine strategy are not always optimal regarding energy efficiency.

  12. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    International Nuclear Information System (INIS)

    Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting

    2015-01-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)

  13. Energy-Efficient Cluster Based Routing Protocol in Mobile Ad Hoc Networks Using Network Coding

    OpenAIRE

    Srinivas Kanakala; Venugopal Reddy Ananthula; Prashanthi Vempaty

    2014-01-01

    In mobile ad hoc networks, all nodes are energy constrained. In such situations, it is important to reduce energy consumption. In this paper, we consider the issues of energy efficient communication in MANETs using network coding. Network coding is an effective method to improve the performance of wireless networks. COPE protocol implements network coding concept to reduce number of transmissions by mixing the packets at intermediate nodes. We incorporate COPE into cluster based routing proto...

  14. Routing in opportunistic networks

    CERN Document Server

    Dhurandher, Sanjay; Anpalagan, Alagan; Vasilakos, Athanasios

    2013-01-01

    This book provides a comprehensive guide to selected topics, both ongoing and emerging, in routing in OppNets. The book is edited by worldwide technical leaders, prolific researchers and outstanding academics, Dr. Isaac Woungang and co-editors, Dr. Sanjay Kumar Dhurandher, Prof. Alagan Anpalagan and Prof. Athanasios Vasilakos. Consisting of contributions from well known and high profile researchers and scientists in their respective specialties, the main topics that are covered in this book include mobility and routing, social-aware routing, context-based routing, energy-aware routing, incentive-aware routing, stochastic routing, modeling of intermittent connectivity, in both infrastructure and infrastructure-less OppNets. Key Features: Discusses existing and emerging techniques for routing in infrastructure and infrastructure-less OppNets. Provides a unified covering of otherwise disperse selected topics on routing in infrastructure and infrastructure-less OppNets.  Includes a set of PowerPoint slides and g...

  15. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan

    2018-01-09

    Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  16. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Anwar Khan

    2018-01-01

    Full Text Available Interference and energy holes formation in underwater wireless sensor networks (UWSNs threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  17. Capacitated Bounded Cardinality Hub Routing Problem: Model and Solution Algorithm

    OpenAIRE

    Gelareha, Shahin; Monemic, Rahimeh Neamatian; Semetd, Frederic

    2017-01-01

    In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein each hub acts as a transshipment node for one directed route. The number of hubs lies between a minimum and a maximum and the hub-level network is a complete subgraph. The transshipment operations take place at the hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoke- to-hub allocations. We propose a mathematical model and a branch-and-cut algor...

  18. Analysis of energy efficient routing protocols for implementation of a ubiquitous health system

    Science.gov (United States)

    Kwon, Jongwon; Park, Yongman; Koo, Sangjun; Ayurzana, Odgeral; Kim, Hiesik

    2007-12-01

    The innovative Ubiquitous-Health was born through convergence of medical service, with development of up to date information technologies and ubiquitous IT. The U-Health can be applied to a variety of special situations for managing functions of each medical center efficiently. This paper focuses on estimation of various routing protocols for implementation of U-health monitoring system. In order to facilitate wireless communication over the network, a routing protocol on the network layer is used to establish precise and efficient route between sensor nodes so that information acquired from sensors may be delivered in a timely manner. A route establishment should be considered to minimize overhead, data loss and power consumption because wireless networks for U-health are organized by a large number of sensor nodes which are small in size and have limited processing power, memory and battery life. In this paper a overview of wireless sensor network technologies commonly known is described as well as evaluation of three multi hop routing protocols which are flooding, gossiping and modified low energy adaptive clustering hierarchy(LEACH) for use with these networks using TOSSIM simulator. As a result of evaluation the integrated wireless sensor board was developed in particular. The board is embedded device based on AVR128 porting TinyOS. Also it employs bio sensor measures blood pressure, pulse frequency and ZigBee module for wireless communication. This paper accelerates the digital convergence age through continual research and development of technologies related the U-Health.

  19. Nature-Inspired and Energy Efficient Route Planning

    DEFF Research Database (Denmark)

    Schlichtkrull, Anders; Christensen, J. B. S.; Feld, T.

    2015-01-01

    Cars are responsible for substantial CO2 emission worldwide. Computers can help solve this problem by computing shortest routes on maps. A good example of this is the popular Google Maps service. However, such services often require the order of the stops on the route to be fixed. By not enforcing....... The app is aimed at private persons and small businesses. The app works by using a nature-inspired algorithm called Ant Colony Optimization....

  20. A fast tomographic method for searching the minimum free energy path

    International Nuclear Information System (INIS)

    Chen, Changjun; Huang, Yanzhao; Xiao, Yi; Jiang, Xuewei

    2014-01-01

    Minimum Free Energy Path (MFEP) provides a lot of important information about the chemical reactions, like the free energy barrier, the location of the transition state, and the relative stability between reactant and product. With MFEP, one can study the mechanisms of the reaction in an efficient way. Due to a large number of degrees of freedom, searching the MFEP is a very time-consuming process. Here, we present a fast tomographic method to perform the search. Our approach first calculates the free energy surfaces in a sequence of hyperplanes perpendicular to a transition path. Based on an objective function and the free energy gradient, the transition path is optimized in the collective variable space iteratively. Applications of the present method to model systems show that our method is practical. It can be an alternative approach for finding the state-to-state MFEP

  1. Improvement in minimum detectable activity for low energy gamma by optimization in counting geometry

    Directory of Open Access Journals (Sweden)

    Anil Gupta

    2017-01-01

    Full Text Available Gamma spectrometry for environmental samples of low specific activities demands low minimum detection levels of measurement. An attempt has been made to lower the gamma detection level of measurement by optimizing the sample geometry, without compromising on the sample size. Gamma energy of 50–200 keV range was chosen for the study, since low energy gamma photons suffer the most self-attenuation within matrix. The simulation study was carried out using MCNP based software “EffCalcMC” for silica matrix and cylindrical geometries. A volume of 250 ml sample geometry of 9 cm diameter is optimized as the best suitable geometry for use, against the in-practice 7 cm diameter geometry of same volume. An increase in efficiency of 10%–23% was observed for the 50–200 keV gamma energy range and a corresponding lower minimum detectable activity of 9%–20% could be achieved for the same.

  2. Cost-benefit analysis of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Amalina, M.A.

    2004-01-01

    The ownership of household electrical appliances especially refrigerator-freezer has increased rapidly in Malaysia. Almost every household in this country has a refrigerator-freezer. To reduce energy consumption in this sector the refrigerator is one of the top priorities of the energy efficiency program for household appliances. Malaysian authority is considering implementing minimum energy efficiency standards for refrigerator-freezer sometime in the coming year. This paper attempts to analyze cost-benefit of implementing minimum energy efficiency standards for household refrigerator-freezers in Malaysia. The calculations were made based on growth of ownership data for refrigerators in Malaysian households. The number of refrigerator-freezer has increased from 175,842 units in 1970 to 4,196,486 in 2000 and it will be about 11,293,043 in the year of 2020. Meanwhile it has accounted for about 26.3% of electricity consumption in a single household. Therefore, efficiency improvement of this appliance will give a significant impact in the future of electricity consumption in this country. Furthermore, it has been found that implementing an energy efficiency standard for household refrigerator-freezers is economically justified

  3. Multi-Gateway-Based Energy Holes Avoidance Routing Protocol for WSN

    Directory of Open Access Journals (Sweden)

    Rohini Sharma

    2016-04-01

    Full Text Available In wireless sensor networks (WSNs, efficient energy conservation is required to prolong the lifetime of the network. In this work, we have given emphasis on balanced energy consumption and energy holes avoidance. This paper proposes a multi-gateway-based approach to reduce the transmission distance between the sender and the sink node. The area to be monitored is divided into regions and gateway nodes are deployed at optimal positions. We have designed a transmission scheme, in which sensors in the sink region communicate directly to the sink, sensors in the gateway region communicate directly to the gateway, and sensors in the cluster region transmit their data directly to their respective cluster head which transmits data to the gateway in its region. If the distance between a cluster head and the sink is less than the distance between the cluster head and the gateway node, the cluster head transmits data to the sink instead of the gateway node. We have compared the proposed protocol with Low-Energy Adaptive Clustering Hierarchy (LEACH, Gateway Based Energy Aware Multi-Hop Routing (M-GEAR, and Gateway Based Stable Election Protocol (GSEP protocols. The protocol performs better than other protocols in terms of throughput, stability period, lifetime, residual energy, and the packet transmitted to the sink.

  4. Tour Route Multiobjective Optimization Design Based on the Tourist Satisfaction

    Directory of Open Access Journals (Sweden)

    Yan Han

    2014-01-01

    Full Text Available The question prompted is how to design the tour route to make the tourists get the maximum satisfactions considering the tourists’ demand. The influence factors of the tour route choices of tourists were analyzed and tourists’ behavior characteristics and psychological preferences were regarded as the important influence factors based on the tourist behavioral theories. A questionnaire of tourists’ tour route information and satisfaction degree was carried out. Some information about the scene spot and tourists demand and tour behaviors characteristic such as visit frequency, number of attractions visited was obtained and analyzed. Based on the convey datum, tour routes multiobjective optimization functions were prompted for the tour route design regarding the maximum satisfaction and the minimum tour distance as the optimal objective. The available routes are listed and categorized. Based on the particle swarm optimization model, the priorities of the tour route are calculated and finally the suggestion depth tour route and quick route tour routes are given considering the different tour demands of tourists. The results can offer constructive suggestions on how to design tour routes on the part of tourism enterprises and how to choose a proper tour route on the part of tourists.

  5. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    Science.gov (United States)

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  6. A Novel Power Efficient Location-Based Cooperative Routing with Transmission Power-Upper-Limit for Wireless Sensor Networks

    Science.gov (United States)

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-01-01

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625

  7. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  8. Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm

    Directory of Open Access Journals (Sweden)

    Zhengyu Duan

    2015-11-01

    Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.

  9. Synthetic wastewaters treatment by electrocoagulation to remove silver nanoparticles produced by different routes.

    Science.gov (United States)

    Matias, M S; Melegari, S P; Vicentini, D S; Matias, W G; Ricordel, C; Hauchard, D

    2015-08-15

    Nanoscience is a field that has stood out in recent years. The accurate long-term health and environmental risks associated with these emerging materials are unknown. Therefore, this work investigated how to eliminate silver nanoparticles (AgNPs) from synthetic effluents by electrocoagulation (EC) due to the widespread use of this type of nanoparticle (NP) in industry and its potential inhibition power over microorganisms responsible for biological treatment in effluent treatment plants. Synthesized AgNPs were studied via four different routes by chemical reduction in aqueous solutions to simulate the chemical variations of a hypothetical industrial effluent, and efficiency conditions of the EC treatment were determined. All routes used silver nitrate as the source of silver ions, and two synthesis routes were studied with sodium citrate as a stabilizer. In route I, sodium citrate functioned simultaneously as the reducing agent and stabilizing agent, whereas route II used sodium borohydride as a reducing agent. Route III used D-glucose as the reducing agent and sodium pyrophosphate as the stabilizer; route IV used sodium pyrophosphate as the stabilizing agent and sodium borohydride as the reducing agent. The efficiency of the EC process of the different synthesized solutions was studied. For route I, after 85 min of treatment, a significant decrease in the plasmon resonance peak of the sample was observed, which reflects the efficiency in the mass reduction of AgNPs in the solution by 98.6%. In route II, after 12 min of EC, the absorbance results reached the detection limit of the measurement instrument, which indicates a minimum reduction of 99.9% of AgNPs in the solution. During the 4 min of treatment in route III, the absorbance intensities again reached the detection limit, which indicates a minimum reduction of 99.8%. In route IV, after 10 min of treatment, a minimum AgNP reduction of 99.9% was observed. Based on these results, it was possible to verify that

  10. Principle of Minimum Energy in Magnetic Reconnection in a Self-organized Critical Model for Solar Flares

    Science.gov (United States)

    Farhang, Nastaran; Safari, Hossein; Wheatland, Michael S.

    2018-05-01

    Solar flares are an abrupt release of magnetic energy in the Sun’s atmosphere due to reconnection of the coronal magnetic field. This occurs in response to turbulent flows at the photosphere that twist the coronal field. Similar to earthquakes, solar flares represent the behavior of a complex system, and expectedly their energy distribution follows a power law. We present a statistical model based on the principle of minimum energy in a coronal loop undergoing magnetic reconnection, which is described as an avalanche process. We show that the distribution of peaks for the flaring events in this self-organized critical system is scale-free. The obtained power-law index of 1.84 ± 0.02 for the peaks is in good agreement with satellite observations of soft X-ray flares. The principle of minimum energy can be applied for general avalanche models to describe many other phenomena.

  11. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  12. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks.

    Science.gov (United States)

    Robinson, Y Harold; Rajaram, M

    2015-01-01

    Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique.

  13. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  14. Compromises Between Quality of Service Metrics and Energy Consumption of Hierarchical and Flat Routing Protocols for Wireless Sensors Network

    Directory of Open Access Journals (Sweden)

    Abdelbari BEN YAGOUTA

    2016-11-01

    Full Text Available Wireless Sensor Network (WSN is wireless network composed of spatially distributed and tiny autonomous nodes, which cooperatively monitor physical or environmental conditions. Among the concerns of these networks is prolonging the lifetime by saving nodes energy. There are several protocols specially designed for WSNs based on energy conservation. However, many WSNs applications require QoS (Quality of Service criteria, such as latency, reliability and throughput. In this paper, we will compare three routing protocols for wireless sensors network LEACH (Low Energy Adaptive Clustering Hierarchy, AODV (Ad hoc on demand Distance Vector and LABILE (Link Quality-Based Lexical Routing using Castalia simulator in terms of energy consumption, throughput, reliability and latency time of packets received by sink under different conditions to determinate the best configurations that offers the most suitable compromises between energy conservation and all QoS metrics for each routing protocols. The results show that, the best configurations that offer the suitable compromises between energy conservation and all QoS metrics is a large number of deployed nodes with low packet rate for LEACH (300 nodes and 1 packet/s, a medium number of deployed nodes with low packet rate For AODV (100 nodes and 1 packet/s and a very low nodes density with low packet rate for LABILE (50 nodes and 1 packet/s.

  15. Optimization of waste to energy routes through biochemical and thermochemical treatment options of municipal solid waste in Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Korai, Muhammad Safar; Mahar, Rasool Bux; Uqaili, Muhammad Aslam

    2016-01-01

    Highlights: • Existing practice of municipal solid waste management of Hyderabad city, Pakistan have been analyzed. • Development of scenarios on basis of nature of waste components for optimizing waste to energy route. • Analyzing the biochemical and thermochemical potential of MSW through various scenarios. • Evaluation of various treatment technologies under scenarios to optimize waste to energy route. - Abstract: Improper disposal of municipal solid waste (MSW) has created many environmental problems in Pakistan and the country is facing energy shortages as well. The present study evaluates the biochemical and thermochemical treatment options of MSW in order to address both the endemic environmental challenges and in part the energy shortage. According to the nature of waste components, a number of scenarios were developed to optimize the waste to energy (WTE) routes. The evaluation of treatment options has been performed by mathematical equations using the special characteristics of MSW. The power generation potential (PGP) of biochemical (anaerobic digestion) has been observed in the range of 5.9–11.3 kW/ton day under various scenarios. The PGP of Refuse Derived Fuel (RDF), Mass Burn Incinerator (MBI), Gasification/Pyrolysis (Gasi./Pyro.) and Plasma Arc Gasification (PAG) have been found to be in the range of 2.7–118.6 kW/ton day, 3.8–164.7 kW/ton day, 4.2–184.5 kW/ton day and 5.2–224 kW/ton day, respectively. The highest values of biochemical and all thermochemical technologies have been obtained through the use of scenarios including the putrescible components (PCs) of MSW such as food and yard wastes, and the non-biodegradable components (NBCs) of MSW such as plastic, rubber, leather, textile and wood respectively. Therefore, routes which include these components are the optimized WTE routes for maximum PGP by biochemical and thermochemical treatments of MSW. The findings of study lead to recommend that socio-economic and environmental

  16. Occurrence of radon in the Polish underground tourist routes

    Directory of Open Access Journals (Sweden)

    Jerzy Olszewski

    2015-08-01

    Full Text Available Background: There are about 200 underground tourist routes in Poland. There are caves, mines or underground structures. This paper presents the results of the research intended to identify the extent of the occurrence of radon concentrations in underground areas of tourist routes. Material and Methods: We conducted the measurement of periodic concentrations of radon (1–2 months in the summer using type Tastrak trace detectors. We determined the average concentrations of radon in air in 66 underground tourist routes in Poland. Results: The research results comprise 259 determinations of average radon concentrations in 66 routes. The arithmetic average of the results was 1610 Bqm–3, and the maximum measured concentration was over 20 000 Bqm–3. The minimum concentration was 100 Bqm–3 (threshold method considering the arithmetic average of the measurements. It was found that in 67% of the routes, the average concentration of radon has exceeded 300 Bqm–3 and in 22 underground routes it exceeded 1000 Bqm–3. Conclusions: Radon which occurs in many Polish underground tourist routes may be an organizational, legal and health problem. It is necessary to develop a program of measures to reduce radon concentrations in underground routes, especially routes located in the former mines. Med Pr 2015;66(4:557–563

  17. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  18. Minimum Energy Dwelling (MED) workbook: an investigation of techniques and materials for energy conscious design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This workbook is based upon information gathered during the design phase of the Minimum Energy Dwelling. The objective of the project, sponsored by the Southern California Gas Co., Department of Energy, and Mission Viejo is to substantially reduce energy use by the incorporation of energy conservation and solar techniques in a single-family detached dwelling. The Project will demonstrate to builders, as well as to the general public, a number of technological innovations that can, at reasonable cost, be included in a dwelling design. The problem facing Southern California Gas Co., along with most other gas utilities, is ever-decreasing amounts of gas at increasing prices. The dwelling designed has approximately 1,150 ft/sup 2/, consistent with current home-building trends. Through the optimum use of energy-conserving appliances, insulation, window and wall shading, exterior coloring, and thermal mass, the yearly energy usage has been reduced by over 50%. Of the remaining 50% of the energy required for heating, cooling, and domestic hot water, the majority is supplied by the solar-energy system. Three hundred twenty square feet (270 effective) of evacuated tube collector are incorporated into the building structure. The hot water provided by the collectors is used to run an absorption chiller for cooling, the domestic hot water, and the heating system. The remaining energy requirements are met by an auxiliary natural gas energy system and a cool-air-economizer cycle.

  19. The production route selection algorithm in virtual manufacturing networks

    Science.gov (United States)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2017-08-01

    The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

  20. Transportation routing analysis geographic information system -- TRAGIS, a multimodal transportation routing tool

    International Nuclear Information System (INIS)

    Johnson, P.E.

    1995-01-01

    Over 15 years ago, Oak Ridge National Laboratory (ORNL) developed two transportation routing models: HIGHWAY, which predicts truck transportation routes, and INTERLINE, which predicts rail transportation routes. Subsequent modifications have been made to enhance each of these models. Some of these changes include population density information for routes, HM-164 routing regulations for highway route controlled quantities of radioactive materials (RAM) truck shipments, and inclusion of waterway routing into INTERLINE. The AIRPORT model, developed 2 years after the HIGHWAY and INTERLINE models, serves as an emergency response tool. This model identifies the nearest airports from a designated location. Currently, the AIRPORT model is inactive. The Transportation Management Division of the US Department of Energy held a Baseline Requirements Assessment Session on the HIGHWAY, INTERLINE, and AIRPORT models in April 1994 to bring together many users of these models and other experts in the transportation routing field to discuss these models and to decide on the capabilities that needed to be added. Of the many needs discussed, the primary one was to have the network databases within a geographic information system (GIS). As a result of the Baseline Requirements Session, the development of a new GIS model has been initiated. This paper will discuss the development of the new Transportation Routing Analysis GIS (TRAGIS) model at ORNL

  1. A Distributed Routing Scheme for Energy Management in Solar Powered Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.

    2017-10-11

    Energy management is critical for solar-powered sensor networks. In this article, we consider data routing policies to optimize the energy in solar powered networks. Motivated by multipurpose sensor networks, the objective is to find the best network policy that maximizes the minimal energy among nodes in a sensor network, over a finite time horizon, given uncertain energy input forecasts. First, we derive the optimal policy in certain special cases using forward dynamic programming. We then introduce a greedy policy that is distributed and exhibits significantly lower complexity. When computationally feasible, we compare the performance of the optimal policy with the greedy policy. We also demonstrate the performance and computational complexity of the greedy policy over randomly simulated networks, and show that it yields results that are almost identical to the optimal policy, for greatly reduced worst-case computational costs and memory requirements. Finally, we demonstrate the implementation of the greedy policy on an experimental sensor network.

  2. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    Science.gov (United States)

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  3. An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Ji Ung Sun

    2015-01-01

    Full Text Available We consider a capacitated hub location-routing problem (HLRP which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitated p-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.

  4. A Multipath Routing Protocol Based on Bloom Filter for Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Junwei Jin

    2016-01-01

    Full Text Available On-demand multipath routing in a wireless ad hoc network is effective in achieving load balancing over the network and in improving the degree of resilience to mobility. In this paper, the salvage capable opportunistic node-disjoint multipath routing (SNMR protocol is proposed, which forms multiple routes for data transmission and supports packet salvaging with minimum overhead. The proposed mechanism constructs a primary path and a node-disjoint backup path together with alternative paths for the intermediate nodes in the primary path. It can be achieved by considering the reverse route back to the source stored in the route cache and the primary path information compressed by a Bloom filter. Our protocol presents higher capability in packet salvaging and lower overhead in forming multiple routes. Simulation results show that SNMR outperforms the compared protocols in terms of packet delivery ratio, normalized routing load, and throughput.

  5. Load Balancing Metric with Diversity for Energy Efficient Routing in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, Raja

    2011-01-01

    The expected number of transmission (ETX) represents a routing metric that considers the highly variable link qualities for a specific radio in Wireless Sensor Networks (WSNs). To adapt to these differences, radio diversity is a recently explored solution for WSNs. In this paper, we propose...... an energy balancing metric which explores the diversity in link qualities present at different radios. The goal is to effectively use the energy of the network and therefore extend the network lifetime. The proposed metric takes into account the transmission and reception costs for a specific radio in order...... to choose an energy efficient radio. In addition, the metric uses the remaining energy of nodes in order to regulate the traffic so that critical nodes are avoided. We show by simulations that our metric can improve the network lifetime up to 20%....

  6. OSPF-TE Extensions for Green Routing in Optical Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Ricciardi, S.; Fagertun, Anna Manolova

    2012-01-01

    This paper proposes extensions to the OSPF-TE protocol to enable green routing in GMPLS-controlled optical networks. Simulation results show a remarkable reduction in CO2 emissions by preferring network elements powered by green energy sources in the connection routing.......This paper proposes extensions to the OSPF-TE protocol to enable green routing in GMPLS-controlled optical networks. Simulation results show a remarkable reduction in CO2 emissions by preferring network elements powered by green energy sources in the connection routing....

  7. Trip Energy Estimation Methodology and Model Based on Real-World Driving Data for Green Routing Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Til, Harrison J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-09

    A data-informed model to predict energy use for a proposed vehicle trip has been developed in this paper. The methodology leverages nearly 1 million miles of real-world driving data to generate the estimation model. Driving is categorized at the sub-trip level by average speed, road gradient, and road network geometry, then aggregated by category. An average energy consumption rate is determined for each category, creating an energy rates look-up table. Proposed vehicle trips are then categorized in the same manner, and estimated energy rates are appended from the look-up table. The methodology is robust and applicable to almost any type of driving data. The model has been trained on vehicle global positioning system data from the Transportation Secure Data Center at the National Renewable Energy Laboratory and validated against on-road fuel consumption data from testing in Phoenix, Arizona. The estimation model has demonstrated an error range of 8.6% to 13.8%. The model results can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations to reduce energy consumption. This work provides a highly extensible framework that allows the model to be tuned to a specific driver or vehicle type.

  8. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

  9. A two-hop based adaptive routing protocol for real-time wireless sensor networks.

    Science.gov (United States)

    Rachamalla, Sandhya; Kancherla, Anitha Sheela

    2016-01-01

    One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.

  10. Energy Efficiency: The Implementation of Minimum Energy Performance Standard (MEPS Application on Home Appliances for Residential

    Directory of Open Access Journals (Sweden)

    Rahman K.A

    2016-01-01

    Full Text Available Generally, Minimum Energy Performance Standard (MEPS has been widespread across the country especially developed country. However, most consumers do not even know about the MEPS. Without sufficient knowledge, much energy have been wasted before this. The aim of this study is to review the implementation of MEPS of Asia country and to compare electricity consumption of home appliances with star rating and without star rating. In order to fulfil the objectives of the study, the equipment must be chosen correctly and must be learned properly. The home appliances that will be used also need to be chosen so that the comparison between the appliances will be matched correctly. To understand the results, the analysis was done using graphs and table. The purpose of using graph and table is to understand the comparison between appliances more clearly. The results show that home appliances with MEPS is more efficient on energy saving rather than without MEPS. This is the evidence as a method to educate a consumer on energy saving.

  11. Capacitated Hub Routing Problem in Hub-and-Feeder Network Design: Modeling and Solution Algorithm

    OpenAIRE

    Gelareh , Shahin; Neamatian Monemi , Rahimeh; Semet , Frédéric

    2015-01-01

    International audience; In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein eachhub acts as a transshipment node for one directed route. The number of hubs lies between a minimum anda maximum and the hub-level network is a complete subgraph. The transshipment operations take place atthe hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoketo-hub allocations. We propose a mathematical model and a b...

  12. An Experimental Setup to Measure the Minimum Trigger Energy for Magneto-Thermal Instability in Nb$_{3}$Sn Strands

    CERN Document Server

    Takala, E; Bremer, J; Balle, C; Bottura, L; Rossi, L

    2012-01-01

    Magneto-thermal instability may affect high critical current density Nb$_{3}$Sn superconducting strands that can quench even though the transport current is low compared to the critical current with important implications in the design of next generation superconducting magnets. The instability is initiated by a small perturbation energy which is considerably lower than the Minimum Quench Energy (MQE). At CERN, a new experimental setup was developed to measure the smallest perturbation energy (Minimum Trigger Energy, MTE) which is able to trigger the magneto-thermal instability in superconducting Nb$_{3}$Sn-strands. The setup is based on Q-switched laser technology which is able to provide a localized perturbation in nano-second time scale. Using this technique the energy deposition into the strand is well defined and reliable. The laser is located outside the cryostat at room temperature. The beam is guided from room temperature on to the superconducting strand by using a UV-enhanced fused silica fibre. The ...

  13. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    Science.gov (United States)

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-10-20

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  14. A Plasma-Assisted Route to the Rapid Preparation of Transition-Metal Phosphides for Energy Conversion and Storage

    KAUST Repository

    Liang, Hanfeng

    2017-06-06

    Transition-metal phosphides (TMPs) are important materials that have been widely used in catalysis, supercapacitors, batteries, sensors, light-emitting diodes, and magnets. The physical and chemical structure of a metal phosphide varies with the method of preparation as the electronic, catalytic, and magnetic properties of the metal phosphides strongly depend on their synthesis routes. Commonly practiced processes such as solid-state synthesis and ball milling have proven to be reliable routes to prepare TMPs but they generally require high temperature and long reaction time. Here, a recently developed plasma-assisted conversion route for the preparation of TMPs is reviewed, along with their applications in energy conversion and storage, including water oxidation electrocatalysis, sodium-ion batteries, and supercapacitors. The plasma-assisted synthetic route should open up a new avenue to prepare TMPs with tailored structure and morphology for various applications. In fact, the process may be further extended to the synthesis of a wide range of transition-metal compounds such as borides and fluorides at low temperature and in a rapid manner.

  15. Cost analysis of hybrid adaptive routing protocol for heterogeneous ...

    Indian Academy of Sciences (India)

    NONITA SHARMA

    Event detection; wireless sensor networks; hybrid routing; cost benefit analysis; proactive routing; reactive routing. 1. ... additional energy, high processing power, etc. are deployed to extend the .... transmit to its parent node. (2) Reactive ...

  16. Enhancement of Adaptive Cluster Hierarchical Routing Protocol using Distance and Energy for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Nawar, N.M.; Soliman, S.E.; Kelash, H.M.; Ayad, N.M.

    2014-01-01

    The application of wireless networking is widely used in nuclear applications. This includes reactor control and fire dedication system. This paper is devoted to the application of this concept in the intrusion system of the Radioisotope Production Facility (RPF) of the Egyptian Atomic Energy Authority. This includes the tracking, monitoring and control components of this system. The design and implementation of wireless sensor networks has become a hot area of research due to the extensive use of sensor networks to enable applications that connect the physical world to the virtual world [1-2]. The original LEACH is named a communication protocol (clustering-based); the extended LEACH’s stochastic cluster head selection algorithm by a deterministic component. Depending on the network configuration an increase of network lifetime can be accomplished [3]. The proposed routing mechanisms after enhancement divide the nodes into clusters. A cluster head performs its task which is considerably more energy-intensive than the rest of the nodes inside sensor network. So, nodes rotate tasks at different rounds between a cluster head and other sensors throughout the lifetime of the network to balance the energy dissipation [4-5].The performance improvement when using routing protocol after enhancement of the algorithm which takes into consideration the distance and the remaining energy for choosing the cluster head by obtains from the advertise message. Network Simulator (Ns2 simulator) is used to prove that LEACH after enhancement performs better than the original LEACH protocol in terms of Average Energy, Network Life Time, Delay, Throughput and Overhead.

  17. An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2017-11-01

    Full Text Available In the smart home environment, efficient energy management is a challenging task. Solutions are needed to achieve a high occupant comfort level with minimum energy consumption. User comfort is measured in terms of three fundamental parameters: (a thermal comfort, (b visual comfort and (c air quality. Temperature, illumination and CO 2 sensors are used to collect indoor contextual information. In this paper, we have proposed an improved optimization function to achieve maximum user comfort in the building environment with minimum energy consumption. A comprehensive formulation is done for energy optimization with detailed analysis. The Kalman filter algorithm is used to remove noise in sensor readings by predicting actual parameter values. For optimization, we have used genetic algorithm (GA and particle swarm optimization (PSO algorithms and performed comparative analysis with a baseline scheme on real data collected for a one-month duration in our lab’s indoor environment. Experimental results show that the proposed optimization function has achieved a 27 . 32 % and a 31 . 42 % reduction in energy consumption with PSO and GA, respectively. The user comfort index was also improved by 10 % i.e., from 0 . 86 to 0 . 96 . GA-based optimization results were better than PSO, as it has achieved almost the same user comfort with 4 . 19 % reduced energy consumption. Results show that the proposed optimization function gives better results than the baseline scheme in terms of user comfort and the amount of consumed energy. The proposed system can help with collecting the data about user preferences and energy consumption for long-term analysis and better decision making in the future for efficient resource utilization and overall profit maximization.

  18. DESIGNING APPLICATION OF ANT COLONY SYSTEM ALGORITHM FOR THE SHORTEST ROUTE OF BANDA ACEH CITY AND ACEH BESAR REGENCY TOURISM BY USING GRAPHICAL USER INTERFACE MATLAB

    Directory of Open Access Journals (Sweden)

    Durisman Durisman

    2017-09-01

    Full Text Available Banda Aceh city and Aceh Besar Regency are two of the leading tourism areas located in the province of Aceh. For travelling, there are some important things to be considered, such as determining schedule and distance of tourism. Every tourist certainly chooses the shortest route to reach the destination since it can save time, energy, and money. The purpose of this reserach is to develop a method that can be used in calculating the shortest route and applied to the tourism of Banda Aceh city and Aceh Besar regency. In this reserach, Ant Colony Optimization algorithm is used to determine the shortest route to tourism of Banda Aceh city and Aceh Besar regency. From the analysis made by using both manual calculation and  GUI MATLAB program application test, the shortest route can be obtained with a minimum distance of 120.85 km in one travel. Based on the test result, the application for tourism (in Banda Aceh city and Aceh Besar regency shortest route searching built by utilizing the Ant Colony Optimization algorithm can find optimal route.  Keyword: tourism, the shortest route, Ant Colony Optimization

  19. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  20. Electricity savings from implementation of minimum energy efficiency standard for TVs in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M.; Masjuki, H.H.; Mahlia, T.M.I. [University of Malaya, Kuala Lumpur (Malaysia). Department of Mechanical Engineering

    2005-06-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD in Malaysia are poised to have a large impact on overall TV electricity consumption in the country. With the increasing of overall TV energy consumption, energy efficiency standards are one of highly effective policies for decreasing electricity consumption in the residential sector. Energy efficiency standards are also capable of reducing consumer's electricity bill and contribute towards positive environmental impacts. This paper attempts to predict the amount of energy that can be saved in the residential sector by implementing minimum energy efficiency standard for television sets in Malaysia. Over the past 30 years, television ownership in Malaysian residents has increased from 186,036 units in 1970 to 2,741,640 units in 1991. This figure is expected to reach 6,201,316 units in the year 2010. Hence, efficiency improvement for this appliance will have a significant impact on the future of electricity consumption in this country. (author)

  1. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  2. Efficient Routing in Wireless Sensor Networks with Multiple Sessions

    OpenAIRE

    Dianjie Lu; Guijuan Zhang; Ren Han; Xiangwei Zheng; Hong Liu

    2014-01-01

    Wireless Sensor Networks (WSNs) are subject to node failures because of limited energy and link unreliability which makes the design of routing protocols in such networks a challenging task. The multipath routing scheme is an optimal alternative to address this problem which splits the traffic across multiple paths instead of routing all the traffic along a single path. However, using more paths introduces more contentions which degrade energy efficiency. The problem becomes even more difficu...

  3. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  4. QoS and energy aware cooperative routing protocol for wildfire monitoring wireless sensor networks.

    Science.gov (United States)

    Maalej, Mohamed; Cherif, Sofiane; Besbes, Hichem

    2013-01-01

    Wireless sensor networks (WSN) are presented as proper solution for wildfire monitoring. However, this application requires a design of WSN taking into account the network lifetime and the shadowing effect generated by the trees in the forest environment. Cooperative communication is a promising solution for WSN which uses, at each hop, the resources of multiple nodes to transmit its data. Thus, by sharing resources between nodes, the transmission quality is enhanced. In this paper, we use the technique of reinforcement learning by opponent modeling, optimizing a cooperative communication protocol based on RSSI and node energy consumption in a competitive context (RSSI/energy-CC), that is, an energy and quality-of-service aware-based cooperative communication routing protocol. Simulation results show that the proposed algorithm performs well in terms of network lifetime, packet delay, and energy consumption.

  5. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    International Nuclear Information System (INIS)

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-01-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  6. Energy Aware Routing Schemes in Solar PoweredWireless Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.

    2016-10-01

    Wireless sensor networks enable inexpensive distributed monitoring systems that are the backbone of smart cities. In this dissertation, we are interested in wireless sensor networks for traffic monitoring and an emergency flood detection to improve the safety of future cities. To achieve real-time traffic monitoring and emergency flood detection, the system has to be continually operational. Accordingly, an energy source is needed to ensure energy availability at all times. The sun provides for the most inexpensive source of energy, and therefore the energy is provided here by a solar panel working in conjunction with a rechargeable battery. Unlike batteries, solar energy fluctuates spatially and temporally due to the panel orientation, seasonal variation and node location, particularly in cities where buildings cast shadows. Especially, it becomes scarce whenever floods are likely to occur, as the weather tends to be cloudy at such times when the emergency detection system is most needed. These considerations lead to the need for the optimization of the energy of the sensor network, to maximize its sensing performance. In this dissertation, we address the challenges associated with long term outdoor deployments along with providing some solutions to overcome part of these challenges. We then introduce the energy optimization problem, as a distributed greedy approach. Motivated by the flood sensing application, our objective is to maximize the energy margin in the solar powered network at the onset of the high rain event, to maximize the network lifetime. The decentralized scheme will achieve this by optimizing the energy over a time horizon T, taking into account the available and predicted energy over the entire routing path. Having a good energy forecasting scheme can significantly enhance the energy optimization in WSN. Thus, this dissertation proposes a new energy forecasting scheme that is compatible with the platform’s capabilities. This proposed

  7. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  8. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    Science.gov (United States)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  9. A Distributed Energy-Aware Trust Management System for Secure Routing in Wireless Sensor Networks

    Science.gov (United States)

    Stelios, Yannis; Papayanoulas, Nikos; Trakadas, Panagiotis; Maniatis, Sotiris; Leligou, Helen C.; Zahariadis, Theodore

    Wireless sensor networks are inherently vulnerable to security attacks, due to their wireless operation. The situation is further aggravated because they operate in an infrastructure-less environment, which mandates the cooperation among nodes for all networking tasks, including routing, i.e. all nodes act as “routers”, forwarding the packets generated by their neighbours in their way to the sink node. This implies that malicious nodes (denying their cooperation) can significantly affect the network operation. Trust management schemes provide a powerful tool for the detection of unexpected node behaviours (either faulty or malicious). Once misbehaving nodes are detected, their neighbours can use this information to avoid cooperating with them either for data forwarding, data aggregation or any other cooperative function. We propose a secure routing solution based on a novel distributed trust management system, which allows for fast detection of a wide set of attacks and also incorporates energy awareness.

  10. Landing Marine-derived Renewable Energy: Optimising Power Cable Routing in the Nearshore Environment

    Science.gov (United States)

    Turner, Rosalind, ,, Dr.; Keane, Tom; Mullins, Brian; Phipps, Peter

    2010-05-01

    Numerous studies have demonstrated that a vast unexploited source of energy can be derived from the marine environment. Recent evolution of the energy market and looming EU renewable energy uptake targets for 2020 have driven a huge explosion of interest in exploiting this resource, triggering both governments and industry to move forward in undertaking feasibility assessments and demonstration projects for wave, tidal and offshore wind farms across coastlines. The locations which naturally lend themselves to high yield energy capture, are by definition, exposed and may be remote, located far from the end user of the electricity generated. A fundamental constraint to successfully exploiting these resources will be whether electricity generated in high energy, variable and constantly evolving environments can be brought safely and reliably to shore without the need for constant monitoring and maintenance of the subsea cables and landfall sites. In the case of riverine cable crossings superficial sediments would typically be used to trench and bury the cable. High energy coastal environments may be stripped of soft sediments. Any superficial sediments present at the site may be highly mobile and subject to re-suspension throughout the tidal cycle or under stormy conditions. EirGrid Plc. and Mott MacDonald Ireland Ltd. have been investigating the potential for routing a cable across the exposed Shannon estuary in Ireland. Information regarding the geological ground model, meteo-oceanographic and archaeological conditions of the proposed site was limited, necessitating a clear investigation strategy. The investigation included gathering site information on currents, bathymetry and geology through desk studies, hydrographic and geophysical surveys, an intrusive ground investigation and coastal erosion assessments at the landfall sites. The study identified a number of difficulties for trenching and protecting a cable through an exposed environment such as the Shannon

  11. Efficient Routing in Wireless Sensor Networks with Multiple Sessions

    Directory of Open Access Journals (Sweden)

    Dianjie Lu

    2014-05-01

    Full Text Available Wireless Sensor Networks (WSNs are subject to node failures because of limited energy and link unreliability which makes the design of routing protocols in such networks a challenging task. The multipath routing scheme is an optimal alternative to address this problem which splits the traffic across multiple paths instead of routing all the traffic along a single path. However, using more paths introduces more contentions which degrade energy efficiency. The problem becomes even more difficult in the scenario of multiple sessions since different source-destination pairs may pass the same link which makes the flow distribution of each link uncertain. Our goal is to minimize the energy cost and provide the robust transmission by choosing the optimal paths. We first study the problem from a theoretical standpoint by mapping it to the multi-commodity network design problem. Since it is hard to build a global addressing scheme due to the great number of sensor nodes, we propose a Distributed Energy Efficient Routing protocol (D2ER. In D2ER, we employ the transportation method which can optimize the flow distribution with minimal energy consumption. Simulation results demonstrate that our optimal algorithm can save energy drastically.

  12. An Energy Efficient Stable Election-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weiwei Yuan

    2013-10-01

    Full Text Available Sensor nodes usually have limited energy supply and they are impractical to recharge. How to balance traffic load in sensors in order to increase network lifetime is a very challenging research issue. Many clustering algorithms have been proposed recently for wireless sensor networks (WSNs. However, sensor networks with one fixed sink node often suffer from a hot spots problem since nodes near sinks have more traffic burden to forward during a multi-hop transmission process. The use of mobile sinks has been shown to be an effective technique to enhance network performance features such as latency, energy efficiency, network lifetime, etc. In this paper, a modified Stable Election Protocol (SEP, which employs a mobile sink, has been proposed for WSNs with non-uniform node distribution. The decision of selecting cluster heads by the sink is based on the minimization of the associated additional energy and residual energy at each node. Besides, the cluster head selects the shortest path to reach the sink between the direct approach and the indirect approach with the use of the nearest cluster head. Simulation results demonstrate that our algorithm has better performance than traditional routing algorithms, such as LEACH and SEP.

  13. DOW-PR DOlphin and Whale Pods Routing Protocol for Underwater Wireless Sensor Networks (UWSNs).

    Science.gov (United States)

    Wadud, Zahid; Ullah, Khadem; Hussain, Sajjad; Yang, Xiaodong; Qazi, Abdul Baseer

    2018-05-12

    Underwater Wireless Sensor Networks (UWSNs) have intrinsic challenges that include long propagation delays, high mobility of sensor nodes due to water currents, Doppler spread, delay variance, multipath, attenuation and geometric spreading. The existing Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) protocol considers the weighting depth of the two hops in order to select the next Potential Forwarding Node (PFN). To improve the performance of WDFAD-DBR, we propose DOlphin and Whale Pod Routing protocol (DOW-PR). In this scheme, we divide the transmission range into a number of transmission power levels and at the same time select the next PFNs from forwarding and suppressed zones. In contrast to WDFAD-DBR, our scheme not only considers the packet upward advancement, but also takes into account the number of suppressed nodes and number of PFNs at the first and second hops. Consequently, reasonable energy reduction is observed while receiving and transmitting packets. Moreover, our scheme also considers the hops count of the PFNs from the sink. In the absence of PFNs, the proposed scheme will select the node from the suppressed region for broadcasting and thus ensures minimum loss of data. Besides this, we also propose another routing scheme (whale pod) in which multiple sinks are placed at water surface, but one sink is embedded inside the water and is physically connected with the surface sink through high bandwidth connection. Simulation results show that the proposed scheme has high Packet Delivery Ratio (PDR), low energy tax, reduced Accumulated Propagation Distance (APD) and increased the network lifetime.

  14. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    Directory of Open Access Journals (Sweden)

    Elham Ahmadi Moghaddam

    2016-12-01

    Full Text Available Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME, and ammonia, as fuel or platform chemicals, and combined heat and power (CHP. Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes.

  15. Highway route controlled quantity shipment routing reports - An overview

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Welles, B.W.; Welch, M.J.

    1989-01-01

    US Department of Transportation (DOT) regulations require a postnotification report from the shipper for all shipments of radioactive materials categorized as a Highway Route Controlled Quantity. These postnotification reports, filed in compliance with 49 CFR 172.203(d), have been compiled by the DOT in a database known as the Radioactive Materials Routing Report (RAMRT) since 1982. The data were sorted by each of its elements to establish historical records and trends of Highway Route Controlled Quantity shipments from 1982 through 1987. Approximately 1520 records in the RAMRT database were compiled for this analysis. Approximately half of the shipments reported for the study period were from the US Department of Energy (DOE) and its contractors, with the others being commercial movements. Two DOE installations, EG and G Idaho and Oak Ridge, accounted for nearly half of the DOE activities. Similarly, almost half of the commercial movements were reported by two vendors, Nuclear Assurance Corporation and Transnuclear, Incorporated. Spent fuel from power and research reactors accounted for approximately half of all shipments

  16. A Hybrid Node Scheduling Approach Based on Energy Efficient Chain Routing for WSN

    Directory of Open Access Journals (Sweden)

    Yimei Kang

    2014-04-01

    Full Text Available Energy efficiency is usually a significant goal in wireless sensor networks (WSNs. In this work, an energy efficient chain (EEC data routing approach is first presented. The coverage and connectivity of WSNs are discussed based on EEC. A hybrid node scheduling approach is then proposed. It includes sleep scheduling for cyclically monitoring regions of interest in time-driven modes and wakeup scheduling for tracking emergency events in event-driven modes. A failure rate is introduced to the sleep scheduling to improve the reliability of the system. A wakeup sensor threshold and a sleep time threshold are introduced in the wakeup scheduling to reduce the consumption of energy to the possible extent. The results of the simulation show that the proposed algorithm can extend the effective lifetime of the network to twice that of PEAS. In addition, the proposed methods are computing efficient because they are very simple to implement.

  17. A multiple ship routing and speed optimization problem under time, cost and environmental objectives

    DEFF Research Database (Denmark)

    Wen, M.; Pacino, Dario; Kontovas, C.A.

    2017-01-01

    The purpose of this paper is to investigate a multiple ship routing and speed optimization problem under time, cost and environmental objectives. A branch and price algorithm as well as a constraint programming model are developed that consider (a) fuel consumption as a function of payload, (b......) fuel price as an explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory costs. The alternative objective functions are minimum total trip duration, minimum total cost and minimum emissions. Computational experience with the algorithm is reported on a variety of scenarios....

  18. Two models of the capacitated vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Zuzana Borčinova

    2017-01-01

    Full Text Available The aim of the Capacitated Vehicle Routing Problem (CVRP is to find a set of minimum total cost routes for a fleet of capacitated vehicles based at a single depot, to serve a set of customers. There exist various integer linear programming models of the CVRP. One of the main differences lies in the way to eliminate sub-tours, i.e. cycles that do not go through the depot. In this paper, we describe a well-known flow formulation of CVRP, where sub-tour elimination constraints have a cardinality exponentially growing with the number of customers. Then we present a mixed linear programming formulation with polynomial cardinality of sub-tour elimination constraints. Both of the models were implemented and compared on several benchmarks.

  19. ZERO: Probabilistic Routing for Deploy and Forget Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jose Carlos Pacho

    2010-09-01

    Full Text Available As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called ”hot spot” problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this ”hot spot” problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.

  20. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment.

    Science.gov (United States)

    Sundaram, Smitha; Kolb, Gunther; Hessel, Volker; Wang, Qi

    2017-03-29

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and benchmark them against the conventional route of producing gasoline from natural gas. A previously commercialized method of synthesizing gasoline involves conversion of natural gas to syngas, which is further converted to methanol, and then as a last step, the methanol is converted to gasoline. In the new proposed routes, the syngas production step is different; syngas is produced from a mixture of pyrolysis oil and biogas in the following two ways: (i) autothermal reforming of pyrolysis oil and biogas, in which there are two reactions in one reactor (ATR) and (ii) steam reforming of pyrolysis oil and catalytic partial oxidation of biogas, in which there are separated but thermally coupled reactions and reactors (CR). The other two steps to produce methanol from syngas, and gasoline from methanol, remain the same. The purpose of this simulation is to have an ex-ante comparison of the performance of the new routes against a reference, in terms of energy and sustainability. Thus, at this stage of simulations, nonrigorous, equilibrium-based models have been used for reactors, which will give the best case conversions for each step. For the conventional production route, conversion and yield data available in the literature have been used, wherever available.The results of the process design showed that the second method (separate, but thermally coupled reforming) has a carbon efficiency of 0.53, compared to the conventional route (0.48), as well as the first route (0.40). The life-cycle assessment results revealed that the newly proposed processes have a clear advantage over the conventional process in some categories, particularly the global warming potential and primary

  1. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy

    International Nuclear Information System (INIS)

    Trushin, O; Maras, E; Jónsson, H; Ala-Nissila, T; Stukowski, A; Granato, E; Ying, S C

    2016-01-01

    A possible mechanism for the formation of a 90° misfit dislocation at the Ge/Si(0 0 1) interface through homogeneous nucleation is identified from atomic scale calculations where a minimum energy path connecting the coherent epitaxial state and a final state with a 90° misfit dislocation is found using the nudged elastic band method. The initial path is generated using a repulsive bias activation procedure in a model system including 75 000 atoms. The energy along the path exhibits two maxima in the energy. The first maximum occurs as a 60° dislocation nucleates. The intermediate minimum corresponds to an extended 60° dislocation. The subsequent energy maximum occurs as a second 60° dislocation nucleates in a complementary, mirror glide plane, simultaneously starting from the surface and from the first 60° dislocation. The activation energy of the nucleation of the second dislocation is 30% lower than that of the first one showing that the formation of the second 60° dislocation is aided by the presence of the first one. The simulations represent a step towards unraveling the formation mechanism of 90° dislocations, an important issue in the design of growth procedures for strain released Ge overlayers on Si(1 0 0) surfaces, and more generally illustrate an approach that can be used to gain insight into the mechanism of complex nucleation paths of extended defects in solids. (paper)

  2. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  3. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  4. Power Balance AODV Routing Algorithm of WSN in Precision Agriculture Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qin

    2013-11-01

    Full Text Available As one of important technologies of IOT (Internet of Things, WSN (Wireless Sensor Networks has been widely used in precision agriculture environment monitoring. WSN is a kind of energy-constrained network, but power balance is not taken into account in traditional routing protocols. A novel routing algorithm, named Power Balance Ad hoc On-Demand Distance Vector (PB-AODV, is proposed on cross-layer design. In the route discovery process of PB-AODV, routing path is established by the Received Signal Strength Indication (RSSI value. The optimal transmitting power, which is computed according to RSSI value, power threshold and node’s surplus energy, is encapsulated into Route Reply Packet. Hence, the sender node can adjust its transmission power to save energy according to the Route Reply Packet. Simulation results show that the proposed algorithm is effective for load balancing, and increases the WSN’s lifetime 14.3% consequently.

  5. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Madhumathy Perumal

    2015-01-01

    Full Text Available Data gathering and optimal path selection for wireless sensor networks (WSN using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS. This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  6. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    International Nuclear Information System (INIS)

    Onut, S; Kamber, M R; Altay, G

    2014-01-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time

  7. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    Science.gov (United States)

    Onut, S.; Kamber, M. R.; Altay, G.

    2014-03-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time.

  8. Route-specific analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    1986-01-01

    This report addresses a methodology for route-specific analysis, of which route-selection is one aspect. Identification and mitigation of specific hazards along a chosen route is another important facet of route-specific analysis. Route-selection and route-specific mitigation are two tools to be used in minimizing the risk of radioactive materials transportation and promoting public confidence. Other tools exist to improve the safety of transportation under the Nuclear Waste Policy Act. Selection of a transportation mode and other, non-route-specific measures, such as improved driver training and improved cask designs, are additional tools to minimize transportation risk and promote public confidence. This report addresses the route-specific analysis tool and does not attempt to evaluate its relative usefulness as compared to other available tools. This report represents a preliminary attempt to develop a route-specific analysis methodlogy. The Western Interstate Energy Board High-Level Waste Committee has formed a Route-Specific Analysis Task Force which will build upon the methodology proposed in this Staff Report. As western states continue to investigate route-specific analysis issues, it is expected that the methodology will evolve into a more refined product representing the views of a larger group of interested parties in the West

  9. Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

    OpenAIRE

    Tawiwat V.; Tosapolporn P.; Kedit J.

    2009-01-01

    This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop cont...

  10. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge

    Directory of Open Access Journals (Sweden)

    Le Xuan Hung

    2008-12-01

    Full Text Available For many sensor network applications such as military or homeland security, it is essential for users (sinks to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1 Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2 The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3 The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4 Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5 No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  11. Porcelain tiles by the dry route

    International Nuclear Information System (INIS)

    Melchiades, F. G.; Daros, M. T.; Boschi, A. O.

    2010-01-01

    In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality. (Author) 7 refs.

  12. Eco-routing: More green drivers means more benefits?

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Serrano, C.; Perez Prada, F.; Monzon de Caceres, A.

    2016-07-01

    Information and Communications Technology (ICT)/Information and Technology Services (ITS) can play an important role in the transport sector, helping in maintaining accessibility and contemporarily optimizing the use of the vehicles. Among these ICT measures, eco-routing seems a promising one. Drivers normally follow the route which minimizes their generalized costs, normally time and money. But environmental concern is increasing, and drivers are starting to think about the effects of their driving. This means including CO2 emissions or fuel consumption in their route choice. But is this always positive, independently of the traffic situation and the penetration level of green drivers? This articles aims to analyze what happens in terms of fuel consumption, CO2 emissions and travel time, when different penetration levels of drivers, and with different traffic situations, follow the route of minimum fuel consumption instead of the conventional generalized costs. The analysis is based on a modelling process using a transport model of the whole region of Madrid. A total of 18 scenarios are considered: 3 reference scenarios (for congested, medium and low flow traffic situations), and 5 different penetration levels of green drivers for each traffic situation. Results show how impact varies substantially with the level of traffic and, also, that the more the best is not always true. (Author)

  13. Route planning with transportation network maps: an eye-tracking study.

    Science.gov (United States)

    Grison, Elise; Gyselinck, Valérie; Burkhardt, Jean-Marie; Wiener, Jan Malte

    2017-09-01

    Planning routes using transportation network maps is a common task that has received little attention in the literature. Here, we present a novel eye-tracking paradigm to investigate psychological processes and mechanisms involved in such a route planning. In the experiment, participants were first presented with an origin and destination pair before we presented them with fictitious public transportation maps. Their task was to find the connecting route that required the minimum number of transfers. Based on participants' gaze behaviour, each trial was split into two phases: (1) the search for origin and destination phase, i.e., the initial phase of the trial until participants gazed at both origin and destination at least once and (2) the route planning and selection phase. Comparisons of other eye-tracking measures between these phases and the time to complete them, which depended on the complexity of the planning task, suggest that these two phases are indeed distinct and supported by different cognitive processes. For example, participants spent more time attending the centre of the map during the initial search phase, before directing their attention to connecting stations, where transitions between lines were possible. Our results provide novel insights into the psychological processes involved in route planning from maps. The findings are discussed in relation to the current theories of route planning.

  14. A model-based eco-routing strategy for electric vehicles in large urban networks

    OpenAIRE

    De Nunzio , Giovanni; Thibault , Laurent; Sciarretta , Antonio

    2016-01-01

    International audience; A novel eco-routing navigation strategy and energy consumption modeling approach for electric vehicles are presented in this work. Speed fluctuations and road network infrastructure have a large impact on vehicular energy consumption. Neglecting these effects may lead to large errors in eco-routing navigation, which could trivially select the route with the lowest average speed. We propose an energy consumption model that considers both accelerations and impact of the ...

  15. Verification of the Taylor (minimum energy) state in the S-1 Spheromak

    International Nuclear Information System (INIS)

    Hart, G.W.; Janos, A.; Meyerhofer, D.D.; Yamada, M.

    1985-09-01

    Experimental measurements of the equilibrium in the S-1 Spheromak by use of magnetic probes inside the plasma show that the final magnetic equilibrium is one which has relaxed close to the Taylor (minimum-energy) state, even though the plasma is far from that state during formation. The comparison is made by calculating the two-dimensional μ profile of the plasma from the probe data, where μ is defined as μ 0 j/sub parallel//B. Measurements using a triple Langmuir probe provide evidence to support the conclusion that the pressure gradients in the relaxed state are confined to the edge region of the plasma

  16. Evaluation of svr: a wireless sensor network routing protocol

    International Nuclear Information System (INIS)

    Baloch, J.; Khanzada, T.J.S.

    2014-01-01

    The advancement in technology has made it possible to create small in size, low cost sensor nodes. However, the small size and low cost of such nodes comesat at price that is, reduced processing power, low memory and significantly small battery energy storage. WSNs (Wireless Sensor Networks) are inherently ad hoc in nature and are assumed to work in the toughest terrain. The network lifetime plays a pivotal role in a wireless sensor network. A long network lifetime, could be achieved by either making significant changes in these low cost devices, which is not a feasible solution or by improving the means of communication throughout the network. The communication in such networks could be improved by employing energy efficient routing protocols, to route the data throughout the network. In this paper the SVR (Spatial Vector Routing) protocol is compared against the most common WSN routing protocols, and from the results it could be inferred that the SVR protocol out performs its counterparts. The protocol provides an energy efficient means of communication in the network. (author)

  17. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  18. Technical Report: Sleep-Route - Routing through Sleeping Sensors

    OpenAIRE

    Sarkar, Chayan; Rao, Vijay S.; Prasad, R. Venkatesha

    2014-01-01

    In this article, we propose an energy-efficient data gathering scheme for wireless sensor network called Sleep-Route, which splits the sensor nodes into two sets - active and dormant (low-power sleep). Only the active set of sensor nodes participate in data collection. The sensing values of the dormant sensor nodes are predicted with the help of an active sensor node. Virtual Sensing Framework (VSF) provides the mechanism to predict the sensing values by exploiting the data correlation among ...

  19. Performance evaluation of spatial vector routing protocol for wireless sensor networks

    International Nuclear Information System (INIS)

    Baloch, J.; Jokhio, I.

    2012-01-01

    WSNs (Wireless Sensor Networks) is an emerging area of research. Researchers worldwide are working on the issues faced by sensor nodes. Communication has been a major issue in wireless networks and the problem is manifolds in WSN s because of the limited resources. The routing protocol in such networks plays a pivotal role, as an effective routing protocol could significantly reduce the energy consumed in transmitting and receiving data packets throughout a network. In this paper the performance of SVR (Spatial Vector Routing) an energy efficient, location aware routing protocol is compared with the existing location aware protocols. The results from the simulation trials show the performance of SVR. (author)

  20. Performance Evaluation of Spatial Vector Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-10-01

    Full Text Available WSNs (Wireless Sensor Networks is an emerging area of research. Researchers worldwide are working on the issues faced by sensor nodes. Communication has been a major issue in wireless networks and the problem is manifolds in WSNs because of the limited resources. The routing protocol in such networks plays a pivotal role, as an effective routing protocol could significantly reduce the energy consumed in transmitting and receiving data packets throughout a network. In this paper the performance of SVR (Spatial Vector Routing an energy efficient, location aware routing protocol is compared with the existing location aware protocols. The results from the simulation trials show the performance of SVR.

  1. P-bRS: A Physarum-Based Routing Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhang

    2014-01-01

    Full Text Available Routing in wireless sensor networks (WSNs is an extremely challenging issue due to the features of WSNs. Inspired by the large and single-celled amoeboid organism, slime mold Physarum polycephalum, we establish a novel selecting next hop model (SNH. Based on this model, we present a novel Physarum-based routing scheme (P-bRS for WSNs to balance routing efficiency and energy equilibrium. In P-bRS, a sensor node can choose the proper next hop by using SNH which comprehensively considers the distance, energy residue, and location of the next hop. The simulation results show how P-bRS can achieve the effective trade-off between routing efficiency and energy equilibrium compared to two famous algorithms.

  2. ANALYTICAL ESTIMATION OF MINIMUM AND MAXIMUM TIME EXPENDITURES OF PASSENGERS AT AN URBAN ROUTE STOP

    Directory of Open Access Journals (Sweden)

    Gorbachov, P.

    2013-01-01

    Full Text Available This scientific paper deals with the problem related to the definition of average time spent by passengers while waiting for transport vehicles at urban stops as well as the results of analytical modeling of this value at traffic schedule unknown to the passengers and of two options of the vehicle traffic management on the given route.

  3. Performance and energy efficiency in wireless self-organized networks

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C.

    2009-07-01

    Self-organized packet radio networks (ad-hoc networks) and wireless sensor networks have got massive attention recently. One of critical problems in such networks is the energy efficiency, because wireless nodes are usually powered by battery. Energy efficiency design can dramatically increase the survivability and stability of wireless ad-hoc/sensor networks. In this thesis the energy efficiency has been considered at different protocol layers for wireless ad-hoc/sensor networks. The energy consumption of wireless nodes is inspected at the physical layer and MAC layer. At the network layer, some current routing protocols are compared and special attention has been paid to reactive routing protocols. A minimum hop analysis is given and according to the analysis result, a modification of AODV routing is proposed. A variation of transmit power can be also applied to clustering algorithm, which is believed to be able to control the scalability of network. Clustering a network can also improve the energy efficiency. We offer a clustering scheme based on the link state measurement and variation of transmit power of intra-cluster and inter-cluster transmission. Simulation shows that it can achieve both targets. In association with the clustering algorithm, a global synchronization scheme is proposed to increase the efficiency of clustering algorithm. The research attention has been also paid to self-organization for multi-hop cellular networks. A 2-hop 2-slot uplink proposal to infrastructure-based cellular networks. The proposed solution can significantly increase the throughput of uplink communication and reduce the energy consumption of wireless terminals. (orig.)

  4. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation

    Directory of Open Access Journals (Sweden)

    Triana Mugia Rahayu

    2015-06-01

    Full Text Available The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both.

  5. Connectivity-Enhanced Route Selection and Adaptive Control for the Chevrolet Volt: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Wood, E.; Rajagopalan, S.

    2014-09-01

    The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3% respectively. These represent substantial opportunities considering that they only require software adjustments to implement.

  6. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  7. Generalized Lorenz models and their routes to chaos. II. Energy-conserving horizontal mode truncations

    International Nuclear Information System (INIS)

    Roy, D.; Musielak, Z.E.

    2007-01-01

    All attempts to generalize the three-dimensional Lorenz model by selecting higher-order Fourier modes can be divided into three categories, namely: vertical, horizontal and vertical-horizontal mode truncations. The previous study showed that the first method allowed only construction of a nine-dimensional system when the selected modes were energy-conserving. The results presented in this paper demonstrate that a five-dimensional model is the lowest-order generalized Lorenz model that can be constructed by the second method and that its route to chaos is the same as that observed in the original Lorenz model. It is shown that the onset of chaos in both systems is determined by a number of modes that describe the vertical temperature difference in a convection roll. In addition, a simple rule that allows selecting modes that conserve energy for each method is derived

  8. Robust On-Demand Multipath Routing with Dynamic Path Upgrade for Delay-Sensitive Data over Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2013-01-01

    Full Text Available Node mobility in mobile ad hoc networks (MANETs causes frequent route breakages and intermittent link stability. In this paper, we introduce a robust routing scheme, known as ad hoc on-demand multipath distance vector with dynamic path update (AOMDV-DPU, for delay-sensitive data transmission over MANET. The proposed scheme improves the AOMDV scheme by incorporating the following features: (i a routing metric based on the combination of minimum hops and received signal strength indicator (RSSI for discovery of reliable routes; (ii a local path update mechanism which strengthens the route, reduces the route breakage frequency, and increases the route longevity; (iii a keep alive mechanism for secondary route maintenance which enables smooth switching between routes and reduces the route discovery frequency; (iv a packet salvaging scheme to improve packet delivery in the event of a route breakage; and (v low HELLO packet overhead. The simulations are carried out in ns-2 for varying node speeds, number of sources, and traffic load conditions. Our AOMDV-DPU scheme achieves significantly higher throughput, lower delay, routing overhead, and route discovery frequency and latency compared to AOMDV. For H.264 compressed video traffic, AOMDV-DPU scheme achieves 3 dB or higher PSNR gain over AOMDV at both low and high node speeds.

  9. Inventory slack routing application in emergency logistics and relief distributions.

    Science.gov (United States)

    Yang, Xianfeng; Hao, Wei; Lu, Yang

    2018-01-01

    Various natural and manmade disasters during last decades have highlighted the need of further improving on governmental preparedness to emergency events, and a relief supplies distribution problem named Inventory Slack Routing Problem (ISRP) has received increasing attentions. In an ISRP, inventory slack is defined as the duration between reliefs arriving time and estimated inventory stock-out time. Hence, a larger inventory slack could grant more responsive time in facing of various factors (e.g., traffic congestion) that may lead to delivery lateness. In this study, the relief distribution problem is formulated as an optimization model that maximize the minimum slack among all dispensing sites. To efficiently solve this problem, we propose a two-stage approach to tackle the vehicle routing and relief allocation sub-problems. By analyzing the inter-relations between these two sub-problems, a new objective function considering both delivery durations and dispensing rates of demand sites is applied in the first stage to design the vehicle routes. A hierarchical routing approach and a sweep approach are also proposed in this stage. Given the vehicle routing plan, the relief allocation could be easily solved in the second stage. Numerical experiment with a comparison of multi-vehicle Traveling Salesman Problem (TSP) has demonstrated the need of ISRP and the capability of the proposed solution approaches.

  10. Modified Pagerank Algorithm Based Real-Time Metropolitan Vehicular Traffic Routing Using GPS Crowdsourcing Data

    Directory of Open Access Journals (Sweden)

    Adithya Guru Vaishnav.S

    2015-08-01

    Full Text Available This paper aims at providing a theoretical framework to find an optimized route from any source to destination considering the real-time traffic congestion issues. The distance of various possible routes from the source and destination are calculated and a PathRank is allocated in the descending order of distance to each possible path. Each intermediate locations are considered as nodes of a graph and the edges are represented by real-time traffic flow monitored using GoogleMaps GPS crowdsourcing data. The Page Rank is calculated for each intermediate node. From the values of PageRank and PathRank the minimum sum term is used to find an optimized route with minimal trade-off between shortest path and real-time traffic.

  11. Lessons learned by southern states in designating alternative routes

    International Nuclear Information System (INIS)

    1989-08-01

    The purpose of this report is to discuss the ''lessons learned'' by the five states within the southem region that have designated alternative or preferred routes under the regulations of the Department of Transportation (DOT) established for the transportation of radioactive materials. The document was prepared by reviewing applicable federal laws and regulations, examining state reports and documents and contacting state officials and routing agencies involved in making routing decisions. In undertaking this project, the Southern States Energy Board hopes to reveal the process used by states that have designated alternative routes and thereby share their experiences (i.e., lessons learned) with other southern states that have yet to make designations. Under DOT regulations (49 CFR 177.826), carriers of highway route controlled quantities of radioactive materials (which include spent nuclear fuel and high-level waste) must use preferred routes selected to reduce time in transit. Such preferred routes consist of (1) an interstate system highway with use of an interstate system bypass or beltway around cities when available, and (2) alternate routes selected by a ''state routing agency.''

  12. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  13. DIRECTIONAL OPPORTUNISTIC MECHANISM IN CLUSTER MESSAGE CRITICALITY LEVEL BASED ZIGBEE ROUTING

    OpenAIRE

    B.Rajeshkanna *1, Dr.M.Anitha 2

    2018-01-01

    The cluster message criticality level based zigbee routing(CMCLZOR) has been proposed for routing the cluster messages in wireless smart energy home area networks. It employs zigbee opportunistic shortcut tree routing(ZOSTR) and AODV individually for routing normal messages and highly critical messages respectively. ZOSTR allows the receiving nodes to compete for forwarding a packet with the priority of left-over hops rather than stating single next hop node like unicast protocols. Since it h...

  14. Psychosocial routes from housing investment to health: Evidence from England's home energy efficiency scheme

    International Nuclear Information System (INIS)

    Gilbertson, Jan; Grimsley, Michael; Green, Geoff

    2012-01-01

    Over the past decade the Warm Front Scheme has been the English Government's principal programme for improving domestic energy efficiency and reducing fuel poverty. This paper reports on a cross-sectional survey of low income householders participating in the Warm Front Scheme in five urban areas of England. Surveys were conducted of 2685 individuals, before and or after intervention. Pathways to self reported health were modelled by logistic regression. Of all the dimensions of health examined, only self reported mental health is directly associated with Warm Front measures. Intermediary variables associated with Warm Front intervention were shown to be significantly correlated with more dimensions of self reported health status. Higher temperatures, satisfaction with the heating system, greater thermal comfort, reductions in fuel poverty and lower stress were significantly correlated with improved health. Alleviating fuel poverty and reducing stress appeared to be the main route to health. We conclude there are complex and indirect relationships linking energy efficiency measures to outcomes on all dimensions of health which contribute to significant material and psychosocial benefits. The impact of the Warm Front Scheme cannot be fully understood by a limited analysis which merely relates indoor temperature and property characteristics to physiological health outcomes. - Highlights: ► Warm Front improvements are linked to significant material and psychosocial benefits. ► The alleviation of fuel poverty and the reduction of stress emerge as the likely route to health. ► The scope for improving health is greater than implied by the UK Government's Fuel Poverty Strategy. ► A dual but integrated approach to alleviating cold living conditions and fuel poverty is required.

  15. Global magnetic fluctuations in S-1 spheromak plasmas and relaxation toward a minimum-energy state

    International Nuclear Information System (INIS)

    Janos, A.; Hart, G.W.; Yamada, M.

    1986-01-01

    Globally coherent modes have been observed during formation in the S-1 Spheromak plasma. These modes play an important role in flux conversion and plasma relaxation toward a minimum-energy state. A significant finding is the temporal progression through the n = 5, 4, 3, 2; m = 1 mode sequence as q rises through rational fractions m/n. Peak amplitudes of the modes relative to the unperturbed field are typically less than 5%, while amplitudes as high as 20% have been observed

  16. Minimum bias measurement at 13 TeV

    CERN Document Server

    Orlando, Nicola; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes and to simulate the environment at the LHC with many concurrent pp interactions (pile-up). We summarise the ATLAS minimum bias measurements with proton-proton collision at 13 TeV center-of-mass-energy at the Large Hadron Collider.

  17. A Game Theory-Based Obstacle Avoidance Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shujun Bi

    2011-09-01

    Full Text Available The obstacle avoidance problem in geographic forwarding is an important issue for location-based routing in wireless sensor networks. The presence of an obstacle leads to several geographic routing problems such as excessive energy consumption and data congestion. Obstacles are hard to avoid in realistic environments. To bypass obstacles, most routing protocols tend to forward packets along the obstacle boundaries. This leads to a situation where the nodes at the boundaries exhaust their energy rapidly and the obstacle area is diffused. In this paper, we introduce a novel routing algorithm to solve the obstacle problem in wireless sensor networks based on a game-theory model. Our algorithm forms a concave region that cannot forward packets to achieve the aim of improving the transmission success rate and decreasing packet transmission delays. We consider the residual energy, out-degree and forwarding angle to determine the forwarding probability and payoff function of forwarding candidates. This achieves the aim of load balance and reduces network energy consumption. Simulation results show that based on the average delivery delay, energy consumption and packet delivery ratio performances our protocol is superior to other traditional schemes.

  18. Adaptive Reliable Routing Based on Cluster Hierarchy for Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2010-01-01

    Full Text Available As a multimedia information acquisition and processing method, wireless multimedia sensor network(WMSN has great application potential in military and civilian areas. Compared with traditional wireless sensor network, the routing design of WMSN should obtain more attention on the quality of transmission. This paper proposes an adaptive reliable routing based on clustering hierarchy named ARCH, which includes energy prediction and power allocation mechanism. To obtain a better performance, the cluster structure is formed based on cellular topology. The introduced prediction mechanism makes the sensor nodes predict the remaining energy of other nodes, which dramatically reduces the overall information needed for energy balancing. ARCH can dynamically balance the energy consumption of nodes based on the predicted results provided by power allocation. The simulation results prove the efficiency of the proposed ARCH routing.

  19. RFID-WSN integrated architecture for energy and delay- aware routing a simulation approach

    CERN Document Server

    Ahmed, Jameel; Tayyab, Muhammad; Nawaz, Menaa

    2015-01-01

    The book identifies the performance challenges concerning Wireless Sensor Networks (WSN) and Radio Frequency Identification (RFID) and analyzes their impact on the performance of routing protocols. It presents a thorough literature survey to identify the issues affecting routing protocol performance, as well as a mathematical model for calculating the end-to-end delays of the routing protocol ACQUIRE; a comparison of two routing protocols (ACQUIRE and DIRECTED DIFFUSION) is also provided for evaluation purposes. On the basis of the results and literature review, recommendations are made for better selection of protocols regarding the nature of the respective application and related challenges. In addition, this book covers a proposed simulator that integrates both RFID and WSN technologies. Therefore, the manuscript is divided in two major parts: an integrated architecture of smart nodes, and a power-optimized protocol for query and information interchange.

  20. The Impact of Minimum Energy Performance Standards (MEPS) Regulation on Electricity Saving in Malaysia

    Science.gov (United States)

    Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti

    2018-03-01

    One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.

  1. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  2. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.

    Science.gov (United States)

    Alanazi, Adwan; Elleithy, Khaled

    2015-09-02

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.

  3. Routing protocols for wireless sensor networks: What the literature says?

    Directory of Open Access Journals (Sweden)

    Amit Sarkar

    2016-12-01

    Full Text Available Routing in Wireless Sensor Networks (WSNs plays a significant role in the field of environment-oriented monitoring, traffic monitoring, etc. Here, wide contributions that are made toward routing in WSN are explored. The paper mainly aims to categorize the routing problems and examines the routing-related optimization problems. For achieving the motive, 50 papers from the standard journals are collected and primarily reviewed in a chronological way. Later, various features that are related to energy, security, speed and reliability problems of routing are discussed. Subsequently, the literature is analyzed based on the simulation environment and experimental setup, awareness over the Quality of Service (QoS and the deployment against various applications. In addition, the optimization of the routing algorithms and the meta-heuristic study of routing optimization are explored. Routing is a vast area with numerous unsolved issues and hence, various research gaps along with future directions are also presented.

  4. Low Carbon Footprint Routes for Bird Watching

    Directory of Open Access Journals (Sweden)

    Wei-Ta Fang

    2015-03-01

    Full Text Available Bird watching is one of many recreational activities popular in ecotourism. Its popularity, therefore, prompts the need for studies on energy conservation. One such environmentally friendly approach toward minimizing bird watching’s ecological impact is ensuring a reduced carbon footprint by using an economic travel itinerary comprising a series of connected routes between tourist attractions that minimizes transit time. This study used a travel-route planning approach using geographic information systems to detect the shortest path, thereby solving the problems associated with time-consuming transport. Based on the results of road network analyses, optimal travel-route planning can be determined. These methods include simulated annealing (SA and genetic algorithms (GA. We applied two algorithms in our simulation research to detect which one is an appropriate algorithm for running carbon-routing algorithms at the regional scale. SA, which is superior to GA, is considered an excellent approach to search for the optimal path to reduce carbon dioxide and high gasoline fees, thereby controlling travel time by using the shortest travel routes.

  5. Energy Route Multi-Objective Optimization of Wireless Power Transfer Network: An Improved Cross-Entropy Method

    Directory of Open Access Journals (Sweden)

    Lijuan Xiang

    2017-06-01

    Full Text Available This paper identifies the Wireless Power Transfer Network (WPTN as an ideal model for long-distance Wireless Power Transfer (WPT in a certain region with multiple electrical equipment. The schematic circuit and design of each power node and the process of power transmission between the two power nodes are elaborated. The Improved Cross-Entropy (ICE method is proposed as an algorithm to solve for optimal energy route. Non-dominated sorting is introduced for optimization. A demonstration of the optimization result of a 30-nodes WPTN system based on the proposed algorithm proves ICE method to be efficacious and efficiency.

  6. SIMULATION AND ANALYSIS OF GREEDY ROUTING PROTOCOL IN VIEW OF ENERGY CONSUMPTION AND NETWORK LIFETIME IN THREE DIMENSIONAL UNDERWATER WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    SHEENA KOHLI

    2017-11-01

    Full Text Available Underwater Wireless Sensor Network (UWSN comprises of a number of miniature sized sensing devices deployed in the sea or ocean, connected by dint of acoustic links to each other. The sensors trap the ambient conditions and transmit the data from one end to another. For transmission of data in any medium, routing protocols play a crucial role. Moreover, being battery limited, an unavoidable parameter to be considered in operation and analysis of protocols is the network energy and the network lifetime. The paper discusses the greedy routing protocol for underwater wireless sensor networks. The simulation of this routing protocol also takes into consideration the characteristics of acoustic communication like attenuation, transmission loss, signal to noise ratio, noise, propagation delay. The results from these observations may be used to construct an accurate underwater communication model.

  7. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    Science.gov (United States)

    Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

  8. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  9. Converging migration routes of Eurasian hobbies Falco subbuteo crossing the African equatorial rain forest.

    Science.gov (United States)

    Strandberg, Roine; Klaassen, Raymond H G; Hake, Mikael; Olofsson, Patrik; Alerstam, Thomas

    2009-02-22

    Autumn migration of adult Eurasian hobbies Falco subbuteo from Europe to southern Africa was recorded by satellite telemetry and observed routes were compared with randomly simulated routes. Two non-random features of observed routes were revealed: (i) shifts to more westerly longitudes than straight paths to destinations and (ii) strong route convergence towards a restricted area close to the equator (1 degree S, 15 degrees E). The birds migrated south or southwest to approximately 10 degrees N, where they changed to south-easterly courses. The maximal spread between routes at 10 degrees N (2134 km) rapidly decreased to a minimum (67 km) close to the equator. We found a striking relationship between the route convergence and the distribution of continuous rainforest, suggesting that hobbies minimize flight distance across the forest, concentrating in a corridor where habitat may be more suitable for travelling and foraging. With rainforest forming a possible ecological barrier, many migrants may cross the equator either at 15 degrees E, similar to the hobbies, or at 30-40 degrees E, east of the rainforest where large-scale migration is well documented. Much remains to be understood about the role of the rainforest for the evolution and future of the trans-equatorial Palaearctic-African bird migration systems.

  10. A novel minimum cost maximum power algorithm for future smart home energy management.

    Science.gov (United States)

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  11. A Novel Smart Routing Protocol for Remote Health Monitoring in Medical Wireless Networks

    Directory of Open Access Journals (Sweden)

    T. V. P. Sundararajan

    2014-01-01

    Full Text Available In a Medical Wireless Network (MWN, sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  12. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    Electrodeposition route to synthesize cigs films – an economical way to harness solar energy. ... for solar cells, how the charge separation in this nano scale photovoltaic (PV) materials occurs which help in absorption of radiation, and the electro-deposition route, a low cost one, produces thin film solar cells are analyzed.

  13. Minimum number of transfer units and reboiler duty for multicomponent distillation columns

    International Nuclear Information System (INIS)

    Pleşu, Valentin; Bonet Ruiz, Alexandra Elena; Bonet, Jordi; Llorens, Joan; Iancu, Petrica

    2013-01-01

    Some guidelines to evaluate distillation columns, considering only basic thermodynamic data and principles, are provided in this paper. The method allows a first insight to the problem by simple calculations, without requiring column variables to ensure rational use of energy and low environmental impact. The separation system is approached by two complementary ways: minimum and infinite reflux flow rate. The minimum reflux provides the minimum energy requirements, and the infinite reflux provides the feasibility conditions. The difficulty of separation can be expressed in terms of number of transfer units (NTU). The applicability of the method is not mathematically limited by the number of components in the mixture. It is also applicable to reactive distillation. Several mixtures, including reactive distillation, are rigorously simulated as illustrative examples, to verify the applicability of the approach. The separation of the mixtures, performed by distillation columns, is feasible if a minimum NTU can be calculated between the distillate and bottom products. Once verified the feasibility of the separation, the maximum thermal efficiency depends only on boiling point of bottom and distillate streams. The minimum energy requirements corresponding to the reboiler can be calculated from the maximum thermal efficiency, and the variation of entropy and enthalpy of mixing between distillate and bottom streams. -- Highlights: • Feasibility analysis complemented with difficulty of separation parameters • Minimum and infinite reflux simplified models for distillation columns • Minimum number of transfer units (NTU) for packed columns at early design stages • Calculation of minimum energy distillation requirements at early design stages • Thermodynamic cycle approach and efficiency for distillation columns

  14. A novel insight into beaconless geo-routing

    KAUST Repository

    Bader, Ahmed

    2012-12-01

    Beaconless geo-routing protocols have been traditionally analyzed assuming equal communication ranges for the data and control packets. This is not true in reality, since the communication range is in practice function of the packet length. As a consequence, a substantial discrepancy may exist between analytical and empirical results offered in beaconless geo-routing literature. Furthermore, performance of beaconless geo-routing protocols has typically considered using single-hop metrics only. End-to-end performance is considered in literature only occasionally and mainly in terms of simulation only. In this paper, we re-examine this class of protocols. We first incorporate practical packet detection models in order to capture the dependency of the communication range on the packet\\'s length. We then develop a detailed analytical framework for the end-to-end delay and energy performance of beaconless geo-routing protocols. Finally, we present two different application scenarios and study various tradeoffs in light of the framework developed. © 2012 IEEE.

  15. Accelerated Carbonation of Steel Slags Using CO{sub 2} Diluted Sources: CO{sub 2} Uptakes and Energy Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Baciocchi, Renato, E-mail: baciocchi@ing.uniroma2.it; Costa, Giulia [Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Rome (Italy); Polettini, Alessandra; Pomi, Raffaella; Stramazzo, Alessio [Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Rome (Italy); Zingaretti, Daniela [Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Rome (Italy)

    2016-01-18

    This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF) steel slag samples employing gas mixtures containing 40 and 10% CO{sub 2} vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO{sub 2} for comparison purposes. Two routes were tested, the slurry-phase (L/S = 5 l/kg, T = 100°C and Ptot = 10 bar) and the thin-film (L/S = 0.3–0.4 l kg, T = 50°C and Ptot = 7–10 bar) routes. For each one, the CO{sub 2} uptake achieved as a function of the reaction time was analyzed and on this basis, the energy requirements associated with each carbonation route and gas mixture composition were estimated considering to store the CO{sub 2} emissions of a medium size natural gas fired power plant (20 MW). For the slurry-phase route, maximum CO{sub 2} uptakes ranged from around 8% at 10% CO{sub 2}, to 21.1% (BOF-a) and 29.2% (BOF-b) at 40% CO{sub 2} and 32.5% (BOF-a) and 40.3% (BOF-b) at 100% CO{sub 2}. For the thin-film route, maximum uptakes of 13% (BOF-c) and 19.5% (BOF-d) at 40% CO{sub 2}, and 17.8% (BOF-c) and 20.2% (BOF-d) at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO{sub 2} uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO{sub 2} flows (i.e., 1400−1600 MJ/t{sub CO{sub 2}} for the slurry-phase and 2220 – 2550 MJ/t{sub CO{sub 2}} for the thin-film route).

  16. Alternative routes to olefins. Chances and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Delhomme, C.; Ponceau, M. [Linde AG, Pullach (Germany)

    2013-11-01

    In the future, conventional raw materials which are used for the production of olefins will get shorter and more expensive and alternative raw materials and production routes will gain importance. Natural gas, coal, shale oil or bio-mass are potential sources for the production of olefins, especially ethylene and propylene, as major base chemicals. Several potential production routes were already developed in the past, but cost, energy and environmental considerations might make these unattractive or unfeasible in comparison to traditional processes (e.g. steam cracking). Other processes such as methanol to olefins processes were successfully developed and first commercial units are running. In addition, combination of traditional processes (e.g. coal/biomass gasification, Fischer-Tropsch and steam cracking) might enable new pathways. Besides, dehydration of ethanol is opening direct routes from biomass to 'green' ethylene. However, for these 'bio-routes', feedstock availability and potential land use conflict with food production (sugar cane, wheat,..) still need to be evaluated. finally, new oxidative routes, including processes such as oxidative coupling of methane or oxidative dehydrogenation, are still at an early development stage but present potential for future industrial applications. (orig.) (Published in summary form only)

  17. Route-external and route-internal landmarks in route descriptions : Effects of route length and map design

    NARCIS (Netherlands)

    Westerbeek, Hans; Maes, Alfons

    2013-01-01

    Landmarks are basic ingredients in route descriptions. They often mark choice points: locations where travellers choose from different options how to continue the route. This study focuses on one of the loose ends in the taxonomy of landmarks. In a memory-based production experiment in which

  18. THE ROUTE DETERMINATION OF FILING A TAXI TO THE CUSTOMER IN TERMS OF FUNCTIONING OF THE AUTOMATED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Yu. O. Davidich

    2008-03-01

    Full Text Available The issues of overall performance increase of taxi transport due to improvement of automated system of dispatching management by its technological processes are considered. The route of taxi submission to a customer is offered to be determined by a criterion of minimum time. To solve the given task the taxi submission route determination technique is developed. It will promote the reduction of passengers’ waiting time and the decrease in operational expenses of a carrier.

  19. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposal

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2017-11-01

    Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  20. DEADS: Depth and Energy Aware Dominating Set Based Algorithm for Cooperative Routing along with Sink Mobility in Underwater WSNs

    Directory of Open Access Journals (Sweden)

    Amara Umar

    2015-06-01

    Full Text Available Performance enhancement of Underwater Wireless Sensor Networks (UWSNs in terms of throughput maximization, energy conservation and Bit Error Rate (BER minimization is a potential research area. However, limited available bandwidth, high propagation delay, highly dynamic network topology, and high error probability leads to performance degradation in these networks. In this regard, many cooperative communication protocols have been developed that either investigate the physical layer or the Medium Access Control (MAC layer, however, the network layer is still unexplored. More specifically, cooperative routing has not yet been jointly considered with sink mobility. Therefore, this paper aims to enhance the network reliability and efficiency via dominating set based cooperative routing and sink mobility. The proposed work is validated via simulations which show relatively improved performance of our proposed work in terms the selected performance metrics.

  1. Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures

    International Nuclear Information System (INIS)

    Buchberger, G.; Hauser, B.; Jakoby, B.; Hilber, W.; Schoeftner, J.; Bauer, S.

    2014-01-01

    Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find that the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.

  2. Ba 5s photoionization in the region of the second Cooper minimum

    International Nuclear Information System (INIS)

    Whitfield, S B; Wehlitz, R; Dolmatov, V K

    2011-01-01

    We investigate the 5s angular distribution parameter and partial photoionization cross section of atomic Ba in the region of the second Cooper minimum covering a photon energy region from 120 to 260 eV. We observe a strong drop in the Ba 5s β value from 2.0, reaching a minimum of 1.57 ± 0.07 at a photon energy of 150 eV. The β value then slowly rises back towards its nominal value of 2.0 at photon energies beyond the minimum. Our measured 5s partial cross section also shows a pronounced dip around 170 eV due to interchannel coupling with the Ba 4d photoelectrons. After combining our measurements with previous experimental values at lower photon energies, we obtain a consistent data set spanning the photon energy range prior to the onset of the partial cross section maximum and through the cross section minimum. We also calculate the 5s partial cross section under several different levels of approximation. We find that the generalized random-phase approximation with exchange calculation models the shape and position of the combined experimental cross section data set rather well after incorporating experimental ionization energies and a shift in the photon energy scale.

  3. An Application of Path Sharing To Routing For Mobile Sinks In ...

    African Journals Online (AJOL)

    CODEXT protocol for optimizing routing to multiple sinks through reinforcement learning. Such a routing situation arises in WSNs with multiple, possibly mobile sinks, such as WSNs with actuators deployed in parallel to sensors. This protocol is based on GAF protocol and grid structure to reduce energy consumed.

  4. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.

    Science.gov (United States)

    Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin

    2018-04-23

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.

  5. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weigang Bai

    2018-04-01

    Full Text Available The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS and position random candidates selection (PRCS. PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.

  6. A Generalized Minimum Cost Flow Model for Multiple Emergency Flow Routing

    Directory of Open Access Journals (Sweden)

    Jianxun Cui

    2014-01-01

    Full Text Available During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.

  7. Manufacturing routes for stainless steel first wall panels

    International Nuclear Information System (INIS)

    Bucci, Ph.; Federzoni, L.; Le Marois, G.; Lorenzetto, P.

    2001-01-01

    Hot isostatic pressing (HIP) techniques are being considered in the European Home Team as one of the fabrication routes to produce ITER-FEAT primary first wall panels (PFWP). To demonstrate the potential and the availability of such techniques, material development, innovative mock-up fabrications and numerical modeling for the production of near-net shape components are currently been studied by CEA/CEREM in collaboration with the EFDA-CSU Garching. The aim of this work is to investigate the manufacturing feasibility of advanced PFWP concepts, with reduced pitch between FW cooling channels and reduced material thickness between the FW cooling channels and the front surface, in order to improve the thermal fatigue performance of these concepts. In order to select the best fabrication route, two different manufacturing methods based on the HIP process are being considered. The first one consists in manufacturing of the first wall panel by a HIP forming technique. Mock-ups are made of a serpentine tube expanded into a proper matrix. 2-D computer modeling has been performed to estimate the serpentine deformation. The second manufacturing route is based on the powder HIP technique. Mock-ups have been made of a serpentine embedded into SS powder. In both cases, the objective was to obtain the minimum pitch between the stainless steel (SS) tubes and between the SS tubes and the front face

  8. An Improved 6LoWPAN Hierarchical Routing Protocol

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-10-01

    Full Text Available IETF 6LoWPAN working group is engaged in the IPv6 protocol stack research work based on IEEE802.15.4 standard. In this working group, the routing protocol is one of the important research contents. In the 6LoWPAN, HiLow is a well-known layered routing protocol. This paper puts forward an improved hierarchical routing protocol GHiLow by improving HiLow parent node selection and path restoration strategy. GHiLow improves the parent node selection by increasing the choice of parameters. Simutaneously, it also improves path recovery by analysing different situations to recovery path. Therefore, GHiLow contributes to the ehancement of network performance and the decrease of network energy consumption.

  9. Energy Efficient Routing in Wireless Sensor Networks based on Ant ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... improved Ant System and their application in WSN routing process. The simulation results show ... and Mobile ad-hoc networks (MANETs) are inappropriate for ... Dorigo in 1992 in his PhD thesis, the first algorithm was aiming ...

  10. Routing Service Quality—Local Driver Behavior Versus Routing Services

    DEFF Research Database (Denmark)

    Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    of the quality of one kind of location-based service, namely routing services. Specifically, the paper presents a framework that enables the comparison of the routes provided by routing services with the actual driving behaviors of local drivers. Comparisons include route length, travel time, and also route...... popularity, which are enabled by common driving behaviors found in available trajectory data. The ability to evaluate the quality of routing services enables service providers to improve the quality of their services and enables users to identify the services that best serve their needs. The paper covers......Mobile location-based services is a very successful class of services that are being used frequently by users with GPS-enabled mobile devices such as smartphones. This paper presents a study of how to exploit GPS trajectory data, which is available in increasing volumes, for the assessment...

  11. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    Science.gov (United States)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

  12. An energy-aware engineered control plane for wavelength-routed networks

    DEFF Research Database (Denmark)

    Ricciardi, Sergio; Wang, Jiayuan; Palmieri, Francesco

    2015-01-01

    ' operational expenditures. To face this problem, we propose a single-stage routing and wavelength assignment scheme, based on several network engineering extensions to the Generalised Multi-Protocol Label Switching (GMPLS) control plane protocols, mainly Open Shortest Path First, with new composed metrics...

  13. Modeling route choice criteria from home to major streets: A discrete choice approach

    Directory of Open Access Journals (Sweden)

    Jose Osiris Vidana-Bencomo

    2018-03-01

    Full Text Available A discrete choice model that consists of three sub-models was developed to investigates the route choice criteria of drivers who travel from their homes in the morning to the access point along the major streets that bound the Traffic Analysis Zones (TAZs. The first sub-model is a Nested Logit Model (NLM that estimates the probability of a driver has or has no multiple routes, and if the driver has multiple routes, the route selection criteria are based on the access point’s intersection control type or other factors. The second sub-model is a Mixed Logit (MXL model. It estimates the probabilities of the type of intersection control preferred by a driver. The third sub-model is a NLM that estimates the probabilities of a driver selecting his/her route for its shortest travel time or to avoid pedestrian, and if the aim is to take the fastest route, the decision criteria is based on the shortest distance or minimum stops and turns. Data gathered in a questionnaire survey were used to estimate the sub-models. The attributes of the utility functions of the sub-models are the driver’s demographic and trip characteristics. The model provides a means for transportation planners to distribute the total number of home-based trips generated within a TAZ to the access points along the major streets that bound the TAZ.

  14. A novel minimum cost maximum power algorithm for future smart home energy management

    Directory of Open Access Journals (Sweden)

    A. Singaravelan

    2017-11-01

    Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  15. Information processing and routing in wireless sensor networks

    CERN Document Server

    Yu, Yang; Krishnamachari, Bhaskar

    2006-01-01

    This book presents state-of-the-art cross-layer optimization techniques for energy-efficient information processing and routing in wireless sensor networks. Besides providing a survey on this important research area, three specific topics are discussed in detail - information processing in a collocated cluster, information transport over a tree substrate, and information routing for computationally intensive applications. The book covers several important system knobs for cross-layer optimization, including voltage scaling, rate adaptation, and tunable compression. By exploring tradeoffs of en

  16. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  17. Towards minimum energy houses with EPC {<=}0; Op weg naar minimum energie woningen met EPC {<=}0

    Energy Technology Data Exchange (ETDEWEB)

    Den Dulk, F.W. [Piode - ontwerp- en adviesbureau BNA, Amersfoort (Netherlands)

    2012-09-15

    The purpose of the publication is to inform stakeholders about the current state concerning energy efficient building of houses and residential buildings. Also guidance is provided with regard to steps to follow and some practical examples are given. The energy concepts shown are based on known and marketable techniques. An energy concept is a balanced and tailored set of design measures, building construction facilities, installation and (sustainable) energy supply. Optimization is based on energy savings and costs and benefits and it must also meet requirements for health, safety, comfort and ease of operation [Dutch] Het doel van de publicatie is om belanghebbenden te informeren over de huidige stand van zaken m.b.t. vergaand energiezuinig bouwen. Tevens wordt een handreiking geboden over de te volgen stappen en zijn een aantal voorbeelden opgenomen over de praktijk. De publicatie is beperkt tot seriematige woningbouw. De energieconcepten zijn op het niveau van de individuele woning of een woongebouw. De weergegeven energieconcepten zijn gebaseerd op bekende- en marktrijpe technieken. Een energieconcept is een afgewogen en op elkaar afgestemd samenstel van ontwerpmaatregelen, bouwkundige maatregelen en voorzieningen, de installatie en de (duurzame) energievoorziening . Optimalisatie vindt plaats op basis van energiebesparing en kosten/baten terwijl tevens moet worden voldaan aan eisen voor veiligheid, gezondheid, comfort en bedieningsgemak.

  18. Fermat and the Minimum Principle

    Indian Academy of Sciences (India)

    Arguably, least action and minimum principles were offered or applied much earlier. This (or these) principle(s) is/are among the fundamental, basic, unifying or organizing ones used to describe a variety of natural phenomena. It considers the amount of energy expended in performing a given action to be the least required ...

  19. Transportation Routing Analysis Geographic Information System (WebTRAGIS) User's Manual

    International Nuclear Information System (INIS)

    Michelhaugh, R.D.

    2000-01-01

    In the early 1980s, Oak Ridge National Laboratory (ORNL) developed two transportation routing models: HIGHWAY, which predicts truck transportation routes, and INTERLINE, which predicts rail transportation routes. Both of these models have been used by the U.S. Department of Energy (DOE) community for a variety of routing needs over the years. One of the primary uses of the models has been to determine population-density information, which is used as input for risk assessment with the RADTRAN model, which is available on the TRANSNET computer system. During the recent years, advances in the development of geographic information systems (GISs) have resulted in increased demands from the user community for a GIS version of the ORNL routing models. In April 1994, the DOE Transportation Management Division (EM-261) held a Baseline Requirements Assessment Session with transportation routing experts and users of the HIGHWAY and INTERLINE models. As a result of the session, the development of a new GIS routing model, Transportation Routing Analysis GIS (TRAGIS), was initiated. TRAGIS is a user-friendly, GIS-based transportation and analysis computer model. The older HIGHWAY and INTERLINE models are useful to calculate routes, but they cannot display a graphic of the calculated route. Consequently, many users have experienced difficulty determining the proper node for facilities and have been confused by or have misinterpreted the text-based listing from the older routing models. Some of the primary reasons for the development of TRAGIS are (a) to improve the ease of selecting locations for routing, (b) to graphically display the calculated route, and (c) to provide for additional geographic analysis of the route

  20. Torsional shear flow of granular materials: shear localization and minimum energy principle

    Science.gov (United States)

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  1. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    Energy Technology Data Exchange (ETDEWEB)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-07-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  2. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    International Nuclear Information System (INIS)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-01-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  3. Elemental GCR Observations during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2013-01-01

    Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.

  4. On the cost/delay tradeoff of wireless delay tolerant geographic routing

    OpenAIRE

    Tasiopoulos, Argyrios; Tsiaras, Christos; Toumpis, Stavros

    2012-01-01

    In Delay Tolerant Networks (DTNs), there is a fundamental tradeoff between the aggregate transport cost of a packet and the delay in its delivery. We study this tradeoff in the context of geographical routing in wireless DTNs.We ?rst specify the optimal cost/delay tradeoff, i.e., the tradeoff under optimal network operation, using a dynamic network construction termed the Cost/Delay Evolving Graph (C/DEG) and the Optimal Cost/Delay Curve (OC/DC), a function that gives the minimum possible agg...

  5. Reconfigurable Robust Routing for Mobile Outreach Network

    Science.gov (United States)

    Lin, Ching-Fang

    2010-01-01

    The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.

  6. Mobile Traffic Alert and Tourist Route Guidance System Design Using Geospatial Data

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.; Mishra, S.; Gupta, A.

    2017-09-01

    The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.

  7. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF4

    International Nuclear Information System (INIS)

    Gutowski, M.; Univ. of Utah, Salt Lake City, UT

    1999-01-01

    The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively

  8. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    Science.gov (United States)

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  9. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  10. Poster abstract: A decentralized routing scheme based on a zero-sum game to optimize energy in solar powered sensor networks

    KAUST Repository

    Dehwah, Ahmad H.; Tembine, Hamidou; Claudel, Christian G.

    2014-01-01

    This poster is aimed at solving the problem of maximizing the energy margin of a solar-powered sensor network at a fixed time horizon, to maximize the network performance during an event to monitor. Using a game theoretic approach, the optimal routing maximizing the energy margin of the network at a given time under solar power forcing can be computed in a decentralized way and solved exactly through dynamic programming with a low overall complexity. We also show that this decentralized algorithm is simple enough to be implemented on practical sensor nodes. Such an algorithm would be very useful whenever the energy margin of a solar-powered sensor network has to be maximized at a specific time. © 2014 IEEE.

  11. Poster abstract: A decentralized routing scheme based on a zero-sum game to optimize energy in solar powered sensor networks

    KAUST Repository

    Dehwah, Ahmad H.

    2014-04-01

    This poster is aimed at solving the problem of maximizing the energy margin of a solar-powered sensor network at a fixed time horizon, to maximize the network performance during an event to monitor. Using a game theoretic approach, the optimal routing maximizing the energy margin of the network at a given time under solar power forcing can be computed in a decentralized way and solved exactly through dynamic programming with a low overall complexity. We also show that this decentralized algorithm is simple enough to be implemented on practical sensor nodes. Such an algorithm would be very useful whenever the energy margin of a solar-powered sensor network has to be maximized at a specific time. © 2014 IEEE.

  12. State alternative route designations

    International Nuclear Information System (INIS)

    1989-07-01

    Pursuant to the Hazardous Materials Transportation Act (HMTA), the Department of Transportation (DOT) has promulgated a comprehensive set of regulations regarding the highway transportation of high-level radioactive materials. These regulations, under HM-164 and HM-164A, establish interstate highways as the preferred routes for the transportation of radioactive materials within and through the states. The regulations also provide a methodology by which a state may select alternative routes. First,the state must establish a ''state routing agency,'' defined as an entity authorized to use the state legal process to impose routing requirements on carriers of radioactive material (49 CFR 171.8). Once identified, the state routing agency must select routes in accordance with Large Quantity Shipments of Radioactive Materials or an equivalent routing analysis. Adjoining states and localities should be consulted on the impact of proposed alternative routes as a prerequisite of final route selection. Lastly, the states must provide written notice of DOT of any alternative route designation before the routes are deemed effective

  13. Phosphate Activation via Reduced Oxidation State Phosphorus (P. Mild Routes to Condensed-P Energy Currency Molecules

    Directory of Open Access Journals (Sweden)

    Claire R. Cousins

    2013-07-01

    Full Text Available The emergence of mechanisms for phosphorylating organic and inorganic molecules is a key step en route to the earliest living systems. At the heart of all contemporary biochemical systems reside reactive phosphorus (P molecules (such as adenosine triphosphate, ATP as energy currency molecules to drive endergonic metabolic processes and it has been proposed that a predecessor of such molecules could have been pyrophosphate [P2O74−; PPi(V]. Arguably the most geologically plausible route to PPi(V is dehydration of orthophosphate, Pi(V, normally a highly endergonic process in the absence of mechanisms for activating Pi(V. One possible solution to this problem recognizes the presence of reactive-P containing mineral phases, such as schreibersite [(Fe,Ni3P] within meteorites whose abundance on the early Earth would likely have been significant during a putative Hadean-Archean heavy bombardment. Here, we propose that the reduced oxidation state P-oxyacid, H-phosphite [HPO32−; Pi(III] could have activated Pi(V towards condensation via the intermediacy of the condensed oxyacid pyrophosphite [H2P2O52−; PPi(III]. We provide geologically plausible provenance for PPi(III along with evidence of its ability to activate Pi(V towards PPi(V formation under mild conditions (80 °C in water.

  14. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    Science.gov (United States)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is

  15. Hurricane Evacuation Routes

    Data.gov (United States)

    Department of Homeland Security — Hurricane Evacuation Routes in the United States A hurricane evacuation route is a designated route used to direct traffic inland in case of a hurricane threat. This...

  16. Route-Over Forwarding Techniques in a 6LoWPAN

    Directory of Open Access Journals (Sweden)

    Andreas Weigel

    2014-12-01

    Full Text Available 6LoWPAN plays a major role within the protocol stack for the future Internet of Things. Its fragmentation mechanism enables transport of IPv6 datagrams with the required minimum MTU of 1280 bytes over 802.15.4-based networks. With the goal of a fully standardized WSN protocol stack currently necessitating a route-over approach, i.e., routing at the IP-layer, there are two main choices for any 6LoWPAN implementation with regard to datagram fragmentation: Hop-by-hop assembly or a cross-layered direct mode, which forwards individual 6LoWPAN fragments before the whole datagram has arrived. In addition to these two straightforward approaches, we propose enhancements based on adaptive rate-restriction for the direct forwarding and a retry control for both modes to reduce the number of losses of larger datagrams. An evaluation of these modes in a simulation environment and a hardware testbed indicate that the proposed enhancements can considerably improve PRR and latency within 6LoWPAN networks.

  17. Secure Trust Based Key Management Routing Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jugminder Kaur

    2016-01-01

    Full Text Available Security is always a major concern in wireless sensor networks (WSNs. Several trust based routing protocols are designed that play an important role in enhancing the performance of a wireless network. However they still have some disadvantages like limited energy resources, susceptibility to physical capture, and little protection against various attacks due to insecure wireless communication channels. This paper presents a secure trust based key management (STKF routing framework that establishes a secure trustworthy route depending upon the present and past node to node interactions. This route is then updated by isolating the malicious or compromised nodes from the route, if any, and a dedicated link is created between every pair of nodes in the selected route with the help of “q” composite random key predistribution scheme (RKPS to ensure data delivery from source to destination. The performance of trust aware secure routing framework (TSRF is compared with the proposed routing scheme. The results indicate that STKF provides an effective mechanism for finding out a secure route with better trustworthiness than TSRF which avoids the data dropping, thereby increasing the data delivery ratio. Also the distance required to reach the destination in the proposed protocol is less hence effectively utilizing the resources.

  18. SS Cygni: The accretion disk in eruption and at minimum light

    International Nuclear Information System (INIS)

    Kiplinger, A.L.

    1979-01-01

    Absolute spectrophotometric observations of the dwarf nova SS Cygni have been obtained at maximum light, during the subsequent decline, and at minimum light. In order to provide a critical test of accretion disk theory, a model for a steady-state α-model accretion disk has been constructed which utilizes a grid of stellar energy distributions to synthesize the disk flux. Physical parameters for the accretion disk at maximum light are set by estimates of the intrinsic luminosity of the system that result from a desynthesis of a composite minimum light energy distribution. At maximum light, agreements between observational and theoretical continuum slopes and the Balmer jump are remarkably good. The model fails, however, during the eruption decline and at minimum light. It appears that the physical character of an accretion disk at minimum light must radiacally differ from the disk observed at maximum light

  19. A Multipath Routing Protocol Based on Clustering and Ant Colony Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2010-05-01

    Full Text Available For monitoring burst events in a kind of reactive wireless sensor networks (WSNs, a multipath routing protocol (MRP based on dynamic clustering and ant colony optimization (ACO is proposed.. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.

  20. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets

    Science.gov (United States)

    Ahdab, Yvana D.; Thiel, Gregory P.; Böhlke, John Karl; Stanton, Jennifer S.; Lienhard, John H.

    2018-01-01

    This paper uses chemical and physical data from a large 2017 U.S. Geological Surveygroundwater dataset with wells in the U.S. and three smaller international groundwater datasets with wells primarily in Australia and Spain to carry out a comprehensive investigation of brackish groundwater composition in relation to minimum desalinationenergy costs. First, we compute the site-specific least work required for groundwater desalination. Least work of separation represents a baseline for specific energy consumptionof desalination systems. We develop simplified equations based on the U.S. data for least work as a function of water recovery ratio and a proxy variable for composition, either total dissolved solids, specific conductance, molality or ionic strength. We show that the U.S. correlations for total dissolved solids and molality may be applied to the international datasets. We find that total molality can be used to calculate the least work of dilute solutions with very high accuracy. Then, we examine the effects of groundwater solute composition on minimum energy requirements, showing that separation requirements increase from calcium to sodium for cations and from sulfate to bicarbonate to chloride for anions, for any given TDS concentration. We study the geographic distribution of least work, total dissolved solids, and major ions concentration across the U.S. We determine areas with both low least work and high water stress in order to highlight regions holding potential for desalination to decrease the disparity between high water demand and low water supply. Finally, we discuss the implications of the USGS results on water resource planning, by comparing least work to the specific energy consumption of brackish water reverse osmosisplants and showing the scaling propensity of major electrolytes and silica in the U.S. groundwater samples.

  1. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  2. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  3. What is the Minimum EROI that a Sustainable Society Must Have?

    Directory of Open Access Journals (Sweden)

    David J.R. Murphy

    2009-01-01

    Full Text Available Economic production and, more generally, most global societies, are overwhelmingly dependant upon depleting supplies of fossil fuels. There is considerable concern amongst resource scientists, if not most economists, as to whether market signals or cost benefit analysis based on today’s prices are sufficient to guide our decisions about our energy future. These suspicions and concerns were escalated during the oil price increase from 2005 – 2008 and the subsequent but probably related market collapse of 2008. We believe that Energy Return On Investment (EROI analysis provides a useful approach for examining disadvantages and advantages of different fuels and also offers the possibility to look into the future in ways that markets seem unable to do. The goal of this paper is to review the application of EROI theory to both natural and economic realms, and to assess preliminarily the minimum EROI that a society must attain from its energy exploitation to support continued economic activity and social function. In doing so we calculate herein a basic first attempt at the minimum EROI for current society and some of the consequences when that minimum is approached. The theory of the minimum EROI discussed here, which describes the somewhat obvious but nonetheless important idea that for any being or system to survive or grow it must gain substantially more energy than it uses in obtaining that energy, may be especially important. Thus any particular being or system must abide by a “Law of Minimum EROI”, which we calculate for both oil and corn-based ethanol as about 3:1 at the mine-mouth/farm-gate. Since most biofuels have EROI’s of less than 3:1 they must be subsidized by fossil fuels to be useful.

  4. Cluster Based Hierarchical Routing Protocol for Wireless Sensor Network

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Rahim, Muhammad Sajjadur; Ullah, Shaikh Enayet

    2012-01-01

    The efficient use of energy source in a sensor node is most desirable criteria for prolong the life time of wireless sensor network. In this paper, we propose a two layer hierarchical routing protocol called Cluster Based Hierarchical Routing Protocol (CBHRP). We introduce a new concept called head-set, consists of one active cluster head and some other associate cluster heads within a cluster. The head-set members are responsible for control and management of the network. Results show that t...

  5. Pseudo-Cycle-Based Multicast Routing in Wormhole-Routed Networks

    Institute of Scientific and Technical Information of China (English)

    SONG JianPing (宋建平); HOU ZiFeng (侯紫峰); XU Ming (许铭)

    2003-01-01

    This paper addresses the problem of fault-tolerant multicast routing in wormholerouted multicomputers. A new pseudo-cycle-based routing method is presented for constructing deadlock-free multicast routing algorithms. With at most two virtual channels this technique can be applied to any connected networks with arbitrary topologies. Simulation results show that this technique results in negligible performance degradation even in the presence of a large number of faulty nodes.

  6. An Opportunistic Routing Mechanism Combined with Long-Term and Short-Term Metrics for WMN

    Directory of Open Access Journals (Sweden)

    Weifeng Sun

    2014-01-01

    Full Text Available WMN (wireless mesh network is a useful wireless multihop network with tremendous research value. The routing strategy decides the performance of network and the quality of transmission. A good routing algorithm will use the whole bandwidth of network and assure the quality of service of traffic. Since the routing metric ETX (expected transmission count does not assure good quality of wireless links, to improve the routing performance, an opportunistic routing mechanism combined with long-term and short-term metrics for WMN based on OLSR (optimized link state routing and ETX is proposed in this paper. This mechanism always chooses the highest throughput links to improve the performance of routing over WMN and then reduces the energy consumption of mesh routers. The simulations and analyses show that the opportunistic routing mechanism is better than the mechanism with the metric of ETX.

  7. An opportunistic routing mechanism combined with long-term and short-term metrics for WMN.

    Science.gov (United States)

    Sun, Weifeng; Wang, Haotian; Piao, Xianglan; Qiu, Tie

    2014-01-01

    WMN (wireless mesh network) is a useful wireless multihop network with tremendous research value. The routing strategy decides the performance of network and the quality of transmission. A good routing algorithm will use the whole bandwidth of network and assure the quality of service of traffic. Since the routing metric ETX (expected transmission count) does not assure good quality of wireless links, to improve the routing performance, an opportunistic routing mechanism combined with long-term and short-term metrics for WMN based on OLSR (optimized link state routing) and ETX is proposed in this paper. This mechanism always chooses the highest throughput links to improve the performance of routing over WMN and then reduces the energy consumption of mesh routers. The simulations and analyses show that the opportunistic routing mechanism is better than the mechanism with the metric of ETX.

  8. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  9. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    Science.gov (United States)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  10. MOBILE TRAFFIC ALERT AND TOURIST ROUTE GUIDANCE SYSTEM DESIGN USING GEOSPATIAL DATA

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The present study describes an integrated system for traffic data collection and alert warning. Geographical information based decision making related to traffic destinations and routes is proposed through the design. The system includes a geospatial database having profile relating to a user of a mobile device. The processing and understanding of scanned maps, other digital data input leads to route guidance. The system includes a server configured to receive traffic information relating to a route and location information relating to the mobile device. Server is configured to send a traffic alert to the mobile device when the traffic information and the location information indicate that the mobile device is traveling toward traffic congestion. Proposed system has geospatial and mobile data sets pertaining to Bangalore city in India. It is envisaged to be helpful for touristic purposes as a route guidance and alert relaying information system to tourists for proximity to sites worth seeing in a city they have entered into. The system is modular in architecture and the novelty lies in integration of different modules carrying different technologies for a complete traffic information system. Generic information processing and delivery system has been tested to be functional and speedy under test geospatial domains. In a restricted prototype model with geo-referenced route data required information has been delivered correctly over sustained trials to designated cell numbers, with average time frame of 27.5 seconds, maximum 50 and minimum 5 seconds. Traffic geo-data set trials testing is underway.

  11. B-iTRS: A Bio-Inspired Trusted Routing Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhang

    2015-01-01

    Full Text Available In WSNs, routing algorithms need to handle dynamical changes of network topology, extra overhead, energy saving, and other requirements. Therefore, routing in WSNs is an extremely interesting and challenging issue. In this paper, we present a novel bio-inspired trusted routing scheme (B-iTRS based on ant colony optimization (ACO and Physarum autonomic optimization (PAO. For trust assessment, B-iTRS monitors neighbors’ behavior in real time, receives feedback from Sink, and then assesses neighbors’ trusts based on the acquired information. For routing scheme, each node finds routes to the Sink based on ACO and PAO. In the process of path finding, B-iTRS senses the load and trust value of each node and then calculates the link load and link trust of the found routes to support the route selection. Moreover, B-iTRS also assesses the route based on PAO to maintain the route table. Simulation results show how B-iTRS can achieve the effective performance compared to existing state-of-the-art algorithms.

  12. Vehicular Networking Enhancement And Multi-Channel Routing Optimization, Based on Multi-Objective Metric and Minimum Spanning Tree

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2013-01-01

    Full Text Available Vehicular Ad hoc NETworks (VANETs represent a particular mobile technology that permits the communication among vehicles, offering security and comfort. Nowadays, distributed mobile wireless computing is becoming a very important communications paradigm, due to its flexibility to adapt to different mobile applications. VANETs are a practical example of data exchanging among real mobile nodes. To enable communications within an ad-hoc network, characterized by continuous node movements, routing protocols are needed to react to frequent changes in network topology. In this paper, the attention is focused mainly on the network layer of VANETs, proposing a novel approach to reduce the interference level during mobile transmission, based on the multi-channel nature of IEEE 802.11p (1609.4 standard. In this work a new routing protocol based on Distance Vector algorithm is presented to reduce the delay end to end and to increase packet delivery ratio (PDR and throughput in VANETs. A new metric is also proposed, based on the maximization of the average Signal-to-Interference Ratio (SIR level and the link duration probability between two VANET nodes. In order to relieve the effects of the co-channel interference perceived by mobile nodes, transmission channels are switched on a basis of a periodical SIR evaluation. A Network Simulator has been used for implementing and testing the proposed idea.

  13. Solving a multi-objective location routing problem for infectious waste disposal using hybrid goal programming and hybrid genetic algorithm

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2018-01-01

    Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles

  14. Planning routes around the world: International evidence for southern route preferences

    NARCIS (Netherlands)

    Brunyé, Tad T.; Andonova, Elena; Meneghetti, Chiara; Noordzij, Matthijs Leendert; Pazzaglia, Francesca; Wienemann, Rasmus; Mahoney, Caroline R.; Taylor, Holly A.

    2012-01-01

    Three studies test whether the southern route preference, which describes the tendency for route planners to disproportionately select south- rather than north-going routes, can be attributed to regional elevation patterns; specifically, we ask whether this effect replicates in three topographically

  15. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard

  16. Particle Swarm Optimization and harmony search based clustering and routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Veena Anand

    2017-01-01

    Full Text Available Wireless Sensor Networks (WSN has the disadvantage of limited and non-rechargeable energy resource in WSN creates a challenge and led to development of various clustering and routing algorithms. The paper proposes an approach for improving network lifetime by using Particle swarm optimization based clustering and Harmony Search based routing in WSN. So in this paper, global optimal cluster head are selected and Gateway nodes are introduced to decrease the energy consumption of the CH while sending aggregated data to the Base station (BS. Next, the harmony search algorithm based Local Search strategy finds best routing path for gateway nodes to the Base Station. Finally, the proposed algorithm is presented.

  17. Real time monitoring system used in route planning for the electric vehicle

    Science.gov (United States)

    Ionescu, LM; Mazare, A.; Serban, G.; Ionita, S.

    2017-10-01

    The electric vehicle is a new consumer of electricity that is becoming more and more widespread. Under these circumstances, new strategies for optimizing power consumption and increasing vehicle autonomy must be designed. These must include route planning along with consumption, fuelling points and points of interest. The hardware and software solution proposed by us allows: non-invasive monitoring of power consumption, energy autonomy - it does not add any extra consumption, data transmission to a server and data fusion with the route, the points of interest of the route and the power supply points. As a result: an optimal route planning service will be provided to the driver, considering the route, the requirements of the electric vehicle and the consumer profile. The solution can be easily installed on any type of electric car - it does not involve any intervention on the equipment.

  18. An energy management approach of hybrid vehicles using traffic preview information for energy saving

    International Nuclear Information System (INIS)

    Zheng, Chunhua; Xu, Guoqing; Xu, Kun; Pan, Zhongming; Liang, Quan

    2015-01-01

    Highlights: • Energy management approach of hybrid vehicles using traffic preview information. • Vehicle velocity profile and fuel consumption are optimized at the same time. • It is proved that a further energy saving is achieved by the proposed approach. • The proposed approach is useful especially for autonomous hybrid vehicles. - Abstract: The traffic preview information is very helpful for hybrid vehicles when distributing the power requirement of the vehicle to power sources and when determining the next driving route of the vehicle. In this research, an energy management approach for hybrid vehicles is proposed, which optimizes the vehicle velocity profile while minimizing the fuel consumption with the help of the traffic preview information, so that a further energy saving for hybrid vehicles can be achieved. The Pontryagin’s Minimum Principle (PMP) is adopted on the proposed approach. A fuel cell hybrid vehicle (FCHV) is selected as an example, and the proposed energy management approach is applied to the FCHV in a computer simulation environment for the offline and online cases respectively. Simulation results show that the fuel economy of the FCHV is improved by the proposed energy management approach compared to a benchmark case where the driving cycle is fixed and only the hybrid power split (allocation) ratio is optimized. The proposed energy management approach is useful especially for the autonomous hybrid vehicles.

  19. VINE ROUTES IN BULGARIA

    Directory of Open Access Journals (Sweden)

    Lyuben Hristov

    2015-03-01

    Full Text Available The article deals with a scheme for the modern vine route in Bulgaria. Five basic vine routes and one international, between Bulgaria, Macedonia and Greece are defined. All routes consider characteristic varieties of grapes and kinds of vine products. Vine tourist products combined with visits of important natural and anthropological object are in the bases of the defined routes. The described routes are an important contribution to development of alternative tourist products in the country.

  20. A Novel Load Balancing Scheme for Multipath Routing Protocol in MANET

    Directory of Open Access Journals (Sweden)

    Kokilamani Mounagurusamy

    2016-09-01

    Full Text Available The recent advancements in information and communication technology create a great demand for multipath routing protocols. In MANET, nodes can be arbitrarily located and can move freely at any given time. The topology of MANET can change rapidly and unpredictably. Because wireless link capacities are usually limited, congestion is possible in MANETs. Hence, balancing the load in a MANET is important since nodes with high load will deplete their batteries quickly, thereby increasing the probability of disconnecting or partitioning the network. To overcome these, the multipath protocol should be aware of load at route discovery phase. The main objective of the proposed article is to balance the load on a node and to extend the lifetime of the node due to the congestion, energy depletion and link failures. This article describes a novel load and congestion aware scheme called Path Efficient Ad-hoc On-demand Multipath Distance Vector (PE-AOMDV protocol to increase the performance of routing process in MANET in terms of congestion, end-to-end delay and load balancing. A new threshold value and a counter variable are introduced to limit the number of communication paths passing over a node in route discovery phase. For every new request the counter variable is incremented by one and the threshold value is compared to see whether the maximum number of connections has been reached or not. The proposed method is network simulator ns-2 and it is found that there is a significant improvement in the proposed scheme. It reduces the energy consumption, average end-to-end delay and normalized routing overhead. Also the proposed scheme increases packet delivery ratio, throughput and minimizes routing overheads.

  1. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-03-01

    Full Text Available In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast, second technique is the improved Hydrocast (improved-Hydrocast, and third one is the cooperative improved Hydrocast (Co-improved Hydrocast. In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR of the received signal is not within the predefined threshold then the maximal ratio combining (MRC is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  2. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-03-19

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  3. A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln2O2S

    International Nuclear Information System (INIS)

    De Crom, N.; Devillers, M.

    2012-01-01

    A continuous two-step molecular precursor pathway is designed for the preparation of rare-earth oxysulfides Ln 2 O 2 S (Ln=Y, La, Pr, Nd, Sm–Lu). This new route involves a first oxidation step leading to the rare-earth oxysulfate Ln 2 O 2 SO 4 which is subsequently reduced to the rare-earth oxysulfide Ln 2 O 2 S by switching to a H 2 –Ar atmosphere. The whole process occurs at a temperature significantly lower than usual solid state synthesis (T≤650 °C) and avoids the use of dangerous sulfur-based gases, providing a convenient route to the synthesis of the entire series of Ln 2 O 2 S. The molecular precursors consist in heteroleptic dithiocarbamate complexes [Ln(Et 2 dtc) 3 (phen)] and [Ln(Et 2 dtc) 3 (bipy)] (Et 2 dtc=N,N-diethyldithiocarbamate; phen=1,10-phenanthroline; bipy=2,2′-bipyridine) and were synthesized by a new high yield and high purity synthesis route. The nature of the molecular precursor determines the minimum synthesis temperature and influences therefore the purity of the final Ln 2 O 2 S crystalline phase. - Graphical abstract: A continuous two-step molecular precursor pathway was designed for the preparation of rare-earth oxysulfides Ln 2 O 2 S (Ln=Y, La, Pr, Nd, Sm–Lu), starting from heteroleptic dithiocarbamate complexes. The influence of the nature of the molecular precursor on the minimum synthesis temperature and on the purity of the final Ln 2 O 2 S crystalline phase is discussed. Highlights: ► A new high yield and high purity synthesis route of rare earth dithiocarbamates is described. ► These compounds are used as precursors in a continuous process leading to rare-earth oxysulfides. ► The oxysulfides are obtained under much more moderate conditions than previously described.

  4. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  5. Estimation of uncertainty of wind energy predictions with application to weather routing and wind power generation

    CERN Document Server

    Zastrau, David

    2017-01-01

    Wind drives in combination with weather routing can lower the fuel consumption of cargo ships significantly. For this reason, the author describes a mathematical method based on quantile regression for a probabilistic estimate of the wind propulsion force on a ship route.

  6. Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem

    DEFF Research Database (Denmark)

    Gamst, Mette; Jensen, Peter Neergaard; Pisinger, David

    2010-01-01

    The multicommodity flow problem (MCFP) considers the efficient routing of commodities from their origins to their destinations subject to capacity restrictions and edge costs. Baier et al. [G. Baier, E. Köhler, M. Skutella, On the k-splittable flow problem, in: 10th Annual European Symposium...... of commodities has to be satisfied at the lowest possible cost. The problem has applications in transportation problems where a number of commodities must be routed, using a limited number of distinct transportation units for each commodity. Based on a three-index formulation by Truffot et al. [J. Truffot, C...... on Algorithms, 2002, 101–113] introduced the maximum flow multicommodity k-splittable flow problem (MCkFP) where each commodity may use at most k paths between its origin and its destination. This paper studies the -hard minimum cost multicommodity k-splittable flow problem (MCMCkFP) in which a given flow...

  7. Potential air pollutant emission from private vehicles based on vehicle route

    Science.gov (United States)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  8. A Performance Study of LEACH and Direct Diffusion Routing Protocols in Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fakher, S.; Sharshar, K.; Moawad, M.I.; Shokair, M.

    2016-01-01

    The Wireless Sensor Network (WSN) is composed of a large number of sensor nodes with limited computation communication, and battery facilities. One of the common applications of this network is environment monitoring through sensing motion, measuring temperature, humidity and radiation. One of the basic activities in WSN is data gathering which represents a great challenge. Many routing protocols are proposed for that network to collect and aggregate the data. The most popular ones are hierarchy and data centric routing protocols. The main goal of this study is to identify the most preferable routing protocol, to be used in each mobility model. This paper studies the performance of LEACH (Low Energy Adaptive Clustering Hierarchy) from hierarchy routing protocol and direct diffusion from data centric routing protocol which is not clarified until now. Moreover, a comparison between LEACH and direct diffusion protocol using NS2 simulator will be made, and an analysis of these protocols will be conducted. The comparison includes packet delivery ratio, throughput, average energy ratio, average delay, network lifetime, and routing overhead. The performance is evaluated by varying the number of sensor nodes under three mobility models Reference Point Group Mobility Model (RPGM), Manhattan and random waypoint mobility model. Simulation results show that LEACH routing protocol has a good performance in RPGM and Manhattan than random waypoint mobility model. Direct diffusion has a good performance in random waypoint mobility model than in RPGM and Manhattan mobility model

  9. Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace

    International Nuclear Information System (INIS)

    Jang, Jiin-Yuh; Huang, Jun-Bo

    2015-01-01

    A two-dimensional mathematical heat transfer model for the prediction of the temperature history of steel slabs was performed in order to obtain the optimal heating pattern of these slabs with minimum energy consumption in a walking-beam type reheating furnace. An algorithm developed with a simplified conjugated-gradient method combined with a shooting method, was used as an optimizer to design the furnace temperature distribution, including the preheating zone, heating zone and soaking zone temperatures. Comparison with the in-situ experimental data indicated that the present heat transfer model works well for the prediction of the thermal behavior of a slab in the reheating furnace. The effect of the furnace temperature distribution on the design requirements, such as energy required for heating a slab, slab temperature uniformity at the furnace exit and slab discharging temperature, were investigated. The parametric study results indicated that energy consumption significantly decreases with reductions in the preheating zone temperature. The optimal design also resulted in lower energy consumption for heating a slab as compared to the original operational conditions in the steel plant. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • An algorithm is developed to search for the optimal heating pattern of a slab. • Energy consumption decreases with reductions in the preheating zone temperature

  10. A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    Directory of Open Access Journals (Sweden)

    Subhajit Pal

    2010-11-01

    Full Text Available Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs. Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  11. An Environment-Friendly Multipath Routing Protocol for Underwater Acoustic Sensor Network

    Directory of Open Access Journals (Sweden)

    Yun Li

    2017-01-01

    Full Text Available Underwater Acoustic Sensor Network (UASN is a promising technique by facilitating a wide range of aquatic applications. However, routing scheme in UASN is a challenging task because of the characteristics of the nodes mobility, interruption of link, and interference caused by other underwater acoustic systems such as marine mammals. In order to achieve reliable data delivery in UASN, in this work, we present a disjoint multipath disruption-tolerant routing protocol for UASN (ENMR, which incorporates the Hue, Saturation, and Value color space (HSV model to establish routing paths to greedily forward data packets to sink nodes. ENMR applies the mechanism to maintain the network topology. Simulation results show that, compared with the classic underwater routing protocols named PVBF, ENMR can improve packet delivery ratio and reduce network latency while avoiding introducing additional energy consumption.

  12. Proposal of interference reduction routing for ad-hoc networks

    Directory of Open Access Journals (Sweden)

    Katsuhiro Naito

    2010-10-01

    Full Text Available In this paper, we propose an interference reduction routing protocol for ad-hoc networks. The interference is one of the degradation factors in wireless communications. In the ad-hoc network, some nodes communicate simultaneously. Therefore, these communications cause interference each other, and some packets are corrupted due to interference from another node. In the proposed protocol, each node estimates required transmission power according to hello messages. Therefore, the node can transmit a data packet with minimum required transmission power. Consequently, the interference against neighbor nodes can be reduced. From simulation results, we can find that the proposed protocol can reduce the number of control messages and can improve the throughput performance.

  13. Solving a bi-objective vehicle routing problem under uncertainty by a revised multi-choice goal programming approach

    Directory of Open Access Journals (Sweden)

    Hossein Yousefi

    2017-06-01

    Full Text Available A vehicle routing problem with time windows (VRPTW is an important problem with many real applications in a transportation problem. The optimum set of routes with the minimum distance and vehicles used is determined to deliver goods from a central depot, using a vehicle with capacity constraint. In the real cases, there are other objective functions that should be considered. This paper considers not only the minimum distance and the number of vehicles used as the objective function, the customer’s satisfaction with the priority of customers is also considered. Additionally, it presents a new model for a bi-objective VRPTW solved by a revised multi-choice goal programming approach, in which the decision maker determines optimistic aspiration levels for each objective function. Two meta-heuristic methods, namely simulated annealing (SA and genetic algorithm (GA, are proposed to solve large-sized problems. Moreover, the experimental design is used to tune the parameters of the proposed algorithms. The presented model is verified by a real-world case study and a number of test problems. The computational results verify the efficiency of the proposed SA and GA.

  14. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  15. Charmonium and other onia at minimum energy

    International Nuclear Information System (INIS)

    Dalpiaz, P.

    1979-01-01

    In recent years considerable interest has been focused at CERN on the experimental possibilities offered by the antiproton-proton collisions to answer some of the fundamental questions of the present-day physics. Various working groups, set up at CERN during the last two years, have examined the physics potentials and the technical feasibility of anti pp colliding devices at various energies. As a consequence of this work, two anti pp projects have already been approved: the ISR anti pp project, and the SPS collider, covering a centre-of-mass energy range from 20 to 540 GeV. The Low-Energy Antiproton Ring (LEAR) projectsup(2)), allowing the study of phenomena under the 2msub(p) threshold up to 2.3 GeV, is at present under study. Transforming LEAR into a anti pp minicollidersup(2)), it is possible to reach a centre of-mass energy of 3.7 GeV. -Considering, then, the anti pp physics facilities at CERN as a whole project, it is seen that the energy range between 3.7 GeV and 20 GeV remains uncovered. In this report the physics interest of experiments in a centre-of-mass energy range between 2 and 20 GeV will be outlined and the technical feasibility investigated. (orig./FKS)

  16. Route churn: an analysis of low-cost carrier route continuity in Europe

    NARCIS (Netherlands)

    de Wit, J.G.; Zuidberg, J.

    2016-01-01

    Discontinuity of air routes is a subject that has been analysed in various ways. For example, the complex network approach focuses on network robustness and resilience due to route interruptions during a relatively short period. Also seasonal interruptions of air routes are a well-documented

  17. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    Science.gov (United States)

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH 2 O) 2 , including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of C s and C 2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar C s configuration of (CH 2 O) 2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol -1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol -1 for the dissociation energy D 0 of this global potential energy minimum.

  18. On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks

    Science.gov (United States)

    Mehic, M.; Fazio, P.; Voznak, M.; Partila, P.; Komosny, D.; Tovarek, J.; Chmelikova, Z.

    2016-05-01

    A mobile ad hoc network is a collection of mobile nodes which communicate without a fixed backbone or centralized infrastructure. Due to the frequent mobility of nodes, routes connecting two distant nodes may change. Therefore, it is not possible to establish a priori fixed paths for message delivery through the network. Because of its importance, routing is the most studied problem in mobile ad hoc networks. In addition, if the Quality of Service (QoS) is demanded, one must guarantee the QoS not only over a single hop but over an entire wireless multi-hop path which may not be a trivial task. In turns, this requires the propagation of QoS information within the network. The key to the support of QoS reporting is QoS routing, which provides path QoS information at each source. To support QoS for real-time traffic one needs to know not only minimum delay on the path to the destination but also the bandwidth available on it. Therefore, throughput, end-to-end delay, and routing overhead are traditional performance metrics used to evaluate the performance of routing protocol. To obtain additional information about the link, most of quality-link metrics are based on calculation of the lost probabilities of links by broadcasting probe packets. In this paper, we address the problem of including multiple routing metrics in existing routing packets that are broadcasted through the network. We evaluate the efficiency of such approach with modified version of DSDV routing protocols in ns-3 simulator.

  19. Measurement and simulation of the in-flight radiation exposure on different air routes

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2003-01-01

    The exposure of air-crew personnel to cosmic radiation is considered to be occupational exposure and requirements for dose assessment are given in the European Council Directive 96/29/EURATOM. The High-Temperature Ratio (HTR) Method for LiF: Mg, Ti TLDs utilizes the well-investigated relative intensity of the combined high-temperature glow peaks 6 and 7 compared with the dominant peak 5 (left-hand side of Figure 1) as an indication of the dose-average LET of a mixed radiation field of unknown composition. The difference in the peak-5 readings of the neutron-sensitive TLD-600 ( 6 LiF: Mg, Ti) and the neutron-insensitive TLD-700 ( 7 LiF: Mg, Ti) can be utilized to assess the neutron dose equivalent accumulated in-flight. For this purpose, the dosemeter crystals were calibrated individually in the CERN-EU High Energy Reference Field (CERF) [8] which simulates the cosmic-ray induced neutron spectrum in good detail. The experiments conducted onboard passenger aircraft on different north-bound and trans-equatorial flight routes were aimed at the following: to measure the total dose equivalent accumulated during the flight, to assess the contribution of neutrons, and to compare the results with calculations by means of the well-known CARI computer code. Measurements were performed on a series of eight north-bound flights between Cologne and Washington as well as on the routes Vienna-Atlanta, Vienna-Sydney and Vienna-Tokyo during different solar activity conditions. Precise altitude and route profiles were recorded by the pilots. The experimental results were compared with model calculations using the latest release 6M of the CARI code. Precise altitude and route data on a ten-minute to one-hour scale were taken as input. The calculated dose values indicate that the algorithms employed for the computational assessment of route doses have been significantly improved during the last decade. The CARI results generally tend to be in reasonable agreement with the measured

  20. On the normalization of the minimum free energy of RNAs by sequence length.

    Science.gov (United States)

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  1. Many-to-Many Multicast Routing Schemes under a Fixed Topology

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2013-01-01

    Full Text Available Many-to-many multicast routing can be extensively applied in computer or communication networks supporting various continuous multimedia applications. The paper focuses on the case where all users share a common communication channel while each user is both a sender and a receiver of messages in multicasting as well as an end user. In this case, the multicast tree appears as a terminal Steiner tree (TeST. The problem of finding a TeST with a quality-of-service (QoS optimization is frequently NP-hard. However, we discover that it is a good idea to find a many-to-many multicast tree with QoS optimization under a fixed topology. In this paper, we are concerned with three kinds of QoS optimization objectives of multicast tree, that is, the minimum cost, minimum diameter, and maximum reliability. All of three optimization problems are distributed into two types, the centralized and decentralized version. This paper uses the dynamic programming method to devise an exact algorithm, respectively, for the centralized and decentralized versions of each optimization problem.

  2. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  3. SURVEY OF ENERGY COMPETENCE ROUTING PROTOCOL IN UTILIZING AODV IN MANETS (20150471)

    OpenAIRE

    TUSHAR SINGH RAJPUT; RAJ KUMAR PAUL

    2018-01-01

    In MANETs (Mobile unintentional Networks) communication at the mobile nodes will be achieved by mistreatment multihop wireless links. The aim of every protocol, in Associate in Nursing ad-hoc network, is to seek out valid routes between 2 communication nodes.

  4. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  5. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Directory of Open Access Journals (Sweden)

    Michael Shepertycky

    Full Text Available Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator.We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH, which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0 is lower than that of conventional power generation methods.These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  6. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    Science.gov (United States)

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  7. Minimization of municipal solid waste transportation route in West Jakarta using Tabu Search method

    Science.gov (United States)

    Chaerul, M.; Mulananda, A. M.

    2018-04-01

    Indonesia still adopts the concept of collect-haul-dispose for municipal solid waste handling and it leads to the queue of the waste trucks at final disposal site (TPA). The study aims to minimize the total distance of waste transportation system by applying a Transshipment model. In this case, analogous of transshipment point is a compaction facility (SPA). Small capacity of trucks collects the waste from waste temporary collection points (TPS) to the compaction facility which located near the waste generator. After compacted, the waste is transported using big capacity of trucks to the final disposal site which is located far away from city. Problem related with the waste transportation can be solved using Vehicle Routing Problem (VRP). In this study, the shortest distance of route from truck pool to TPS, TPS to SPA, and SPA to TPA was determined by using meta-heuristic methods, namely Tabu Search 2 Phases. TPS studied is the container type with total 43 units throughout the West Jakarta City with 38 units of Armroll truck with capacity of 10 m3 each. The result determines the assignment of each truck from the pool to the selected TPS, SPA and TPA with the total minimum distance of 2,675.3 KM. The minimum distance causing the total cost for waste transportation to be spent by the government also becomes minimal.

  8. Integrated Optimization of Speed Profiles and Power Split for a Tram with Hybrid Energy Storage Systems on a Signalized Route

    Directory of Open Access Journals (Sweden)

    Zhuang Xiao

    2018-02-01

    Full Text Available A tram with on-board hybrid energy storage systems based on batteries and supercapacitors is a new option for the urban traffic system. This configuration enables the tram to operate in both catenary zones and catenary-free zones, and the storage of regenerative braking energy for later usage. This paper presents a multiple phases integrated optimization (MPIO method for the coordination of speed profiles and power split considering the signal control strategy. The objective is to minimize the equivalent total energy consumption of all the power sources, which includes both the energy from the traction substation and energy storage systems. The constraints contain running time, variable gradients and curves, speed limits, power balance and signal time at some intersections. The integrated optimization problem is formulated as a multiple phases model based on the characters of the signalized route. An integrated calculation framework, using hp-adaptive pseudospectral method, is proposed for the integrated optimization problem. The effectiveness of the method is verified under fixed time signal (FTS control strategy and tram priority signal (TPS control strategy. Illustrative results show that this method can be successfully applied for trams with hybrid energy storage systems to improve their energy efficiency.

  9. The prices of the oil sector; from competition to collusion: risks and benefits, in the Colombian energy market

    International Nuclear Information System (INIS)

    Perez Bedoya, Edigson

    1996-01-01

    The topic that has been presented for time one comes only analyzing as a result of the variations of the international prices of the raw one, which are owed in great measure to the stimulus of uses of new and better energy alternatives but that it complete the principle of the minimum cost, maximum benefit. From this perspective is en routed the development of the Colombian energy sector. The exercise that thinks about, is to present the notions and basic applications of a collusion model inside the oil market that analyzed it could be an alert voice for some of the managers of the private sector that ignoring some elements of the theory of games can incur in some mistakes in the energy market

  10. Adaptive MANET Multipath Routing Algorithm Based on the Simulated Annealing Approach

    Directory of Open Access Journals (Sweden)

    Sungwook Kim

    2014-01-01

    Full Text Available Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.

  11. Hazmat Routes (National)

    Data.gov (United States)

    Department of Transportation — The Federal Motor Carrier Safety Administration (FMCSA) Hazardous Material Routes (NTAD) were developed using the 2004 First Edition TIGER/Line files. The routes are...

  12. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.

    Science.gov (United States)

    Abba, Sani; Lee, Jeong-A

    2015-08-18

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.

  13. A chain-of-states acceleration method for the efficient location of minimum energy paths

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, E. R., E-mail: Eduardo.Hernandez@csic.es; Herrero, C. P. [Instituto de Ciencia de Materiales de Madrid (ICMM–CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Soler, J. M. [Departamento de Física de la Materia Condensada and IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-11-14

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C{sub 60}.

  14. A chain-of-states acceleration method for the efficient location of minimum energy paths

    International Nuclear Information System (INIS)

    Hernández, E. R.; Herrero, C. P.; Soler, J. M.

    2015-01-01

    We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C 60

  15. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bojda, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  16. The route to resource: marine energy support

    International Nuclear Information System (INIS)

    Hay, M.

    2005-01-01

    A case is made for the inclusion of marine-derived energy to be a part of the energy mix which will deliver clean secure energy in the future. But at present, in Europe, only the United Kingdom and Portugal are offering the necessary incentives to realise the marine renewable energy potential. The UK government's views were expressed in May 2005 in a paper called Wave and Tidal Energy Demonstration Scheme. The government's policy is to encourage a large number of small diverse projects rather than a small number of large projects. Details of the financial incentives on offer are given. It is concluded that in the UK at least, policymakers must guarantee a smooth path to resource for first arrays or risk losing what could be their last chance to build an indigenous energy industry for a significant international market

  17. Changes in UO2 powder properties during processing via BNFL's binderless route

    International Nuclear Information System (INIS)

    Bromely, A.P.; Logsdon, R.; Roberts, V.A.

    1997-01-01

    The Short Binderless Route (SBR) has been developed for Mixed Oxide fuel production in BNFL's MOX Demonstration Facility (MDF) and the Sellafield MOX Plant (SMP). It is a compact process which enables good homogenisation of the Pu/U mixture and production of free flowing press feed materials. The equipment used to achieve this consists of an attritor mill to provide homogenization and a spheroidiser to provide press feed granules. As for other powder processes, the physical properties of the UO 2 powder can affect the different process stages and consequently a study of some of these effects has been carried out. The aim of the work were to gain a better understanding of the process, to consequently optimize press feed material quality and to also maintain powder hold-up levels in the equipment at a minimum. The paper considers the effects of milling processes on powder morphology and powder surface effects, on the granulation process and also on powder and granule bulk properties such as pour, tap and compaction densities. Results are discussed in terms of powder properties such as powder cohesivity, morphology and particle size. UO 2 powder derived from both the Integrated Dry Route (IDR) and the Ammonium Di-Uranate (ADU) Route are considered. Small (1 kg) scale work has been carried out which has been confirmed by larger (25 kg) scale trials. The work shows that IDR powder with differing morphologies and ADU powder can be successfully processed via the SBR route. (author). 4 figs, 4 tabs

  18. Minimum load reduction for once-through boiler power plants

    International Nuclear Information System (INIS)

    Colombo, P.; Godina, G.; Manganelli, R.

    2001-01-01

    In Italy the liberalization process of energy market is giving particular importance to the optimization of power plants performances; especially for those that will be called to satisfy grid peak demands. On those plants some techniques have been experimented for the reduction of minimum load; these techniques, investigated and tested by an engineering dynamic simulator, have been sequentially tested on plant. The minimum load for up 320 MW of Tavazzano power plants has been diminished from 140 down to 80 MW without plant modification [it

  19. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  20. A Plasma-Assisted Route to the Rapid Preparation of Transition-Metal Phosphides for Energy Conversion and Storage

    KAUST Repository

    Liang, Hanfeng; Alshareef, Husam N.

    2017-01-01

    with the method of preparation as the electronic, catalytic, and magnetic properties of the metal phosphides strongly depend on their synthesis routes. Commonly practiced processes such as solid-state synthesis and ball milling have proven to be reliable routes

  1. Municipal solid waste transportation optimisation with vehicle routing approach: case study of Pontianak City, West Kalimantan

    Science.gov (United States)

    Kamal, M. A.; Youlla, D.

    2018-03-01

    Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.

  2. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows.

    Science.gov (United States)

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-08-27

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.

  3. Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2017-11-01

    Full Text Available Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1 indoor positioning and localization; 2 indoor space representation for navigation model generation; 3 indoor routing computation; 4 human wayfinding behaviours; and 5 indoor guidance (e.g., textual directories. So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles, which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest. In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges

  4. On the normalization of the minimum free energy of RNAs by sequence length.

    Directory of Open Access Journals (Sweden)

    Edoardo Trotta

    Full Text Available The minimum free energy (MFE of ribonucleic acids (RNAs increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  5. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity

    Science.gov (United States)

    Zhang, Zhifeng; Drapaca, Corina; Chen, Xiaolin; Xu, Jie

    2017-07-01

    Models of a droplet passing through narrow constrictions have wide applications in science and engineering. In this paper, we report our findings on the minimum impulse (momentum change) of pushing a droplet through a narrow circular constriction. The existence of this minimum impulse is mathematically derived and numerically verified. The minimum impulse happens at a critical velocity when the time-averaged Young-Laplace pressure balances the total minor pressure loss in the constriction. Finally, numerical simulations are conducted to verify these concepts. These results could be relevant to problems of energy optimization and studies of chemical and biomedical systems.

  6. Energy-efficient routes for the production of gasoline from biogas and pyrolysis oil—process design and life-cycle assessment

    NARCIS (Netherlands)

    Sundaram, S.; Kolb, G.A.; Hessel, V.; Wang, Q.

    2017-01-01

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and

  7. Minimum Bias Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00022031; The ATLAS collaboration

    2016-01-01

    Inclusive charged particle measurements at hadron colliders probe the low-energy nonperturbative region of QCD. Pseudorapidity distributions of charged-particles produced in pp collisions at 13 TeV have been measured by the CMS experiment. The ATLAS collaboration has measured the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam current, recorded at a center-of-mass energy of 13 TeV. The measurements present the first detailed studies in inclusive phase spaces with a minimum transverse momentum of 100 MeV and 500 MeV. The distribution of electromagnetic and hadronic energy in the very forward phase-space has been measured with the CASTOR calorimeters located at a pseudorapidity of -5.2 to -6.6 in the very forward region of CMS. The energy distributions are very powerful benchmarks to study the performance of MPI in hadronic interactions models at 13 TeV collision energy. All measurements are compared with predictions of ...

  8. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks

    Science.gov (United States)

    Abba, Sani; Lee, Jeong-A

    2015-01-01

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236

  9. Energy Sustainable Mobile Networks via Energy Routing, Learning and Foresighted Optimization

    OpenAIRE

    Gambin, Angel Fernandez; Scalabrin, Maria; Rossi, Michele

    2018-01-01

    The design of self-sustainable base station (BS) deployments is addressed in this paper: BSs have energy harvesting and storage capabilities, they can use ambient energy to serve the local traffic or store it for later use. A dedicated power packet grid allows energy transfer across BSs, compensating for imbalance in the harvested energy or in the traffic load. Some BSs are offgrid, i.e., they can only use the locally harvested energy and that transferred from other BSs, whereas others are on...

  10. Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Aggerholm, S.

    2013-09-15

    The purpose of the report is to analyse the cost optimality of the energy requirements in the Danish Building Regulations 2010, BR10 to new building and to existing buildings undergoing major renovation. The energy requirements in the Danish Building Regulations have by tradition always been based on the cost and benefits related to the private economical or financial perspective. Macro economical calculations have in the past only been made in addition. The cost optimum used in this report is thus based on the financial perspective. Due to the high energy taxes in Denmark there is a significant difference between the consumer price and the macro economical for energy. Energy taxes are also paid by commercial consumers when the energy is used for building operation e.g. heating, lighting, ventilation etc. In relation to the new housing examples the present minimum energy requirements in BR 10 all shows gaps that are negative with a deviation of up till 16 % from the point of cost optimality. With the planned tightening of the requirements to new houses in 2015 and in 2020, the energy requirements can be expected to be tighter than the cost optimal point, if the costs for the needed improvements don't decrease correspondingly. In relation to the new office building there is a gap of 31 % to the point of cost optimality in relation to the 2010 requirement. In relation to the 2015 and 2020 requirements there are negative gaps to the point of cost optimality based on today's prices. If the gaps for all the new buildings are weighted to an average based on mix of building types and heat supply for new buildings in Denmark there is a gap of 3 % in average for the new building. The excessive tightness with today's prices is 34 % in relation to the 2015 requirement and 49 % in relation to the 2020 requirement. The component requirement to elements in the building envelope and to installations in existing buildings adds up to significant energy efficiency

  11. Optimizing droop coefficients for minimum cost operation of islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Tran, Q. T.T.; Zizzo, G.

    2017-01-01

    This paper shows how minimum cost energy management can be carried out for islanded micro-grids considering an expanded state that also includes the system's frequency. Each of the configurations outputted by the energy management system at each hour are indeed technically sound and coherent from...

  12. Alternative routes for highway shipments of radioactive materials and lessons learned from state designations

    International Nuclear Information System (INIS)

    1990-07-01

    Pursuant to the Hazardous Materials Transportation Act (HMTA), the Department of Transportation (DOT) has promulgated a comprehensive set of regulations regarding the highway transportation of high-level radioactive materials. These regulations, under docket numbers HM-164 and HM-164A, establish interstate highways as the preferred routes for the transportation of radioactive materials within and through the states. The regulations also provide a methodology by which a state may select altemative routes. First, the state must establish a ''state routing agency'', defined as an entity authorized to use the state legal process to impose routing requirements on carriers of radioactive material (49 CFR 171.8). Once identified, the state routing agency must select routes in accordance with DOTs Guidelines for Selecting Preferred Highway Routes for Large Quantity Shipments of Radioactive Materials or an equivalent routing analysis. Adjoining states and localities should be consulted on the impact of proposed alternative routes as a prerequisite of final route selection. Lastly, the states must provide written notice to DOT of any alternative route designation before the routes are deemed effective. The purpose of this report is to discuss the ''lessons learned'' by the five states within the southern region that have designated alternative or preferred routes under the regulations of the Department of Transportation (DOT) established for the transportation of radioactive materials. The document was prepared by reviewing applicable federal laws and regulations, examining state reports and documents and contacting state officials and routing agencies involved in making routing decisions. In undertaking this project, the Southern States Energy Board hopes to reveal the process used by states that have designated alternative routes and thereby share their experiences (i.e., lessons learned) with other southern states that have yet to make designations

  13. Porcelain tiles by the dry route

    Directory of Open Access Journals (Sweden)

    Boschi, A. O.

    2010-10-01

    Full Text Available In Brazil, the second largest tile producer of the world, at present, 70% of the tiles are produced by the dry route. One of the main reasons that lead to this development is the fact that the dry route uses approximately 30% less thermal energy them the traditional wet route. The increasing world concern with the environment and the recognition of the central role played by the water also has pointed towards privileging dry processes. In this context the objective of the present work is to study the feasibility of producing high quality porcelain tiles by the dry route. A brief comparison of the dry and wet route, in standard conditions industrially used today to produce tiles that are not porcelain tiles, shows that there are two major differences: the particle sizes obtained by the wet route are usually considerably finer and the capability of mixing the different minerals, the intimacy of the mixture, is also usually better in the wet route. The present work studied the relative importance of these differences and looked for raw materials and operational conditions that would result in better performance and glazed porcelain tiles of good quality.

    En Brasil, en este momento segundo productor mundial, el 70% de los pavimentos cerámicos se obtiene por vía seca. Una de las razones fundamentales se debe a que esta vía supone un consumo energético inferior, en un 30%, a la via húmeda tradicional. La creciente preocupación mundial sobre los problemas medioambientales y el reconocimiento del papel central que juega el agua en este proceso han favorecido el desarrollo de la vía seca. En este contexto, el objetivo del presente trabajo es estudiar la viabilidad de la producción de pavimentos porcelánicos de alta calidad por vía seca. Una breve comparación entre ambas vías, en las condiciones standard de producción vigentes para producciones que no son de porcelánico, indican que existen dos diferencias substanciales; el tamaño de

  14. Measurement of Minimum Bias Observables with ATLAS

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  15. MQARR-AODV: A NOVEL MULTIPATH QOS AWARE RELIABLE REVERSE ON-DEMAND DISTANCE VECTOR ROUTING PROTOCOL FOR MOBILE AD-HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    K.G. Santhiya

    2012-12-01

    Full Text Available MANET (Mobile Ad-hoc Network is an infra structure less wireless ad-hoc network that does not require any basic central control. The topology of the network changes drastically due to very fast mobility of nodes. So an adaptive routing protocol is needed for routing in MANET. AODV (Ad-hoc On-demand Distance Vector routing is the effective and prominent on-demand Ad-hoc routing protocols. During route establishment phase in traditional AODV, only one route reply message will be sent in the reverse path to establish routing path. The high mobility of nodes may affect the reply messages which lead to the retransmission of route request message by the sender which in turn leads to higher communication delay, power consumption and the reduction in the ratio of packets delivered. Sending multiple route reply messages and establishing multiple paths in a single path discovery will reduce the routing overhead involved in maintaining the connection between source and destination nodes. Multipath routing can render high scalability, end-to-end throughput and provide load balancing in MANET. The new proposed novel Multipath QoS aware reliable routing protocol establishes two routes of maximum node disjoint paths and the data transfer is carried out in the two paths simultaneously. To select best paths, the new proposed protocol uses three parameters Link Eminence, MAC overhead and node residual energy. The experimental values prove that the MQARR-AODV protocol achieves high reliability, stability, low latency and outperforms AODV by the less energy consumption, overhead and delay.

  16. A Routing Strategy for Non-Cooperation Wireless Multi-Hop Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Dung T. Tran

    2012-01-01

    Full Text Available Choosing routes such that the network lifetime is maximized in a wireless network with limited energy resources is a major routing problem in wireless multi-hop ad hoc networks. In this paper, we study the problem where participants are rationally selfish and non-cooperative. By selfish we designate the users who are ready to tamper with their source-routing (senders could choose intermediate nodes in the routing paths or next hop selection strategies in order to increase the total number of packets transmitted, but do not try to harm or drop packets of the other nodes. The problem therefore amounts to a non-cooperative game. In the works [2,6,19,23], the authors show that the game admits Nash equilibria [1]. Along this line, we first show that if the cost function is linear, this game has pure-strategy equilibrium flow even though participants have different demands. However, finding a Nash equilibrium for a normal game is computationally hard [9]. In this work, inspired by mixed-strategy equilibrium, we propose a simple local routing algorithm called MIxed Path Routing protocol (MiPR. Using analysis and simulations, we show that MiPR drives the system to an equilibrium state where selfish participants do not have incentive to deviate. Moreover, MiPR significantly improves the network lifetime as compared to original routing protocols.

  17. Comprehensive energy management eco routing & velocity profiles

    CERN Document Server

    Brandstätter, Bernhard

    2017-01-01

    The book discusses the emerging topic of comprehensive energy management in electric vehicles from the viewpoint of academia and from the industrial perspective. It provides a seamless coverage of all relevant systems and control algorithms for comprehensive energy management, their integration on a multi-core system and their reliability assurance (validation and test). Relevant European projects contributing to the evolvement of comprehensive energy management in fully electric vehicles are also included.

  18. Energy Reserves, Information Need and a Pinch of Personality Determine Decision-Making on Route in Partially Migratory Blue Tits.

    Directory of Open Access Journals (Sweden)

    Anna L K Nilsson

    Full Text Available In facultative partial migrants some individuals in a population are migratory and others are resident and individuals decide each year anew which strategy to choose. While the proportion of birds migrating is in part determined by environmental conditions and competitive abilities, the timing of individual departure and behaviours on route are little understood. Individuals encounter different environmental conditions when migrating earlier or later. Based on cost/ benefit considerations we tested whether behaviours on route were affected by time constraints, personality and/or age in a partially migrating population of Blue tits (Cyanistes caeruleus. We captured female Blue tits on migration at the Southern tip of Sweden during early, peak and late migration and measured latency to feed in an unfamiliar environment, exploration of a novel object and hesitation to feed beside a novel object (neophobia. Lean birds and birds with long wings started feeding earlier when released into the cage indicating that foraging decisions were mainly determined by energetic needs (lean and large birds. However, juveniles commenced feeding later with progression of the migratory season in concordance with predictions about personality effects. Furthermore, lean birds started to explore earlier than birds with larger fat reserves again indicating an effect of maintaining threshold energy reserves. Moreover, late migrating juveniles, started to explore earlier than early migrating juveniles possibly due to time constraints to find high-quality foraging patches or a suitable winter home. Finally, neophobia did not change over the migratory season indicating that this behaviour is not compromised by time constraints. The results overall indicate that decisions on route are mainly governed by energetic requirements and current needs to learn about the environment and only to a small extent by differences in personality.

  19. Energy Reserves, Information Need and a Pinch of Personality Determine Decision-Making on Route in Partially Migratory Blue Tits.

    Science.gov (United States)

    Nilsson, Anna L K; Nilsson, Jan-Åke; Mettke-Hofmann, Claudia

    2016-01-01

    In facultative partial migrants some individuals in a population are migratory and others are resident and individuals decide each year anew which strategy to choose. While the proportion of birds migrating is in part determined by environmental conditions and competitive abilities, the timing of individual departure and behaviours on route are little understood. Individuals encounter different environmental conditions when migrating earlier or later. Based on cost/ benefit considerations we tested whether behaviours on route were affected by time constraints, personality and/or age in a partially migrating population of Blue tits (Cyanistes caeruleus). We captured female Blue tits on migration at the Southern tip of Sweden during early, peak and late migration and measured latency to feed in an unfamiliar environment, exploration of a novel object and hesitation to feed beside a novel object (neophobia). Lean birds and birds with long wings started feeding earlier when released into the cage indicating that foraging decisions were mainly determined by energetic needs (lean and large birds). However, juveniles commenced feeding later with progression of the migratory season in concordance with predictions about personality effects. Furthermore, lean birds started to explore earlier than birds with larger fat reserves again indicating an effect of maintaining threshold energy reserves. Moreover, late migrating juveniles, started to explore earlier than early migrating juveniles possibly due to time constraints to find high-quality foraging patches or a suitable winter home. Finally, neophobia did not change over the migratory season indicating that this behaviour is not compromised by time constraints. The results overall indicate that decisions on route are mainly governed by energetic requirements and current needs to learn about the environment and only to a small extent by differences in personality.

  20. SAFEBIKE: A Bike-sharing Route Recommender with Availability Prediction and Safe Routing

    OpenAIRE

    Zhong, Weisheng; Chen, Fanglan; Fu, Kaiqun; Lu, Chang-Tien

    2017-01-01

    This paper presents SAFEBIKE, a novel route recommendation system for bike-sharing service that utilizes station information to infer the number of available bikes in dock and recommend bike routes according to multiple factors such as distance and safety level. The system consists of a station level availability predictor that predicts bikes and docks amount at each station, and an efficient route recommendation service that considers safety and bike/dock availability factors. It targets use...

  1. Personal continuous route pattern mining

    Institute of Scientific and Technical Information of China (English)

    Qian YE; Ling CHEN; Gen-cai CHEN

    2009-01-01

    In the daily life, people often repeat regular routes in certain periods. In this paper, a mining system is developed to find the continuous route patterns of personal past trips. In order to count the diversity of personal moving status, the mining system employs the adaptive GPS data recording and five data filters to guarantee the clean trips data. The mining system uses a client/server architecture to protect personal privacy and to reduce the computational load. The server conducts the main mining procedure but with insufficient information to recover real personal routes. In order to improve the scalability of sequential pattern mining, a novel pattern mining algorithm, continuous route pattern mining (CRPM), is proposed. This algorithm can tolerate the different disturbances in real routes and extract the frequent patterns. Experimental results based on nine persons' trips show that CRPM can extract more than two times longer route patterns than the traditional route pattern mining algorithms.

  2. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  3. 76 FR 23208 - Alternative to Minimum Days Off Requirements

    Science.gov (United States)

    2011-04-26

    ... Language X. Voluntary Consensus Standards XI. Finding of No Significant Environmental Impact XII. Paperwork... the Current Fitness for Duty Requirements On September 3, 2010, the Nuclear Energy Institute (NEI... to the minimum days off requirements considered the collective advantages and disadvantages of having...

  4. 10 CFR 1015.505 - Minimum amount of referrals to the Department of Justice.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Minimum amount of referrals to the Department of Justice... THE UNITED STATES Referrals to the Department of Justice § 1015.505 Minimum amount of referrals to the Department of Justice. (a) DOE shall not refer for litigation claims of less than $2,500, exclusive of...

  5. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment

    International Nuclear Information System (INIS)

    Alejos Altamirano, Carlos Alberto; Yokoyama, Lídia; Medeiros, José Luiz de; Queiroz Fernandes Araújo, Ofélia de

    2016-01-01

    Highlights: • Life cycle of biodiesel using alternative transesterification routes is analyzed. • Bioethanol can potentially decrease CO_2 emissions of methanol biodiesel. • Contrarily, equivalent CO_2 emissions are retained and renewability is reduced. • Water footprint increases from 37.12 (methanol) to 44.88 m"3/GJ biodiesel (ethanol). • Energy efficiency is reduced from 79.37% (methanol) to 75.19 (ethanol %). - Abstract: Biodiesel is a renewable fuel produced by transesterification of triacylglicerides (TAG) contained in vegetable oils and animal fats, to yield alkyl esters (biodiesel) and glycerin. Methanol is the main transesterification agent employed resulting in FAME (fatty acid methyl esters), which is primarily obtained from natural gas reforming (fossil source). Substitution of methanol by ethanol produces FAEE (fatty acid ethyl esters) and has the potential to render biodiesel a fully renewable fuel. Although renewability is a significant driving force for the proposed alcohol replacement, environmental performance of the alternative transesterification is questioned. The answer is herein sought through a comparative Life Cycle Assessment (LCA) of the two production chains. The study tracks CO_2 emissions, energy efficiency, water and resources consumption, and environmental impacts (Acidification Potential – AP, Global Warming Potential – GWP, Eutrophication Potential – EP, and Human Toxicity Potential – TP). The boundaries of the biodiesel production chains extend from the extraction of raw-materials to its final use as transportation fuel in buses, applied to the Brazilian scenario. Results show that substitution of the methylic route with the ethylic route does not attribute significant environmental benefits. Furthermore, the ethylic route presents competitive advantages only in the category of GWP, and exhibits inferior performance in the remaining evaluated impact categories. Finally, a greater consumption of water and energy

  6. Routing in IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN: A Survey

    Directory of Open Access Journals (Sweden)

    Vinay Kumar

    2012-01-01

    Full Text Available 6LoWPANs (IPv6-based Low-Power Personal Area Networks are formulated by devices that are compatible with the IEEE 802.15.4 standard. To moderate the effects of network mobility, the Internet Protocol (IP does not calculate routes; it is left to a routing protocol, which maintains routing tables in the routers. 6LowPAN uses an adaptation layer between the network (IPv6 and data link layer (IEEE802.15.4 MAC to fragment and reassemble IPv6 packets. The routing in 6LoWPAN is primarily divided on the basis of routing decision taken on adaptation or network layer. The objective of this paper is to present a state-of-the-art survey of existing routing protocols: LOAD, M-LOAD, DYMO-Low, Hi-Low, Extended Hi-Low, and S-AODV. These routing protocols have compared on the basis of different metric like energy consumption, memory uses, mobility, scalability, routing delay, an RERR message, a Hello message, and local repair. We have also presented the taxonomy of routing requirement; parameter for evaluating routing algorithm, and it was found that the routing protocol has its own advantages depending upon the application where it is used.

  7. Green Routing Fuel Saving Opportunity Assessment: A Case Study on California Large-Scale Real-World Travel Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-31

    New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigation systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.

  8. Class network routing

    Science.gov (United States)

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  9. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  10. Developing an eco-routing application.

    Science.gov (United States)

    2014-01-01

    The study develops eco-routing algorithms and investigates and quantifies the system-wide impacts of implementing an eco-routing system. Two eco-routing algorithms are developed: one based on vehicle sub-populations (ECO-Subpopulation Feedback Assign...

  11. Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Ramírez, Anayantzin; Martínez-Luévanos, Antonia [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Fuentes, Antonio F. [CINVESTAV Unidad Saltillo, Apdo. Postal 663, Saltillo, Coahuila 25000 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Nelson, Anna-Gay D.; Ewing, Rodney C. [Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Montemayor, Sagrario M., E-mail: smmontemayor@gmail.com [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States)

    2014-01-25

    Highlights: • The synthesis route purposed demonstrates the formation of BiFeO{sub 3} at only 500 °C. • The magnetic and ferroelectric properties are comparable to those of bulk BiFeO{sub 3}. • By this route, several phases in Bi{sub 1−x}La{sub x}FeO{sub 3} system are obtained at only 500 °C. • The route developed here could be useful to synthesize other perovskite-type oxides. -- Abstract: There are only a few multiferroic compounds, among which BiFeO{sub 3} is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO{sub 3}, LaFeO{sub 3} and intermediate phases in the Bi{sub 1−x}La{sub x}FeO{sub 3} system. The chemical reagents used are Bi(NO{sub 3}){sub 3}⋅5H{sub 2}O, La(NO{sub 3}){sub 3}⋅6H{sub 2}O, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO{sub 3}. The thermal treatment of the precursors, at 500 °C for two hours, produces a crystalline mixture of Bi{sub 1−x}La{sub x}FeO{sub 3} and NaNO{sub 3}. Simple washing eliminates the NaNO{sub 3}. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.

  12. ENERGY EFFICIENCY AND ROUTING IN SENSOR NETWORKS

    DEFF Research Database (Denmark)

    Cetin, Bilge Kartal

    -hoc networks, recharging or replacing of the sen- sors battery may be inconvenient, or even impossible in some monitoring environments. Therefore, the key challenge in the design of wireless sen- sor network protocols is how to maximize the network lifetime, which is limited by battery energy in sensor nodes......, while providing the application requirement. In sensor networks, there are two important energy consuming pro- cesses, the rst is transmission-reception phase and the second is listening the radio for any possible event. Therefore, there are two strategies for en- ergy saving. The rst is reducing...... for dierent network parameters is de- veloped by considering a duty-cycling mechanism in the network. Upper bound on network lifetime is sought by considering idle and sleep mode energy consumption as well as energy consumption in transmission and reception for sensor networks. The solution of the developed...

  13. Robustness of airline route networks

    Science.gov (United States)

    Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David

    2016-03-01

    Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.

  14. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  15. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    Science.gov (United States)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  16. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  17. Distribution Route Planning of Clean Coal Based on Nearest Insertion Method

    Science.gov (United States)

    Wang, Yunrui

    2018-01-01

    Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.

  18. LITERATURE SURVEY ON EXISTING POWER SAVING ROUTING METHODS AND TECHNIQUES FOR INCREASING NETWORK LIFE TIME IN MANET

    Directory of Open Access Journals (Sweden)

    K Mariyappan

    2017-06-01

    Full Text Available Mobile ad hoc network (MANET is a special type of wireless network in which a collection of wireless mobile devices (called also nodes dynamically forming a temporary network without the need of any pre-existing network infrastructure or centralized administration. Currently, Mobile ad hoc networks (MANETs play a significant role in university campus, advertisement, emergency response, disaster recovery, military use in battle fields, disaster management scenarios, in sensor network, and so on. However, wireless network devices, especially in ad hoc networks, are typically battery-powered. Thus, energy efficiency is a critical issue for battery-powered mobile devices in ad hoc networks. This is due to the fact that failure of node or link allows re-routing and establishing a new path from source to destination which creates extra energy consumption of nodes and sparse network connectivity, leading to a more likelihood occurrences of network partition. Routing based on energy related parameters is one of the important solutions to extend the lifetime of the node and reduce energy consumption of the network. In this paper detail literature survey on existing energy efficient routing method are studied and compared for their performance under different condition. The result has shown that both the broadcast schemes and energy aware metrics have great potential in overcoming the broadcast storm problem associated with flooding. However, the performances of these approaches rely on either the appropriate selection of the broadcast decision parameter or an energy efficient path. In the earlier proposed broadcast methods, the forwarding probability is selected based on fixed probability or number of neighbors regardless of nodes battery capacity whereas in energy aware schemes energy inefficient node could be part of an established path. Therefore, in an attempt to remedy the paucity of research and to address the gaps identified in this area, a study

  19. An overview of smart grid routing algorithms

    Science.gov (United States)

    Wang, Junsheng; OU, Qinghai; Shen, Haijuan

    2017-08-01

    This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.

  20. Green Routing Fuel Saving Opportunity Assessment: A Case Study on California Large-Scale Real-World Travel Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei; Holden, Jacob; Gonder, Jeff; Wood, Eric

    2017-07-13

    New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigation systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.

  1. Southern states' routing agency report

    International Nuclear Information System (INIS)

    1989-02-01

    The Southern states' routing agency report is a compendium of 16-southern states' routing programs relative to the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source ad scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed

  2. Southern States' Routing Agency Report

    International Nuclear Information System (INIS)

    1990-03-01

    The Southern States' Routing Agency Report is a compendium of 16-southern states' routing program for the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source and scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed

  3. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network

    Science.gov (United States)

    Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  4. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.

    Science.gov (United States)

    Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  5. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  6. Exploiting Sun's Energy Effectively as a Source of Renewable Energy

    Indian Academy of Sciences (India)

    Renewable energy, solar energy, photosynthesis, electrolysis, photocatalysis, photovoltaic cell. Abstract. Using Sun's energy effectively to drive important, industriallyrelevant chemical reactions is currently an area of researchthat is attracting a large attention. This route circumventsour reliance on non-renewable sources of ...

  7. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2017-03-01

    Full Text Available With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR. This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service.

  8. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    Science.gov (United States)

    Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

    2017-01-01

    With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service. PMID:28282894

  9. Guidelines for selecting preferred highway routes for highway-route-controlled quantity shipments of radioactive materials

    International Nuclear Information System (INIS)

    1989-01-01

    The document presents guidelines for use by State officials in selecting preferred routes for highway route controlled quantity shipments of radioactive materials. A methodology for analyzing and comparing safety factors of alternative routes is described. Technical information on the impacts of radioactive material transportation needed to apply the methodology is also presented. Application of the methodology will identify the route (or set of routes) that minimizes the radiological impacts from shipments of these radioactive materials within a given State. Emphasis in the document is on practical application of the methodology. Some details of the derivation of the methods and data are presented in the appendices. All references in the body of the report can be found listed in the Bibliography (Appendix F)

  10. A Combined Liquefied Natural Gas Routing and Deteriorating Inventory Management Problem

    NARCIS (Netherlands)

    Ghiami, Y.; Van Woensel, Tom; Christiansen, Marielle; Laporte, Gilbert

    2015-01-01

    Liquefied Natural Gas (LNG) is becoming a more crucial source of energy due to its increased price competitiveness and environmental friendliness. We consider an inventory routing problem for inland distribution of LNG from storage facilities to filling stations. Here, an actor is responsible for

  11. A combined liquefied natural gas routing and deteriorating inventory management problem

    NARCIS (Netherlands)

    Ghiami, Y.; van Woensel, T.; Christiansen, Marielle; Laporte, G.; Corman, Fr.; Voss, St.; Negenborn, R.R.

    2015-01-01

    Liquefied Natural Gas (LNG) is becoming a more crucial source of energy due to its increased price competitiveness and environmental friendliness. We consider an inventory routing problem for inland distribution of LNG from storage facilities to filling stations. Here, an actor is responsible for

  12. Analysis of transport logistics and routing requirements for radioactive waste management systems with respect to a minimum power scenario

    International Nuclear Information System (INIS)

    James, I.A.

    1984-10-01

    This report assesses the transport logistics associated with disposal of intermediate-level radioactive waste, as generated by CEGB, SSEB, UKAEA and BNFL, in accordance with a 'Minimum Power Scenario'. Transport by road and rail is analysed, as in previous reports; use of coastal shipping however has not been included but has been replaced with a combined road/rail option. (author)

  13. Radon in the air in the Millenium of the Polish State Underground Tourist Route in Klodzko (Lower Silesia, PL)

    International Nuclear Information System (INIS)

    Przylibski, T.A.

    1998-01-01

    The paper presents results of measurements of average monthly radon concentrations in drifts of the Millenium of the Polish State Underground Tourist Route in Klodzko. The studies revealed no significant seasonal fluctuations of radon concentration. Constant influx of radon from the geological basement, and most of all from loess-like loams and rhyolite inliers, is compensated by a natural ventilation system. Only in the summer periods of elevated radon concentrations in the air of the drifts and chambers of the Route can occur. In individual sections it is possible to measure occasional higher radon concentrations caused by local air flow fluctuations in the drifts. The highest concentrations were measured in places with the poorest ventilation - blind drifts ventilated only by backward currents. The average radon concentrations measured do not exceed concentrations allowed in apartment buildings. Therefore, in the Route there is no risk of exposure to excessive amounts of radon for personnel and tourists. The results obtained in the Route's drifts may be compared with minimum results expected in basements of houses in the Old Town in Klodzko. The paper stresses also a role of natural ventilation in protection of underground constructions and apartment buildings against high radon concentrations in areas of its elevated emanations from the geological basement. (author)

  14. Strategies for Selecting Routes through Real-World Environments: Relative Topography, Initial Route Straightness, and Cardinal Direction.

    Directory of Open Access Journals (Sweden)

    Tad T Brunyé

    Full Text Available Previous research has demonstrated that route planners use several reliable strategies for selecting between alternate routes. Strategies include selecting straight rather than winding routes leaving an origin, selecting generally south- rather than north-going routes, and selecting routes that avoid traversal of complex topography. The contribution of this paper is characterizing the relative influence and potential interactions of these strategies. We also examine whether individual differences would predict any strategy reliance. Results showed evidence for independent and additive influences of all three strategies, with a strong influence of topography and initial segment straightness, and relatively weak influence of cardinal direction. Additively, routes were also disproportionately selected when they traversed relatively flat regions, had relatively straight initial segments, and went generally south rather than north. Two individual differences, extraversion and sense of direction, predicted the extent of some effects. Under real-world conditions navigators indeed consider a route's initial straightness, cardinal direction, and topography, but these cues differ in relative influence and vary in their application across individuals.

  15. Probabilistic Routing Based on Two-Hop Information in Delay/Disruption Tolerant Networks

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2015-01-01

    Full Text Available We investigate an opportunistic routing protocol in delay/disruption tolerant networks (DTNs where the end-to-end path between source and destination nodes may not exist for most of the time. Probabilistic routing protocol using history of encounters and transitivity (PRoPHET is an efficient history-based routing protocol specifically proposed for DTNs, which only utilizes the delivery predictability of one-hop neighbors to make a decision for message forwarding. In order to further improve the message delivery rate and to reduce the average overhead of PRoPHET, in this paper we propose an improved probabilistic routing algorithm (IPRA, where the history information of contacts for the immediate encounter and two-hop neighbors has been jointly used to make an informed decision for message forwarding. Based on the Opportunistic Networking Environment (ONE simulator, the performance of IPRA has been evaluated via extensive simulations. The results show that IPRA can significantly improve the average delivery rate while achieving a better or comparable performance with respect to average overhead, average delay, and total energy consumption compared with the existing algorithms.

  16. On balancing between minimum energy and minimum delay with radio diversity for wireless sensor networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, RajA

    2012-01-01

    The expected number of transmissions (ETX) metric represents the link quality in wireless sensor networks, which is highly variable for a specific radio and it can influence dramatically both of the delay and the energy. To adapt to these fluctuations, radio diversity has been recently introduced...... to improve the delivery rate but at the cost of increases in energy for wireless sensor networks. In this paper, we propose a scheme for radio diversity that can balance, depending on the traffic nature in the network, between minimizing the energy consumption or minimizing the end-to-end delay. The proposed...... scheme combines the benefit of two metrics, which aim separately to minimize the energy consumption, and to minimize delay when delivering packets to the end-user. We show by both analysis and simulation that our proposed scheme can adapt to the type of traffic that can occur in a network so...

  17. Minimum spanning trees and random resistor networks in d dimensions.

    Science.gov (United States)

    Read, N

    2005-09-01

    We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L , we show that there is a correction of order L(theta) , where theta or =1 . The arguments all rely on the close relation of Kruskal's greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small nonzero T , and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of theta=-3/4 in two dimensions.

  18. Quality-of-Service Routing Using Path and Power Aware Techniques in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    R. Asokan

    2008-01-01

    Full Text Available Mobile ad hoc network (MANET is a collection of wireless mobile hosts dynamically forming a temporary network without the aid of any existing established infrastructure. Quality of service (QoS is a set of service requirements that needs to be met by the network while transporting a packet stream from a source to its destination. QoS support MANETs is a challenging task due to the dynamic topology and limited resources. The main objective of this paper is to enhance the QoS routing for MANET using temporally ordered routing algorithm (TORA with self-healing and optimized routing techniques (SHORT. SHORT improves routing optimality by monitoring routing paths continuously and redirecting the path whenever a shortcut path is available. In this paper, the performance comparison of TORA and TORA with SHORT has been analyzed using network simulator for various parameters. TORA with SHORT enhances performance of TORA in terms of throughput, packet loss, end-to-end delay, and energy.

  19. Routing and scheduling problems

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander

    couple of decades. To deliver competitive service and price, transportation today needs to be cost effective. A company requiring for things to be shipped will aim at having the freight shipped as cheaply as possible while often satisfying certain time constraints. For the transportation company......, the effectiveness of the network is of importance aiming at satisfying as many costumer demands as possible at a low cost. Routing represent a path between locations such as an origin and destination for the object routed. Sometimes routing has a time dimension as well as the physical paths. This may...... set cost making the cost of the individual vehicle routes inter-dependant. Depending on the problem type, the size of the problems and time available for solving, different solution methods can be applicable. In this thesis both heuristic methods and several exact methods are investigated depending...

  20. Intelligent routing protocol for ad hoc wireless network

    Science.gov (United States)

    Peng, Chaorong; Chen, Chang Wen

    2006-05-01

    A novel routing scheme for mobile ad hoc networks (MANETs), which combines hybrid and multi-inter-routing path properties with a distributed topology discovery route mechanism using control agents is proposed in this paper. In recent years, a variety of hybrid routing protocols for Mobile Ad hoc wireless networks (MANETs) have been developed. Which is proactively maintains routing information for a local neighborhood, while reactively acquiring routes to destinations beyond the global. The hybrid protocol reduces routing discovery latency and the end-to-end delay by providing high connectivity without requiring much of the scarce network capacity. On the other side the hybrid routing protocols in MANETs likes Zone Routing Protocol still need route "re-discover" time when a route between zones link break. Sine the topology update information needs to be broadcast routing request on local zone. Due to this delay, the routing protocol may not be applicable for real-time data and multimedia communication. We utilize the advantages of a clustering organization and multi-routing path in routing protocol to achieve several goals at the same time. Firstly, IRP efficiently saves network bandwidth and reduces route reconstruction time when a routing path fails. The IRP protocol does not require global periodic routing advertisements, local control agents will automatically monitor and repair broke links. Secondly, it efficiently reduces congestion and traffic "bottlenecks" for ClusterHeads in clustering network. Thirdly, it reduces significant overheads associated with maintaining clusters. Fourthly, it improves clusters stability due to dynamic topology changing frequently. In this paper, we present the Intelligent Routing Protocol. First, we discuss the problem of routing in ad hoc networks and the motivation of IRP. We describe the hierarchical architecture of IRP. We describe the routing process and illustrate it with an example. Further, we describe the control manage

  1. Risk assessment of alternative proliferation routes

    International Nuclear Information System (INIS)

    Ahmed, S.; Husseiny, A.A.

    1982-01-01

    Multi-Attribute Decision Theory is applied to rank II alternative routes to nuclear proliferation in order of difficulty in acquiring nuclear weapons by nonnuclear countries. The method is based on reducing the various variables affecting the decision to a single function providing a measure for the proliferation route. The results indicate that the most difficult route to obtain atomic weapons is through nuclear power reactors, specifically the liquid-metal fast breeder reactor, heavy water Canada deuterium uranium reactor, and light water reactors such as boiling water and pressurized water reactors. The easiest routes are supercritical centrifuge isotope separation, laser isotope separation, and research reactor. However, nonnuclear routes available that result in substantial damage to life and property are easier than any nuclear route

  2. Energy-saving methodology for material handling applications

    Energy Technology Data Exchange (ETDEWEB)

    Makris, P.A.; Makri, A.P.; Provatidis, C.G. [National Technical University of Athens, School of Mechanical Engineering, Mechanical Design and Control Systems Division, 9 Iroon Polytechniou Street, Zografou Campus, GR-15773 Athens (Greece)

    2006-10-15

    This paper presents an energy saving approach to the problem of order picking in warehousing environment, which is directly related to the well-known Traveling Salesman Problem (TSP). While the available heuristic algorithms for the order-picking problem search for the route that minimizes the travel time, here the problem is addressed from the energy saving point of view. In a few words, the least energy-consuming route is identified in order to quantify the trade off in time and energy between the fastest route and the most energy economic one. Keeping in mind that often energy is as important as time, especially during a low-demand period, the current paper sheds some light into a two dimensional way of addressing the warehouse material handling problem, which saves time as well as energy. A very interesting finding is that a relatively small loss of service time in many cases may lead to a significant decrease of consumed energy without any additional cost. (author)

  3. Transportation Routing Analysis Geographic Information System -- TRAGIS, progress on improving a routing tool

    International Nuclear Information System (INIS)

    Johnson, P.E.; Lester, P.B.

    1998-05-01

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model provides a useful tool to calculate and analyze transportation routes for radioactive materials within the continental US. This paper outlines some of the features available in this model

  4. Route Scherrer and Route Einstein closed for construction work

    CERN Multimedia

    2015-01-01

    Please note that Route Scherrer will be inaccessible for two and a half months from the beginning of March and that part of Route Einstein will be closed for two weeks from the end of February.   Figure 1. The part of Route Scherrer between Building 510 and Building 53 (see Figure 1) will be closed from the beginning of March until mid-May for civil engineering works.   The superheated water pipes supplying the buildings in this area date back to 1959 and therefore present a significant risk of leakage. In order to ensure the reliable supply of superheated water, and, by extension, heating, to all premises near the Main Building (i.e. Buildings 500, 501, 503, 60, 62, 63 and 64), a new buried service duct will be installed between the basements of Buildings 53 and 61 to house a new superheated water pipe. Figure 2. The following car parks will, however, remain accessible for the duration of the works: the Cèdres car park, the car park for Buildings 4 and 5, and the ca...

  5. US Hazardous Materials Routes, Geographic WGS84, BTS (2006) [hazardous_material_routes_BTS_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — The Federal Motor Carrier Safety Administration (FMCSA) Hazardous Material Routes were developed using the 2004 First Edition TIGER/Line files. The routes are...

  6. A MODIFIED ROUTE DISCOVERY APPROACH FOR DYNAMIC SOURCE ROUTING (DSR PROTOCOL IN MOBILE AD-HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Alaa Azmi Allahham

    2017-02-01

    Full Text Available Mobile Ad-hoc networks (MANETs involved in many applications, whether commercial or military because of their characteristics that do not depend on the infrastructure as well as the freedom movement of their elements, but in return has caused this random mobility of the nodes many of the challenges, where the routing is considered one of these challenges. There are many types of routing protocols that operate within MANET networks, which responsible for finding paths between the source and destination nodes with the modernization of these paths which are constantly changing due to the dynamic topology of the network stemming from the constant random movement of the nodes. The DSR (Dynamic Source Routing routing protocol algorithm is one of these routing protocols which consist of two main stages; route discovery and maintenance, where the route discovery algorithm operates based on blind flooding of request messages. blind flooding is considered as the most well known broadcasting mechanism, it is inefficient in terms of communication and resource utilization, which causing increasing the probability of collisions, repeating send several copies of the same message, as well as increasing the delay. Hence, a new mechanism in route discovery stage and in caching the routes in DSR algorithm according to the node's location in the network and the direction of the broadcast is proposed for better performance especially in terms of delay as well as redundant packets rate. The implementation of proposed algorithms showed positive results in terms of delay, overhead, and improve the performance of MANETs in general.

  7. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  8. Computational Comparison of Several Greedy Algorithms for the Minimum Cost Perfect Matching Problem on Large Graphs

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Laporte, Gilbert

    2017-01-01

    The aim of this paper is to computationally compare several algorithms for the Minimum Cost Perfect Matching Problem on an undirected complete graph. Our work is motivated by the need to solve large instances of the Capacitated Arc Routing Problem (CARP) arising in the optimization of garbage...... collection in Denmark. Common heuristics for the CARP involve the optimal matching of the odd-degree nodes of a graph. The algorithms used in the comparison include the CPLEX solution of an exact formulation, the LEDA matching algorithm, a recent implementation of the Blossom algorithm, as well as six...

  9. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  10. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  11. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  12. Bellman Ford algorithm - in Routing Information Protocol (RIP)

    Science.gov (United States)

    Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah

    2018-04-01

    In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.

  13. COMPOSITE METHOD OF RELIABILITY RESEARCH FOR HIERARCHICAL MULTILAYER ROUTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. B. Tregubov

    2016-09-01

    Full Text Available The paper deals with the idea of a research method for hierarchical multilayer routing systems. The method represents a composition of methods of graph theories, reliability, probabilities, etc. These methods are applied to the solution of different private analysis and optimization tasks and are systemically connected and coordinated with each other through uniform set-theoretic representation of the object of research. The hierarchical multilayer routing systems are considered as infrastructure facilities (gas and oil pipelines, automobile and railway networks, systems of power supply and communication with distribution of material resources, energy or information with the use of hierarchically nested functions of routing. For descriptive reasons theoretical constructions are considered on the example of task solution of probability determination for up state of specific infocommunication system. The author showed the possibility of constructive combination of graph representation of structure of the object of research and a logic probable analysis method of its reliability indices through uniform set-theoretic representation of its elements and processes proceeding in them.

  14. A Smart Collaborative Routing Protocol for Reliable Data Diffusion in IoT Scenarios.

    Science.gov (United States)

    Ai, Zheng-Yang; Zhou, Yu-Tong; Song, Fei

    2018-06-13

    It is knotty for current routing protocols to meet the needs of reliable data diffusion during the Internet of Things (IoT) deployments. Due to the random placement, limited resources and unattended features of existing sensor nodes, the wireless transmissions are easily exposed to unauthorized users, which becomes a vulnerable area for various malicious attacks, such as wormhole and Sybil attacks. However, the scheme based on geographic location is a suitable candidate to defend against them. This paper is inspired to propose a smart collaborative routing protocol, Geographic energy aware routing and Inspecting Node (GIN), for guaranteeing the reliability of data exchanging. The proposed protocol integrates the directed diffusion routing, Greedy Perimeter Stateless Routing (GPSR), and the inspecting node mechanism. We first discuss current wireless routing protocols from three diverse perspectives (improving transmission rate, shortening transmission range and reducing transmission consumption). Then, the details of GIN, including the model establishment and implementation processes, are presented by means of the theoretical analysis. Through leveraging the game theory, the inspecting node is elected to monitor the network behaviors. Thirdly, we evaluate the network performances, in terms of transmission delay, packet loss ratio, and throughput, between GIN and three traditional schemes (i.e., Flooding, GPSR, and GEAR). The simulation results illustrate that the proposed protocol is able to outperform the others.

  15. Predicting transportation routes for radioactive wastes

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Clarke, D.B.; McGuire, S.C.

    1981-01-01

    Oak Ridge National Laboratory (ORNL) has been involved in transportation logistics of radioactive wastes as part of the overall waste transportation program. A Spent Fuel Logistics Model (SFLM), was developed to predict overall material balances representing the flow of spent fuel assemblies from reactors to away-from-reactor storage facilities and/or to federal repositories. The transportation requirements to make these shipments are also itemized. The next logical step in the overall transportation project was the development of a set of computer codes which would predict likely transportation routes for waste shipments. Two separate routing models are now operational at ORNL. Routes for truck transport can be estimated with the HIGHWAY program, and rail and barge routes can be predicted with the INTERLINE model. This paper discusses examples of the route estimates and applications of the routing models

  16. RSRP: A Robust Secure Routing Protocol in MANET

    Directory of Open Access Journals (Sweden)

    Sinha Ditipriya

    2014-05-01

    Full Text Available In this paper, we propose a novel algorithm RSRP to build a robust secure routing protocol in mobile ad-hoc networks (MANETs. This algorithm is based on some basic schemes such as RSA_CRT for encryption and decryption of messages; CRT for safety key generation, Shamir’s secret sharing principle for generation of secure routes. Those routes which are free from any malicious node and which belong to the set of disjoint routes between a source-destination pair are considered as probable routes. Shamir’s secret sharing principle is applied on those probable routes to obtain secure routes. Finally, most trustworthy and stable route is selected among those secure routes. Selection of the final route depends on some criteria of the nodes present in a route e.g.: battery power, mobility and trust value. In addition, complexity of key generation is reduced to a large extent by using RSA-CRT instead of RSA. In turn, the routing becomes less expensive and most secure and robust one. Performance of this routing protocol is then compared with non-secure routing protocols (AODV and DSR, secure routing scheme using secret sharing, security routing protocol using ZRP and SEAD depending on basic characteristics of these protocols. All such comparisons show that RSRP shows better performance in terms of computational cost, end-to-end delay and packet dropping in presence of malicious nodes in the MANET, keeping the overhead in terms of control packets same as other secure routing protocols.

  17. Human risk assessment of dermal and inhalation exposures to chemicals assessed by route-to-route extrapolation: the necessity of kinetic data.

    Science.gov (United States)

    Geraets, Liesbeth; Bessems, Jos G M; Zeilmaker, Marco J; Bos, Peter M J

    2014-10-01

    In toxicity testing the oral route is in general the first choice. Often, appropriate inhalation and dermal toxicity data are absent. Risk assessment for these latter routes usually has to rely on route-to-route extrapolation starting from oral toxicity data. Although it is generally recognized that the uncertainties involved are (too) large, route-to-route extrapolation is applied in many cases because of a strong need of an assessment of risks linked to a given exposure scenario. For an adequate route-to-route extrapolation the availability of at least some basic toxicokinetic data is a pre-requisite. These toxicokinetic data include all phases of kinetics, from absorption (both absorbed fraction and absorption rate for both the starting route and route of interest) via distribution and biotransformation to excretion. However, in practice only differences in absorption between the different routes are accounted for. The present paper demonstrates the necessity of route-specific absorption data by showing the impact of its absence on the uncertainty of the human health risk assessment using route-to-route extrapolation. Quantification of the absorption (by in vivo, in vitro or in silico methods), particularly for the starting route, is considered essential. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Vehicle Routing With User Generated Trajectory Data

    DEFF Research Database (Denmark)

    Ceikute, Vaida; Jensen, Christian S.

    Rapidly increasing volumes of GPS data collected from vehicles provide new and increasingly comprehensive insight into the routes that drivers prefer. While routing services generally compute shortest or fastest routes, recent studies suggest that local drivers often prefer routes that are neithe...

  19. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  20. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  1. A Genetic Algorithm on Inventory Routing Problem

    Directory of Open Access Journals (Sweden)

    Nevin Aydın

    2014-03-01

    Full Text Available Inventory routing problem can be defined as forming the routes to serve to the retailers from the manufacturer, deciding on the quantity of the shipment to the retailers and deciding on the timing of the replenishments. The difference of inventory routing problems from vehicle routing problems is the consideration of the inventory positions of retailers and supplier, and making the decision accordingly. Inventory routing problems are complex in nature and they can be solved either theoretically or using a heuristics method. Metaheuristics is an emerging class of heuristics that can be applied to combinatorial optimization problems. In this paper, we provide the relationship between vendor-managed inventory and inventory routing problem. The proposed genetic for solving vehicle routing problem is described in detail.

  2. Modification of Nafion® Membrane via a Sol-Gel Route for Vanadium Redox Flow Energy Storage Battery Applications

    Directory of Open Access Journals (Sweden)

    Shu-Ling Huang

    2017-01-01

    Full Text Available Nafion 117(N-117/SiO2-SO3H modified membranes were prepared using the 3-Mercaptopropyltrimethoxysilane (MPTMS to react with H2O2 via in situ sol-gel route. Basic properties including water uptake, contact angle, ion exchange capacity (IEC, vanadium ion permeability, impedance, and conductivity were measured to investigate how they affect the charge-discharge characteristics of a cell. Furthermore, we also set a vanadium redox flow energy battery (VRFB single cell by the unmodified/modified N-117 membranes as a separated membrane to test its charge/discharge performance and compare the relations among the impedance and efficiency. The results show that the appropriate amount of SiO2-SO3H led into the N-117 membrane contributive to the improvement of proton conductivity and vanadium ion selectivity. The permeability was effectively decreased from original 3.13 × 10−6 cm2/min for unmodified N-117 to 0.13 × 10−6 cm2/min for modified membrane. The IEC was raised from original 0.99 mmol/g to 1.24 mmol/g. The modified membrane showed a good cell performance in the VRFB charge/discharge experiment, and the maximum coulombic efficiency was up to 94%, and energy efficiency was 82%. In comparison with unmodified N-117, the energy efficiency of modified membrane had increased more than around 10%.

  3. The multi-depot electric vehicle location routing problem with time windows

    Directory of Open Access Journals (Sweden)

    Juan Camilo Paz

    2018-01-01

    Full Text Available In this paper, the Multi-Depot Electric Vehicle Location Routing Problem with Time Windows (MDVLRP is addressed. This problem is an extension of the MDVLRP, where electric vehicles are used instead of internal combustion engine vehicles. The recent development of this model is explained by the advantages of this technology, such as the diminution of carbon dioxide emissions, and the support that they can provide to the design of the logistic and energy-support structure of electric vehicle fleets. There are many models that extend the classical VRP model to take electric vehicles into consideration, but the multi-depot case for location-routing models has not been worked out yet. Moreover, we consider the availability of two energy supply technologies: the “Plug-in” Conventional Charge technology, and Battery Swapping Stations; options in which the recharging time is a function of the amount of energy to charge and a fixed time, respectively. Three models are proposed: one for each of the technologies mentioned above, and another in which both options are taken in consideration. The models were solved for small scale instances using C++ and Cplex 12.5. The results show that the models can be used to design logistic and energy-support structures, and compare the performance of the different options of energy supply, as well as measure the impact of these decisions on the overall distance traveled or other optimization objectives that could be worked on in the future.

  4. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  5. Zone routing in a torus network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer

    2013-01-29

    A system for routing data in a network comprising a network logic device at a sending node for determining a path between the sending node and a receiving node, wherein the network logic device sets one or more selection bits and one or more hint bits within the data packet, a control register for storing one or more masks, wherein the network logic device uses the one or more selection bits to select a mask from the control register and the network logic device applies the selected mask to the hint bits to restrict routing of the data packet to one or more routing directions for the data packet within the network and selects one of the restricted routing directions from the one or more routing directions and sends the data packet along a link in the selected routing direction toward the receiving node.

  6. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  7. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  8. Capacity Constrained Routing Algorithms for Evacuation Route Planning

    National Research Council Canada - National Science Library

    Lu, Qingsong; George, Betsy; Shekhar, Shashi

    2006-01-01

    .... In this paper, we propose a new approach, namely a capacity constrained routing planner which models capacity as a time series and generalizes shortest path algorithms to incorporate capacity constraints...

  9. Entanglement-Gradient Routing for Quantum Networks.

    Science.gov (United States)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  10. A QoS-Guaranteed Coverage Precedence Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jiun-Chuan Lin

    2011-03-01

    Full Text Available For mission-critical applications of wireless sensor networks (WSNs involving extensive battlefield surveillance, medical healthcare, etc., it is crucial to have low-power, new protocols, methodologies and structures for transferring data and information in a network with full sensing coverage capability for an extended working period. The upmost mission is to ensure that the network is fully functional providing reliable transmission of the sensed data without the risk of data loss. WSNs have been applied to various types of mission-critical applications. Coverage preservation is one of the most essential functions to guarantee quality of service (QoS in WSNs. However, a tradeoff exists between sensing coverage and network lifetime due to the limited energy supplies of sensor nodes. In this study, we propose a routing protocol to accommodate both energy-balance and coverage-preservation for sensor nodes in WSNs. The energy consumption for radio transmissions and the residual energy over the network are taken into account when the proposed protocol determines an energy-efficient route for a packet. The simulation results demonstrate that the proposed protocol is able to increase the duration of the on-duty network and provide up to 98.3% and 85.7% of extra service time with 100% sensing coverage ratio comparing with LEACH and the LEACH-Coverage-U protocols, respectively.

  11. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    Science.gov (United States)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several

  12. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...

  13. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  14. Routed planar networks

    Directory of Open Access Journals (Sweden)

    David J. Aldous

    2016-04-01

    Full Text Available Modeling a road network as a planar graph seems very natural. However, in studying continuum limits of such networks it is useful to take {\\em routes} rather than {\\em edges} as primitives. This article is intended to introduce the relevant (discrete setting notion of {\\em routed network} to graph theorists. We give a naive classification of all 71 topologically different such networks on 4 leaves, and pose a variety of challenging research questions.

  15. Self-Adaptive Contention Aware Routing Protocol for Intermittently Connected Mobile Networks

    KAUST Repository

    Elwhishi, Ahmed; Ho, Pin-Han; Naik, K.; Shihada, Basem

    2013-01-01

    This paper introduces a novel multicopy routing protocol, called Self-Adaptive Utility-based Routing Protocol (SAURP), for Delay Tolerant Networks (DTNs) that are possibly composed of a vast number of devices in miniature such as smart phones of heterogeneous capacities in terms of energy resources and buffer spaces. SAURP is characterized by the ability of identifying potential opportunities for forwarding messages to their destinations via a novel utility function-based mechanism, in which a suite of environment parameters, such as wireless channel condition, nodal buffer occupancy, and encounter statistics, are jointly considered. Thus, SAURP can reroute messages around nodes experiencing high-buffer occupancy, wireless interference, and/or congestion, while taking a considerably small number of transmissions. The developed utility function in SAURP is proved to be able to achieve optimal performance, which is further analyzed via a stochastic modeling approach. Extensive simulations are conducted to verify the developed analytical model and compare the proposed SAURP with a number of recently reported encounter-based routing approaches in terms of delivery ratio, delivery delay, and the number of transmissions required for each message delivery. The simulation results show that SAURP outperforms all the counterpart multicopy encounter-based routing protocols considered in the study.

  16. Self-Adaptive Contention Aware Routing Protocol for Intermittently Connected Mobile Networks

    KAUST Repository

    Elwhishi, Ahmed

    2013-07-01

    This paper introduces a novel multicopy routing protocol, called Self-Adaptive Utility-based Routing Protocol (SAURP), for Delay Tolerant Networks (DTNs) that are possibly composed of a vast number of devices in miniature such as smart phones of heterogeneous capacities in terms of energy resources and buffer spaces. SAURP is characterized by the ability of identifying potential opportunities for forwarding messages to their destinations via a novel utility function-based mechanism, in which a suite of environment parameters, such as wireless channel condition, nodal buffer occupancy, and encounter statistics, are jointly considered. Thus, SAURP can reroute messages around nodes experiencing high-buffer occupancy, wireless interference, and/or congestion, while taking a considerably small number of transmissions. The developed utility function in SAURP is proved to be able to achieve optimal performance, which is further analyzed via a stochastic modeling approach. Extensive simulations are conducted to verify the developed analytical model and compare the proposed SAURP with a number of recently reported encounter-based routing approaches in terms of delivery ratio, delivery delay, and the number of transmissions required for each message delivery. The simulation results show that SAURP outperforms all the counterpart multicopy encounter-based routing protocols considered in the study.

  17. Road Routes for Waste Disposal - MDC_RecyclingRoute

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This CURBSIDE RECYCLING ROUTES BOUNDARIES LAYER IS A polygon feature class created for the Miami-Dade Department of Solid Waste Management (DSWM). It contains the...

  18. VANET Routing Protocols: Pros and Cons

    OpenAIRE

    Paul, Bijan; Ibrahim, Md.; Bikas, Md. Abu Naser

    2012-01-01

    VANET (Vehicular Ad-hoc Network) is a new technology which has taken enormous attention in the recent years. Due to rapid topology changing and frequent disconnection makes it difficult to design an efficient routing protocol for routing data among vehicles, called V2V or vehicle to vehicle communication and vehicle to road side infrastructure, called V2I. The existing routing protocols for VANET are not efficient to meet every traffic scenarios. Thus design of an efficient routing protocol h...

  19. Effect of exposure routes on the relationships of lethal toxicity to rats from oral, intravenous, intraperitoneal and intramuscular routes.

    Science.gov (United States)

    Ning, Zhong H; Long, Shuang; Zhou, Yuan Y; Peng, Zi Y; Sun, Yi N; Chen, Si W; Su, Li M; Zhao, Yuan H

    2015-11-01

    The lethal toxicity values (log 1/LD(50)) of 527 aliphatic and aromatic compounds in oral, intravenous, intramuscular and intraperitoneal routes were used to investigate the relationships of log 1/LD(50) from different exposure routes. Regression analysis shows that the log 1/LD(50) values are well correlated between intravenous and intraperitoneal or intramuscular injections. However, the correlations between oral and intravenous or intraperitoneal routes are relatively poor. Comparison of the average residuals indicates that intravenous injection is the most sensitive exposure route and oral administration is the least sensitive exposure route. This is attributed to the difference in kinetic process of toxicity testing. The toxic effect of a chemical can be similar or significantly different between exposure routes, depending on the absorption rates of chemicals into blood. Inclusion of hydrophobic parameter and fractions of ionic forms can improve the correlations between intravenous and intraperitoneal or oral routes, but not between intraperitoneal and oral routes. This is due to the differences of absorption rate in different exposure environments from different routes. Several factors, such as experimental uncertainty, metabolism and toxic kinetics, can affect the correlations between intravenous and intraperitoneal or oral routes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Neutron slowing down and transport in monoisotopic media with constant cross sections or with a square-well minimum

    International Nuclear Information System (INIS)

    Peng, W.H.

    1977-01-01

    A specialized moments-method computer code was constructed for the calculation of the even spatial moments of the scalar flux, phi/sub 2n/, through 2n = 80. Neutron slowing-down and transport in a medium with constant cross sections was examined and the effect of a superimposed square-well cross section minimum on the penetrating flux was studied. In the constant cross section case, for nuclei that are not too light, the scalar flux is essentially independent of the nuclide mass. The numerical results obtained were used to test the validity of existing analytic approximations to the flux at both small and large lethargies relative to the source energy. As a result it was possible to define the regions in the lethargy--distance plane where these analytic solutions apply with reasonable accuracy. A parametric study was made of the effect of a square-well cross section minimum on neutron fluxes at energies below the minimum. It was shown that the flux at energies well below the minimum is essentially independent of the position of the minimum in lethargy. The results can be described by a convolution-of-sources model involving only the lethargy separation between detector and source, the width and the relative depth of the minimum. On the basis of the computations and the corresponding model, it is possible to predict, e.g., the conditions under which transport in the region of minimum completely determines the penetrating flux. At the other extreme, the model describes when the transport in the minimum can be treated in the same manner as in any comparable lethargy interval. With the aid of these criteria it is possible to understand the apparent paradoxical effects of certain minima in neutron penetration through such media as iron and sodium

  1. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  2. Measurement of Minimum Bias Observables with the ATLAS detector

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  3. The minimum mass of a charged spherically symmetric object in D dimensions, its implications for fundamental particles, and holography

    International Nuclear Information System (INIS)

    Burikham, Piyabut; Cheamsawat, Krai; Harko, Tiberiu; Lake, Matthew J.

    2016-01-01

    We obtain bounds for the minimum and maximum mass/radius ratio of a stable, charged, spherically symmetric compact object in a D-dimensional space-time in the framework of general relativity, and in the presence of dark energy. The total energy, including the gravitational component, and the stability of objects with minimum mass/radius ratio is also investigated. The minimum energy condition leads to a representation of the mass and radius of the charged objects with minimum mass/radius ratio in terms of the charge and vacuum energy only. As applied to the electron in the four-dimensional case, this procedure allows one to re-obtain the classical electron radius from purely general relativistic considerations. By combining the lower mass bound, in four space-time dimensions, with minimum length uncertainty relations (MLUR) motivated by quantum gravity, we obtain an alternative bound for the maximum charge/mass ratio of a stable, gravitating, charged quantum mechanical object, expressed in terms of fundamental constants. Evaluating this limit numerically, we obtain again the correct order of magnitude value for the charge/mass ratio of the electron, as required by the stability conditions. This suggests that, if the electron were either less massive (with the same charge) or if its charge were any higher (for fixed mass), a combination of electrostatic and dark energy repulsion would destabilize the Compton radius. In other words, the electron would blow itself apart. Our results suggest the existence of a deep connection between gravity, the presence of the cosmological constant, and the stability of fundamental particles. (orig.)

  4. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    Science.gov (United States)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  5. Employment effects of minimum wages

    OpenAIRE

    Neumark, David

    2014-01-01

    The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.

  6. Energy Efficient Probabilistic Broadcasting for Mobile Ad-Hoc Network

    Science.gov (United States)

    Kumar, Sumit; Mehfuz, Shabana

    2017-06-01

    In mobile ad-hoc network (MANETs) flooding method is used for broadcasting route request (RREQ) packet from one node to another node for route discovery. This is the simplest method of broadcasting of RREQ packets but it often results in broadcast storm problem, originating collisions and congestion of packets in the network. A probabilistic broadcasting is one of the widely used broadcasting scheme for route discovery in MANETs and provides solution for broadcasting storm problem. But it does not consider limited energy of the battery of the nodes. In this paper, a new energy efficient probabilistic broadcasting (EEPB) is proposed in which probability of broadcasting RREQs is calculated with respect to remaining energy of nodes. The analysis of simulation results clearly indicate that an EEPB route discovery scheme in ad-hoc on demand distance vector (AODV) can increase the network lifetime with a decrease in the average power consumption and RREQ packet overhead. It also decreases the number of dropped packets in the network, in comparison to other EEPB schemes like energy constraint gossip (ECG), energy aware gossip (EAG), energy based gossip (EBG) and network lifetime through energy efficient broadcast gossip (NEBG).

  7. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-11-01

    Full Text Available Most applications of underwater wireless sensor networks (UWSNs demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV-aided efficient data-gathering (AEDG routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  8. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal

    2015-11-17

    Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  9. Pithy Review on Routing Protocols in Wireless Sensor Networks and Least Routing Time Opportunistic Technique in WSN

    Science.gov (United States)

    Salman Arafath, Mohammed; Rahman Khan, Khaleel Ur; Sunitha, K. V. N.

    2018-01-01

    Nowadays due to most of the telecommunication standard development organizations focusing on using device-to-device communication so that they can provide proximity-based services and add-on services on top of the available cellular infrastructure. An Oppnets and wireless sensor network play a prominent role here. Routing in these networks plays a significant role in fields such as traffic management, packet delivery etc. Routing is a prodigious research area with diverse unresolved issues. This paper firstly focuses on the importance of Opportunistic routing and its concept then focus is shifted to prime aspect i.e. on packet reception ratio which is one of the highest QoS Awareness parameters. This paper discusses the two important functions of routing in wireless sensor networks (WSN) namely route selection using least routing time algorithm (LRTA) and data forwarding using clustering technique. Finally, the simulation result reveals that LRTA performs relatively better than the existing system in terms of average packet reception ratio and connectivity.

  10. Whirlpool routing for mobility

    KAUST Repository

    Lee, Jung Woo

    2010-01-01

    We present the Whirlpool Routing Protocol (WARP), which efficiently routes data to a node moving within a static mesh. The key insight in WARP\\'s design is that data traffic can use an existing routing gradient to efficiently probe the topology, repair the routing gradient, and communicate these repairs to nearby nodes. Using simulation, controlled testbeds, and real mobility experiments, we find that using the data plane for topology maintenance is highly effective due to the incremental nature of mobility updates. WARP leverages the fact that converging flows at a destination make the destination have the region of highest traffic. We provide a theoretical basis for WARP\\'s behavior, defining an "update area" in which the topology must adjust when a destination moves. As long as packets arrive at a destination before it moves outside of the update area, WARP can repair the topology using the data plane. Compared to existing protocols, such as DYMO and HYPER, WARP\\'s packet drop rate is up to 90% lower while sending up to 90% fewer packets.

  11. On a Minimum Problem in Smectic Elastomers

    International Nuclear Information System (INIS)

    Buonsanti, Michele; Giovine, Pasquale

    2008-01-01

    Smectic elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. Balance equations for smectic elastomers are derived from the general theory of continua with constrained microstructure. In this work we investigate a very simple minimum problem based on multi-well potentials where the microstructure is taken into account. The set of polymeric strains minimizing the elastic energy contains a one-parameter family of simple strain associated with a micro-variation of the degree of freedom. We develop the energy functional through two terms, the first one nematic and the second one considering the tilting phenomenon; after, by developing in the rubber elasticity framework, we minimize over the tilt rotation angle and extract the engineering stress

  12. Research on Innovating, Applying Multiple Paths Routing Technique Based on Fuzzy Logic and Genetic Algorithm for Routing Messages in Service - Oriented Routing

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Long

    2015-02-01

    Full Text Available MANET (short for Mobile Ad-Hoc Network consists of a set of mobile network nodes, network configuration changes very fast. In content based routing, data is transferred from source node to request nodes is not based on destination addresses. Therefore, it is very flexible and reliable, because source node does not need to know destination nodes. If We can find multiple paths that satisfies bandwidth requirement, split the original message into multiple smaller messages to transmit concurrently on these paths. On destination nodes, combine separated messages into the original message. Hence it can utilize better network resources, causes data transfer rate to be higher, load balancing, failover. Service Oriented Routing is inherited from the model of content based routing (CBR, combined with several advanced techniques such as Multicast, multiple path routing, Genetic algorithm to increase the data rate, and data encryption to ensure information security. Fuzzy logic is a logical field study evaluating the accuracy of the results based on the approximation of the components involved, make decisions based on many factors relative accuracy based on experimental or mathematical proof. This article presents some techniques to support multiple path routing from one network node to a set of nodes with guaranteed quality of service. By using these techniques can decrease the network load, congestion, use network resources efficiently.

  13. Dispersion theory and sum rules for the non-minimum phase problem in optical spectroscopy

    International Nuclear Information System (INIS)

    Peiponen, Kai-Erik

    2009-01-01

    Dispersion relations and sum rules for integer powers of an optical response function are given in the case of the non-minimum phase problem. These relations were obtained using the concept of the Hilbert transform and Blaschke product. The theory presented in this paper is useful both in basic and applied studies of non-minimum phase functions in optics, and also other fields of physics such as high energy physics.

  14. Performance Analysis of AODV Routing Protocol for Wireless Sensor Network based Smart Metering

    International Nuclear Information System (INIS)

    Farooq, Hasan; Jung, Low Tang

    2013-01-01

    Today no one can deny the need for Smart Grid and it is being considered as of utmost importance to upgrade outdated electric infrastructure to cope with the ever increasing electric load demand. Wireless Sensor Network (WSN) is considered a promising candidate for internetworking of smart meters with the gateway using mesh topology. This paper investigates the performance of AODV routing protocol for WSN based smart metering deployment. Three case studies are presented to analyze its performance based on four metrics of (i) Packet Delivery Ratio, (ii) Average Energy Consumption of Nodes (iii) Average End-End Delay and (iv) Normalized Routing Load.

  15. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    DEFF Research Database (Denmark)

    Andersen, Jonas; Voute, A.; Mihrin, Dmytro

    2017-01-01

    )2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol−1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic......The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima...... conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs...

  16. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    Science.gov (United States)

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Children's route choice during active transportation to school: Difference between shortest and actual route

    NARCIS (Netherlands)

    Dessing, D.; Vries, S.I. de; Hegeman, G.; Verhagen, E.; Mechelen, W. van; Pierik, F.H.

    2016-01-01

    Background: The purpose of this study is to increase our understanding of environmental correlates that are associated with route choice during active transportation to school (ATS) by comparing characteristics of actual walking and cycling routes between home and school with the shortest possible

  18. Physics at the CERN collider using a ''minimum bias'' trigger

    International Nuclear Information System (INIS)

    Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Nandi, A.K.; Roberts, C.; Scott, W.; Shah, T.P.; Bezaguet, A.; Boeck, R.; Calvetti, M.; Carroll, T.; Cennini, P.; Centro, S.; Ceradini, F.; Cittolin, S.; Demoulin, M.; DiBitinto, D.; Ellis, N.; Hoffmann, H.; Jank, W.; Jorat, G.; Kowalski, H.; Kryn, D.; Lacava, F.; Markiewicz, T.; Maurin, G.; Muirhead, H.; Muller, F.; Naumann, L.; Norton, A.; Petrucci, G.; Placci, A.; Revol, J.P.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Rubbia, C.; Sadoulet, B.; Schinzel, D.; Tao, C.; Timmer, J.; Meer, S. van der; Vialle, J.P.; Vuillemin, V.; Xie, G.Y.; Zurfluh, E.; Cochet, C.; DeBeer, M.; Denegri, D.; Givernaud, A.; Laugier, J.P.; Leveque, A.; Locci, E.; Loret, M.; Malosse, J.J.; Rich, J.; Sass, R.; Saudraix, J.; Savoy-Navarro, A.; Spiro, M.; Dobrzynski, L.; Fontaine, G.; Geer, S.; Ghesquiere, C.; Giraud-Heraud, Y.; Mendiburu, J.P.; Orkin-Lecourtois, A.; Sajot, G.; Vrana, J.; Bacci, C.; Bowcock, T.J.V.; Corden, M.; Dallman, D.; Di Ciaccio, A.; Dowell, J.D.; Edwards, M.; Eggert, K.; Eisenhandler, E.; Erhard, P.; Faissner, H.; Frey, R.; Fruehwirth, R.; Garvey, J.; Giboni, K.L.; Gibson, W.R.; Gutierrez, P.; Hansl-Kozanecka, T.; Hodges, C.; Hoffmann, D.; Homer, R.J.; Honma, A.; Kalmus, P.I.P.; Karimaeki, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kinnunen, R.; Kozanecki, W.; Lehmann, H.; Leuchs, K.; McMahon, T.; Moricca, M.; Paoluzi, L.; Piano Mortari, G.; Pimiae, M.; Radermacher, E.; Ransdell, J.; Reithler, H.; Salvi, G.; Salvini, G.; Strauss, J.; Sumorok, K.; Szoncso, F.; Smith, D.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; Wahl, H.D.; Watkins, P.; Wilson, J.

    1983-01-01

    In this paper the physics of the events collected using this ''minimum bias trigger'' is described. After a brief description of the detector, I present results concerning particle production (pseudorapidity distributions, multiplicity and KNO scaling). Transverse energy distributions, long and short range correlations, and finally high psub(t) physics and jets. (orig./HSI)

  19. GTDM: A DTN Routing on Noncooperative Game Theory in a City Environment

    Directory of Open Access Journals (Sweden)

    Wenzao Li

    2015-01-01

    Full Text Available The performance of delay tolerant networks (DTNs can be influenced by movement model in different application environments. The existing routing algorithms of DTNs do not meet the current city environments due to the large differences in node densities, social characteristics, and limited energy. The key indicators of DTNs such as success delivery ratio, average delivery latency, network lifetime, and network overhead ratio can influence the performances of civil DTNs applications. Aiming to improve the key indicators of DTNs in city environments, this paper presents a fixed sink station based structure and a more proper routing algorithm named Game Theory Based Decision Making (GTDM. GTDM shows decision-making process for neighborhood selection and packet delivering strategy which is based on the noncooperative game theory method and city environment characteristics. GTDM performance is evaluated using numerical simulations under Working Day Movement (WDM model and the results suggested that GTDM outperforms other traditional DTNs routing approaches, such as Epidemic and Prophet algorithms.

  20. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in