WorldWideScience

Sample records for minimal deleted region

  1. Physical mapping of a commonly deleted region, the site of a candidate tumor suppressor gene, at 12q22 in human male germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.V.V.S.; Bosl, G.J.; Chaganti, R.S.K. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [and others

    1996-08-01

    A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22-q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (priximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR{sub 8000} and the minimal region of deletion to be 141 cR{sub 8000}. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22. 35 refs., 4 figs., 2 tabs.

  2. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  3. Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region.

    Science.gov (United States)

    Gatta, Valentina; Palka, Chiara; Chiavaroli, Valentina; Franchi, Sara; Cannataro, Giovanni; Savastano, Massimo; Cotroneo, Antonio Raffaele; Chiarelli, Francesco; Mohn, Angelika; Stuppia, Liborio

    2014-07-23

    SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients.Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region.

  4. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E. [Wales Institute, Clwyd (United Kingdom)] [and others

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  5. Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice.

    Science.gov (United States)

    Khalifé, Manal; Reine, Fabienne; Paquet-Fifield, Sophie; Castille, Johan; Herzog, Laetitia; Vilotte, Marthe; Moudjou, Mohammed; Moazami-Goudarzi, Katayoun; Makhzami, Samira; Passet, Bruno; Andréoletti, Olivier; Vilette, Didier; Laude, Hubert; Béringue, Vincent; Vilotte, Jean-Luc

    2016-02-01

    Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. A novel large deletion of the ICR1 region including H19 and putative enhancer elements.

    Science.gov (United States)

    Fryssira, Helen; Amenta, Stella; Kanber, Deniz; Sofocleous, Christalena; Lykopoulou, Evangelia; Kanaka-Gantenbein, Christina; Cerrato, Flavia; Lüdecke, Hermann-Josef; Bens, Susanne; Riccio, Andrea; Buiting, Karin

    2015-05-06

    Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2

  7. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  8. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  9. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  10. Compound heterozygous deletions in pseudoautosomal region 1 in an infant with mild manifestations of langer mesomelic dysplasia.

    Science.gov (United States)

    Tsuchiya, Takayoshi; Shibata, Minoru; Numabe, Hironao; Jinno, Tomoko; Nakabayashi, Kazuhiko; Nishimura, Gen; Nagai, Toshiro; Ogata, Tsutomu; Fukami, Maki

    2014-02-01

    Haploinsufficiency of SHOX on the short arm pseudoautosomal region (PAR1) leads to Leri-Weill dyschondrosteosis (LWD), and nullizygosity of SHOX results in Langer mesomelic dysplasia (LMD). Molecular defects of LWD/LMD include various microdeletions in PAR1 that involve exons and/or the putative upstream or downstream enhancer regions of SHOX, as well as several intragenic mutations. Here, we report on a Japanese male infant with mild manifestations of LMD and hitherto unreported microdeletions in PAR1. Clinical analysis revealed mesomelic short stature with various radiological findings indicative of LMD. Molecular analyses identified compound heterozygous deletions, that is, a maternally inherited ∼46 kb deletion involving the upstream region and exons 1-5 of SHOX, and a paternally inherited ∼500 kb deletion started from a position ∼300 kb downstream from SHOX. In silico analysis revealed that the downstream deletion did not affect the known putative enhancer regions of SHOX, although it encompassed several non-coding elements which were well conserved among various species with SHOX orthologs. These results provide the possibility of the presence of a novel enhancer for SHOX in the genomic region ∼300 to ∼800 kb downstream of the start codon. © 2013 Wiley Periodicals, Inc.

  11. MinGenome: An In Silico Top-Down Approach for the Synthesis of Minimized Genomes.

    Science.gov (United States)

    Wang, Lin; Maranas, Costas D

    2018-02-16

    Genome minimized strains offer advantages as production chassis by reducing transcriptional cost, eliminating competing functions and limiting unwanted regulatory interactions. Existing approaches for identifying stretches of DNA to remove are largely ad hoc based on information on presumably dispensable regions through experimentally determined nonessential genes and comparative genomics. Here we introduce a versatile genome reduction algorithm MinGenome that implements a mixed-integer linear programming (MILP) algorithm to identify in size descending order all dispensable contiguous sequences without affecting the organism's growth or other desirable traits. Known essential genes or genes that cause significant fitness or performance loss can be flagged and their deletion can be prohibited. MinGenome also preserves needed transcription factors and promoter regions ensuring that retained genes will be properly transcribed while also avoiding the simultaneous deletion of synthetic lethal pairs. The potential benefit of removing even larger contiguous stretches of DNA if only one or two essential genes (to be reinserted elsewhere) are within the deleted sequence is explored. We applied the algorithm to design a minimized E. coli strain and found that we were able to recapitulate the long deletions identified in previous experimental studies and discover alternative combinations of deletions that have not yet been explored in vivo.

  12. Diagnosis and fine localization of deletion region in Wolf-Hirschhorn syndrome patients.

    Science.gov (United States)

    Ji, Tao-Yun; Chia, David; Wang, Jing-Min; Wu, Ye; Li, Jie; Xiao, Jing; Jiang, Yu-Wu

    2010-07-01

    Wolf-Hirschhorn syndrome (WHS) results from the partial deletion of 4p. This study aimed to identify and fine map the chromosome deletion regions of Chinese children with Wolf-Hirschhorn syndrome among the developmental delay/mental retardation (DD/MR) patients. We analyzed the relationship of phenotype and genotype. Inclusion criteria were: moderate to severe DD/MR, no definite perinatal brain injury, and no trauma, toxication, hypoxia, infection of central nervous system; routine karyotyping was normal, no evidence of typical inherited metabolic disorder or specific neurodegenerative disorders from cranial neuro-imaging and blood/urinary metabolic diseases screening; no mutation of FMR1 in male patients, no typical clinical manifestation of Rett syndrome in female patients. Multiplex ligation-dependent probe amplification (MLPA) and Affymetrix genome-wide human SNP array 6.0 assays were applied to accurately define the exact size of subtelomeric aberration region of four WHS patients. All four WHS patients presented with severe DD, hypotonia and microcephaly, failure to thrive, 3/4 patients with typical facial features and seizures, 2/4 patients with congenital heart defects and cleft lip/palate, 1/4 patients with other malformations. The length of the deletions ranged from 3.3 Mb to 9.8 Mb. Two of four patients had "classic" WHS, 1/4 patients had "mild"-to-"classic" WHS, and 1/4 patients had "mild" WHS. WHS patients in China appear to be consistent with those previously reported. The prevalence of signs and symptoms, distribution of cases between "mild" and "classic" WHS, and the correlation between length of deletion and severity of disease of these patients were all similar to those of the patients from other populations.

  13. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR

    NARCIS (Netherlands)

    van der Velden, V. H. J.; Willemse, M. J.; van der Schoot, C. E.; Hählen, K.; van Wering, E. R.; van Dongen, J. J. M.

    2002-01-01

    Immunoglobulin gene rearrangements are used as PCR targets for detection of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL). We Investigated the occurrence of monoclonal immunoglobulin kappa-deleting element (IGK-Kde) rearrangements by Southern blotting and PCR/heteroduplex

  14. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  15. Cytosine deletion at AP2-box region of HSP70 promoter and its ...

    Indian Academy of Sciences (India)

    Cytosine deletion at AP2-box region of HSP70 promoter and its influence on semen quality traits in crossbred bulls ... Laboratory, ICAR-Central Institute for Research on Cattle, Meerut 250 001, India; School of Atmospheric Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati 413 115, India ...

  16. Inflammatory peeling skin syndrome caused by homozygous genomic deletion in the PSORS1 region encompassing the CDSN gene.

    Science.gov (United States)

    Ishida-Yamamoto, Akemi; Furio, Laetitia; Igawa, Satomi; Honma, Masaru; Tron, Elodie; Malan, Valerie; Murakami, Masamoto; Hovnanian, Alain

    2014-01-01

    Peeling skin syndrome (PSS) type B is a rare recessive genodermatosis characterized by lifelong widespread, reddish peeling of the skin with pruritus. The disease is caused by small-scale mutations in the Corneodesmosin gene (CDSN) leading to premature termination codons. We report for the first time a Japanese case resulting from complete deletion of CDSN. Corneodesmosin was undetectable in the epidermis, and CDSN was unamplifiable by PCR. QMPSF analysis demonstrated deletion of CDSN exons inherited from each parent. Deletion mapping using microsatellite haplotyping, CGH array and PCR analysis established that the genomic deletion spanned 49-72 kb between HCG22 and TCF19, removing CDSN as well as five other genes within the psoriasis susceptibility region 1 (PSORS1) on 6p21.33. This observation widens the spectrum of molecular defects underlying PSS type B and shows that loss of these five genes from the PSORS1 region does not result in an additional cutaneous phenotype. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome.

    Science.gov (United States)

    Bieth, Eric; Eddiry, Sanaa; Gaston, Véronique; Lorenzini, Françoise; Buffet, Alexandre; Conte Auriol, Françoise; Molinas, Catherine; Cailley, Dorothée; Rooryck, Caroline; Arveiler, Benoit; Cavaillé, Jérome; Salles, Jean Pierre; Tauber, Maïthé

    2015-02-01

    The SNORD116 locus lies in the 15q11-13 region of paternally expressed genes implicated in Prader-Willi Syndrome (PWS), a complex disease accompanied by obesity and severe neurobehavioural disturbances. Cases of PWS patients with a deletion encompassing the SNORD116 gene cluster, but preserving the expression of flanking genes, have been described. We report a 23-year-old woman who presented clinical criteria of PWS, including the behavioural and nutritional features, obesity, developmental delay and endocrine dysfunctions with hyperghrelinemia. We found a paternally transmitted highly restricted deletion of the SNORD116 gene cluster, the shortest described to date (118 kb). This deletion was also present in the father. This finding in a human case strongly supports the current hypothesis that lack of the paternal SNORD116 gene cluster has a determinant role in the pathogenesis of PWS. Moreover, targeted analysis of the SNORD116 gene cluster, complementary to SNRPN methylation analysis, should be carried out in subjects with a phenotype suggestive of PWS.

  18. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  19. Submicroscopic duplication of the Wolf-Hirschhorn critical region with a 4p terminal deletion.

    Science.gov (United States)

    Roselló, M; Monfort, S; Orellana, C; Ferrer-Bolufer, I; Quiroga, R; Oltra, S; Martínez, F

    2009-01-01

    Chromosomal rearrangements in the short arm of chromosome 4 can result in 2 different clinical entities: Wolf-Hirschhorn syndrome (WHS), characterized by severe growth delay, mental retardation, microcephaly, 'Greek helmet' facies, and closure defects, or partial 4p trisomy, associated with multiple congenital anomalies, mental retardation, and facial dysmorphisms. We present clinical and laboratory findings in a patient who showed a small duplication in 4p16.3 associated with a subtle terminal deletion in the same chromosomal region. GTG-banding analyses, multiplex ligation-dependent probe amplification analyses, and studies by array-based comparative genomic hybridization were performed. The results of the analyses revealed a de novo 1.3 Mb deletion of the terminal 4p and a 1.1 Mb duplication in our patient, encompassing the WHS critical region. Interestingly, this unusual duplication/deletion rearrangement results in an intermediate phenotype that shares characteristics of the WHS and the 4p trisomy syndrome. The use of novel technologies in the genetic diagnosis leads to the description of new clinical syndromes; there is a growing list of microduplication syndromes. Therefore, we propose that overexpression of candidate genes in WHS (WHSC1, WHSC2 and LETM1) due to a duplication causes a clinical entity different to both the WHS and 4p trisomy syndrome. (c) 2009 S. Karger AG, Basel.

  20. Brand deletion: How the decision-making approach affects deletion success

    Directory of Open Access Journals (Sweden)

    Víctor Temprano-García

    2018-04-01

    Full Text Available Literature on brand deletion (BD, a critical and topical decision within a firm's marketing strategy, is extremely scarce. The present research is concerned with the decision-making process and examines the effect on BD success of three different approaches to decision-making – rational, intuitive and political – and of the interaction between the rational and political approaches. The moderating effect of the type of BD – i.e., total brand killing or disposal vs. brand name change – is also analyzed. The model is tested on a sample of 155 cases of BD. Results point to positive effects on BD success of both rationality and intuition, and a negative effect of politics. Findings also indicate that the negative impact of political behavior on BD success is minimized in the absence of evidence and objective information and when the BD is undertaken through a brand name change. JEL classification: L10, M31, Keywords: Brand deletion, Rational decision-making, Intuitive decision-making, Political decision-making, Brand deletion success

  1. Development of a YAC contig covering the minimal region of a CSNB1 locus in Xp11

    Energy Technology Data Exchange (ETDEWEB)

    Boycott, K.M.; Gratton, K.J.; Moore, B.J. [Univ. of Calgary (Canada)] [and others

    1994-09-01

    X-linked congenital stationary night blindness (CSNB1) is an eye disorder that includes impairment of night vision, reduced visual acuity and, in some cases, myopia and congenital nystagmus. Electroretinography reveals a marked reduction of the b-wave in affected individuals suggesting that X-linked CSNB is due to a molecular defect in the bipolar layer of the retina. Based on our studies of a large four generation family with X-linked CSNB, a CSNB1 locus was mapped to a 4-5 cM region at Xp11.23-Xp11.22 bounded telomerically by DXS426 and centromerically by DXS988. Using a panel of radiation and conventional somatic cell hybrids, a detailed map of new and published STSs has been generated for the minimal region of CSNB1. PCR primer pairs for STSs has been generated for the minimal region of CSNB1. PCR primer pairs for twenty-five STSs, including eleven end-clones, were used to isolate YAC clones from CEPH, mega-CEPH, and X chromosome-specific YAC libraries. In total, fifty-two YACs were characterized for STS overlaps and assembled to provide a minimum of 3 Mb of physical coverage in the region between DXS426 and DXS988. Five gaps proximal to SYP are still to be closed. Our physical map suggests the following gene order: Xpter-OTAL1-GF1-DXS1011E-MG81-HUMCRAS2P-SYP-Xcen. STS analysis of the YACs revealed three subregions of the physical map which appear to be particularly susceptible to internal deletions and end-clone analysis demonstrated chimerism in six of seventeen YACs. A physical map of Xp11.23-Xp11.22 will provide a resource for the isolation of candidate genes for the X-linked CSNB gene which maps to this region.

  2. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss?

    Directory of Open Access Journals (Sweden)

    Raghavendra Tejo Karthik Poluri

    2018-06-01

    Full Text Available The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor suppressor gene that is among the most frequently inactivated genes throughout the human cancer spectrum. The most recent sequencing approaches have allowed the identification of PTEN genomic alterations, including deletion, mutation, or rearrangement in about 50% of prostate cancer (PCa cases. It appears that mechanisms leading to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/deletions, copy number alterations (CNAs, promoter hypermethylation, and RNA interference. The examination of publicly available results from deep-sequencing studies of various cancers showed that PCa appears to be the only cancer in which PTEN is lost mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By investigating the minimal deleted region at 10q23, several other genes appear to be lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes are also downregulated upon loss of 10q23. These analyses raise the possibility that 10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the expression of surrounding genes. As such, several genes from this deleted region, which represents about 500 kb, may also act as tumor suppressors in PCa, requiring further studies on their respective functions in that context.

  3. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth

    Directory of Open Access Journals (Sweden)

    Shakhova VV

    2008-05-01

    Full Text Available Abstract Background Bifidobacteria are frequently proposed to be associated with good intestinal health primarily because of their overriding dominance in the feces of breast fed infants. However, clinical feeding studies with exogenous bifidobacteria show they don't remain in the intestine, suggesting they may lose competitive fitness when grown outside the gut. Results To further the understanding of genetic attenuation that may be occurring in bifidobacteria cultures, we obtained the complete genome sequence of an intestinal isolate, Bifidobacterium longum DJO10A that was minimally cultured in the laboratory, and compared it to that of a culture collection strain, B. longum NCC2705. This comparison revealed colinear genomes that exhibited high sequence identity, except for the presence of 17 unique DNA regions in strain DJO10A and six in strain NCC2705. While the majority of these unique regions encoded proteins of diverse function, eight from the DJO10A genome and one from NCC2705, encoded gene clusters predicted to be involved in diverse traits pertinent to the human intestinal environment, specifically oligosaccharide and polyol utilization, arsenic resistance and lantibiotic production. Seven of these unique regions were suggested by a base deviation index analysis to have been precisely deleted from strain NCC2705 and this is substantiated by a DNA remnant from within one of the regions still remaining in the genome of NCC2705 at the same locus. This targeted loss of genomic regions was experimentally validated when growth of the intestinal B. longum in the laboratory for 1,000 generations resulted in two large deletions, one in a lantibiotic encoding region, analogous to a predicted deletion event for NCC2705. A simulated fecal growth study showed a significant reduced competitive ability of this deletion strain against Clostridium difficile and E. coli. The deleted region was between two IS30 elements which were experimentally

  4. Topography of multi-locus deletions induced by gamma-rays and neutrons in the black, cinnabar and vestigial regions of drosophila melanogaster

    International Nuclear Information System (INIS)

    Alexandrov, I.V.; Lapidus, I.L.; Alexandrova, M.V.

    1997-01-01

    The extend and breakpoint location of 85 chromosomal-scale deletions induced by gamma-rays or fission neutrons in the black, cinnabar and vestigial regions of Drosophila genome have been examined by conventional cytogenetic analysis of the polytene chromosomes. It was found that the topographies of deletions are similar for both type of radiation and for all regions under study: the largest deletions have 3.5 Mb length, i.e. more than 2 divisions of the polytene chromosome; the breakpoints of deletions are located within the inter-bands and mapped more often in the centro-metric directions; the sizes of deletions are multiple to one, two or more visible chromomeres of polytene chromosome. These findings seem to be very well explained within the framework of the rosette-loopy model of higher (super-chromosome) level of the chromatin organization and of the notions about the illegitimate recombination promoted by the clustered damages of the core DNA resulting from the one-hit events of energy deposition at this target supported by the linear relationship observed between the delation yield and the dose of radiations studied. (authors)

  5. Highly restricted deletion of the SNORD116 region is implicated in Prader–Willi Syndrome

    Science.gov (United States)

    Bieth, Eric; Eddiry, Sanaa; Gaston, Véronique; Lorenzini, Françoise; Buffet, Alexandre; Conte Auriol, Françoise; Molinas, Catherine; Cailley, Dorothée; Rooryck, Caroline; Arveiler, Benoit; Cavaillé, Jérome; Salles, Jean Pierre; Tauber, Maïthé

    2015-01-01

    The SNORD116 locus lies in the 15q11-13 region of paternally expressed genes implicated in Prader–Willi Syndrome (PWS), a complex disease accompanied by obesity and severe neurobehavioural disturbances. Cases of PWS patients with a deletion encompassing the SNORD116 gene cluster, but preserving the expression of flanking genes, have been described. We report a 23-year-old woman who presented clinical criteria of PWS, including the behavioural and nutritional features, obesity, developmental delay and endocrine dysfunctions with hyperghrelinemia. We found a paternally transmitted highly restricted deletion of the SNORD116 gene cluster, the shortest described to date (118 kb). This deletion was also present in the father. This finding in a human case strongly supports the current hypothesis that lack of the paternal SNORD116 gene cluster has a determinant role in the pathogenesis of PWS. Moreover, targeted analysis of the SNORD116 gene cluster, complementary to SNRPN methylation analysis, should be carried out in subjects with a phenotype suggestive of PWS. PMID:24916642

  6. Constitutional and somatic deletions of the Williams-Beuren syndrome critical region in non-Hodgkin lymphoma.

    Science.gov (United States)

    Guenat, David; Quentin, Samuel; Rizzari, Carmelo; Lundin, Catarina; Coliva, Tiziana; Edery, Patrick; Fryssira, Helen; Bermont, Laurent; Ferrand, Christophe; Soulier, Jean; Borg, Christophe; Rohrlich, Pierre-Simon

    2014-11-07

    Here, we report and investigate the genomic alterations of two novel cases of Non-Hodgkin Lymphoma (NHL) in children with Williams-Beuren syndrome (WBS), a multisystem disorder caused by 7q11.23 hemizygous deletion. Additionally, we report the case of a child with NHL and a somatic 7q11.23 deletion. Although the WBS critical region has not yet been identified as a susceptibility locus in NHL, it harbors a number of genes involved in DNA repair. The high proportion of pediatric NHL reported in WBS is intriguing. Therefore, the role of haploinsufficiency of genes located at 7q11.23 in lymphomagenesis deserves to be investigated.

  7. Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array CGH

    Science.gov (United States)

    Ichimura, Koichi; Mungall, Andrew J; Fiegler, Heike; Pearson, Danita M.; Dunham, Ian; Carter, Nigel P; Collins, V. Peter

    2009-01-01

    Deletions of chromosome 6 are a common abnormality in diverse human malignancies including astrocytic tumours, suggesting the presence of tumour suppressor genes (TSG). In order to help identify candidate TSGs, we have constructed a chromosome 6 tile path microarray. The array contains 1780 clones (778 PACs and 1002 BACs) that cover 98.3% of the published chromosome 6 sequences. A total of 104 adult astrocytic tumours (10 diffuse astrocytomas, 30 anaplastic astrocytomas (AA), 64 glioblastomas (GB)) were analysed using this array. Single copy number change was successfully detected and the result was in general concordant with a microsatellite analysis. The pattern of copy number change was complex with multiple interstitial deletions/gains. However, a predominance of telomeric 6q deletions was seen. Two small common and overlapping regions of deletion at 6q26 were identified. One was 1002 kb in size and contained PACRG and QKI, while the second was 199 kb and harbours a single gene, ARID1B. The data show that the chromosome 6 tile path array is useful in mapping copy number changes with high resolution and accuracy. We confirmed the high frequency of chromosome 6 deletions in AA and GB, and identified two novel commonly deleted regions that may harbour TSGs. PMID:16205629

  8. Secretion of alpha 2-plasmin inhibitor is impaired by amino acid deletion in a small region of the molecule.

    Science.gov (United States)

    Toyota, S; Hirosawa, S; Aoki, N

    1994-02-01

    Alpha 2-plasmin inhibitor (alpha 2PI) deficiency Okinawa results from defective secretion of the inhibitor from the liver and appears to be a direct consequence of the deletion of Glu137 in the amino acid sequence of alpha 2PI. To examine the effects of replacing the amino acid occupying position 137 or deleting its neighboring amino acid on alpha 2PI secretion, we used oligonucleotide-directed mutagenesis of alpha 2PI cDNA to change the codon specifying Glu137 or delete a codon specifying its neighboring amino acid. The effects were determined by pulse-chase experiments and by enzyme-linked immunosorbent assay of media from transiently transfected COS-7 cells. Replacement of Glu137 with an amino acid other than Cys had little effect on alpha 2PI secretion. In contrast, deletion of an amino acid in a region spanning a sequence of less than 30 amino acids including positions 127 and 137 severely impaired the secretion. The results suggest that structural integrity of the region, rather than its component amino acids, is important for the intracellular transport and secretion of alpha 2PI.

  9. Selective apoptosis induction in MCF-7 cell line by truncated minimal functional region of Apoptin

    International Nuclear Information System (INIS)

    Shen Ni, Lim; Allaudin, Zeenathul Nazariah bt; Mohd Lila, Mohd Azmi b; Othman, Abas Mazni b; Othman, Fauziah bt

    2013-01-01

    Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis. For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N’ terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect. Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32–83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1–31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin’s signature targeting activity. Therefore, the critical stretch spanning amino acid 1–31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across

  10. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: evidence for attenuation of HVR deletion mutants in vivo.

    Science.gov (United States)

    Pudupakam, R S; Huang, Y W; Opriessnig, T; Halbur, P G; Pierson, F W; Meng, X J

    2009-01-01

    Hepatitis E virus (HEV) is an important human pathogen, although little is known about its biology and replication. Comparative sequence analysis revealed a hypervariable region (HVR) with extensive sequence variations in open reading frame 1 of HEV. To elucidate the role of the HVR in HEV replication, we first constructed two HVR deletion mutants, hHVRd1 and hHVRd2, with in-frame deletion of amino acids (aa) 711 to 777 and 747 to 761 in the HVR of a genotype 1 human HEV replicon. Evidence of HEV replication was detected in Huh7 cells transfected with RNA transcripts from mutant hHVRd2, as evidenced by expression of enhanced green fluorescent protein. To confirm the in vitro results, we constructed three avian HEV mutants with various HVR deletions: mutants aHVRd1, with deletion of aa 557 to 585 (Delta557-585); aHVRd2 (Delta612-641); and aHVRd3 (Delta557-641). Chickens intrahepatically inoculated with capped RNA transcripts from mutants aHVRd1 and aHVRd2 developed active viral infection, as evidenced by seroconversion, viremia, and fecal virus shedding, although mutant aHVRd3, with complete HVR deletion, was apparently attenuated in chickens. To further verify the results, we constructed four additional HVR deletion mutants using the genotype 3 swine HEV as the backbone. Mutants sHVRd2 (Delta722-781), sHVRd3 (Delta735-765), and sHVRd4 (Delta712-765) were shown to tolerate deletions and were infectious in pigs intrahepatically inoculated with capped RNA transcripts from the mutants, whereas mutant sHVRd1 (Delta712-790), with a nearly complete HVR deletion, exhibited an attenuation phenotype in infected pigs. The data from these studies indicate that deletions in HVR do not abolish HEV infectivity in vitro or in vivo, although evidence for attenuation was observed for HEV mutants with a larger or nearly complete HVR deletion.

  11. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  12. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  13. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  14. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  15. Prenatal diagnosis of two fetuses with deletions of 8p23.1, critical region for congenital diaphragmatic hernia and heart defects.

    Science.gov (United States)

    Keitges, Elisabeth A; Pasion, Romela; Burnside, Rachel D; Mason, Carla; Gonzalez-Ruiz, Antonio; Dunn, Teresa; Masiello, Meredith; Gebbia, Joseph A; Fernandez, Carlos O; Risheg, Hiba

    2013-07-01

    Microdeletions of 8p23.1 are mediated by low copy repeats and can cause congenital diaphragmatic hernia (CDH) and cardiac defects. Within this region, point mutations of the GATA4 gene have been shown to cause cardiac defects. However, the cause of CDH in these deletions has been difficult to determine due to the paucity of mutations that result in CDH, the lack of smaller deletions to refine the region and the reduced penetrance of CDH in these large deletions. Mice deficient for one copy of the Gata4 gene have been described with CDH and heart defects suggesting mutations in Gata4 can cause the phenotype in mice. We report on the SNP microarray analysis on two fetuses with deletions of 8p23.1. The first had CDH and a ventricular septal defect (VSD) on ultrasonography and a family history of a maternal VSD. Microarray analysis detected a 127-kb deletion which included the GATA4 and NEIL2 genes which was inherited from the mother. The second fetus had an incomplete atrioventricular canal defect on ultrasonography. Microarray analysis showed a 315-kb deletion that included seven genes, GATA4, NEIL2, FDFT1, CTSB, DEFB136, DEFB135, and DEFB134. These results suggest that haploinsufficiency of the two genes in common within 8p23.1; GATA4 and NEIL2 can cause CDH and cardiac defects in humans. Copyright © 2013 Wiley Periodicals, Inc.

  16. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2015-06-01

    Full Text Available Partial monosomy 21 (PM21 is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21. The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf. Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.

  17. Deletion of the App-Runx1 region in mice models human partial monosomy 21.

    Science.gov (United States)

    Arbogast, Thomas; Raveau, Matthieu; Chevalier, Claire; Nalesso, Valérie; Dembele, Doulaye; Jacobs, Hugues; Wendling, Olivia; Roux, Michel; Duchon, Arnaud; Herault, Yann

    2015-06-01

    Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21. © 2015. Published by The Company of Biologists Ltd.

  18. Quantum deletion: Beyond the no-deletion principle

    International Nuclear Information System (INIS)

    Adhikari, Satyabrata

    2005-01-01

    Suppose we are given two identical copies of an unknown quantum state and we wish to delete one copy from among the given two copies. The quantum no-deletion principle restricts us from perfectly deleting a copy but it does not prohibit us from deleting a copy approximately. Here we construct two types of a 'universal quantum deletion machine' which approximately deletes a copy such that the fidelity of deletion does not depend on the input state. The two types of universal quantum deletion machines are (1) a conventional deletion machine described by one unitary operator and (2) a modified deletion machine described by two unitary operators. Here it is shown that the modified deletion machine deletes a qubit with fidelity 3/4, which is the maximum limit for deleting an unknown quantum state. In addition to this we also show that the modified deletion machine retains the qubit in the first mode with average fidelity 0.77 (approx.) which is slightly greater than the fidelity of measurement for two given identical states, showing how precisely one can determine its state [S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995)]. We also show that the deletion machine itself is input state independent, i.e., the information is not hidden in the deleting machine, and hence we can delete the information completely from the deletion machine

  19. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S J; Smith, T J; England, S; Collins, F; Davies, K E

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  20. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  1. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  2. The Use of Trust Regions in Kohn-Sham Total Energy Minimization

    International Nuclear Information System (INIS)

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-01-01

    The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF

  3. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S.J.; Smith, T.J.; England, S.; Collins, F.; Davies, K.E.

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  4. Amino-acid composition after loop deletion drives domain swapping.

    Science.gov (United States)

    Nandwani, Neha; Surana, Parag; Udgaonkar, Jayant B; Das, Ranabir; Gosavi, Shachi

    2017-10-01

    Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain-swapped oligomer over the monomer. While it is known that the deletion of loops between β-strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop-deletion mutants of the non-domain-swapping protein monellin, frame-shifted by a single residue, were designed. Although the spliced sequence in the two mutants differed by only one residue at the site of the deletion, only one of them (YEIKG) promoted domain swapping. The mutant containing the spliced sequence YENKG was entirely monomeric. This new understanding that the domain swapping propensity after loop deletion may depend critically on the chemical composition of the shortened loop will facilitate the rational design of domain swapping. © 2017 The Protein Society.

  5. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  6. Epilepsy is a possible feature in Williams-Beuren syndrome patients harboring typical deletions of the 7q11.23 critical region.

    Science.gov (United States)

    Nicita, Francesco; Garone, Giacomo; Spalice, Alberto; Savasta, Salvatore; Striano, Pasquale; Pantaleoni, Chiara; Spartà, Maria Valentina; Kluger, Gerhard; Capovilla, Giuseppe; Pruna, Dario; Freri, Elena; D'Arrigo, Stefano; Verrotti, Alberto

    2016-01-01

    Seizures are rarely reported in Williams-Beuren syndrome (WBS)--a contiguous-gene-deletion disorder caused by a 7q11.23 heterozygous deletion of 1.5-1.8 Mb--and no previous study evaluated electro-clinical features of epilepsy in this syndrome. Furthermore, it has been hypothesized that atypical deletion (e.g., larger than 1.8 Mb) may be responsible for a more pronounced neurological phenotypes, especially including seizures. Our objectives are to describe the electro-clinical features in WBS and to correlate the epileptic phenotype with deletion of the 7q11.23 critical region. We evaluate the electro-clinical features in one case of distal 7q11.23 deletion syndrome and in eight epileptic WBS (eWBS) patients. Additionally, we compare the deletion size-and deleted genes-of four epileptic WBS (eWBS) with that of four non-epileptic WBS (neWBS) patients. Infantile spasms, focal (e.g., motor and dyscognitive with autonomic features) and generalized (e.g., tonic-clonic, tonic, clonic, myoclonic) seizures were encountered. Drug-resistance was observed in one patient. Neuroimaging discovered one case of focal cortical dysplasia, one case of fronto-temporal cortical atrophy and one case of periventricular nodular heterotopia. Comparison of deletion size between eWBS and neWBS patients did not reveal candidate genes potentially underlying epilepsy. This is the largest series describing electro-clinical features of epilepsy in WBS. In WBS, epilepsy should be considered both in case of typical and atypical deletions, which do not involve HIP1, YWHAG or MAGI2. © 2015 Wiley Periodicals, Inc.

  7. Interstitial deletion in the "critical region" of the long arm of the X chromosome in a mentally retarded boy and his normal mother

    DEFF Research Database (Denmark)

    Tabor, A; Andersen, O; Lundsteen, C

    1983-01-01

    A family in which an intestitial deletion of the X chromosome, del(X)(q13q21.3), is segregating was ascertained through a boy with cleft lip and palate, agenesis of the corpus callosum, and severe mental retardation. The possible causal relationship to his chromosome abnormality is discussed. Alt....... Although the deletion occurred within the critical region, the mother showed no signs of gonadal dysgenesis. A phenotypically normal daughter was, as her mother, monosomic for this region of the X, and both showed random inactivation of the X chromosome....

  8. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    International Nuclear Information System (INIS)

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.

    1989-01-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be 100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region

  9. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  10. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    Energy Technology Data Exchange (ETDEWEB)

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Russo, L.S. [Univ. of Florida, Jacksonville, FL (United States); Riconda, D.L. [Orlando Regional Medical Center, Orlando, FL (United States)

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  11. Analysis of spontaneous deletions and gene amplification in the lac region of Escherichia coli

    International Nuclear Information System (INIS)

    Albertini, A.M.; Hofer, M.; Calos, M.P.; Tlsty, T.D.; Miller, J.H.

    1983-01-01

    Spontaneous rearrangements, such as large deletions and duplications, have important implications for the structure of the genome. It is therefore of great interest to analyze these events at the molecular level. We have constructed derivatives of a lacI-Z fusion strain, which allow us to study deletions in a more systematic manner than was previously possible. These derivatives have been used to investigate how frequently larger deletions (> 700 bp) occur between short homologies on both recA and recA - strains and to determine the effect of the lengths of the short homologies and of the distance between homologies on the frequency of deletion formation. 38 references, 11 figures

  12. The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1

    Science.gov (United States)

    Materna-Kiryluk, Anna; Kiryluk, Krzysztof; Burgess, Katelyn E; Bieleninik, Arkadiusz; Sanna-Cherchi, Simone; Gharavi, Ali G.; Latos-Bielenska, Anna

    2014-01-01

    Background Copy number variants (CNVs) are increasingly recognized as an important cause of congenital malformations and likely explain over 16% cases of CAKUT. Here, we illustrate how a molecular diagnosis of CNV can inform the clinical management of a pediatric patient presenting with CAKUT and other organ defects. Methods We describe a 14 year-old girl with a large de novo deletion of chromosome 3q13.31-22.1 that disrupts 101 known genes and manifests with CAKUT, neurodevelopmental delay, agenesis of corpus callosum (ACC), cardiac malformations, electrolyte and endocrine disorders, skeletal abnormalities and dysmorphic features. We perform extensive annotation of the deleted region to prioritize genes for specific phenotypes and to predict future disease risk. Results Our case defined new minimal chromosomal candidate regions for both CAKUT and ACC. Moreover, the presence of the CASR gene in the deleted interval predicted a diagnosis of hypocalciuric hypercalcemia, which was confirmed by serum and urine chemistries. Our gene annotation explained clinical hypothyroidism and predicted that the index case is at increased risk of thoracic aortic aneurysm, renal cell carcinoma and myeloproliferative disorder. Conclusions Extended annotation of CNV regions refines diagnosis and uncovers previously unrecognized phenotypic features. This approach enables personalized treatment and prevention strategies in patients harboring genomic deletions. PMID:24292865

  13. HOXA genes cluster: clinical implications of the smallest deletion

    OpenAIRE

    Pezzani, Lidia; Milani, Donatella; Manzoni, Francesca; Baccarin, Marco; Silipigni, Rosamaria; Guerneri, Silvana; Esposito, Susanna

    2015-01-01

    Background HOXA genes cluster plays a fundamental role in embryologic development. Deletion of the entire cluster is known to cause a clinically recognizable syndrome with mild developmental delay, characteristic facies, small feet with unusually short and big halluces, abnormal thumbs, and urogenital malformations. The clinical manifestations may vary with different ranges of deletions of HOXA cluster and flanking regions. Case presentation We report a girl with the smallest deletion reporte...

  14. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  15. KCUT, code to generate minimal cut sets for fault trees

    International Nuclear Information System (INIS)

    Han, Sang Hoon

    2008-01-01

    1 - Description of program or function: KCUT is a software to generate minimal cut sets for fault trees. 2 - Methods: Expand a fault tree into cut sets and delete non minimal cut sets. 3 - Restrictions on the complexity of the problem: Size and complexity of the fault tree

  16. Do mtDNA Deletions Play a Role in the Development of Nasal Polyposis?

    Directory of Open Access Journals (Sweden)

    Arzu Tatar

    2014-04-01

    Full Text Available Objective:Nasal polyposis (NP is an inflammatory disease of the nasal mucosa and paranasal sinuses. Mitochondria are the cellular organelles which produce cellular energy by Oxidative Phosphorylation (OXPHOS, and they have own inheritance material, mtDNA. mtDNA is affected by reactive oxygen samples (ROS which are produced by both OXPHOS and the inflammatory process. The aim of this study was to investigate the 4977 bp and 7400 bp deletions of mtDNA in nasal polyposis tissue, and to indicate the possible association of mtDNA deletions with NP. Methods:Thirty-three patients, aged 15 to 65 years, with nasal polyposis were selected to be assessed for mitochondrial DNA deletions. The patients with possible mtDNA mutations due to mitochondrial disease, being treated with radiotherapy, of advanced age, with a familiar history, aspirin hypersensitivity, or a history of asthma, were excluded. Polyp excision surgery was applied to the treatment of the NP, and after histopathological diagnosis 1x1 cm of polyp tissue samples were used to isolate mtDNA. The 4977 bp and 7400 bp deletion regions, and two control regions of mtDNA were assessed by using four pairs of primers. DNA extractions from the NP tissues and peripheral blood samples of the patients were made, and then Polymerase Chain Reactions (PCR were made. PCR products were separated in 2% agarose gel.Results:No patient had either the 4977 bp deletion or the 7400 bp deletion in their NP tissue, and neither were these deletions evident in their peripheral blood. Two control sequences, one of them from a non-deleted region, and the other from a possible deletion region, were detected in the NP tissues and peripheral blood of all the patients.Conclusions:We had anticipated that some mtDNA deletion might have occurred in NP tissue due to the increased ROS levels caused by chronic inflammation, but we did not detect any deletion. Probably, the duration of inflammation in NP is insufficient to form mt

  17. Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.; Zwart, M.P.; Phuong, N.T.; Oanh, D.T.H.; Jong, de M.C.M.; Vlak, J.M.

    2012-01-01

    Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most

  18. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    Energy Technology Data Exchange (ETDEWEB)

    Abbs, S.; Sandhu, S.; Bobrow, M. [Guy`s Hospital, London (United Kingdom)

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  19. Analysis of Dystrophin Gene Deletions by Multiplex PCR in Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Aziza Sbiti

    2002-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD and BMD are X-linked diseases resulting from a defect in the dystrophin gene located on Xp21. DMD is the most frequent neuromuscular disease in humans (1/3500 male newborn. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. We have analyzed DNA from 72 Moroccan patients with DMD/BMD using the multiplex polymerase chain reaction (PCR to screen for exon deletions within the dystrophin gene, and to estimate the frequency of these abnormalities. We found dystrophin gene deletions in 37 cases. Therefore the frequency in Moroccan DMD/BMD patients is about 51.3%. All deletions were clustered in the two known hot-spots regions, and in 81% of cases deletions were detected in the region from exon 43 to exon 52. These findings are comparable to those reported in other studies. It is important to note that in our population, we can first search for deletions of DMD gene in the most frequently deleted exons determined by this study. This may facilitate the molecular diagnosis of DMD and BMD in our country.

  20. A novel partial deletion of the Y chromosome azoospermia factor c region is caused by non-homologous recombination between palindromes and may be associated with increased sperm counts

    NARCIS (Netherlands)

    Noordam, M. J.; van Daalen, S. K. M.; Hovingh, S. E.; Korver, C. M.; van der Veen, F.; Repping, S.

    2011-01-01

    BACKGROUND: The male-specific region of the human Y chromosome (MSY) contains multiple testis-specific genes. Most deletions in the MSY lead to inadequate or absent sperm production. Nearly all deletions occur via homologous recombination between amplicons. Previously, we identified two P5/distal-P1

  1. A DNA fragment from Xq21 replaces a deleted region containing the entire FVIII gene in a severe hemophilia A patient

    Energy Technology Data Exchange (ETDEWEB)

    Murru, S.; Casula, L.; Moi, P. [Insituto di Clinica e Biologia dell` Eta Evolutiva, Cagliari (Italy)] [and others

    1994-09-15

    In this paper the authors report the molecular characterization of a large deletion that removes the entire Factor VIII gene in a severe hemophilia A patient. Accurate DNA analysis of the breakpoint region revealed that a large DNA fragment replaced the 300-kb one, which was removed by the deletion. Pulsed-field gel electrophoresis analysis revealed that the size of the inserted fragment is about 550 kb. In situ hybridization demonstrated that part of the inserted region normally maps to Xq21 and to the tip of the short arm of the Y chromosome (Yp). In this patient this locus is present both in Xq21 and in Xq28, in addition to the Yp, being thus duplicated in the X chromosome. Sequence analysis of the 3` breakpoint suggested that an illegitimate recombination is probably the cause of this complex rearrangement. 52 refs., 7 figs.

  2. Characterization of novel RS1 exonic deletions in juvenile X-linked retinoschisis.

    Science.gov (United States)

    D'Souza, Leera; Cukras, Catherine; Antolik, Christian; Craig, Candice; Lee, Ji-Yun; He, Hong; Li, Shibo; Smaoui, Nizar; Hejtmancik, James F; Sieving, Paul A; Wang, Xinjing

    2013-01-01

    X-linked juvenile retinoschisis (XLRS) is a vitreoretinal dystrophy characterized by schisis (splitting) of the inner layers of the neuroretina. Mutations within the retinoschisis (RS1) gene are responsible for this disease. The mutation spectrum consists of amino acid substitutions, splice site variations, small indels, and larger genomic deletions. Clinically, genomic deletions are rarely reported. Here, we characterize two novel full exonic deletions: one encompassing exon 1 and the other spanning exons 4-5 of the RS1 gene. We also report the clinical findings in these patients with XLRS with two different exonic deletions. Unrelated XLRS men and boys and their mothers (if available) were enrolled for molecular genetics evaluation. The patients also underwent ophthalmologic examination and in some cases electroretinogram (ERG) recording. All the exons and the flanking intronic regions of the RS1 gene were analyzed with direct sequencing. Two patients with exonic deletions were further evaluated with array comparative genomic hybridization to define the scope of the genomic aberrations. After the deleted genomic region was identified, primer walking followed by direct sequencing was used to determine the exact breakpoints. Two novel exonic deletions of the RS1 gene were identified: one including exon 1 and the other spanning exons 4 and 5. The exon 1 deletion extends from the 5' region of the RS1 gene (including the promoter) through intron 1 (c.(-35)-1723_c.51+2664del4472). The exon 4-5 deletion spans introns 3 to intron 5 (c.185-1020_c.522+1844del5764). Here we report two novel exonic deletions within the RS1 gene locus. We have also described the clinical presentations and hypothesized the genomic mechanisms underlying these schisis phenotypes.

  3. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  4. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  5. Feline infectious peritonitis virus with a large deletion in the 5'-terminal region of the spike gene retains its virulence for cats.

    Science.gov (United States)

    Terada, Yutaka; Shiozaki, Yuto; Shimoda, Hiroshi; Mahmoud, Hassan Youssef Abdel Hamid; Noguchi, Keita; Nagao, Yumiko; Shimojima, Masayuki; Iwata, Hiroyuki; Mizuno, Takuya; Okuda, Masaru; Morimoto, Masahiro; Hayashi, Toshiharu; Tanaka, Yoshikazu; Mochizuki, Masami; Maeda, Ken

    2012-09-01

    In this study, the Japanese strain of type I feline infectious peritonitis virus (FIPV), C3663, was found to have a large deletion of 735 bp within the gene encoding the spike (S) protein, with a deduced loss of 245 aa of the N-terminal region of the S protein. This deletion is similar to that observed in porcine respiratory coronavirus (PRCoV) when compared to transmissible gastroenteritis virus, which correlates with reduced virulence. By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated in cats. However, two of four cats inoculated with C3663 died of FIP, and a third C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results indicate that the 5'-terminal region of the S gene is not essential for the development of FIP.

  6. Subtelomeric deletion of chromosome 10p15.3: clinical findings and molecular cytogenetic characterization.

    Science.gov (United States)

    DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia A L; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B A; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D

    2012-09-01

    We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. Copyright © 2012 Wiley Periodicals, Inc.

  7. Deletion of Xpter encompassing the SHOX gene and PAR1 region in familial patients with Leri-Weill Dyschondrosteosis syndrome.

    Science.gov (United States)

    Mutesa, L; Vanbellinghen, J F; Hellin, A C; Segers, K; Jamar, M; Pierquin, G; Bours, V

    2009-01-01

    Heterozygote deletions or mutations of pseudoautosomal 1 region (PAR1) encompassing the short stature homeobox-containing (SHOX) gene cause Leri-Weill Dyschondrosteosis (LWD), which is a dominantly inherited osteochondroplasia characterized by short stature with mesomelic shortening of the upper and lower limbs and Madelung deformity of the wrists. SHOX is expressed by both sex chromosomes in males and females and plays an important role in bone growth and development. Clinically, the LWD expression is variable and more severe in females than males due to sex differences in oestrogen levels. Here, we report two familial cases of LWD with a large Xp terminal deletion (approximately 943 kb) of distal PAR1 encompassing the SHOX gene. In addition, the proband had mental retardation which appeared to be from recessive inheritance in the family.

  8. Retention or deletion of personality disorder diagnoses for DSM-5: an expert consensus approach.

    Science.gov (United States)

    Mullins-Sweatt, Stephanie N; Bernstein, David P; Widiger, Thomas A

    2012-10-01

    One of the official proposals for the fifth edition of the American Psychiatric Association's (APA) diagnostic manual (DSM-5) is to delete half of the existing personality disorders (i.e., dependent, histrionic, narcissistic, paranoid, and schizoid). Within the APA guidelines for DSM-5 decisions, it is stated that there should be expert consensus agreement for the deletion of a diagnostic category. Additionally, categories to be deleted should have low clinical utility and/or minimal evidence for validity. The current study surveyed members of two personality disorder associations (n = 146) with respect to the utility, validity, and status of each DSM-IV-TR personality disorder diagnosis. Findings indicated that the proposal to delete five of the personality disorders lacks consensus support within the personality disorder community.

  9. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur P

    2004-01-01

    Full Text Available The diagnosis of Duchenna Muscular Dystrophy (DMD and Becker Muscular Dystorphy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hot spot′ regions allowing determinations of deletion end points. Intragenic deletions were detected in 74 patients indicating that the use of PCR- based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  10. The diagnosis and molecular analysis of a novel 21.9kb deletion (Qinzhou type deletion) causing α+ thalassemia.

    Science.gov (United States)

    Long, Ju; Yan, Shanhuo; Lao, Kegan; Pang, Wanrong; Ye, Xuehe; Sun, Lei

    2014-04-01

    α-Thalassemia is a common single-gene genetic disease that can cause Hb Bart's hydrops fetalis and Hb H disease in tropical and subtropical regions. When examining conventional thalassemia genes, an only detected --(SEA) genotype sample needs further analysis. In doing so, we found a novel 21.9kb deletion (Qinzhou type deletion). The deletion position of the novel 21.9kb deletion is from 14373bp to 36299bp of the α-globin gene cluster (NG_000006.1); thus, there exists a 21927bp sequence deletion, into which a 29bp sequence is added. After sequence analysis, a group of Gap-PCR primers were synthesized to diagnose this novel thalassemia genotype. Through pedigree analysis, we deduced that the propositus obtained the novel alleles from her mother. The genotype of this propositus is --(SEA)/-α(21.9) and its phenotype conforms to the characteristics of Hb H disease, establishing that the combination between -α(21.9) genotype and α(0) genotype can lead to Hb H disease. By molecular analysis, we established that this case fits the characteristic of an α(+) thalassemia genotype. © 2013.

  11. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  12. Refinement of the critical 2p25.3 deletion region

    DEFF Research Database (Denmark)

    De Rocker, Nina; Vergult, Sarah; Koolen, David

    2015-01-01

    PURPOSE: Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. METHODS: In this study...

  13. Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice.

    Science.gov (United States)

    Pesko, Kendra N; Fitzpatrick, Kelly A; Ryan, Elizabeth M; Shi, Pei-Yong; Zhang, Bo; Lennon, Niall J; Newman, Ruchi M; Henn, Matthew R; Ebel, Gregory D

    2012-05-25

    Most RNA viruses exist in their hosts as a heterogeneous population of related variants. Due to error prone replication, mutants are constantly generated which may differ in individual fitness from the population as a whole. Here we characterize three WNV isolates that contain, along with full-length genomes, mutants with large internal deletions to structural and nonstructural protein-coding regions. The isolates were all obtained from lorikeets that died from WNV at the Rio Grande Zoo in Albuquerque, NM between 2005 and 2007. The deletions are approximately 2kb, in frame, and result in the elimination of the complete envelope, and portions of the prM and NS-1 proteins. In Vero cell culture, these internally deleted WNV genomes function as defective interfering particles, reducing the production of full-length virus when introduced at high multiplicities of infection. In mosquitoes, the shortened WNV genomes reduced infection and dissemination rates, and virus titers overall, and were not detected in legs or salivary secretions at 14 or 21 days post-infection. In mice, inoculation with internally deleted genomes did not attenuate pathogenesis relative to full-length or infectious clone derived virus, and shortened genomes were not detected in mice at the time of death. These observations provide evidence that large deletions may occur within flavivirus populations more frequently than has generally been appreciated and suggest that they impact population phenotype minimally. Additionally, our findings suggest that highly similar mutants may frequently occur in particular vertebrate hosts. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice

    Science.gov (United States)

    Ye, Maoqing; Coldren, Chris; Liang, Xingqun; Mattina, Teresa; Goldmuntz, Elizabeth; Benson, D. Woodrow; Ivy, Dunbar; Perryman, M.B.; Garrett-Sinha, Lee Ann; Grossfeld, Paul

    2010-01-01

    Congenital heart defects comprise the most common form of major birth defects, affecting 0.7% of all newborn infants. Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal 11q. We have previously determined that a wide spectrum of the most common congenital heart defects occur in 11q-, including an unprecedented high frequency of hypoplastic left heart syndrome (HLHS). We identified an ∼7 Mb ‘cardiac critical region’ in distal 11q that contains a putative causative gene(s) for congenital heart disease. In this study, we utilized chromosomal microarray mapping to characterize three patients with 11q- and congenital heart defects that carry interstitial deletions overlapping the 7 Mb cardiac critical region. We propose that this 1.2 Mb region of overlap harbors a gene(s) that causes at least a subset of the congenital heart defects that occur in 11q-. We demonstrate that one gene in this region, ETS-1 (a member of the ETS family of transcription factors), is expressed in the endocardium and neural crest during early mouse heart development. Gene-targeted deletion of ETS-1 in mice in a C57/B6 background causes, with high penetrance, large membranous ventricular septal defects and a bifid cardiac apex, and less frequently a non-apex-forming left ventricle (one of the hallmarks of HLHS). Our results implicate an important role for the ETS-1 transcription factor in mammalian heart development and should provide important insights into some of the most common forms of congenital heart disease. PMID:19942620

  15. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2.

    Science.gov (United States)

    Zollino, Marcella; Lecce, Rosetta; Fischetto, Rita; Murdolo, Marina; Faravelli, Francesca; Selicorni, Angelo; Buttè, Cinzia; Memo, Luigi; Capovilla, Giuseppe; Neri, Giovanni

    2003-03-01

    In an attempt to define the distinctive Wolf-Hirschhorn syndrome (WHS) phenotype, and to map its specific clinical manifestations, a total of eight patients carrying a 4p16.3 microdeletion were analyzed for their clinical phenotype and their respective genotypes. The extent of each individual deletion was established by fluorescence in situ hybridization, with a cosmid contig spanning the genomic region from MSX1 (distal half of 4p16.1) to the subtelomeric locus D4S3359. The deletions were 1.9-3.5 Mb, and all were terminal. All the patients presented with a mild phenotype, in which major malformations were usually absent. It is worth noting that head circumference was normal for height in two patients (those with the smallest deletions [1.9 and 2.2 Mb]). The currently accepted WHS critical region (WHSCR) was fully preserved in the patient with the 1.9-Mb deletion, in spite of a typical WHS phenotype. The deletion in this patient spanned the chromosome region from D4S3327 (190 b4 cosmid clone included) to the telomere. From a clinical point of view, the distinctive WHS phenotype is defined by the presence of typical facial appearance, mental retardation, growth delay, congenital hypotonia, and seizures. These signs represent the minimal diagnostic criteria for WHS. This basic phenotype maps distal to the currently accepted WHSCR. Here, we propose a new critical region for WHS, and we refer to this region as "WHSCR-2." It falls within a 300-600-kb interval in 4p16.3, between the loci D4S3327 and D4S98-D4S168. Among the candidate genes already described for WHS, LETM1 (leucine zipper/EF-hand-containing transmembrane) is likely to be pathogenetically involved in seizures. On the basis of genotype-phenotype correlation analysis, dividing the WHS phenotype into two distinct clinical entities, a "classical" and a "mild" form, is recommended for the purpose of proper genetic counseling.

  16. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma

    NARCIS (Netherlands)

    Santo, E. E.; Ebus, M. E.; Koster, J.; Schulte, J. H.; Lakeman, A.; van Sluis, P.; Vermeulen, J.; Gisselsson, D.; Øra, I.; Lindner, S.; Buckley, P. G.; Stallings, R. L.; Vandesompele, J.; Eggert, A.; Caron, H. N.; Versteeg, R.; Molenaar, J. J.

    2012-01-01

    Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion

  17. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men.

    Directory of Open Access Journals (Sweden)

    Jin Choi

    Full Text Available Microdeletion of the Azoospermia Factor (AZF regions in Y chromosome is a well-known genetic cause of male infertility resulting from spermatogenetic impairment. However, the partial deletions of AZFc region related to spermatogenetic impairment are controversial. In this study, we characterized partial deletion of AZFc region in Korean patients with spermatogenetic impairment and assessed whether the DAZ and CDY1 contributes to the phenotype in patients with gr/gr deletions. Total of 377 patients with azoo-/oligozoospermia and 217 controls were analyzed using multiplex polymerase chain reaction (PCR, analysis of DAZ-CDY1 sequence family variants (SFVs, and quantitative fluorescent (QF-PCR. Of the 377 men with impaired spermatogenesis, 59 cases (15.6% had partial AZFc deletions, including 32 gr/gr (8.5%, 22 b2/b3 (5.8%, four b1/b3 (1.1% and one b3/b4 (0.3% deletion. In comparison, 14 of 217 normozoospermic controls (6.5% had partial AZFc deletions, including five gr/gr (2.3% and nine b2/b3 (4.1% deletions. The frequency of gr/gr deletions was significantly higher in the azoo-/oligozoospermic group than in the normozoospermic control group (p = 0.003; OR = 3.933; 95% CI = 1.509-10.250. Concerning Y haplogroup, we observed no significant differences in the frequency of gr/gr deletions between the case and the control groups in the YAP+ lineages, while gr/gr deletion were significantly higher in azoo-/oligozoospermia than normozoospermia in the YAP- lineage (p = 0.004; OR = 6.341; 95% CI = 1.472-27.312. Our data suggested that gr/gr deletion is associated with impaired spermatogenesis in Koreans with YAP- lineage, regardless of the gr/gr subtypes.

  18. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors

    International Nuclear Information System (INIS)

    Bystroem, C.; Larsson, C.; Blomberg, C.; Nordenskjoeld, M.; Sandelin, K.; Falkmer, U.; Werner, S.; Skogseid, B.; Oeberg, K.

    1990-01-01

    The gene for multiple endocrine neoplasia type 1 (MEN1), and inherited predisposition to neuroendocrine neoplasm of the parathyroid glands, the pancreatic islet parenchyma, and the anterior pituitary gland, was recently mapped to chromosome 11q13 based on genetic linkage in families. The authors now show that the pathogenesis of MEN1-associated parathyroid lesions involves unmasking of a recessive mutation at the disease locus and that sporadic primary hyperparathyroidism shares the same mechanisms. By examination of allele losses in MEN1-associated lesions, they could define deletions of chromosome 11 and map the MEN1 locus to a small region within chromosome band 11q13, telomeric to the PYGM locus. In contrast, a low incidence of deletions involving the MEN1 gene was found in sporadic pituitary adenomas

  19. HOMOZYGOUS DELETION IN A SMALL-CELL LUNG-CANCER CELL-LINE INVOLVING A 3P21 REGION WITH A MARKED INSTABILITY IN YEAST ARTIFICIAL CHROMOSOMES

    NARCIS (Netherlands)

    KOK, K; van den Berg, Anke; VELDHUIS, PMJF; VANDERVEEN, AY; FRANKE, M; SCHOENMAKERS, EFPM; HULSBEEK, MMF; VANDERHOUT, AH; DELEIJ, L; VANDEVEN, W; BUYS, CHCM

    1994-01-01

    All types of lung carcinoma are characterized by a high frequency of loss of sequences from the short arm of chromosome 3, the smallest region of overlap containing D3F15S2 in band p21. Here we characterize a 440-kilobase segment from this region, which we found homozygously deleted in one of our

  20. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  1. Allelic variants of CAMTA1 and FLJ10737 within a commonly deleted region at 1p36 in neuroblastoma

    DEFF Research Database (Denmark)

    Henrich, Kai-Oliver; Claas, Andreas; Praml, Christian

    2007-01-01

    Deletion of a distal portion of 1p is seen in a wide range of human malignancies, including neuroblastoma. Here, a 1p36.3 commonly deleted region of 216 kb has been defined encompassing two genes, CAMTA1 and FLJ10737. Low expression of CAMTA1 has been recently shown to be an independent predictor...... of poor outcome in neuroblastoma patients. The present study surveys CAMTA1 and FLJ10737 for genetic alterations by fluorescence-based single strand conformation polymorphism (SSCP) using a panel of DNAs from 88 neuroblastomas, their matching blood samples and 97 unaffected individuals. Nucleotide...... variants encoding amino acid substitutions were found in both genes. One CAMTA1 variant (T1336I) was not detected in 97 unaffected individuals, another (N1177K) resides in a conserved domain of the CAMTA1 protein and was found hemizygous in six neuroblastomas. We found no evidence for somatic mutations...

  2. Exploration of methods to localize DNA sequences missing from c-locus deletions

    International Nuclear Information System (INIS)

    Albritton, L.M.; Russell, L.B.; Montgomery, C.S.

    1987-01-01

    The authors have earlier characterized a large number of radiation-induced mutations at the c locus (on Chromosome 7) through genetic analysis, including extensive complementation tests. Based on this work, they have postulated that many of these mutations are deletions of various lengths, overlapping at c (the marker used in the mutation-rate experiments that generated the mutants). It was possible to apportion these deletions among 13 complementation groups and to fit them to a linear map of 8 functional units. Collectively, the deletions extend from a point between tp and c to one between sh-1 and Hbb, i.e., a genetic distance of from 6 to 10 cM, corresponding to at least 10 4 Kb of DNA. This year, the authors completed a pilot study designed to explore methods for finding DNA sequences that map to the region covered by the various c-deletions. The general plan was to probe DNA with clones derived from Chromosome-7-enriched libraries or with sequences known (or suspected) to reside in Chromosome 7. Three methods were explored for deriving the c-region-deficient DNA: (a) from mouse-hamster somatic-cell hydrids retaining a deleted mouse Chromosome 7, but no homologue; (b) from F 1 hybrids of M. musculus domesticus (carrying a c-locus deletion) by M. spretus; and (c) from F 1 hybrids of M. domesticus stocks carrying complementing deletions

  3. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bova, G.S.; Pin, S.S.; Isaacs, W.B. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Brady Urological Institute, Baltimore, MD (United States)] [and others

    1996-07-01

    Numerous studies have implicated the short arm of chromosome 8 as the site of one or more tumor suppressor genes inactivated in carcinogenesis of the prostate, colon, lung, and liver. Previously, we identified a homozygous deletion on chromosome 8p22 in a metastatic prostate cancer. To map this homozygous deletion physically, long-range restriction mapping was performed using yeast artificial chromosomes (YACs) spanning approximately 2 Mb of chromosome band 8p22. Subcloned genomic DNA and cDNA probes isolated by hybrid capture from these YACs were mapped in relation to one another, reinforcing map integrity. Mapped single-copy probes from the region were then applied to DNA isolated from a metastatic prostate cancer containing a chromosome 8p22 homozygous deletion and indicated that its deletion spans 730-970 kb. Candidate genes PRLTS (PDGF-receptor {beta}-like tumor suppressor) and CTSB (cathepsin B) are located outside the region of homozygous deletion. Genethon marker D8S549 is located approximately at the center of this region of homozygous deletion. Two new microsatellite polymorphisms, D8S1991 and D8S1992, also located within the region of homozygous deletion on chromosome 8p22, are described. Physical mapping places cosmid CI8-2644 telomeric to MSR (macrophage scavenger receptor), the reverse of a previously published map, altering the interpretation of published deletion studies. This work should prove helpful in the identification of candidate tumor suppressor genes in this region. 47 refs., 5 figs., 1 tab.

  4. A Community-Aware Approach to Minimizing Dissemination in Graphs

    KAUST Repository

    Zhang, Chuxu

    2017-08-02

    Given a graph, can we minimize the spread of an entity (such as a meme or a virus) while maintaining the graph’s community structure (defined as groups of nodes with denser intra-connectivity than inter-connectivity)? At first glance, these two objectives seem at odds with each other. To minimize dissemination, nodes or links are often deleted to reduce the graph’s connectivity. These deletions can (and often do) destroy the graph’s community structure, which is an important construct in real-world settings (e.g., communities promote trust among their members). We utilize rewiring of links to achieve both objectives. Examples of rewiring in real life are prevalent, such as purchasing products from a new farm since the local farm has signs of mad cow disease; getting information from a new source after a disaster since your usual source is no longer available, etc. Our community-aware approach, called constrCRlink (short for Constraint Community Relink), preserves (on average) 98.6% of the efficacy of the best community-agnostic link-deletion approach (namely, NetMelt+), but changes the original community structure of the graph by only 4.5%. In contrast, NetMelt+ changes 13.6% of the original community structure.

  5. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts.

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O; Riazuddin, S Amer

    2016-01-01

    The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.

  6. Detection of the deletion on Yp11.2 in a Chinese population.

    Science.gov (United States)

    Chen, Wenjing; Wu, Weiwei; Cheng, Jianding; Zhang, Yinming; Chen, Yong; Sun, Hongyu

    2014-01-01

    Sex determination tests based on Amelogenin gene as part of commercial PCR multiplex reaction kits have been widely applied in forensic DNA analysis. Mutations that cause dropout of Y chromosomal Amelogenin gene (AMELY) could lead to errors in gender determination and mixture interpretation. To infer the mechanism and estimate the dropout frequency of AMELY and adjacent Y-STRs, we studied 3 samples with AMELY dropout combined with DYS458 and/or DYS456 and 37 samples with DYS456 dropout. DYS456, DYS458 and AMELY are located in the Yp11.2 region. The singleplex amplification system showed the null alleles could be caused by fragment deletion in Yp11.2 rather than a point mutation in the primer binding region. After detection of the 17 Y-STR and 77 STS markers, the deletion map showed different patterns. The DYS456-AMELY-DYS458 deletion pattern was the largest, breaking from 3.60 Mb to 8.29 Mb in the Y chromosome, and the overall frequency was 0.0077%. The AMELY-DYS458 deletion pattern was broke from 6.74 Mb to 9.17 Mb, with a 0.0155% frequency. The DYS456 negative pattern was concentrated in two main deletion regions, with a 0.8220% frequency. The frequency of all negative pattern was 0.0155%. All the AMELY-DYS458 and DYS456-AMELY-DYS458, and 92% of the DYS456 deletion patterns belonged to Hg O3, the rest belonged to Hg Q. The DYS456 deletion pattern was first reported in Chinese population. The current and previous findings suggest additional gender test for ambiguous sex determination may be required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  8. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.

    Science.gov (United States)

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald

    2010-05-18

    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  9. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome.

    Science.gov (United States)

    Cook, R Kimberley; Christensen, Stacey J; Deal, Jennifer A; Coburn, Rachel A; Deal, Megan E; Gresens, Jill M; Kaufman, Thomas C; Cook, Kevin R

    2012-01-01

    Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.

  10. Molecular studies of deletions at the human steroid sulfatase locus

    International Nuclear Information System (INIS)

    Shapiro, L.J.; Yen, P.; Pomerantz, D.; Martin, E.; Rolewic, L.; Mohandas, T.

    1989-01-01

    The human steroid sulfatase gene (STS) is located on the distal X chromosome short arm close to the pseudoautosomal region but in a segment of DNA that is unique to the X chromosome. In contrast to most X chromosome-encoded genes, STS expression is not extinguished during the process of X chromosome inactivation. Deficiency of STS activity produced the syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn errors of metabolism in man. Approximately 90% of STS - individuals have large deletions at the STS locus. The authors and others have found that the end points of such deletions are heterogeneous in their location. One recently ascertained subject was observed to have a 40-kilobase deletion that is entirely intragenic, permitting the cloning and sequencing of the deletion junction. Studies of this patient and of other X chromosome sequences in other subjects permit some insight into the mechanism(s) responsible for generating frequent deletions on the short arm of the X chromosome

  11. Discrimination of Deletion and Duplication Subtypes of the Deleted in Azoospermia Gene Family in the Context of Frequent Interloci Gene Conversion

    Science.gov (United States)

    Vaszkó, Tibor; Papp, János; Krausz, Csilla; Casamonti, Elena; Géczi, Lajos; Olah, Edith

    2016-01-01

    Due to its palindromic setup, AZFc (Azoospermia Factor c) region of chromosome Y is one of the most unstable regions of the human genome. It contains eight gene families expressed mainly in the testes. Several types of rearrangement resulting in changes in the cumulative copy number of the gene families were reported to be associated with diseases such as male infertility and testicular germ cell tumors. The best studied AZFc rearrangement is gr/gr deletion. Its carriers show widespread phenotypic variation from azoospermia to normospermia. This phenomenon was initially attributed to different gr/gr subtypes that would eliminate distinct members of the affected gene families. However, studies conducted to confirm this hypothesis have brought controversial results, perhaps, in part, due to the shortcomings of the utilized subtyping methodology. This proof-of-concept paper is meant to introduce here a novel method aimed at subtyping AZFc rearrangements. It is able to differentiate the partial deletion and partial duplication subtypes of the Deleted in Azoospermia (DAZ) gene family. The keystone of the method is the determination of the copy number of the gene family member-specific variant(s) in a series of sequence family variant (SFV) positions. Most importantly, we present a novel approach for the correct interpretation of the variant copy number data to determine the copy number of the individual DAZ family members in the context of frequent interloci gene conversion.Besides DAZ1/DAZ2 and DAZ3/DAZ4 deletions, not yet described rearrangements such as DAZ2/DAZ4 deletion and three duplication subtypes were also found by the utilization of the novel approach. A striking feature is the extremely high concordance among the individual data pointing to a certain type of rearrangement. In addition to being able to identify DAZ deletion subtypes more reliably than the methods used previously, this approach is the first that can discriminate DAZ duplication subtypes as well

  12. Two unique patients with novel microdeletions in 4p16.3 that exclude the WHS critical regions: implications for critical region designation.

    Science.gov (United States)

    South, Sarah T; Bleyl, Steven B; Carey, John C

    2007-09-15

    Wolf-Hirschhorn syndrome (WHS) is characterized by growth delay, developmental delay, hypotonia, seizures, feeding difficulties, and characteristic facial features. Deletion of either of two critical regions (WHSCR and WHSCR-2) within chromosome band 4p16.3 has been proposed as necessary for the minimal clinical manifestations of WHS and controversy remains regarding their designation. We describe two patients with novel terminal microdeletions in 4p16.3 who lack the characteristic facial features but do show some of the more nonspecific manifestations of WHS. The first patient had a ring chromosome 4 with an intact 4q subtelomere and a terminal 4p microdeletion of approximately 1.27-1.46 Mb. This deletion was distal to both proposed critical regions. The second patient had a normal karyotype with a terminal 4p microdeletion of approximately 1.78 Mb. This deletion was distal to WHSCR and the breakpoint was near or within the known distal boundary for WHSCR-2. Both patients showed significant postnatal growth delay, mild developmental delays and feeding difficulties. Their facial features were not typical for WHS. The phenotype of the first patient may have been influenced by the presence of a ring chromosome. Seizures were absent in the first patient whereas the second patient had a complex seizure disorder. Characterization of these patients supports the hypothesis that a gene in WHSCR-2, LETM1, plays a direct role in seizure development, and demonstrates that components of the WHS phenotype can be seen with deletions distal to the known boundaries of the two proposed critical regions. These patients also emphasize the difficulty of mapping clinical manifestations common to many aneusomy syndromes. (c) 2007 Wiley-Liss, Inc.

  13. 9 CFR 93.436 - Ruminants from regions of minimal risk for BSE.

    Science.gov (United States)

    2010-01-01

    ... each animal's right hip, high on the tail-head (over the junction of the sacral and first cocygeal... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Ruminants from regions of minimal risk for BSE. 93.436 Section 93.436 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  14. Analysis of human HPRT- deletion mutants by the microarray-CGH (comparative genomic hybridization)

    International Nuclear Information System (INIS)

    Kodaira, M.; Sasaki, K.; Tagawa, H.; Omine, H.; Kushiro, J.; Takahashi, N.; Katayama, H.

    2003-01-01

    We are trying to evaluate genetic effects of radiation on human using mutation frequency as an indicator. For the efficient detection of mutations, it is important to understand the mechanism and the characteristics of radiation-induced mutations. We have started the analysis of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants induced by X-ray in order to clarify the deletion size and the mutation-distribution. We analyzed 39 human X-ray induced HPRT-deletion mutants by using the microarray-CGH. The array for this analysis contains 57 BAC clones covering as much as possible of the 4Mb of the 5' side and 10Mb of the 3' side of the HPRT gene based on the NCBI genome database. DNA from parent strain and each HPRT-mutant strain are labeled with Cy5 and Cy3 respectively, and were mixed and hybridized on the array. Fluorescent intensity ratio of the obtained spots was analyzed using software we developed to identify clones corresponding to the deletion region. The deletion in these strains ranged up to 3.5 Mb on the 5' side and 6 Mb on the 3' side of the HPRT gene. Deletions in 13 strains ended around BAC clones located at about 3 Mb on the 5' side. On the 3' side, deletions extended up to the specific clones located at 1.5 Mb in 11 strains. The mutations seem to be complex on the 3' end of deletion; some accompanied duplications with deletions and others could not be explained by one mutation event. We need to confirm these results, taking into account the experimental reproducibility and the accuracy of the published genetic map. The results of the research using the microarray-CGH help us to search the regions where deletions are easily induced and to identify the factors affecting the range of deletions

  15. Clinical comparison of overlapping deletions of 19p13.3.

    Science.gov (United States)

    Risheg, Hiba; Pasion, Romela; Sacharow, Stephanie; Proud, Virginia; Immken, LaDonna; Schwartz, Stuart; Tepperberg, Jim H; Papenhausen, Peter; Tan, Tiong Y; Andrieux, Joris; Plessis, Ghislaine; Amor, David J; Keitges, Elisabeth A

    2013-05-01

    We present three patients with overlapping interstitial deletions of 19p13.3 identified by high resolution SNP microarray analysis. All three had a similar phenotype characterized by intellectual disability or developmental delay, structural heart abnormalities, large head relative to height and weight or macrocephaly, and minor facial anomalies. Deletion sizes ranged from 792 Kb to 1.0 Mb and included a common region arr [hg19] 19p13.3 (3,814,392-4,136,989), containing eight genes: ZFR2, ATCAY, NMRK2, DAPK3, EEF2, PIAS4, ZBTB7A, MAP2K2, and two non-coding RNA's MIR637 and SNORDU37. The patient phenotypes were compared with three previous single patient reports with similar interstitial 19p13.3 deletions and six additional patients from the DECIPHER and ISCA databases to determine if a common haploinsufficient phenotype for the region can be established. Copyright © 2013 Wiley Periodicals, Inc.

  16. MINIMIZING THE MHD POTENTIAL ENERGY FOR THE CURRENT HOLE REGION IN TOKAMAKS

    International Nuclear Information System (INIS)

    CHU, M.S; PARKS, P.B

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n ≠ 0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n = 0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region''. The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  17. Minimizing the magnetohydrodynamic potential energy for the current hole region in tokamaks

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n≠0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n=0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma, or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region.'' The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  18. Mosaic deletion of 20pter due to rescue by somatic recombination.

    Science.gov (United States)

    Martin, Megan M; Vanzo, Rena J; Sdano, Mallory R; Baxter, Adrianne L; South, Sarah T

    2016-01-01

    We report on a unique case of a mosaic 20pter-p13 deletion due to a somatic repair event identified by allele differentiating single nucleotide polymorphism (SNP) probes on chromosomal microarray. Small terminal deletions of 20p have been reported in a few individuals and appear to result in a variable phenotype. This patient was a 24-month-old female who presented with failure to thrive and speech delay. Chromosomal microarray analysis (CMA) performed on peripheral blood showed a 1.6 Mb deletion involving the terminus of 20p (20pter-20p13). This deletion appeared mosaic by CMA and this suspicion was confirmed by fluorescence in situ hybridization (FISH) analysis. Additionally, the deletion interval at 20p was directly adjacent to 15 Mb of mosaic copy-neutral loss of heterozygosity (LOH). The pattern of SNP probes was highly suggestive of a somatic repair event that resulted in rescue of the deleted region using the non-deleted homologue as a template. Structural mosaicism is rare and most often believed to be due to a postzygotic mechanism. This case demonstrates the additional utility of allele patterns to help distinguish mechanisms and in this case identified the possibility of either a post-zygotic repair of a germline deletion or a post-zygotic deletion with somatic recombination repair in a single step. © 2015 Wiley Periodicals, Inc.

  19. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.

    Science.gov (United States)

    Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J

    2013-01-01

    Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.

  20. SNORD116 deletions cause Prader-Willi syndrome with a mild phenotype and macrocephaly.

    Science.gov (United States)

    Fontana, P; Grasso, M; Acquaviva, F; Gennaro, E; Galli, M L; Falco, M; Scarano, F; Scarano, G; Lonardo, F

    2017-10-01

    Prader-Willi syndrome is a complex condition caused by lack of expression of imprinted genes in the paternally derived region of chromosome 15 (15q11q13). A small number of patients with Prader-Willi phenotype have been discovered to have narrow deletions, not encompassing the whole critical region, but only the SNORD116 cluster, which includes genes codifying for small nucleolar RNAs. This kind of deletion usually is not detected by the classic DNA methylation analysis test. We present the case of a male patient with a mild Prader-Willi phenotype and a small deletion including SNORD116, diagnosed by methylation-sensitive multiplex ligation-dependent probe amplification (MLPA. The patient showed neonatal hypotonia, hyperphagia, obesity, central hypogonadism, hypothyroidism, strabismus. Stature and intellectual development are within the normal range. The presence of macrocephaly, observed in other cases of SNORD116 deletions as well, is uncommon for the classic phenotype of the syndrome. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. An extensive deletion causing overproduction of yeast iso-2-cytochrome c

    International Nuclear Information System (INIS)

    McKnight, G.L.; Cardillo, T.S.; Sherman, F.

    1981-01-01

    CYC7-H3 is a cis-dominant regulatory mutation that causes a 20-fold overproduction of yeast iso-2-cytochrome c. The CYC7-H3 mutation is an approximately 5 kb deletion with one breakpoint located in the 5' noncoding region of the CYC7 gene, approximately 200 base from the ATG initiation codon. The deletion apparently fuses a new regulatory region to the structural portion of the CYC7 locus. The CYC7-H3 deletion encompasses the RAD23 locus, which controls UV sensitivity and the ANP1 locus, which controls osmotic sensitivity. The gene cluster CYC7-RAD23-ANP1 displays striking similarity to the gene cluster CYC1-OSM1-RAD7, which controls, respectively, iso-1-cytochrome c, osmotic sensitivity and UV sensitivity. We suggest that these gene clusters are related by an ancient transpositional event

  2. Velo-Cardio-Facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, R.E.; Pillers, D.M.; Merkens, M.; Magenis, R.E.; Zonana, J. [Oregon Health Sciences Univ., Portland, OR (United States); Driscoll, D.A.; Emanuel, B.S. [Univ. of Pennsylvania Medical Center, Philadelphia, PA (United States)

    1994-10-01

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both have bifid uvula. The third child had DiGeorge sequence (DGS). The association of NTDs with 22q11 deletion has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions. 31 refs., 3 figs.

  3. Mapping genomic deletions down to the base

    DEFF Research Database (Denmark)

    Dunø, Morten; Hove, Hanne; Kirchhoff, Maria

    2004-01-01

    the breakpoint of the third patient was mapped to a region previously predicted to be prone for rearrangements. One patient also harboured an inversion in connection with the deletion that disrupted the HDAC9 gene. All three patients showed clinical characteristics reminiscent of the hand-foot-genital syndrome...

  4. A nine-nucleotide deletion and splice variation in the coding region of the interferon induced ISG12 gene

    DEFF Research Database (Denmark)

    Smidt, Kamille; Hansen, Lise Lotte; Søgaard, T Max M

    2003-01-01

    distributed between ISG12 and ISG12-S in breast carcinoma cells, in cancer cell lines and in cervical cytobrush material with neoplastic lesions. In addition, we have found a nine-nucleotide deletion situated in exon 4 of the ISG12 gene. This deletion leads to a three-amino-acid deletion (AMA) in the putative...... ISG12 gene products, ISG12Δ and ISG12-SΔ. We have determined the prevalence of the deletion ISG12Δ in normal and neoplastic cells. Homozygosity ISG12(0/0) and ISG12(Δ/Δ), and heterozygosity ISG12(0/Δ) were found, although the ISG12(Δ/Δ) genotype was rare. In heterozygous cells from cytobrush material...

  5. Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role.

    Science.gov (United States)

    Valbonesi, Stefano; Magri, Chiara; Traversa, Michele; Faraone, Stephen V; Cattaneo, Annamaria; Milanesi, Elena; Valenti, Vera; Gennarelli, Massimo; Scassellati, Catia

    2015-04-01

    Evidence has supported a role for rare copy number variants in the etiology of attention-deficit hyperactivity disorder (ADHD), in particular, the region 15q13, which is also a hot spot for several neuropsychiatric disorders. This region spans several genes, but their role and the biological implications remain unclear. We carried out, for the first time, an analysis of the 15q13 region in an Italian cohort of 117 ADHD patients and 77 controls using the MLPA method, confirmed by a genome single-nucleotide polymorphism array. In addition, we probed for downstream effects of the 15q13 deletions on gene expression by carrying out a transcriptomic analysis in blood. We found 15q13 deletions in two ADHD patients and identified 129 genes as significantly dysregulated in the blood of the two ADHD patients carrying 15q13 deletions compared with ADHD patients without 15q13 deletions. As expected, genes in the deleted region (KLF13, MTMR10) were downregulated in the two patients with deletions. Moreover, a pathway analysis identified apoptosis, oxidation reduction, and immune response as the mechanisms that were altered most significantly in the ADHD patients with 15q13 deletions. Interestingly, we showed that deletions in KLF13 and CHRNA7 influenced the expression of genes belonging to the same immune/inflammatory and oxidative stress signaling pathways. Our findings are consistent with the presence of 15q13 deletions in Italian ADHD patients. More interestingly, we show that pathways related to immune/inflammatory response and oxidative stress signaling are affected by the deletion of KFL13 and CHRNA7. Because the phenotypic effects of 15q13 are pleiotropic, our findings suggest that there are shared biologic pathways among multiple neuropsychiatric conditions.

  6. Neural correlates of reward processing in adults with 22q11 deletion syndrome

    NARCIS (Netherlands)

    van Duin, Esther D. A.; Goossens, Liesbet; Hernaus, Dennis; da Silva Alves, Fabiana; Schmitz, Nicole; Schruers, Koen; van Amelsvoort, Therese

    2016-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic

  7. Constitutional 11q14-q22 chromosome deletion syndrome in a child with neuroblastoma MYCN single copy.

    Science.gov (United States)

    Passariello, Annalisa; De Brasi, Daniele; Defferrari, Raffaella; Genesio, Rita; Tufano, Maria; Mazzocco, Katia; Capasso, Maria; Migliorati, Roberta; Martinsson, Tommy; Siani, Paolo; Nitsch, Lucio; Tonini, Gian Paolo

    2013-11-01

    Constitutional 11q deletion is a chromosome imbalance possibly found in MCA/MR patients analyzed for chromosomal anomalies. Its role in determining the phenotype depends on extension and position of deleted region. Loss of heterozygosity of 11q (region 11q23) is also associated with neuroblastoma, the most frequent extra cranial cancer in children. It represents one of the most frequent cytogenetic abnormalities observed in the tumor of patients with high-risk disease even if germline deletion of 11q in neuroblastoma is rare. Hereby, we describe a 18 months old girl presenting with trigonocephaly and dysmorphic facial features, including hypotelorism, broad depressed nasal bridge, micrognathia, synophrys, epicanthal folds, and with a stage 4 neuroblastoma without MYCN amplification, carrying a germline 11q deletion (11q14.1-q22.3), outside from Jacobsen syndrome and from neuroblastoma 11q critical regions. The role of 11q deletion in determining the clinical phenotype and its association with neuroblastoma development in the patient are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  9. Refinement of the deletion in 8q22.2-q22.3: the minimum deletion size at 8q22.3 related to intellectual disability and epilepsy.

    Science.gov (United States)

    Kuroda, Yukiko; Ohashi, Ikuko; Saito, Toshiyuki; Nagai, Jun-ichi; Ida, Kazumi; Naruto, Takuya; Iai, Mizue; Kurosawa, Kenji

    2014-08-01

    Kuechler et al. [2011] reported five patients with interstitial deletions in 8q22.2-q22.3 who had intellectual disability, epilepsy, and dysmorphic features. We report on a new patient with the smallest overlapping de novo deletion in 8q22.3 and refined the phenotype. The proposita was an 8-year-old girl, who developed seizures at 10 months, and her epileptic seizure became severe and difficult to control with antiepileptic drugs. She also exhibited developmental delay and walked alone at 24 months. She was referred to us for evaluation for developmental delay and epilepsy at the age of 8 years. She had intellectual disability (IQ 37 at 7 years) and autistic behavior, and spoke two word sentences at 8 years. She had mild dysmorphic features, including telecanthus and thick vermilion of the lips. Array comparative genomic hybridization detected a 1.36 Mb deletion in 8q22.3 that encompassed RRM2B and NCALD, which encode the small subunit of p53-inducible ribonucleotide reductase and neurocalcin delta in the neuronal calcium sensor family of calcium-binding proteins, respectively. The minimum overlapping region between the present and previously reported patients is considered to be a critical region for the phenotype of the deletion in 8q22.3. We suggest that the deletion in 8q22.3 may represent a clinically recognizable condition, which is characterized by intellectual disability and epilepsy. © 2014 Wiley Periodicals, Inc.

  10. Construction of a psb C deletion strain in Synechocystis 6803.

    Science.gov (United States)

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  11. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  12. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    International Nuclear Information System (INIS)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J.; Chen, Han; Zhou, You; Belshan, Michael

    2014-01-01

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release

  13. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Chen, Han [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, You [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Nebraska Center for Virology, Lincoln, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Nebraska Center for Virology, Lincoln, NE (United States)

    2014-11-15

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release.

  14. Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.

    Science.gov (United States)

    Hou, Yixuan; Lin, Chun-Ming; Yokoyama, Masaru; Yount, Boyd L; Marthaler, Douglas; Douglas, Arianna L; Ghimire, Shristi; Qin, Yibin; Baric, Ralph S; Saif, Linda J; Wang, Qiuhong

    2017-07-15

    We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region

  15. Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis.

    Science.gov (United States)

    Rachinger, Michael; Bauch, Melanie; Strittmatter, Axel; Bongaerts, Johannes; Evers, Stefan; Maurer, Karl-Heinz; Daniel, Rolf; Liebl, Wolfgang; Liesegang, Heiko; Ehrenreich, Armin

    2013-09-20

    Conjugative shuttle vectors of the pKVM series, based on an IncP transfer origin and the pMAD vector with a temperature sensitive replication were constructed to establish a markerless gene deletion protocol for Bacilli without natural competence such as the exoenzyme producer Bacillus licheniformis. The pKVM plasmids can be conjugated to strains of B. licheniformis and B. subtilis. For chromosomal gene deletion, regions flanking the target gene are fused and cloned in a pKVM vector prior to conjugative transfer from Escherichia coli to B. licheniformis. Appropriate markers on the vector backbone allow for the identification of the integration at the target locus and thereafter the vector excision, both events taking place via homologous recombination. The functionality of the deletion system was demonstrated with B. licheniformis by a markerless 939 bp in-frame deletion of the yqfD gene and the deletion of a 31 kbp genomic segment carrying a PBSX-like prophage. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Prader-Willi syndrome and atypical submicroscopic 15q11-q13 deletions with or without imprinting defects.

    Science.gov (United States)

    Hassan, Maaz; Butler, Merlin G

    2016-11-01

    We report a 20 year follow up on a Caucasian female, now 26 years of age, with Prader-Willi syndrome (PWS) harboring an atypical 15q11-q13 submicroscopic deletion of 100-200 kb in size first detected in 1996 involving the imprinting center, SNRPN gene and surrounding region. PWS is a rare complex disorder caused by the loss of paternally expressed genes in the 15q11-q13 region. With high resolution chromosomal microarray and methylation - specific MLPA analysis, we updated the genetic findings on our patient and found a 209,819bp deletion including the SNURF-SNRPN gene complex which includes the imprinting center and the SNORD116 region. We compared with four other similarly reported individuals in the literature with atypical submicroscopic deletions within this region but without imprinting center involvement to better characterize the specific genetic lesions causing PWS clinical findings. Clinically, our patient met the diagnostic criteria of PWS including infantile hypotonia, a poor suck with feeding difficulties, global developmental delays and later food foraging, childhood obesity, small hands and skin picking. Small atypical deletions of comparable sizes were seen in the 15q11-q13 region in all five cases and similar behavioral/physical characteristics were found despite an imprinting defect in our patient. These results further support an overlapping critical deletion region involving the non-coding snoRNA SNORD116 in common in the five individuals playing a key role in contributing to the PWS phenotype. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2.

    Science.gov (United States)

    Siomou, Elisavet; Manolakos, Emmanouil; Petersen, Michael; Thomaidis, Loretta; Gyftodimou, Yolanda; Orru, Sandro; Papoulidis, Ioannis

    2012-11-01

    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. The rates and patterns of deletions in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  19. A Case With Short Stature, Growth Hormone Deficiency and 46, XX, Xq27-qter Deletion.

    Science.gov (United States)

    Yıldırım, Şule; Topaloğlu, Naci; Tekin, Mustafa; Sılan, Fatma

    2017-10-01

    We report a case of 11-year-old girl with growth retardation and 46, XX, Xq27-qter deletion. The endocrinologic evaluation revealed growth hormone deficiency. In karyotype analysis  46, XX, Xq27-qter deletion was determined. The deletion of terminal region of chromosome 27 is most commonly being detected during the evaluation of infertility, premature ovarian insufficiency or in screening for fragile X carrier status. To our knowledge, this is the first reported case with 46, XX, Xq27-qter deletion and growth hormone deficiency. Furthermore, this case might facilitate future search for candidate genes involved in growth hormone deficiency.

  20. Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence

    International Nuclear Information System (INIS)

    Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.

    2015-01-01

    The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)

  1. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    Science.gov (United States)

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  2. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  3. Identification of the first de novo PAR1 deletion downstream of SHOX in an individual diagnosed with Léri-Weill dyschondrosteosis (LWD).

    Science.gov (United States)

    Barroso, Eva; Benito-Sanz, Sara; Belinchón, Alberta; Yuste-Checa, Patricia; Gracia, Ricardo; Aragones, Angel; Campos-Barros, Angel; Heath, Karen E

    2010-01-01

    Léri-Weill dyschondrosteosis (LWD, MIM 127300), is a dominantly inherited skeletal dysplasia with disproportionate short stature, mesomelic limb shortening, and the characteristic Madelung deformity. Two regions of the pseudoautosomal region 1 (PAR1) have been shown to be involved in LWD, SHOX (short-stature homeobox-containing gene) and the downstream enhancer region. We report our genetic findings of a young girl clinically diagnosed with LWD. We analyzed the proband and her family using MLPA and microsatellite analysis. We identified a deletion, 726-866 kb in size, of the downstream SHOX enhancer region in the proband. Neither parent carried the deletion. Microsatellite analysis showed that the deleted allele was of paternal origin. The mutation is more likely to have arisen from a de novo event but paternal gonadal mosaicism cannot be excluded. In conclusion, we report the clinical and molecular details of the first case of a de novo deletion of the downstream PAR1 region in an LWD individual. De novo deletions of SHOX and the downstream enhancer region must be therefore considered in cases of isolated LWD. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  4. Generating Bona Fide Mammalian Prions with Internal Deletions.

    Science.gov (United States)

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative

  5. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  6. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions

    International Nuclear Information System (INIS)

    Urlaub, G.; Mitchell, P.J.; Kas, E.; Chasin, L.A.; Funanage, V.L.; Myoda, T.T.; Hamlin, J.

    1986-01-01

    A series 11 gamma-ray-induced mutants at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary cells has been examined for the types of DNA sequence change brought about by this form of ionizing radiation. All 11 mutants were found to have suffered major structural changes affecting the dhfr gene. In eight of the mutants, all or part of the dhfr gene has been deleted. The extent of these deletions was examined in seven of these mutants and, for comparison, in two deletion mutants that were induced by UV irradiation. For this purpose, probes from an overlapping set of cosmids that span 210 kb of DNA in this region were used. Three of seven gamma-ray-induced mutants and one UV-induced mutant were shown to have deleted the entire 210-kb region. In the remaining mutants, endpoints ranging from within the dhfr gene to 100 kb downstream were observed. No upstream endpoints were detected, so that an upper limit on the size of these large deletions could not be assigned. Three of the 11 gamma-ray-induced mutants contained an interruption in the dhfr gene without any detectable loss of sequence. Restriction analysis of these interrupted mutants showed that at least 8-14 kb of foreign DNA sequence became joined to the gene at the point of disruption. Cytogenetic analysis of these mutants showed that in two cases an inversion of the banding pattern on chromosome Z-2 had taken place. The inverted dhfr mutants contain very low amounts of dhfr RNA sequences, and the 5' end of an inversion mutant gene exhibits the same pattern of DNA methylation and DNase I-hypersensitivity as the wild-type gene. Our results suggest that ionizing radiation causes primarily, if not exclusively, large deletions and inversions in mammalian cells

  7. Strategies for state-dependent quantum deleting

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    A quantum state-dependent quantum deleting machine is constructed. We obtain a upper bound of the global fidelity on N-to-M quantum deleting from a set of K non-orthogonal states. Quantum networks are constructed for the above state-dependent quantum deleting machine when K=2. Our deleting protocol only involves a unitary interaction among the initial copies, with no ancilla. We also present some analogies between quantum cloning and deleting

  8. Molecular and cytogenetic investigation of Y chromosome deletions over three generations facilitated by intracytoplasmic sperm injection.

    Science.gov (United States)

    Minor, Agata; Wong, Edgar Chan; Harmer, Karynn; Ma, Sai

    2007-08-01

    The azoospermic factor (AZF) region is critical for normal spermatogenesis since microdeletions and partial deletions have been associated with infertility. We investigate the diagnostic ability of karyotyping in detecting clinically relevant Y chromosome deletions. The clinical significance of heterochromatin deletions, microdeletions and partial AZFc deletions is also evaluated. A patient with a Yq deletion, affected by severe oligoasthenoteratozoospermia, underwent intracytoplasmic sperm injection (ICSI) which resulted in the birth of a healthy baby boy. The patient, his father and his son underwent Y chromosome microdeletion and partial AZFc deletion screening. We also studied the aneuploidy rate in the sperm of the patient by fluorescent in situ hybridization. AZF microdeletions were absent in the family. However, microdeletion analysis confirmed that the Yq deletion was limited to the heterochromatin. We found a partial AZFc gr/gr deletion in all three family members. We observed an increased rate of sex chromosome aneuploidy in the infertile patient. Cytogenetic analysis was misleading in identifying the Yq breakpoint. Infertility observed in the patient was associated with the gr/gr partial deletion. However, because of the incomplete penetrance of gr/gr deletions, the consequence of the vertical transmission of the deletion through ICSI remains unknown. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Morinaga, Tomonori; Fukuoka, Kazuya; Yamada, Shusai; Murakami, Aki; Kondo, Nobuyuki; Matsumoto, Seiji; Okumura, Yoshitomo; Tanaka, Fumihiro; Hasegawa, Seiki; Hashimoto-Tamaoki, Tomoko; Nakano, Takashi

    2011-12-01

    Array-based comparative genomic hybridization analysis was performed on 21 malignant mesothelioma (MM) samples (16 primary cell cultures and 5 cell lines) and two reactive mesothelial hyperplasia (RM) primary cell cultures. The RM samples did not have any genomic losses or gains. In MM samples, deletions in 1p, 3p21, 4q, 9p21, 16p13 and 22q were detected frequently. We focused on 3p21 because this deletion was specific to the epithelioid type. Especially, a deletion in 3p21.1 region carrying seven genes including SEMA3G was found in 52% of MM samples (11 of 14 epithelioid samples). The allele loss of 3p21.1 might be a good marker for the epithelioid MM. A homozygous deletion in this region was detected in two MM primary cell cultures. A heterozygous deletion detected in nine samples contained the 3p21.1 region and 3p21.31 one carrying the candidate tumor suppressor genes such as semaphorin 3F (SEMA3F), SEMA3B and Ras association (RalGDS/AF-6) domain family member 1 (RASSF1A). SEMA3B, 3F and 3G are class 3 semaphorins and inhibit growth by competing with vascular endothelial growth factor (VEGF) through binding to neuropilin. All MM samples downregulated the expression of more than one gene for SEMA3B, 3F and 3G when compared with Met5a, a normal pleura-derived cell line. Moreover, in 12 of 14 epithelioid MM samples the expression level of SEMA3A was lower than that in Met5a and the two RM samples. An augmented expression of VEGFA was detected in half of the MM samples. The expression ratio of VEGFA/SEMA3A was significantly higher in the epithelioid MMs than in Met5a, RMs and the non-epithelioid MMs. Our data suggest that the downregulated expression of SEMA3A and several SEMA3s results in a loss of inhibitory activities in tumor angiogenesis and tumor growth of VEGFA; therefore, it may play an important role on the pathogenesis of the epithelioid type of MM.

  10. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.

    Science.gov (United States)

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-11-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer-mutation/deletion of Pten and deletion of Klf5.

  11. Prenatal Diagnosis and Molecular Analysis of a Large Novel Deletion (- -JS) Causing α0-Thalassemia.

    Science.gov (United States)

    Cao, Jinru; He, Shuzhen; Pu, Yudong; Liu, Jingjing; Liu, Fuping; Feng, Jun

    α-Thalassemia (α-thal) is a very common single gene hereditary disease caused by large deletions or point mutations of the α-globin gene cluster in tropical and subtropical regions of the world. Here, we report for the first time, a novel large α-thal deletion in a Chinese family from Jiangsu Province, People's Republic of China (PRC), which removes almost the entire α2 and α1 genes from the α-globin gene cluster. Thus, it was named the Jiangsu deletion (- - JS ) on the α-globin gene cluster causing α 0 -thal. Heterozygotes for this deletion showed an α-thal trait phenotype with reduced mean corpuscular volume (MCV) and mean corpuscular hemoglobin (Hb) (MCH) levels. The sequencing results showed that a 2538 bp deletion (NG_000006.1: g.35801_38338) existed in this novel genotype on the basis of -α 4.2 (leftward), indicating a deletion of about 6.8 kb from the α-globin cluster. In addition, a 29 bp sequence was inserted into the deletion during the recombination events that led to this deletion. Through pedigree analysis, we knew that the proband inherited the novel allele from his mother.

  12. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.

  13. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  14. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil

    NARCIS (Netherlands)

    Franco, A.C.; Rijsewijk, F.A.M.; Flores, E.F.; Weiblen, R.; Roehe, P.M.

    2002-01-01

    This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a) with a deletion of the glycoprotein E (gE) gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic

  15. Association of hepatitis B virus pre-S deletions with the development of hepatocellular carcinoma in Qidong, China.

    Directory of Open Access Journals (Sweden)

    Li-Shuai Qu

    Full Text Available BACKGROUND/AIM: To investigate the roles of mutations in pre-S and S regions of hepatitis B virus (HBV on the progression of hepatocellular carcinoma (HCC in Qidong, China. METHODS: We conducted an age matched case-control study within a cohort of 2387 male HBV carriers who were recruited from August, 1996. The HBV DNA sequence in pre-S/S regions was successfully determined in 96 HCC cases and 97 control subjects. In addition, a consecutive series of samples from 11 HCC cases were employed to evaluate the pre-S deletion patterns before and after the occurrence of HCC. RESULTS: After adjustment for age, history of cigarette smoking and alcohol consumption, HBeAg positivity, pre-S deletions, pre-S2 start codon mutations, and T53C mutation were significantly associated with HCC, showing adjusted odds ratios (ORs from 1.914 to 3.199. HCC patients also had a lower frequency of T31C mutation in pre-S2 gene, compared with control subjects (0.524; 95% CI 0.280-0.982. HBV pre-S deletions were clustered mainly in the 5' end of pre-S2 region. Multivariate analysis showed that pre-S deletions and pre-S2 start codon mutations were independent risk factors for HCC. The OR (95% CI were 2.434 (1.063-5.573 and 3.065 (1.099-8.547, respectively. The longitudinal observation indicated that the pre-S deletion mutations were not acquired at the beginning of HBV infection, but that the mutations occurred during the long course of liver disease. CONCLUSION: Pre-S deletions and pre-S2 start codon mutations were independently associated with the development of HCC. The results also provided direct evidence that pre-S deletion mutations were not acquired from the beginning of infection but arose de novo during the progression of liver disease.

  16. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  17. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia).

    Science.gov (United States)

    Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S

    1996-03-01

    In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.

  18. X-ray induced specific locus mutations in the ad-3 region of two-component heterokaryons of neurospora crassa

    International Nuclear Information System (INIS)

    Serres, F.J. de; Miller, I.R.

    1988-01-01

    The basis for the reduced growth rates of heterokaryons between strains carrying nonallelic combinations of gene/point mutations and multilocus deletion mutations has been investigated by a simple genetic test. The growth rates of forced 2-component heterokaryons (dikaryons) between multilocus deletion mutations were compared with forced 3-component heterokaryons (trikaryons) containing an ad-3A R ad-3B R double mutant as their third component. Since the third component has no genetic damage at other loci immediately adjacent to the ad-3A or ad-3B locus, the growth rate on minimal medium depends on the functional activity of the unaltered ad-3A and ad-3B loci in the first two components. Tests in the present experiments have shown the ad-3 IR mutations result not only in inactivation of the ad-3 loci by multilocus deletion byt also, in many cases, in partial gene inactivation by an unknown mechanisms at other loci in the immediately adacent regions. The heterozygous effects observed in our present experiments with multilocus deletions in Neurospora can be explained either by a spreading-type position effect of the type found by others in Drosophila, mice, Oenothera and Aspergillus or by undetected genetic damage in the immediately adjacent genetic regions. (author). 18 refs.; 8 figs.; 2 tabs

  19. Allelic imbalance and cytogenetic deletion of 1p in colorectal adenomas: a target region identified between DIS199 and DIS234

    DEFF Research Database (Denmark)

    Bomme, L; Heim, S; Bardi, G

    1998-01-01

    short-term cultured and karyotyped colorectal adenomas for allelic imbalance at eight microsatellite loci in 1p. Allelic imbalances were detected in seven of the 12 adenomas that had cytogenetically visible abnormalities of chromosome 1, as well as in four adenomas that either had a normal karyotype...... region. This genomic area contains the human homologue of the tumor modifier gene Mom1 (1p35-36.1), which, in mice, modifies the number of intestinal tumors in multiple intestinal neoplasia (Min)-mutated animals. To evaluate whether the imbalances corresponded to interstitial deletions of 1p material, we...

  20. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1996-01-01

    We provide a molecular description of key intermediates in the deletion of two internal eliminated sequences (IES elements), the M and R regions, during macronuclear development in Tetrahymena thermophila. Using a variety of PCR-based methods in vivo, double-strand breaks are detected that are generated by hydrolytic cleavage and correspond closely to the observed chromosomal junctions left behind in the macronuclei. The breaks exhibit a temporal and structural relationship to the deletion reaction that provides strong evidence that they are intermediates in the deletion pathway. Breaks in the individual strands are staggered by 4 bp, producing a four nucleotide 5' extension. Evidence is presented that breaks do not occur simultaneously at both ends. The results are most consistent with a deletion mechanism featuring initiation by double-strand cleavage at one end of the deleted element, followed by transesterification to generate the macronuclear junction on one DNA strand. An adenosine residue is found at all the nucleophilic 3' ends used in the postulated transesterification step. Evidence for the transesterification step is provided by detection of a 3' hydroxyl that would be liberated by such a step at a deletion boundary where no other DNA strand ends are detected. Images PMID:8654384

  1. Deletion of P2 promoter of GJB1 gene a cause of Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Kulshrestha, R; Burton-Jones, S; Antoniadi, T; Rogers, M; Jaunmuktane, Z; Brandner, S; Kiely, N; Manuel, R; Willis, T

    2017-08-01

    X-linked Charcot-Marie-Tooth disease (CMT) is the second most common cause of CMT, and is usually caused by mutations in the gap junction protein beta 1 (GJB1) gene. This gene has nerve specific P2 promoter that work synergistically with SOX10 and EGR2 genes to initiate transcription. Mutation in this region is known to cause Schwann cell dysfunction. A single large family of X linked peripheral neuropathy was identified in our practice. Next generation sequencing for targeted panel assay identified an upstream exon-splicing deletion identified extending from nucleotide c.-5413 to approximately - c.-49. This matches the sequence of 32 nucleotides at positions c.*218-*249 in the 3'UTR downstream of the GJB1 gene. The deleted fragment included the entire P2 promoter region. The deletion segregated with the disease. To our knowledge a deletion of the P2 promoter alone as a cause of CMT has not been reported previously. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Patients Carrying 9q31.1-q32 Deletion Share Common Features with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    Ruixue Cao

    2015-01-01

    Full Text Available Background: Cornelia de Lange Syndrome (CdLS is a rare but severe clinically heterogeneous developmental disorder characterized by facial dysmorphia, growth and cognitive retardation, and abnormalities of limb development. Objectives: To determine the pathogenesis of a patient with CdLS. Methods: We studied a patient with CdLS by whole exome sequencing, karyotyping and Agilent CGH Array. The results were confirmed by quantitative real-time PCR analysis of the patient and her parents. Further comparison of our patient and cases with partially overlapping deletions retrieved from the literature and databases was undertaken. Results: Whole exome sequencing had excluded the mutation of cohesion genes such as NIPBL,SMC1A and SMC3. The result of karyotyping showed a deletion of chromosome 9q31.1-q32 and the result of Agilent CGH Array further displayed a 12.01-Mb region of deletion at chromosome bands 9q31.1-q32. Reported cases with the deletion of 9q31.1-q32 share similar features with our CdLS patient. One of the genes in the deleted region, SMC2, belongs to the Structural Maintenance of Chromosomes (SMC family and regulates gene expression and DNA repair. Conclusions: Patients carrying the deletion of 9q31.1-q32 showed similar phenotypes with CdLS.

  3. A recombinant E1-deleted porcine adenovirus-3 as an expression vector

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Zhou Yan; Tikoo, Suresh Kumar

    2003-01-01

    Replication-defective E1-deleted porcine adenoviruses (PAVs) are attractive vectors for vaccination. As a prerequisite for generating PAV-3 vectors containing complete deletion of E1, we transfected VIDO R1 cells (fetal porcine retina cells transformed with E1 region of human adenovirus 5) with a construct containing PAV-3 E1B large coding sequences under the control of HCMV promoter. A cell line named VR1BL could be isolated that expressed E1B large of PAV-3 and also complemented PAV214 (E1A+E1B small deleted). The VR1BL cells could be efficiently transfected with DNA and allowed the rescue and propagation of recombinant PAV507 containing a triple stop codon inserted in the E1B large coding sequence. In addition, recombinant PAV227 containing complete deletion of E1 (E1A+E1B small + E1B large ) could be successfully rescued using VR1BL cell line. Recombinant PAV227 replicated as efficiently as wild-type in VR1BL cells but not in VIDO R1 cells, suggesting that E1B large was essential for replication of PAV-3. Next, we constructed recombinant PAV219 by inserting green fluorescent (GFP) protein gene flanked by a promoter and a poly(A) in the E1 region of the PAV227 genome. We demonstrated that PAV219 was able to transduce and direct expression of GFP in some human cell lines

  4. DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism

    Science.gov (United States)

    Aguiar, Derek; Halldórsson, Bjarni V.; Morrow, Eric M.; Istrail, Sorin

    2012-01-01

    Motivation: The understanding of the genetic determinants of complex disease is undergoing a paradigm shift. Genetic heterogeneity of rare mutations with deleterious effects is more commonly being viewed as a major component of disease. Autism is an excellent example where research is active in identifying matches between the phenotypic and genomic heterogeneities. A considerable portion of autism appears to be correlated with copy number variation, which is not directly probed by single nucleotide polymorphism (SNP) array or sequencing technologies. Identifying the genetic heterogeneity of small deletions remains a major unresolved computational problem partly due to the inability of algorithms to detect them. Results: In this article, we present an algorithmic framework, which we term DELISHUS, that implements three exact algorithms for inferring regions of hemizygosity containing genomic deletions of all sizes and frequencies in SNP genotype data. We implement an efficient backtracking algorithm—that processes a 1 billion entry genome-wide association study SNP matrix in a few minutes—to compute all inherited deletions in a dataset. We further extend our model to give an efficient algorithm for detecting de novo deletions. Finally, given a set of called deletions, we also give a polynomial time algorithm for computing the critical regions of recurrent deletions. DELISHUS achieves significantly lower false-positive rates and higher power than previously published algorithms partly because it considers all individuals in the sample simultaneously. DELISHUS may be applied to SNP array or sequencing data to identify the deletion spectrum for family-based association studies. Availability: DELISHUS is available at http://www.brown.edu/Research/Istrail_Lab/. Contact: Eric_Morrow@brown.edu and Sorin_Istrail@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689755

  5. Refinement of genotype-phenotype correlation in 18 patients carrying a 1q24q25 deletion

    DEFF Research Database (Denmark)

    Chatron, Nicolas; Haddad, Véronique; Andrieux, Joris

    2015-01-01

    of different sizes (490 kb to 20.95 Mb) localized within chromosome bands 1q23.3-q31.2 (chr1:160797550-192912120, hg19). The 490 kb deletion is the smallest deletion reported to date associated with this phenotype. We delineated three regions that may contribute to the phenotype: a proximal one (chr1...

  6. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    Science.gov (United States)

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  7. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    Science.gov (United States)

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  8. PAR1 deletions downstream of SHOX are the most frequent defect in a Spanish cohort of Léri-Weill dyschondrosteosis (LWD) probands.

    Science.gov (United States)

    Benito-Sanz, Sara; del Blanco, Darya Gorbenko; Aza-Carmona, Miriam; Magano, Luis F; Lapunzina, Pablo; Argente, Jesús; Campos-Barros, Angel; Heath, Karen E

    2006-10-01

    Léri-Weill dyschondrosteosis (LWD) is a skeletal dysplasia characterized by disproportionate short stature and Madelung deformity. Mutations or deletions of the SHOX gene have been previously identified as the main cause of LWD. We recently identified the existence of a second class of pseudoautosomal region 1 (PAR1) deletions which do not include SHOX, implicated in the etiopathogenesis of LWD. The deletions map at least 30-250 kb downstream of SHOX, are variable in size and clearly cosegregate with the LWD phenotype. In order to determine the frequency of this new type of deletions in the Spanish population we analyzed the distribution of PAR1 defects, including the screening of SHOX deletions, mutations, and PAR1 deletions downstream of SHOX, in a total of 26 LWD probands by a combination of MLPA, microsatellite analysis, SNP genotyping, dHPLC, and DNA sequencing. A molecular defect was identified in 16/26 LWD patients (61.5%): 10 PAR1 deletions downstream of SHOX, four SHOX encompassing deletions, and two SHOX mutations. No apparent phenotypic differences were observed between patients with SHOX defects and those with PAR1 deletions downstream of SHOX. In the examined cohort of Spanish LWD probands, PAR1 deletions downstream of SHOX represent the highest proportion of identified mutations (38%) compared to SHOX deletions (15%) and mutations (8%). As a consequence of our findings, the screening of this region should be included in the routine genetic testing of LWD. Also, LWD patients who tested negative for SHOX defects should be re-evaluated for PAR1 deletions downstream of SHOX.

  9. Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions.

    Science.gov (United States)

    Takeshita, Eri; Minami, Narihiro; Minami, Kumiko; Suzuki, Mikiya; Awashima, Takeya; Ishiyama, Akihiko; Komaki, Hirofumi; Nishino, Ichizo; Sasaki, Masayuki

    2017-06-01

    Females with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) mutations rarely exhibit clinical symptoms from childhood, although potential mechanisms for symptoms associated with DMD and BMD in females have been reported. We report the case of a female DMD patient with a clinical course indistinguishable from that of a male DMD patient, and who possessed compound heterozygous contiguous exon deletions in the dystrophin gene. She exhibited Gowers' sign, calf muscle hypertrophy, and a high serum creatine kinase level at 2 years. Her muscle pathology showed most of the fibers were negative for dystrophin immunohistochemical staining. She lost ambulation at 11 years. Multiplex ligation-dependent probe amplification analysis of this gene detected one copy of exons 48-53; she was found to be a BMD carrier with an in-frame deletion. Messenger RNA from her muscle demonstrated out-of-frame deletions of exons 48-50 and 51-53 occurring on separate alleles. Genomic DNA from her lymphocytes demonstrated the accurate deletion region on each allele. To our knowledge, this is the first report on a female patient possessing compound heterozygous contiguous exon deletions in the dystrophin gene, leading to DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar

    Directory of Open Access Journals (Sweden)

    Jamie A. O'Rourke

    2013-06-01

    Full Text Available A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation; between cultivar variation, natural variation within the fast neutron mutant population, and fast neutron induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp common to multiple individuals, illustrating residual heterogeneity and regions of structural variation within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of fast neutron mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.

  11. Polymerase chain reaction detection of retinoblastoma gene deletions in paraffin-embedded mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1991-01-01

    A Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene using microtomed sections from paraffin-embedded radiation-induced and spontaneous tumors as the DNA source. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons) were analyzed. Tumors in six neutron-irradiated mice also had no mRb deletions. However, one of six tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  12. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion contructs.

    Science.gov (United States)

    Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...

  13. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  14. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  15. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.

    Science.gov (United States)

    Heinzen, Erin L; Radtke, Rodney A; Urban, Thomas J; Cavalleri, Gianpiero L; Depondt, Chantal; Need, Anna C; Walley, Nicole M; Nicoletti, Paola; Ge, Dongliang; Catarino, Claudia B; Duncan, John S; Kasperaviciūte, Dalia; Tate, Sarah K; Caboclo, Luis O; Sander, Josemir W; Clayton, Lisa; Linney, Kristen N; Shianna, Kevin V; Gumbs, Curtis E; Smith, Jason; Cronin, Kenneth D; Maia, Jessica M; Doherty, Colin P; Pandolfo, Massimo; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Kälviäinen, Reetta; Eriksson, Kai; Kantanen, Anne-Mari; Dorn, Thomas; Hansen, Jörg; Krämer, Günter; Steinhoff, Bernhard J; Wieser, Heinz-Gregor; Zumsteg, Dominik; Ortega, Marcos; Wood, Nicholas W; Huxley-Jones, Julie; Mikati, Mohamad; Gallentine, William B; Husain, Aatif M; Buckley, Patrick G; Stallings, Ray L; Podgoreanu, Mihai V; Delanty, Norman; Sisodiya, Sanjay M; Goldstein, David B

    2010-05-14

    Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  17. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  18. Occurrence of two different intragenic deletions in two male relatives affected with Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mostacciuolo, M.L.; Miorin, M.; Vitiello, L.; Rampazzo, A.; Fanin, M.; Angelini, C.; Danieli, G.A. [Univ. of Padua (Italy)

    1994-03-01

    The occurrence of 2 different intragenic deletions (exons 10-44 and exon 45, respectively) is reported in 2 male relatives affected with Duchenne muscular dystrophy, both showing the same haplotype for DNA markers not included in the deleted segment. The 2 different deletions seem to have occurred independently in the same X chromosome. This finding, together with other reports, suggests possibly an increased predisposition to mutations within the DMD locus in some families. Therefore, when dealing with prenatal diagnosis, the investigation on fetal DNA cannot be restricted only to the region in which a mutation was previously identified in the family. 14 refs., 1 fig.

  19. Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature.

    Science.gov (United States)

    Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Angel; Heath, Karen E

    2012-01-01

    Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ~60% of Léri-Weill dyschondrosteosis (LWD) and ~5-15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ~286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS.

  20. A Large PROP1 Gene Deletion in a Turkish Pedigree

    Directory of Open Access Journals (Sweden)

    Suheyla Gorar

    2018-01-01

    Full Text Available Pituitary-specific paired-like homeodomain transcription factor, PROP1, is associated with multiple pituitary hormone deficiency. Alteration of the gene encoding the PROP1 may affect somatotropes, thyrotropes, and lactotropes, as well as gonadotropes and corticotropes. We performed genetic analysis of PROP1 gene in a Turkish pedigree with three siblings who presented with short stature. Parents were first degree cousins. Index case, a boy, had somatotrope, gonadotrope, thyrotrope, and corticotrope deficiency. However, two elder sisters had somatotroph, gonadotroph, and thyrotroph deficiency and no corticotroph deficiency. On pituitary magnetic resonance, partial empty sella was detected with normal bright spot in all siblings. In genetic analysis, we found a gross deletion involving PROP1 coding region. In conclusion, we report three Turkish siblings with a gross deletion in PROP1 gene. Interestingly, although little boy with combined pituitary hormone deficiency has adrenocorticotropic hormone (ACTH deficiency, his elder sisters with the same gross PROP1 deletion have no ACTH deficiency. This finding is in line with the fact that patients with PROP1 mutations may have different phenotype/genotype correlation.

  1. Some analogies between quantum cloning and quantum deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We further verify the impossibility of deleting an arbitrary unknown quantum state, and also show it is impossible to delete two nonorthogonal quantum states as a consequence of unitarity of quantum mechanics. A quantum approximate (deterministic) deleting machine and a probabilistic (exact) deleting machine are constructed. The estimation for the global fidelity characterizing the efficiency of the quantum approximate deleting is given. We then demonstrate that unknown nonorthogonal states chosen from a set with their multiple copies can evolve into a linear superposition of multiple deletions and failure branches by a unitary process if and only if the states are linearly independent. It is notable that the proof for necessity is somewhat different from Pati's [Phys. Rev. Lett. 83, 2849 (1999)]. Another deleting machine for the input states that are unnecessarily linearly independent is also presented. The bounds on the success probabilities of these deleting machines are derived. So we expound some preliminary analogies between quantum cloning and deleting

  2. IKZF1 DELETIONS ARE INDEPENDENT PROGNOSTIC FACTOR IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    G. A. Tsaur

    2016-01-01

    Full Text Available We assessed the prognostic significance of IKZF1 gene deletions in 141 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL  on Russian multicenter trial in pediatric clinics of Ekaterinburg and Orenburg. IKZF1 deletions were estimated by multiplex ligation-dependent probe amplification. IKZF1 deletions were revealed in 15 (10.6 % patients. IKZF1 deletions were associated with age older than 10 years (p = 0.007, initial white blood cell count higher than 30 × 109/l (p = 0.003, t(9;22(q34.q11 (p = 0.003 and delayed blast clearance: М3 status of bone marrow at day 15 of remission induction (p = 0.003, lack of hematological remission at day 36 (p < 0.001 and high levels of minimal residual disease at days 15, 36 and 85 (p = 0.014; p < 0.001; p = 0.001 correspondingly. Patients with IKZF1 deletions had significantly lower event-free survival (EFS (0.30 ± 0.15 vs 0.89 ± 0.03; p < 0.001 and overall survival (OS (0.44 ± 0.19 vs 0.93 ± 0.02; p < 0.001, while cumulative incidence of relapse was higher (0.67 ± 0.18 vs 0.07 ± 0.02; p < 0.001. In the multivariate analysis IKZF1 deletions were associated with decreased EFS (hazard ratio (HR 4.755; 95 % confidence interval (CI 1.856–12.185; p = 0.001, and OS (HR 4.208; 95 % CI 1.322–13.393; p = 0.015, but increased relapse risk (HR 9,083; 95 % CI 3.119–26.451; p < 0.001. IKZF1 deletions retained their prognostic significance in the intermediate risk group patients (p < 0.001, but not in standard or high-risk groups. Majority of IKZF1 deletions – 12 (80 % of 15 – were revealed in the “B-other” group (n = 83. In this cohort of patients IKZF1 deletions led to inferior EFS (HR 6.172; 95 % CI 1.834–20.767; p = 0.003 and higher relapse rate (HR 16.303; 95 % CI 3.324–79.965; p = 0.015. Thus, our results showed that IKZF1 deletions are independent risk factor in BCP-ALL patients.

  3. DNA amplification of a further exon of Duchenne muscular dystrophy locus increase possibilities for deletion screening

    Energy Technology Data Exchange (ETDEWEB)

    Speer, A.; Rosenthal, A.; Billwitz, H.; Hanke, R.; Forrest, S.M; Love, D.; Davies, K.E.; Coutelle, C. (John Radcliffe Hospital, Oxford (England))

    1989-06-26

    The data of Chamberlain et al allow the detection of 76% of deletions in the region Cf56A/Cf23a identified by hybridization in their patients. The authors have generated two oligonucleotides allowing the amplification of a further exon which is included in the 3.4 kb hybridization of fragment of Cf56a. This exon is deleted in about 10% of their patients.

  4. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique.

    Science.gov (United States)

    Kostner, David; Rachinger, Michael; Liebl, Wolfgang; Ehrenreich, Armin

    2017-11-01

    Bacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.

  5. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses

    Science.gov (United States)

    Bansal, Sandeep Kumar; Jaiswal, Deepika; Gupta, Nishi; Singh, Kiran; Dada, Rima; Sankhwar, Satya Narayan; Gupta, Gopal; Rajender, Singh

    2016-02-01

    We analyzed the AZFc region of the Y-chromosome for complete (b2/b4) and distinct partial deletions (gr/gr, b1/b3, b2/b3) in 822 infertile and 225 proven fertile men. We observed complete AZFc deletions in 0.97% and partial deletions in 6.20% of the cases. Among partial deletions, the frequency of gr/gr deletions was the highest (5.84%). The comparison of partial deletion data between cases and controls suggested a significant association of the gr/gr deletions with infertility (P = 0.0004); however, the other partial deletions did not correlate with infertility. In cohort analysis, men with gr/gr deletions had a relatively poor sperm count (54.20 ± 57.45 million/ml) in comparison to those without deletions (72.49 ± 60.06), though the difference was not statistically significant (p = 0.071). Meta-analysis also suggested that gr/gr deletions are significantly associated with male infertility risk (OR = 1.821, 95% CI = 1.39-2.37, p = 0.000). We also performed trial sequential analyses that strengthened the evidence for an overall significant association of gr/gr deletions with the risk of male infertility. Another meta-analysis suggested a significant association of the gr/gr deletions with low sperm count. In conclusion, the gr/gr deletions show a strong correlation with male infertility risk and low sperm count, particularly in the Caucasian populations.

  6. A novel 5-bp deletion in Clarin 1 in a family with Usher syndrome.

    Science.gov (United States)

    Akoury, Elie; El Zir, Elie; Mansour, Ahmad; Mégarbané, André; Majewski, Jacek; Slim, Rima

    2011-11-01

    To identify the genetic defect in a Lebanese family with two sibs diagnosed with Usher Syndrome. Exome capture and sequencing were performed on DNA from one affected member using Agilent in solution bead capture, followed by Illumina sequencing. This analysis revealed the presence of a novel homozygous 5-bp deletion, in Clarin 1 (CLRN1), a known gene responsible for Usher syndrome type III. The deletion is inherited from both parents and segregates with the disease phenotype in the family. The 5-bp deletion, c.301_305delGTCAT, p.Val101SerfsX27, is predicted to result in a frameshift and protein truncation after 27 amino acids. Sequencing all the coding regions of the CLRN1 gene in the proband did not reveal any other mutation or variant. Here we describe a novel deletion in CLRN1. Our data support previously reported intra familial variability in the clinical features of Usher syndrome type I and III.

  7. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  8. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  9. What Can We Learn From Point-of-Care Blood Glucose Values Deleted and Repeated by Nurses?

    Science.gov (United States)

    Corl, Dawn; Yin, Tom; Ulibarri, May; Lien, Heather; Tylee, Tracy; Chao, Jing; Wisse, Brent E

    2018-03-01

    Hospitals rely on point-of-care (POC) blood glucose (BG) values to guide important decisions related to insulin administration and glycemic control. Evaluation of POC BG in hospitalized patients is associated with measurement and operator errors. Based on a previous quality improvement (QI) project we introduced an option for operators to delete and repeat POC BG values suspected as erroneous. The current project evaluated our experience with deleted POC BG values over a 2-year period. A retrospective QI project included all patients hospitalized at two regional academic medical centers in the Pacific Northwest during 2014 and 2015. Laboratory Medicine POC BG data were reviewed to evaluate all inpatient episodes of deleted and repeated POC BG. Inpatient operators choose to delete and repeat only 0.8% of all POC BG tests. Hypoglycemic and extreme hyperglycemic BG values are more likely to be deleted and repeated. Of initial values values (18% of all values) are errors. Of values >400 mg/dL, 40% of deleted values (5% of all values) are errors. Not all repeated POC BG values are first deleted. Optimal use of the option to delete and repeat POC BG values values that are measurement/operator errors. Eliminating these errors significantly reduces documented rates of severe hypoglycemia and hyperglycemia, and has the potential to improve patient safety.

  10. Enhanced genome editing tools for multi-gene deletion knock-out approaches using paired CRISPR sgRNAs in CHO cells

    DEFF Research Database (Denmark)

    Schmieder, Valerie; Bydlinski, Nina; Strasser, Richard

    2017-01-01

    (sgRNAs) for full gene deletions. This strategy also enables the targeting of regulatory regions, which would not respond to the conventional frameshift mutations, as shown by deleting the α-1,6-Fucosyltransferase 8 (FUT8) promoter resulting in a functional knock-out. Fut8 also served as model...

  11. Cryptic intragenic deletion of the SHOX gene in a family with Léri-Weill dyschondrosteosis detected by Multiplex Ligation-Dependent Probe Amplification (MLPA).

    Science.gov (United States)

    Funari, Mariana F A; Jorge, Alexander A L; Pinto, Emilia M; Arnhold, Ivo J P; Mendonca, Berenice B; Nishi, Mirian Y

    2008-11-01

    LWD is associated to SHOX haploinsufficiency, in most cases, due to gene deletion. Generally FISH and microsatellite analysis are used to identify SHOX deletion. MLPA is a new method of detecting gene copy variation, allowing simultaneous analysis of several regions. Here we describe the presence of a SHOX intragenic deletion in a family with LWD, analyzed through different methodologies. Genomic DNA of 11 subjects from one family were studied by microsatellite analysis, direct sequencing and MLPA. FISH was performed in two affected individuals. Microsatellite analysis showed that all affected members shared the same haplotype suggesting the involvement of SHOX. MLPA detected an intragenic deletion involving exons IV-VIa, which was not detected by FISH and microsatellite analysis. In conclusion, the MLPA technique was proved to be the best solution on detecting this small deletion, it has the advantage of being less laborious also allowing the analysis of several regions simultaneously.

  12. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity.

    Science.gov (United States)

    Biamino, Elisa; Di Gregorio, Eleonora; Belligni, Elga Fabia; Keller, Roberto; Riberi, Evelise; Gandione, Marina; Calcia, Alessandro; Mancini, Cecilia; Giorgio, Elisa; Cavalieri, Simona; Pappi, Patrizia; Talarico, Flavia; Fea, Antonio M; De Rubeis, Silvia; Cirillo Silengo, Margherita; Ferrero, Giovanni Battista; Brusco, Alfredo

    2016-03-01

    Copy number variation (CNV) has been associated with a variety of neuropsychiatric disorders, including intellectual disability/developmental delay (ID/DD), autism spectrum disorder (ASD), and schizophrenia (SCZ). Often, individuals carrying the same pathogenic CNV display high clinical variability. By array-CGH analysis, we identified a novel familial 3q29 deletion (1.36 Mb), centromeric to the 3q29 deletion region, which manifests with variable expressivity. The deletion was identified in a 3-year-old girl diagnosed with ID/DD and autism and segregated in six family members, all affected by severe psychiatric disorders including schizophrenia, major depression, anxiety disorder, and personality disorder. All individuals carrying the deletion were overweight or obese, and anomalies compatible with optic atrophy were observed in three out of four cases examined. Amongst the 10 genes encompassed by the deletion, the haploinsufficiency of Optic Atrophy 1 (OPA1), associated with autosomal dominant optic atrophy, is likely responsible for the ophthalmological anomalies. We hypothesize that the haploinsufficiency of ATPase type 13A4 (ATP13A4) and/or Hairy/Enhancer of Split Drosophila homolog 1 (HES1) contribute to the neuropsychiatric phenotype, while HES1 deletion might underlie the overweight/obesity. In conclusion, we propose a novel contiguous gene syndrome due to a proximal 3q29 deletion variably associated with autism, ID/DD, psychiatric traits and overweight/obesity. © 2015 Wiley Periodicals, Inc.

  13. Mapping the end points of large deletions affecting the hprt locus in human peripheral blood cells and cell lines

    International Nuclear Information System (INIS)

    Nelson, S.L.; Grosovsky, A.J.; Jones, I.M.; Burkhart-Schultz, K.; Fuscoe, J.C.

    1995-01-01

    We have examined the extent of of HPRT - total gene deletions in three mutant collections: spontaneous and X-ray-induced deletions in TK6 human B lymphoblasts, and HPRT - deletions arising in vivo in T cells. A set of 13 Xq26 STS markers surrounding hprt and spanning approximately 3.3 Mb was used. Each marker used was observed to be missing in at least one of the hprt deletion mutants analyzed. The largest deletion observed encompassed at least 3 Mb. Nine deletions extended outside of the mapped region in the centromeric direction (>1.7 Mb). In contrast, only two telomeric deletions extended to marker 342R (1.26 Mb), and both exhibited slowed or limited cell growth. These data suggest the existence of a gene, within the vicinity of 342R, which establishes the telomeric limit of recoverable deletions. Most (25/41) X-ray-induced total gene deletion mutants exhibited marker loss, but only 1/8 of the spontaneous deletions encompassed any Xq26 markers (P = 0.0187). Furthermore, nearly half (3/8) of the spontaneous 3' total deletion breakpoints were within 14 kb of the hprt coding sequence. In contrast, 40/41 X-ray-induced HPRT - total deletions extended beyond this point (P = 0.011). Although the overall representation of total gene deletions in the in vivo spectrum is low, 4/5 encompass Xq26 markers flanking hprt. This pattern differs significantly from spontaneous HPRT - large deletions occurring in vitro (P = 0.032) but resembles the spectrum of X-ray-induced deletions. 24 refs., 6 figs., 1 tab

  14. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas

    2004-01-01

    Murine leukemia viruses harboring an internal ribosome entry site (IRES)-directed translational cassette are able to replicate, but undergo loss of heterologous sequences upon continued passage. While complete loss of heterologous sequences is favored when these are flanked by a direct repeat......, deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural...... result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes...

  15. A Tool for Multiple Targeted Genome Deletions that Is Precise, Scar-Free, and Suitable for Automation.

    Directory of Open Access Journals (Sweden)

    Wayne Aubrey

    Full Text Available Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences, or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1 a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2 software to design the method's primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome.

  16. Identification of a Novel Deletion in AVP-NPII Gene in a Patient with Central Diabetes Insipidus.

    Science.gov (United States)

    Deniz, Ferhat; Acar, Ceren; Saglar, Emel; Erdem, Beril; Karaduman, Tugce; Yonem, Arif; Cagiltay, Eylem; Ay, Seyit Ahmet; Mergen, Hatice

    2015-01-01

    Central Diabetes Insipidus (CDI) is caused by a deficiency of antidiuretic hormone and characterized by polyuria, polydipsia and inability to concentrate urine. Our objective was to present the results of the molecular analyses of AVP-neurophysin II (AVP-NPII) gene in a large familial neurohypophyseal (central) DI pedigree. A male patient and his family members were analyzed and the prospective clinical data were collected. The proband applied to hospital for eligibility to be a recruit in Armed Forces. The patient had severe polyuria (20 L/day), polydipsia (20.5 L/day), fatique, and deep thirstiness. CDI was confirmed with the water deprivation-desmopressin test according to an increase in urine osmolality from 162 mOsm/kg to 432 mOsm/kg after desmopressin acetate injection. To evaluate the coding regions of AVP-NPII gene, polymerase chain reactions were performed and amplified regions were submitted to direct sequence analysis. We detected a heterozygous three base pair deletion at codon 69-70 (207_209delGGC) in exon 2, which lead to a deletion of the amino acid alanine. A three-dimensional protein structure prediction was shown for the deleted AVP-NPII and compared with the wild type. The three base pair deletion may yield an abnormal AVP precursor in neurophysin moiety, but further functional analyses are needed to understand the function of the deleted protein. © 2015 by the Association of Clinical Scientists, Inc.

  17. Novel interstitial deletion of 10q24.3-25.1 associated with multiple congenital anomalies including lobar holoprosencephaly, cleft lip and palate, and hypoplastic kidneys.

    Science.gov (United States)

    Peltekova, Iskra T; Hurteau-Millar, Julie; Armour, Christine M

    2014-12-01

    Chromosome 10q deletions are rare and phenotypically diverse. Such deletions differ in length and occur in numerous regions on the long arm of chromosome 10, accounting for the wide clinical variability. Commonly reported findings include dysmorphic facial features, microcephaly, developmental delay, and genitourinary abnormalities. Here, we report on a female patient with a novel interstitial 5.54 Mb deletion at 10q24.31-q25.1. This patient had findings in common with a previously reported patient with an overlapping deletion, including renal anomalies and an orofacial cleft, but also demonstrated lobar holoprosencephaly and a Dandy-Walker malformation, features which have not been previously reported with 10q deletions. An analysis of the region deleted in our patient showed numerous genes, such as KAZALD1, PAX2, SEMA4G, ACTRA1, INA, and FGF8, whose putative functions may have played a role in the phenotype seen in our patient. © 2014 Wiley Periodicals, Inc.

  18. Probabilistic cloning and deleting of quantum states

    International Nuclear Information System (INIS)

    Feng Yuan; Zhang Shengyu; Ying Mingsheng

    2002-01-01

    We construct a probabilistic cloning and deleting machine which, taking several copies of an input quantum state, can output a linear superposition of multiple cloning and deleting states. Since the machine can perform cloning and deleting in a single unitary evolution, the probabilistic cloning and other cloning machines proposed in the previous literature can be thought of as special cases of our machine. A sufficient and necessary condition for successful cloning and deleting is presented, and it requires that the copies of an arbitrarily presumed number of the input states are linearly independent. This simply generalizes some results for cloning. We also derive an upper bound for the success probability of the cloning and deleting machine

  19. 46 CFR 67.171 - Deletion; requirement and procedure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Deletion; requirement and procedure. 67.171 Section 67...; Requirement for Exchange, Replacement, Deletion, Cancellation § 67.171 Deletion; requirement and procedure. (a... provided in § 67.161, and the vessel is subject to deletion from the roll of actively documented vessels...

  20. Interstitial deletion of 14q24.3-q32.2 in a male patient with plagiocephaly, BPES features, developmental delay, and congenital heart defects

    DEFF Research Database (Denmark)

    Cingöz, Sultan; Bache, Iben; Bjerglund, Lise

    2011-01-01

    Distal interstitial deletions of chromosome 14 involving the 14q24-q23.2 region are rare, and only been reported so far in 20 patients. Ten of these patients were analyzed both clinically and genetically. Here we present a de novo interstitial deletion of chromosome 14q24.3-q32.2 in a male patient...... on genotype-phenotype comparisons of the 10 previously published patients and the present case, we suggest that the shortest regions for deletion overlap may include candidate genes for speech impairment, mental retardation, and hypotonia....

  1. Production of infectious chimeric hepatitis C virus genotype 2b harboring minimal regions of JFH-1.

    Science.gov (United States)

    Murayama, Asako; Kato, Takanobu; Akazawa, Daisuke; Sugiyama, Nao; Date, Tomoko; Masaki, Takahiro; Nakamoto, Shingo; Tanaka, Yasuhito; Mizokami, Masashi; Yokosuka, Osamu; Nomoto, Akio; Wakita, Takaji

    2012-02-01

    To establish a cell culture system for chimeric hepatitis C virus (HCV) genotype 2b, we prepared a chimeric construct harboring the 5' untranslated region (UTR) to the E2 region of the MA strain (genotype 2b) and the region of p7 to the 3' UTR of the JFH-1 strain (genotype 2a). This chimeric RNA (MA/JFH-1.1) replicated and produced infectious virus in Huh7.5.1 cells. Replacement of the 5' UTR of this chimera with that from JFH-1 (MA/JFH-1.2) enhanced virus production, but infectivity remained low. In a long-term follow-up study, we identified a cell culture-adaptive mutation in the core region (R167G) and found that it enhanced virus assembly. We previously reported that the NS3 helicase (N3H) and the region of NS5B to 3' X (N5BX) of JFH-1 enabled replication of the J6CF strain (genotype 2a), which could not replicate in cells. To reduce JFH-1 content in MA/JFH-1.2, we produced a chimeric viral genome for MA harboring the N3H and N5BX regions of JFH-1, combined with a JFH-1 5' UTR replacement and the R167G mutation (MA/N3H+N5BX-JFH1/R167G). This chimeric RNA replicated efficiently, but virus production was low. After the introduction of four additional cell culture-adaptive mutations, MA/N3H+N5BX-JFH1/5am produced infectious virus efficiently. Using this chimeric virus harboring minimal regions of JFH-1, we analyzed interferon sensitivity and found that this chimeric virus was more sensitive to interferon than JFH-1 and another chimeric virus containing more regions from JFH-1 (MA/JFH-1.2/R167G). In conclusion, we established an HCV genotype 2b cell culture system using a chimeric genome harboring minimal regions of JFH-1. This cell culture system may be useful for characterizing genotype 2b viruses and developing antiviral strategies.

  2. Interphase fluorescent in situ hybridization deletion analysis of the 9p21 region and prognosis in childhood acute lymphoblastic leukaemia (ALL)

    DEFF Research Database (Denmark)

    Kuchinskaya, Ekaterina; Heyman, Mats; Nordgren, Ann

    2011-01-01

    Interphase fluorescent in situ hybridization (FISH) was applied on diagnostic BM smears from 519 children with acute lymphoblastic leukaemia (ALL) in order to establish the frequency and prognostic importance of 9p21 deletion in children enrolled in the Nordic Society of Paediatric Haematology...... and Oncology (NOPHO) - 2000 treatment protocol. Among the patients, 452 were diagnosed with B-cell precursor (BCP)-ALL and 66 with T-ALL. A higher incidence of 9p21 deletions was found in T-ALL (38%) compared to BCP-ALL (15·7%). Homozygous deletions were found in 19·7% of T-ALL and 4·0% of BCP-ALL; hemizygous...

  3. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  4. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14).

    Science.gov (United States)

    Chen, Chih-Ping; Lee, Meng-Ju; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Lee, Meng-Shan; Wang, Wayseen

    2013-10-25

    We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region. © 2013.

  5. Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder.

    Science.gov (United States)

    Petersen, Andrea Klunder; Ahmad, Ausaf; Shafiq, Mustafa; Brown-Kipphut, Brigette; Fong, Chin-To; Anwar Iqbal, M

    2013-02-01

    Deletions on the distal portion of the long arm of chromosome 1 result in complex and highly variable clinical phenotypes which include intellectual disability, autism, seizures, microcephaly/craniofacial dysmorphology, corpus callosal agenesis/hypogenesis, cardiac and genital anomalies, hand and foot abnormalities and short stature. Genotype-phenotype correlation reported a minimum region of 2 Mb at 1q43-q44. We report on a 3 ½ year old male patient diagnosed with autistic disorder who has social withdrawal, eating problems, repetitive stereotypic behaviors including self-injurious head banging and hair pulling, and no seizures, anxiety, or mood swings. Array comparative genomic hybridization (aCGH) showed an interstitial deletion of 473 kb at 1q43 region (239,412,391-239,885,394; NCBI build37/hg19) harboring only CHRM3 (Acetylcholine Receptor, Muscarinic, 3; OMIM: 118494). Recently, another case with a de novo interstitial deletion of 911 kb at 1q43 encompassing three genes including CHRM3 was reported. The M3 muscarinic receptor influences a multitude of central and peripheral nervous system processes via its interaction with acetylcholine and may be an important modulator of behavior, learning and memory. We propose CHRM3 as a candidate gene responsible for our patient's specific phenotype as well as the overlapping phenotypic features of other patients with 1q43 or 1q43-q44 deletions. Copyright © 2013. Published by Elsevier Masson SAS.

  6. A macaque's-eye view of human insertions and deletions: differences in mechanisms.

    Directory of Open Access Journals (Sweden)

    Erika M Kvikstad

    2007-09-01

    Full Text Available Insertions and deletions (indels cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments.

  7. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    Energy Technology Data Exchange (ETDEWEB)

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L. [Oregon Health Sciences Univ. Portland, OR (United States)] [and others

    1994-09-01

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOF and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.

  8. On Deletion of Sutra Translation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu-juan

    2017-01-01

    Dao An's the metaphor of translation "wine diluted with water' ' expressed a view about translation that had been abridged.Later Kumarajiva provided metaphor "rice chewed—tasteless and downright disgusting".Both of them felt regretted at the weakening of taste,sometimes even the complete loss of flavor caused by deletion in translation of Buddhist sutras.In early sutra translation,deletion is unavoidable which made many sutra translators felt confused and drove them to study it further and some even managed to give their understanding to this issue.This thesis will discuss the definition,and what causes deletion and the measures adopted by the sutra translators.

  9. Alu-mediated large deletion of the CDSN gene as a cause of peeling skin disease.

    Science.gov (United States)

    Wada, T; Matsuda, Y; Muraoka, M; Toma, T; Takehara, K; Fujimoto, M; Yachie, A

    2014-10-01

    Peeling skin disease (PSD) is an autosomal recessive skin disorder caused by mutations in CDSN and is characterized by superficial peeling of the upper epidermis. Corneodesmosin (CDSN) is a major component of corneodesmosomes that plays an important role in maintaining epidermis integrity. Herein, we report a patient with PSD caused by a novel homozygous large deletion in the 6p21.3 region encompassing the CDSN gene, which abrogates CDSN expression. Several genes including C6orf15, PSORS1C1, PSORS1C2, CCHCR1, and TCF19 were also deleted, however, the patient showed only clinical features typical of PSD. The deletion size was 59.1 kb. Analysis of the sequence surrounding the breakpoint showed that both telomeric and centromeric breakpoints existed within Alu-S sequences that were oriented in opposite directions. These results suggest an Alu-mediated recombination event as the mechanism underlying the deletion in our patient. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Neuropsychological phenotype of a patient with a de novo 970 kb interstitial deletion in the distal 16p11.2 region

    Directory of Open Access Journals (Sweden)

    Egger JI

    2014-03-01

    Full Text Available Jos I M Egger,1–3 Willem M A Verhoeven,1,4 Wim Verbeeck,5 Nicole de Leeuw61Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray, the Netherlands; 2Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; 3Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands; 4Erasmus University Medical Centre, Department of Psychiatry, Rotterdam, the Netherlands; 5Vincent van Gogh Institute for Psychiatry, Centre for Autism and ADHD, Venray, the Netherlands; 6Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the NetherlandsAbstract: The 16p11.2 microdeletion syndrome is characterized by a wide range of phenotypic expressions and is frequently associated with developmental delay, symptoms from the autism spectrum, epilepsy, congenital anomalies, and obesity. These phenotypes are often related to a proximal 16p11.2 deletion of approximately 600 kb (BP4–BP5 that includes the SH2B1 gene that is reported to be causative for morbid obesity. This more centromeric deletion is most strongly related to autism spectrum susceptibility and is functionally different from the more distal 16p12.2p11.2 region, which includes the so-called atypical 16p11.2 BP2–BP3 deletion (approximately 220 kb presenting with developmental delay, behavioral problems and mild facial dysmorphisms. Here, an adult male with a long history of maladaptive behaviors is described who was referred for diagnostic assessment of his amotivational features. Extensive neuropsychological examination demonstrated rigid thinking, anxious beliefs, and ideas of reference in the presence of normal intelligence. Microarray analysis demonstrated a de novo 970 kb 16p11.2 BP1–BP4 microdeletion that can be regarded as explanatory for his behavioral profile. It is concluded that microdeletion syndromes are not exclusively related to intellectual disabilities and

  11. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  12. Analysis of AVR4 promoter by sequential response-element deletion ...

    African Journals Online (AJOL)

    An Avr4 promoter region ligated to chloramphenicol acetyltransferase plasmid vector (pBLCAT2) to produce recombinant plasmid Avr4pBLCAT2 was sequentially deleted to produce five distinct mutants: Avr4pBLCAT2907-176, Avr4pBLCAT2809-176, Avr4pBLCAT2789-176, Avr4pBLCAT2429-176 and Avr4pBLCAT2 ...

  13. Avoidance of pseudogene interference in the detection of 3' deletions in PMS2.

    Science.gov (United States)

    Vaughn, Cecily P; Hart, Kimberly J; Samowitz, Wade S; Swensen, Jeffrey J

    2011-09-01

    Lynch syndrome is characterized by mutations in the mismatch repair genes MLH1, MSH2, MSH6, and PMS2. In PMS2, detection of mutations is confounded by numerous pseudogenes. Detection of 3' deletions is particularly complicated by the pseudogene PMS2CL, which has strong similarity to PMS2 exons 9 and 11-15, due to extensive gene conversion. A newly designed multiplex ligation-dependent probe amplification (MLPA) kit incorporates probes for variants found in both PMS2 and PMS2CL. This provides detection of deletions, but does not allow localization of deletions to the gene or pseudogene. To address this, we have developed a methodology incorporating reference samples with known copy numbers of variants, and paired MLPA results with sequencing of PMS2 and PMS2CL. We tested a subset of clinically indicated samples for which mutations were either unidentified or not fully characterized using existing methods. We identified eight unrelated patients with deletions encompassing exons 9-15, 11-15, 13-15, 14-15, and 15. By incorporating specific, characterized reference samples and sequencing the gene and pseudogene it is possible to identify deletions in this region of PMS2 and provide clinically relevant results. This methodology represents a significant advance in the diagnosis of patients with Lynch syndrome caused by PMS2 mutations. © 2011 Wiley-Liss, Inc.

  14. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1997-01-01

    This study was conducted on mouse lung adenocarcinoma tissues that were formalin-treated and paraffin-embedded 25 years ago to investigate the large gene deletions of mRb and p53 in B6CF 1 male mice. A total of 80 lung tissue samples from irradiated mice and 40 lung samples from nonirradiated controls were randomly selected and examined in the mRb portion of this study. The results showed a significant (P 0.05) from that for spontaneous lung adenocarcinomas or lung adenocarcinomas from mice exposed to single-dose γ irradiation at a similar total dose. mRb fragments 3 (71%) and 5 (67%), the parts of the gene that encoded the pocket binding region of Rb protein to adenovirus E1A and SV40 T-antigen, were the most frequently deleted fragments. p53 gene deletion analysis was carried out on normal lungs and lung adenocarcinomas that were initially found to bear mRb deletions. Exons 1,4,5,6, and 9 were chosen to be analyzed

  15. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Bassett, Anne S; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel E; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie E; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J; Scherer, Stephen W; Emanuel, Beverly S; Guo, Tingwei; Morrow, Bernice E; Marshall, Christian R

    2017-11-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.

  16. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    Full Text Available Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS, also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%, conotruncal defects of the heart (CHD; 70-80%, hypocalcemia (20-60%, and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.

  17. Kallmann syndrome and ichthyosis: a case of contiguous gene deletion syndrome

    Directory of Open Access Journals (Sweden)

    Irene Berges-Raso

    2017-09-01

    Full Text Available Kallmann syndrome is a genetically heterogeneous form of hypogonadotropic hypogonadism caused by gonadotropin-releasing hormone deficiency and characterized by anosmia or hyposmia due to hypoplasia of the olfactory bulbs; osteoporosis and metabolic syndrome can develop due to longstanding untreated hypogonadism. Kallmann syndrome affects 1 in 10 000 men and 1 in 50 000 women. Defects in 17 genes, including KAL1, have been implicated. Kallmann syndrome can be associated with X-linked ichthyosis, a skin disorder characterized by early onset dark, dry, irregular scales affecting the limb and trunk, caused by a defect of the steroid sulfatase gene (STS. Both KAL1 and STS are located in the Xp22.3 region; therefore, deletions in this region cause a contiguous gene syndrome. We report the case of a 32-year-old man with ichthyosis referred for evaluation of excessive height (2.07 m and weight (BMI: 29.6 kg/m2, microgenitalia and absence of secondary sex characteristics. We diagnosed Kallmann syndrome with ichthyosis due to a deletion in Xp22.3, a rare phenomenon.

  18. Chromosome breakage in Prader-Willi and Angelman syndrome deletions may involve recombination between a repeat at the proximal and distal breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Landgraf J.; Nicholls, R.D. [Case Western Reserve Univ., Cleveland, OH (United States); Gottlieb, W. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1994-09-01

    Prader-Willi (PWS) and Angelman (AS) syndromes most commonly arise from large deletions of 15q11-q13. Deletions in PWS are paternal in origin, while those in AS are maternal in origin, clearly demonstrating genomic imprinting in these clinically distinct neurobehavioural disorders. In at least 90% of PWS and AS deletion patients, the same 4 Mb region within 15q11-q13 is deleted with breakpoints clustering in single YAC clones at the proximal and distal ends. To study the mechanism of chromosome breakage in PWS and AS, we have previously isolated 25 independent clones from these three YACs using Alu-vector PCR. Four clones were selected that appear to detect a low copy repeat that is located in the proximal and distal breakpoint regions of chromosome 15q11-q13. Three clones detect the same 4 HindIII bands in genomic DNA, all from 15q11-q13, with differing intensities for the probes located at the proximal or distal breakpoints region, respectively. This suggests that these probes detect related members of a low-copy repeat at either location. Moreover, the 254RL2 probe detects a novel HindIII band in two unrelated PWS deletion patients, suggesting that this may represent a breakpoint fragment, with recombination occurring within a similar interval in both patients. A fourth clone, 318RL3 detects 5 bands in HindIII-digested genomic DNA, all from 15q11-q13. This YAC endclone itself is not deleted in PWS and AS deletion patients, as seen by an invariant strong band. Two other strong bands are variably intact or deleted in different PWS or AS deletion patients, suggesting a relationship of this sequence to the breakpoints. Moreover, PCR using 318RL3 primers from the distal 93C9 YAC led to the isolation of a related clone with 96% identity, demonstrating the existence of a low-copy repeat with members close to the proximal and distal breakpoints. Taken together, our data suggest a complex, low-copy repeat with members at both the proximal and distal boundaries.

  19. Three types of preS1 start codon deletion variants in the natural course of chronic hepatitis B infection.

    Science.gov (United States)

    Choe, Won Hyeok; Kim, Hong; Lee, So-Young; Choi, Yu-Min; Kwon, So Young; Moon, Hee Won; Hur, Mina; Kim, Bum-Joon

    2017-12-12

    Naturally occurring hepatitis B virus variants carrying a deletion in the preS1 start codon region may evolve during long-lasting virus-host interactions in chronic hepatitis B (CHB). The aim of this study was to determine the immune phase-specific prevalent patterns of preS1 start codon deletion variants and related factors during the natural course of CHB. A total of 399 CHB patients were enrolled. Genotypic analysis of three different preS1 start codon deletion variants (classified by deletion size: 15-base pair [bp], 18-bp, and 21-bp deletion variants) was performed. PreS1 start codon deletion variants were detected in 155 of 399 patients (38.8%). The predominant variant was a 15-bp deletion in the immune-tolerance phase (18/50, 36%) and an 18-bp deletion in the immune-clearance phase (69/183, 37.7%). A 21-bp deletion was the predominant variant in the low replicative phase (3/25, 12.0%) and reactivated hepatitis Be antigen (HBeAg)-negative phase (22/141, 15.6%). The 15-bp and 18-bp deletion variants were more frequently found in HBeAg-positive patients (P start codon deletion variants changes according to the immune phases of CHB infection, and each variant type is associated with different clinical parameters. PreS1 start codon deletion variants might interact with the host immune response differently according to their variant types. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. Detection of retinoblastoma gene deletions in spontaneous and radiation-induced mouse lung adenocarcinomas by polymerase chain reaction

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma gene using histological sections from radiation-induced and spontaneous tumors as the DNA source. Six mouse Rb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mouse Rb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (5.69 Gy 60 Co γ rays or 0.6 Gy JANUS neutrons, which have been found to have approximately equal radiobiological effectiveness) were analyzed for mouse Rb deletions. Tumors in 6 neutron-irradiated mice had no mouse Rb deletions. However, 1 of 6 tumors from γ-irradiated mice (17%) and 6 of 18 spontaneous tumors from unirradiated mice (33%) showed a deletion in one or both mouse Rb alleles. All deletions detected were in the 5' region of the mouse Rb gene. 36 refs., 2 figs., 2 tabs

  1. Two novel types of contiguous gene deletion of the AVPR2 and ARHGAP4 genes in unrelated Japanese kindreds with nephrogenic diabetes insipidus.

    Science.gov (United States)

    Demura, Masashi; Takeda, Yoshiyu; Yoneda, Takashi; Furukawa, Kenji; Usukura, Mikiya; Itoh, Yuji; Mabuchi, Hiroshi

    2002-01-01

    Study of two families containing individuals with nephrogenic diabetes insipidus (NDI) indicated different types of 21.3 kb and 26.3 kb deletions involving the AVPR2 and ARHGAP4 (RhoGAP C1) genes. In the case of the 21.3 kb deletion, the deletion consensus motif (5'-TGAAGG-3') and polypurine runs, known as the arrest site of polymerase alpha, were detected in the vicinity of the deletion junction. Inverted repeats (7/8 matches), believed to potentiate DNA loop formation, flank the deletion breakpoint. We propose this deletion to be the result of slipped mispairing during DNA replication. In the case of the 26.3 kb deletion, the 12,945 bp inverted region with the 10,003 bp internal deletion was accompanied with the 2,509 bp deletion in the 5'-side and the 13,785 bp deletion in the 3'-side. We defined three deletion junctions in this rearrangement (DJ1, DJ2, and DJ3) from the 5'-side. The surrounding sequence of DJ1 (5'-CCC-3') closely resembled that of DJ3 (5'-AGGG-3') (DJ1; 5'-cCCCgaggg-3', DJ3; 5'-ccccAGGG-3'), and DJ1 was located in the 5'-side of DJ3 without any overlapping in sequence. The immunoglobulin class switch (ICS) motif (5'-TGGGG-3') was found around the complementary sequence of DJ3. There was a 10-base palindrome (5'-aGACAtgtct-3') in the alignment of the DJ2 (5'-GACA-3') region. From these findings, we propose a novel mutation process with the rearrangement probably resulting from stem-loop induced non-homologous recombination in an ICS-like fashion. Both patients, despite lacking ARHGAP4, had no morphological, clinical, or laboratory abnormalities except for those usually found in patients with NDI. Copyright 2001 Wiley-Liss, Inc.

  2. Expansion of the clinical phenotype of the distal 10q26.3 deletion syndrome to include ataxia and hyperemia of the hands and feet.

    Science.gov (United States)

    Lacaria, Melanie; Srour, Myriam; Michaud, Jacques L; Doja, Asif; Miller, Elka; Schwartzentruber, Jeremy; Goldsmith, Claire; Majewski, Jacek; Boycott, Kym M

    2017-06-01

    Distal deletion of the long arm of chromosome 10 is associated with a dysmorphic craniofacial appearance, microcephaly, behavioral issues, developmental delay, intellectual disability, and ocular, urogenital, and limb abnormalities. Herein, we present clinical, molecular, and cytogenetic investigations of four patients, including two siblings, with nearly identical terminal deletions of 10q26.3, all of whom have an atypical presentation of this syndrome. Their prominent features include ataxia, mild-to-moderate intellectual disability, and hyperemia of the hands and feet, and they do not display many of the other features commonly associated with deletions of this region. These results point to a novel gene locus associated with ataxia and highlight the variability of the clinical presentation of patients with deletions of this region. © 2017 Wiley Periodicals, Inc.

  3. Efficiently Hiding Sensitive Itemsets with Transaction Deletion Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Chun-Wei Lin

    2014-01-01

    Full Text Available Data mining is used to mine meaningful and useful information or knowledge from a very large database. Some secure or private information can be discovered by data mining techniques, thus resulting in an inherent risk of threats to privacy. Privacy-preserving data mining (PPDM has thus arisen in recent years to sanitize the original database for hiding sensitive information, which can be concerned as an NP-hard problem in sanitization process. In this paper, a compact prelarge GA-based (cpGA2DT algorithm to delete transactions for hiding sensitive itemsets is thus proposed. It solves the limitations of the evolutionary process by adopting both the compact GA-based (cGA mechanism and the prelarge concept. A flexible fitness function with three adjustable weights is thus designed to find the appropriate transactions to be deleted in order to hide sensitive itemsets with minimal side effects of hiding failure, missing cost, and artificial cost. Experiments are conducted to show the performance of the proposed cpGA2DT algorithm compared to the simple GA-based (sGA2DT algorithm and the greedy approach in terms of execution time and three side effects.

  4. Deletion of a coordinate regulator of type 2 cytokine expression in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrs, Markus; Blankespoor, Catherine M.; Wang, Zhi-En; Loots, Gaby G.; Hadeiba, Husein; Shinkai, Kanade; Rubin, Edward M.; Locksley, Richard M.

    2001-07-30

    Mechanisms underlying the differentiation of stable T helper subsets will be important in understanding how discrete types of immunity develop in response to different pathogens. An evolutionarily conserved {approx}400 base pair non-coding sequence in the IL-4/IL-13 intergenic region, designated CNS-1, was deleted in mice. The capacity to develop Th2 cells was compromised in vitro and in vivo in the absence of CNS-1. Despite the profound effect in T cells, mast cells from CNS-1-deleted mice maintained their capacity to produce IL-4. A T cell-specific element critical for optimal expression of type 2 cytokines may represent evolution of a regulatory sequence exploited by adaptive immunity.

  5. A strong deletion bias in nonallelic gene conversion.

    Directory of Open Access Journals (Sweden)

    Raquel Assis

    Full Text Available Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic or paralogous (nonallelic genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.

  6. Characterization of five partial deletions of the factor VIII gene

    International Nuclear Information System (INIS)

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-01-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes

  7. Deletion of UBE3A in brothers with Angelman syndrome at the breakpoint with an inversion at 15q11.2.

    Science.gov (United States)

    Kuroda, Yukiko; Ohashi, Ikuko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Wada, Takahito; Kurosawa, Kenji

    2014-11-01

    Angelman syndrome (AS) is characterized by severe intellectual disability with ataxia, epilepsy, and behavioral uniqueness. The underlining molecular deficit is the absence of the maternal copy of the imprinted UBE3A gene due to maternal deletions, which is observed in 70-75% of cases, and can be detected using fluorescent in situ hybridization (FISH) of the UBE3A region. Only a few familial AS cases have been reported with a complete deletion of UBE3A. Here, we report on siblings with AS caused by a microdeletion of 15q11.2-q12 encompassing UBE3A at the breakpoint of an inversion at 15q11.2 and 15q26.1. Karyotyping revealed an inversion of 15q, and FISH revealed the deletion of the UBE3A region. Array comparative genomic hybridization (CGH) demonstrated a 467 kb deletion at 15q11.2-q12, encompassing only UBE3A, SNORD115, and PAR1, and a 53 kb deletion at 15q26.1, encompassing a part of SLCO3A1. Their mother had a normal karyotype and array CGH detected no deletion of 15q11.2-q12, so we assumed gonadal mosaicism. This report describes a rare type of familial AS detected using the D15S10 FISH test. © 2014 Wiley Periodicals, Inc.

  8. Analysis of 22q11.2 deletions by FISH in a series of velocardiofacial syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravnan, J.B.; Golabi, M.; Lebo, R.V. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    Deletions in chromosome 22 band q11.2 have been associated with velocardiofacial (VCF or Shprintzen) syndrome and the DiGeorge anomaly. A study of VCF patients evaluated at the UCSF Medical Center was undertaken to correlate disease phenotype with presence or absence of a deletion. Patients referred for this study had at least two of the following: dysmorphic facial features, frequent ear infections or hearing loss, palate abnormalities, thymic hypoplasia, hypocalcemia, congenital heart defect, hypotonia, and growth or language delay. Fluorescence in situ hybridization (FISH) using the DiGeorge critical region probe N25 was used to classify patients according to the presence or absence of a deletion in 22q11.2, and the results were compared to clinical characteristics. We have completed studies on 58 patients with features of VCF. Twenty-one patients (36%) were found to have a deletion in 22q11.2 by FISH. A retrospective study of archived slides from 14 patients originally studied only by prometaphase GTG banding found six patients had a deletion detected by FISH; of these, only two had a microscopically visible chromosome deletion. Our study of 11 sets of parents of children with the deletion found two clinically affected mothers with the deletion, including one with three of three children clinically affected. A few patients who did not fit the classical VCF description had a 22q11.2 deletion detected by FISH. These included one patient with both cleft lip and palate, and another with developmental delay and typical facial features but no cardiac or palate abnormalities. Both patients with the DiGeorge anomaly as part of VCF had the deletion. On the other hand, a number of patients diagnosed clinically with classical VCF did not have a detectable deletion. This raises the question whether they represent a subset of patients with a defect of 22q11.2 not detected by the N25 probe, or whether they represent a phenocopy of VCF.

  9. Homozygous deletion of the α- and β1-interferon genes in human leukemia and derived cell lines

    International Nuclear Information System (INIS)

    Diaz, M.O.; Ziemin, S.; Le Beau, M.M.; Pitha, P.; Smith, S.D.; Chilcote, R.R.; Rowley, J.D.

    1988-01-01

    The loss of bands p21-22 from one chromosome 9 homologue as a consequence of a deletion of the short arm [del(9p)], unbalanced translocation, or monosomy 9 is frequently observed in the malignant cells of patients with lymphoid neoplasias, including acute lymphoblastic leukemia and non-Hodgkin lymphoma. The α- and β 1 -interferon genes have been assigned to this chromosome region (9p21-22). The authors now present evidence of the homozygous deletion of the interferon genes in neoplastic hematopoietic cell lines and primary leukemia cells in the presence or absence of chromosomal deletions that are detectable at the level of the light microscope. In these cell lines, the deletion of the interferon genes is accompanied by a deficiency of 5'-methylthioadenosine phosphorylase, an enzyme of purine metabolism. These homozygous deletions may be associated with the loss of a tumor-suppressor gene that is involved in the development of these neoplasias. The relevant genes may be either the interferon genes themselves or a gene that has a tumor-suppressor function and is closely linked to them

  10. R3-R4 deletion in the PRNP gene is associated with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Cervenakova, L.; Brown, P.; Nagle, J. [and others

    1994-09-01

    There are conflicting reports on the association of deletions in the PRNP gene on chromosome 20 with CJD, a rapidly progressive fatal spongiform encephalopathy. We accumulated data suggesting that a deletion of R3-R4 type (parts of the third and fourth repeats are deleted from the area of four repeating 24 bp sequences in the 5{prime} region of the gene) is causing CJD. Screening of 129 unaffected control individuals demonstrated presence of a deletion of R2 type in four (1.55% of the studied chromosomes), but none of them had the R3-R4 type. Of 181 screened patients with spongiform encephalopathies, two had a deletion of R3-R4 type with no other mutations in the coding sequence. Both patients had a classical rapidly progressive dementing disease and diffuse spongiform degeneration, and both cases were apparently sporadic. The same R3-R4 type of deletion was detected in three additional neuropathologically confirmed spongiform encephalopathy patients, of which two had other known pathogenic mutations in the PRNP gene: at codon 178 on the methionine allele exhibiting the phenotype of fatal familial insomnia, and codon 200 causing CJD with severe dementia; the third was a patient with iatrogenic CJD who developed the disease after treatment with growth hormone extracted from cadaveric human pituitary glands. In all cases the deletion coincided with a variant sequence at position 129 coding for methionine.

  11. 76 FR 5142 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2011-01-28

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletion from the Procurement List. SUMMARY: This action adds services to the Procurement.... Contracting Activity: Department of Transportation, Federal Aviation Administration, Jamaica, NY. Deletion On...

  12. Cytogenomic Integrative Network Analysis of the Critical Region Associated with Wolf-Hirschhorn Syndrome

    Directory of Open Access Journals (Sweden)

    Thiago Corrêa

    2018-01-01

    Full Text Available Deletions in the 4p16.3 region are associated with Wolf-Hirschhorn syndrome (WHS, a contiguous gene deletion syndrome involving variable size deletions. In this study, we perform a cytogenomic integrative analysis combining classical cytogenetic methods, fluorescence in situ hybridization (FISH, chromosomal microarray analysis (CMA, and systems biology strategies, to establish the cytogenomic profile involving the 4p16.3 critical region and suggest WHS-related intracellular cell signaling cascades. The cytogenetic and clinical patient profiles were evaluated. We characterized 12 terminal deletions, one interstitial deletion, two ring chromosomes, and one classical translocation 4;8. CMA allowed delineation of the deletions, which ranged from 3.7 to 25.6 Mb with breakpoints from 4p16.3 to 4p15.33. Furthermore, the smallest region of overlapping (SRO encompassed seven genes in a terminal region of 330 kb in the 4p16.3 region, suggesting a region of susceptibility to convulsions and microcephaly. Therefore, molecular interaction networks and topological analysis were performed to understand these WHS-related symptoms. Our results suggest that specific cell signaling pathways including dopamine receptor, NAD+ nucleosidase activity, and fibroblast growth factor-activated receptor activity are associated with the diverse pathological WHS phenotypes and their symptoms. Additionally, we identified 29 hub-bottlenecks (H-B nodes with a major role in WHS.

  13. Deletion of 2.7 kb near HOXD3 in an Arabian horse with occipitoatlantoaxial malformation.

    Science.gov (United States)

    Bordbari, M H; Penedo, M C T; Aleman, M; Valberg, S J; Mickelson, J; Finno, C J

    2017-06-01

    In the horse, the term occipitoatlantoaxial malformation (OAAM) is used to describe a developmental defect in which the first cervical vertebra (atlas) resembles the base of the skull (occiput) and the second cervical vertebra (axis) resembles the atlas. Affected individuals demonstrate an abnormal posture and varying degrees of ataxia. The homeobox (HOX) gene cluster is involved in the development of both the axial and appendicular skeleton. Hoxd3-null mice demonstrate a strikingly similar phenotype to Arabian foals with OAAM. Whole-genome sequencing was performed in an OAAM-affected horse (OAAM1) and seven unaffected Arabian horses. Visual inspection of the raw reads within the region of HOXD3 identified a 2.7-kb deletion located 4.4 kb downstream of the end of HOXD4 and 8.2 kb upstream of the start of HOXD3. A genotyping assay revealed that both parents of OAAM1 were heterozygous for the deletion. Additional genotyping identified two of 162 heterozygote Arabians, and the deletion was not present in 371 horses of other breeds. Comparative genomics studies have revealed that this region is highly conserved across species and that the entire genomic region between Hoxd4 and Hoxd3 is transcribed in mice. Two additional Arabian foals diagnosed with OAAM (OAAM 2 and 3) were genotyped and did not have the 2.7-kb deletion. Closer examination of the phenotype in these cases revealed notable variation. OAAM3 also had facial malformations and a patent ductus arteriosus, and the actual malformation at the craniocervical junction differed. Genetic heterogeneity may exist across the HOXD locus in Arabian foals with OAAM. © 2017 Stichting International Foundation for Animal Genetics.

  14. De novo interstitial deletions of 9q22.1-22.3 in two unrelated cases with different phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.N.; Bawle, E.; Conard, J. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Deletions involving the long arm of chromosome 9 are rare. A recent review, particularly with deletions of 9q22-32 region, failed to recognize a distinct pattern of dysmorphies and malformations. Herein, we described two phenotypically abnormal unrelated cases with interstitial deletion of chromosome 9 at band q22.1-q22.3. Parents of both cases exhibited normal karyotypes, indicating that the deletions were de novo events. Therefore, the clinical features present in these two cases can be attributed to partial monosomy for the deleted band 9q22. The first case was a 2-day-old baby with ambiguous genitalia, hydrocephalus, cleft palate and lip, polycystic kidney, absence of uterus on ultrasound and one gonad in the labiosacral region. Chromosome analysis showed a male karyotype, 46,XY,del(9)(q22.1q22.3). The absence of monosomy X cell line and the normal histology of testicular tissue were against the diagnosis of mixed gonadal dysgenesis or XY gonadal dysgenesis. The second 3-day-old newborn baby girl presented with right side hypoplastic heart and pulmonary atresia. In addition, the patient showed multiple dysmorphic features including epicanthal fold, low-set ears, depressed nasal bridge, hypertelorism, and micrognathia. The uvula is absent with slight cleft palate. Bilateral clinodactyly of 5th fingers and severe club feet were also present. The external genitalia was of a normal female phenotype. Chromosome study also indicated interstatial deletion of band 9q22. Although both cases appeared to have the same chromosomal anomalies, neither a discrete facial appearance nor a common pattern of malformations was noted.

  15. Abnormal protein in the cerebrospinal fluid of patients with a submicroscopic X-chromosomal deletion associated with Norrie disease: preliminary report.

    Science.gov (United States)

    Joy, J E; Poglod, R; Murphy, D L; Sims, K B; de la Chapelle, A; Sankila, E M; Norio, R; Merril, C R

    1991-01-01

    Norrie disease is an X-linked recessive disorder characterized by congenital blindness and, in many cases, mental retardation. Some Norrie disease cases have been shown to be associated with a submicroscopic deletion in chromosomal region Xp11.3. Cerebrospinal fluid (CSF) was collected from four male patients with an X-chromosomal deletion associated with Norrie disease. CSF proteins were resolved using two-dimensional gel electrophoresis and then analyzed by computer using the Elsie V program. Our analysis revealed a protein that appears to be altered in patients with Norrie disease deletion.

  16. 78 FR 29119 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-17

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletion from the Procurement List. SUMMARY: This action adds products and services to the... Activity: Washington Headquarters Services (WHS), Acquisition Directorate, Washington, DC. Deletion On 4/5...

  17. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome.

    Directory of Open Access Journals (Sweden)

    Jill A Rosenfeld

    Full Text Available Recurrent deletions of 2q32q33 have recently been reported as a new microdeletion syndrome. Clinical features of this syndrome include severe mental retardation, growth retardation, dysmorphic features, thin and sparse hair, feeding difficulties and cleft or high palate. The commonly deleted region contains at least seven genes. Haploinsufficiency of one of these genes, SATB2, a DNA-binding protein that regulates gene expression, has been implicated as causative in the cleft or high palate of individuals with 2q32q33 microdeletion syndrome. In this study we describe three individuals with smaller microdeletions of this region, within 2q33.1. The deletions ranged in size from 173.1 kb to 185.2 kb and spanned part of SATB2. Review of clinical records showed similar clinical features among these individuals, including severe developmental delay and tooth abnormalities. Two of the individuals had behavioral problems. Only one of the subjects presented here had a cleft palate, suggesting reduced penetrance for this feature. Our results suggest that deletion of SATB2 is responsible for several of the clinical features associated with 2q32q33 microdeletion syndrome.

  18. A case of an atypically large proximal 15q deletion as cause for Prader-Willi syndrome arising from a de novo unbalanced translocation.

    Science.gov (United States)

    Hickey, Scott E; Thrush, Devon Lamb; Walters-Sen, Lauren; Reshmi, Shalini C; Astbury, Caroline; Gastier-Foster, Julie M; Atkin, Joan

    2013-09-01

    We describe an 11 month old female with Prader-Willi syndrome (PWS) resulting from an atypically large deletion of proximal 15q due to a de novo 3;15 unbalanced translocation. The 10.6 Mb deletion extends from the chromosome 15 short arm and is not situated in a region previously reported as a common distal breakpoint for unbalanced translocations. There was no deletion of the reciprocal chromosome 3q subtelomeric region detected by either chromosomal microarray or FISH. The patient has hypotonia, failure to thrive, and typical dysmorphic facial features for PWS. The patient also has profound global developmental delay consistent with an expanded, more severe, phenotype. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. 44 CFR 5.27 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying... Availability of General Agency Information, Rules, Orders, Policies, and Similar Material § 5.27 Deletion of..., interpretation, or staff manual or instruction. However, the justification for each deletion will be explained...

  20. Guidelines for mixed waste minimization

    International Nuclear Information System (INIS)

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization

  1. 19 CFR 142.49 - Deletion of C-4 Code.

    Science.gov (United States)

    2010-04-01

    .... Entry filers may delete C-4 Codes from Line Release by notifying the port director in writing on a Deletion Data Loading Sheet. Such notification shall state the C-4 Code which is to be deleted, the port... TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.49 Deletion of C-4 Code. (a) By Customs. A port...

  2. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    Directory of Open Access Journals (Sweden)

    Björkhem Gudrun

    2008-01-01

    Full Text Available Abstract Background Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. Methods In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k genome-wide array-based comparative genomic hybridization (CGH. Results After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb region, ranging from 93.86–100.34 Mb on chromosome 15. Conclusion In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome.

  3. Phenotype and 244k array-CGH characterization of chromosome 13q deletions: an update of the phenotypic map of 13q21.1-qter

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Stoeva, Radka

    2009-01-01

    Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact break......-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years....

  4. 5 CFR 2502.18 - Deletion of exempted information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information. 2502.18... Charges for Search and Reproduction § 2502.18 Deletion of exempted information. Where requested records... the remainder of the records, they shall be disclosed by the Office with deletions. To each such...

  5. 78 FR 75912 - Procurement List; Addition and Deletion

    Science.gov (United States)

    2013-12-13

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Addition to and deletion from the Procurement List. SUMMARY: This action adds a service to the Procurement...: General Services Administration, Fort Worth, TX Deletion On 11/1/2013 (78 FR 65618), the Committee for...

  6. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Science.gov (United States)

    Zouheir Habbal, Mohammad; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F

    2014-01-01

    Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  7. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Directory of Open Access Journals (Sweden)

    Mohammad Zouheir Habbal

    Full Text Available Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD. Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb, one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  8. 5 CFR 1631.17 - Deletion of exempted information.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information. 1631.17... Deletion of exempted information. Where requested records contain matters which are exempted under 5 U.S.C... disclosed by the Board with deletions. To each such record, the Board shall attach a written justification...

  9. 78 FR 27369 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-10

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletion from the Procurement List. SUMMARY: This action adds products to the Procurement..., Philadelphia, PA. Deletion On 4/5/2013 (78 FR 20622-20623), the Committee for Purchase From People Who Are...

  10. 49 CFR 7.6 - Deletion of identifying detail.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6... To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to be... the deletion will accompany the record published or made available for inspection. ...

  11. A Comparative Study of Quantum and Classical Deletion

    International Nuclear Information System (INIS)

    Shen Yao; Hao Liang; Long Guilu

    2010-01-01

    Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered. (general)

  12. Genomic resources for identification of the minimal N2 -fixing symbiotic genome.

    Science.gov (United States)

    diCenzo, George C; Zamani, Maryam; Milunovic, Branislava; Finan, Turlough M

    2016-09-01

    The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Juvenile Moyamoya and Craniosynostosis in a Child with Deletion 1p32p31: Expanding the Clinical Spectrum of 1p32p31 Deletion Syndrome and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Paolo Prontera

    2017-09-01

    Full Text Available Moyamoya angiopathy (MA is a rare cerebrovascular disorder characterised by the progressive occlusion of the internal carotid artery. Its aetiology is uncertain, but a genetic background seems likely, given the high MA familial rate. To investigate the aetiology of craniosynostosis and juvenile moyamoya in a 14-year-old male patient, we performed an array-comparative genomic hybridisation revealing a de novo interstitial deletion of 8.5 Mb in chromosome region 1p32p31. The deletion involved 34 protein coding genes, including NF1A, whose haploinsufficiency is indicated as being mainly responsible for the 1p32-p31 chromosome deletion syndrome phenotype (OMIM 613735. Our patient also has a deleted FOXD3 of the FOX gene family of transcription factors, which plays an important role in neural crest cell growth and differentiation. As the murine FOXD3−/− model shows craniofacial anomalies and abnormal common carotid artery morphology, it can be hypothesised that FOXD3 is involved in the pathogenesis of the craniofacial and vascular defects observed in our patient. In support of our assumption, we found in the literature another patient with a syndromic form of MA who had a deletion involving another FOX gene (FOXC1. In addition to describing the clinical history of our patient, we have reviewed all of the available literature concerning other patients with a 1p32p31 deletion, including cases from the Decipher database, and we have also reviewed the genetic disorders associated with MA, which is a useful guide for the diagnosis of syndromic form of MA.

  14. Conversion of Deletions during Recombination in Pneumococcal Transformation

    Science.gov (United States)

    Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.

    1989-01-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365

  15. 36 CFR 1275.58 - Deletion of restricted portions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of restricted... HISTORICAL MATERIALS OF THE NIXON ADMINISTRATION Access by the Public § 1275.58 Deletion of restricted... materials after the deletion of the portions which are restricted under this § 1275.50 or § 1275.52. ...

  16. 75 FR 69638 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2010-11-15

    ... and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletion from the Procurement List. SUMMARY: This action adds products and a service to the...), DENVER, CO. Deletion On 9/17/2010 (75 FR 56995-56996), the Committee for Purchase From People Who Are...

  17. Genetics Home Reference: proximal 18q deletion syndrome

    Science.gov (United States)

    ... characteristic features. Most cases of proximal 18q deletion syndrome are the result of a new (de novo) deletion and are not inherited from a ... J, Fox PT, Stratton RF, Perry B, Hale DE. Recurrent interstitial deletions of proximal 18q: a new syndrome involving expressive speech delay. Am J Med Genet ...

  18. Xp21 contiguous gene syndromes: Deletion quantitation with bivariate flow karyotyping allows mapping of patient breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, E.R.B.; Towbin, J.A. (Baylor College of Medicine, Houston, TX (United States)); Engh, G. van den; Trask, B.J. (Lawrence Livermore National Lab., CA (United States))

    1992-12-01

    Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans >15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to [plus minus]1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD. 44 refs., 3 figs.

  19. Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, Devin P., E-mail: devin.champagne@uvm.edu; Shockett, Penny E., E-mail: pshockett@selu.edu

    2014-03-15

    Highlights: • Examines illegitimate V(D)J deletion junctions in Notch1 and Bcl11b. • Suggests little influence of deletions alone on clonal outgrowth in wild-type mice. • No age or sex biases in frequency, clonality, or junctional processing observed. • Contrasts with previous results at TCRβ and HPRT1 loci. • Deletions in Bcl11b may be tolerated more easily than those in Notch1. - Abstract: Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is

  20. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    Science.gov (United States)

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  1. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.

    Directory of Open Access Journals (Sweden)

    Boris V Skryabin

    2007-12-01

    Full Text Available Prader-Willi syndrome (PWS [MIM 176270] is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScr(m-/p+ are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScr(m+/p- consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.

  2. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Agarwal, Manisha; Bakhshi, Sameer; Dwivedi, Sadanand N; Kabra, Madhulika; Shukla, Rashmi; Seth, Rachna

    2018-06-01

    Cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) genes are implicated in many malignancies including acute lymphoblastic leukemia (ALL). These tumor suppressor genes, with a key regulatory role in cell cycle are located on chromosome 9p21.3. Previous studies involving CDKN2A/B gene deletions have shown mixed associations with survival outcome in childhood ALL. Hundred and four newly diagnosed children with ALL (1-14 years) were enrolled in this study. Genomic DNA from pretreatment bone marrow/peripheral blood samples of these children was investigated for copy number alterations in CDKN2A/B genes using multiplex ligation dependent probe amplification assay. Immunophenotype subtyping and cytogenetic and molecular analysis of ALL was performed at start of induction chemotherapy in all children. Children were monitored for response to prednisolone (Day 8), complete morphological remission, and minimal residual disease at the end of induction. The minimum postinduction follow-up period was 6 months. CDKN2A/B deletions were seen in 19.8% (18/91) of B lineage acute lymphoblastic leukemia (B-ALL) and 38.5% (5/13) of T lineage acute lymphoblastic leukemia (T-ALL). Monoallelic CDKN2A/B deletions were found in 61.1% of total deletions in B-ALL while all the children with T-ALL harbored biallelic deletions. The prevalence of CDKN2A/B gene deletions was found to be significantly higher in older children (P = 0.002), in those with higher leukocyte count (P = 0.037), and in National Cancer Institute high risk group patients (P = 0.001) in the B-ALL subgroup. Hazard ratio was significantly high for children with CDKN2A/B deletions in total cohort (P = 0.004). Children with CDKN2A/B deletion had significantly lesser event free survival (P = 0.03). CDKN2A/B deletions were significantly more prevalent in T-ALL subgroup and were found to have higher hazard ratio and lesser event free survival in total cohort in our study. © 2018 Wiley Periodicals, Inc.

  3. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients

    Directory of Open Access Journals (Sweden)

    Zhao Linlu

    2012-06-01

    Full Text Available Abstract Background Specific genetic contributions for preeclampsia (PE are currently unknown. This genome-wide association study (GWAS aims to identify maternal single nucleotide polymorphisms (SNPs and copy-number variants (CNVs involved in the etiology of PE. Methods A genome-wide scan was performed on 177 PE cases (diagnosed according to National Heart, Lung and Blood Institute guidelines and 116 normotensive controls. White female study subjects from Iowa were genotyped on Affymetrix SNP 6.0 microarrays. CNV calls made using a combination of four detection algorithms (Birdseye, Canary, PennCNV, and QuantiSNP were merged using CNVision and screened with stringent prioritization criteria. Due to limited DNA quantities and the deleterious nature of copy-number deletions, it was decided a priori that only deletions would be selected for assay on the entire case-control dataset using quantitative real-time PCR. Results The top four SNP candidates had an allelic or genotypic p-value between 10-5 and 10-6, however, none surpassed the Bonferroni-corrected significance threshold. Three recurrent rare deletions meeting prioritization criteria detected in multiple cases were selected for targeted genotyping. A locus of particular interest was found showing an enrichment of case deletions in 19q13.31 (5/169 cases and 1/114 controls, which encompasses the PSG11 gene contiguous to a highly plastic genomic region. All algorithm calls for these regions were assay confirmed. Conclusions CNVs may confer risk for PE and represent interesting regions that warrant further investigation. Top SNP candidates identified from the GWAS, although not genome-wide significant, may be useful to inform future studies in PE genetics.

  4. 29 CFR 1610.20 - Deletion of exempted matters.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records... the remainder of the records, they shall be disclosed by the Commission with deletions. To each such...

  5. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location.

    Science.gov (United States)

    Maranchie, Jodi K; Afonso, Anoushka; Albert, Paul S; Kalyandrug, Sivaram; Phillips, John L; Zhou, Shubo; Peterson, James; Ghadimi, Bijan M; Hurley, Katheen; Riss, Joseph; Vasselli, James R; Ried, Thomas; Zbar, Berton; Choyke, Peter; Walther, McClellan M; Klausner, Richard D; Linehan, W Marston

    2004-01-01

    von Hippel Lindau disease (VHL) is an autosomal dominant familial cancer syndrome linked to alteration of the VHL tumor suppressor gene. Affected patients are predisposed to develop pheochromocytomas and cystic and solid tumors of the kidney, CNS, pancreas, retina, and epididymis. However, organ involvement varies considerably among families and has been shown to correlate with the underlying germline alteration. Clinically, we observed a paradoxically lower prevalence of renal cell carcinoma (RCC) in patients with complete germline deletion of VHL. To determine if a relationship existed between the type of VHL deletion and disease, we retrospectively evaluated 123 patients from 55 families with large germline VHL deletions, including 42 intragenic partial deletions and 13 complete VHL deletions, by history and radiographic imaging. Each individual and family was scored for cystic or solid involvement of CNS, pancreas, and kidney, and for pheochromocytoma. Germline deletions were mapped using a combination of fluorescent in situ hybridization (FISH) and quantitative Southern and Southern blot analysis. An age-adjusted comparison demonstrated a higher prevalence of RCC in patients with partial germline VHL deletions relative to complete deletions (48.9 vs. 22.6%, p=0.007). This striking phenotypic dichotomy was not seen for cystic renal lesions or for CNS (p=0.22), pancreas (p=0.72), or pheochromocytoma (p=0.34). Deletion mapping revealed that development of RCC had an even greater correlation with retention of HSPC300 (C3orf10), located within the 30-kb region of chromosome 3p, immediately telomeric to VHL (52.3 vs. 18.9%, p <0.001), suggesting the presence of a neighboring gene or genes critical to the development and maintenance of RCC. Careful correlation of genotypic data with objective phenotypic measures will provide further insight into the mechanisms of tumor formation. Copyright 2003 Wiley-Liss, Inc.

  6. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  7. Files synchronization from a large number of insertions and deletions

    Science.gov (United States)

    Ellappan, Vijayan; Kumari, Savera

    2017-11-01

    Synchronization between different versions of files is becoming a major issue that most of the applications are facing. To make the applications more efficient a economical algorithm is developed from the previously used algorithm of “File Loading Algorithm”. I am extending this algorithm in three ways: First, dealing with non-binary files, Second backup is generated for uploaded files and lastly each files are synchronized with insertions and deletions. User can reconstruct file from the former file with minimizing the error and also provides interactive communication by eliminating the frequency without any disturbance. The drawback of previous system is overcome by using synchronization, in which multiple copies of each file/record is created and stored in backup database and is efficiently restored in case of any unwanted deletion or loss of data. That is, to introduce a protocol that user B may use to reconstruct file X from file Y with suitably low probability of error. Synchronization algorithms find numerous areas of use, including data storage, file sharing, source code control systems, and cloud applications. For example, cloud storage services such as Drop box synchronize between local copies and cloud backups each time users make changes to local versions. Similarly, synchronization tools are necessary in mobile devices. Specialized synchronization algorithms are used for video and sound editing. Synchronization tools are also capable of performing data duplication.

  8. Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity.

    Science.gov (United States)

    De Rocker, Nina; Vergult, Sarah; Koolen, David; Jacobs, Eva; Hoischen, Alexander; Zeesman, Susan; Bang, Birgitte; Béna, Frédérique; Bockaert, Nele; Bongers, Ernie M; de Ravel, Thomy; Devriendt, Koenraad; Giglio, Sabrina; Faivre, Laurence; Joss, Shelagh; Maas, Saskia; Marle, Nathalie; Novara, Francesca; Nowaczyk, Malgorzata J M; Peeters, Hilde; Polstra, Abeltje; Roelens, Filip; Rosenberg, Carla; Thevenon, Julien; Tümer, Zeynep; Vanhauwaert, Suzanne; Varvagiannis, Konstantinos; Willaert, Andy; Willemsen, Marjolein; Willems, Marjolaine; Zuffardi, Orsetta; Coucke, Paul; Speleman, Frank; Eichler, Evan E; Kleefstra, Tjitske; Menten, Björn

    2015-06-01

    Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. In this study we evaluated a cohort of 22 patients (15 sporadic patients and two families) with a 2p25.3 aberration to further refine the clinical phenotype and to delineate the role of MYT1L in intellectual disability and obesity. In addition, myt1l spatiotemporal expression in zebrafish embryos was analyzed by quantitative polymerase chain reaction and whole-mount in situ hybridization. Complete MYT1L deletion, intragenic deletion, or duplication was observed in all sporadic patients, in addition to two patients with a de novo point mutation in MYT1L. The familial cases comprise a 6-Mb deletion in a father and his three children and a 5' MYT1L overlapping duplication in a father and his two children. Expression analysis in zebrafish embryos shows specific myt1l expression in the developing brain. Our data strongly strengthen the hypothesis that MYT1L is the causal gene for the observed syndromal intellectual disability. Moreover, because 17 patients present with obesity/overweight, haploinsufficiency of MYT1L might predispose to weight problems with childhood onset.Genet Med 17 6, 460-466.

  9. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment

    DEFF Research Database (Denmark)

    Rau, Martin H.; Marvig, Rasmus Lykke; Ehrlich, Garth D.

    2012-01-01

    of the change in genetic content during the early stage of host adaptation by this P. aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted...... adapted pathogenic strain of P. aeruginosa to strengthen the genetic basis, which serves to help our understanding of microbial evolution in a natural environment....

  10. Probabilistic deletion of copies of linearly independent quantum states

    International Nuclear Information System (INIS)

    Feng Jian; Gao Yunfeng; Wang Jisuo; Zhan Mingsheng

    2002-01-01

    We show that each of two copies of the nonorthogonal states randomly selected from a certain set S can be probabilistically deleted by a general unitary-reduction operation if and only if the states are linearly independent. We derive a tight bound on the best possible deleting efficiencies. These results for 2→1 probabilistic deleting are also generalized into the case of N→M deleting (N,M positive integers and N>M)

  11. ATLAS DQ2 Deletion Service

    International Nuclear Information System (INIS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  12. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  13. 6q deletion detected by fluorescence in situ hybridization using bacterial artificial chromosome in chronic lymphocytic leukemia.

    Science.gov (United States)

    Dalsass, Alessia; Mestichelli, Francesca; Ruggieri, Miriana; Gaspari, Paola; Pezzoni, Valerio; Vagnoni, Davide; Angelini, Mario; Angelini, Stefano; Bigazzi, Catia; Falcioni, Sadia; Troiani, Emanuela; Alesiani, Francesco; Catarini, Massimo; Attolico, Immacolata; Scortechini, Ilaria; Discepoli, Giancarlo; Galieni, Piero

    2013-07-01

    Deletions of the long arm of chromosome 6 are known to occur at relatively low frequency (3-6%) in chronic lymphocytic leukemia (CLL), and they are more frequently observed in 6q21. Few data have been reported regarding other bands on 6q involved by cytogenetic alterations in CLL. The cytogenetic study was performed in nuclei and metaphases obtained after stimulation with a combination of CpG-oligonucleotide DSP30 and interleukin-2. Four bacterial artificial chromosome (BAC) clones mapping regions in bands 6q16, 6q23, 6q25, 6q27 were used as probes for fluorescence in situ hybridization in 107 CLL cases in order to analyze the occurrence and localization of 6q aberrations. We identified 11 cases (10.2%) with 6q deletion of 107 patients studied with CLL. The trends of survival curves and the treatment-free intervals (TFI) of patients with deletion suggest a better outcome than the other cytogenetic risk groups. We observed two subgroups with 6q deletion as the sole anomaly: two cases with 6q16 deletion, and three cases with 6q25.2-27 deletion. There were differences of age, stage, and TFI between both subgroups. By using BAC probes, we observed that 6q deletion has a higher frequency in CLL and is linked with a good prognosis. In addition, it was observed that the deletion in 6q16 appears to be the most frequent and, if present as the only abnormality, it could be associated with a most widespread disease. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries

    DEFF Research Database (Denmark)

    Alvaro, D.; Sunjevaric, I.; Reid, R. J.

    2006-01-01

    We have developed a new method, systematic hybrid loss of heterozygosity, to facilitate genomic screens utilizing the yeast gene deletion library. Screening is performed using hybrid diploid strains produced through mating the library haploids with strains from a different genetic background......, to minimize the contribution of unpredicted recessive genetic factors present in the individual library strains. We utilize a set of strains where each contains a conditional centromere construct on one of the 16 yeast chromosomes that allows the destabilization and selectable loss of that chromosome. After...... complementation of any spurious recessive mutations in the library strain, facilitating attribution of the observed phenotype to the documented gene deletion and dramatically reducing false positive results commonly obtained in library screens. The systematic hybrid LOH method can be applied to virtually any...

  15. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Ho, Karen S; South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-04-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  17. Altered regional homogeneity in the development of minimal hepatic encephalopathy: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ling Ni

    Full Text Available BACKGROUND: Little is known about how spontaneous brain activity progresses from non-hepatic encephalopathy (non-HE to minimal HE (MHE. The purpose of this study was to evaluate the evolution pattern of spontaneous brain activities in cirrhotic patients using resting-state fMRI with a regional homogeneity (ReHo method. METHODOLOGY/PRINCIPAL FINDINGS: Resting-state fMRI data were acquired in 47 cirrhotic patients (minimal HE [MHE], n = 20, and non-HE, n = 27 and 25 age-and sex-matched healthy controls. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity. The regional homogeneity maps were compared with ANOVA tests among MHE, non-HE, and healthy control groups and t-tests between each pair in a voxel-wise way. Correlation analyses were performed to explore the relationships between regional ReHo values and Child-Pugh scores, number connection test type A (NCT-A, digit symbol test (DST scores, venous blood ammonia levels. Compared with healthy controls, both MHE and non-HE patients showed decreased ReHo in the bilateral frontal, parietal and temporal lobes and increased ReHo in the bilateral caudate. Compared with the non-HE, MHE patients showed decreased ReHo in the bilateral precuneus, cuneus and supplementary motor area (SMA. The NCT-A of cirrhotic patients negatively correlated with ReHo values in the precuneus, cuneus and lingual gyrus. DST scores positively correlated with ReHo values in the cuneus, precuneus and lingual gyrus, and negatively correlated with ReHo values in the bilateral caudate (P<0.05, AlphaSim corrected. CONCLUSIONS/SIGNIFICANCE: Diffused abnormal homogeneity of baseline brain activity was nonspecific for MHE, and only the progressively decreased ReHo in the SMA and the cuneus, especially for the latter, might be associated with the development of MHE. The ReHo analysis may be potentially valuable for detecting the development from non-HE to MHE.

  18. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Science.gov (United States)

    2010-09-17

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion From the Procurement List. SUMMARY: The Committee is proposing to add... aggregated by the Defense Logistics Agency Troop Support, Philadelphia, PA. Deletion Regulatory Flexibility...

  19. 76 FR 60810 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2011-09-30

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add... Activity: Department of Energy, Idaho Operations Office, Idaho Falls, ID. DELETION Regulatory Flexibility...

  20. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.

    2014-01-01

    The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways. PMID:25484875

  1. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  2. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25.

    Science.gov (United States)

    Burkardt, Deepika D'Cunha; Rosenfeld, Jill A; Helgeson, Maria L; Angle, Brad; Banks, Valerie; Smith, Wendy E; Gripp, Karen W; Moline, Jessica; Moran, Rocio T; Niyazov, Dmitriy M; Stevens, Cathy A; Zackai, Elaine; Lebel, Robert Roger; Ashley, Douglas G; Kramer, Nancy; Lachman, Ralph S; Graham, John M

    2011-06-01

    Reports of individuals with deletions of 1q24→q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal-onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide-based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170,135,865-172,099,327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss-of-function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank-Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome. Copyright © 2011 Wiley-Liss, Inc.

  3. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes.

    Science.gov (United States)

    Flynn, Elizabeth K; Kamat, Aparna; Lach, Francis P; Donovan, Frank X; Kimble, Danielle C; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M; Gillio, Alfred P; Harris, Richard E; MacMillan, Margaret L; Wagner, John E; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A; Chandrasekharappa, Settara C

    2014-11-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. © 2014 WILEY PERIODICALS, INC.

  4. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  5. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    Science.gov (United States)

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C

  6. 75 FR 7450 - Procurement List: Proposed Addition and Deletion

    Science.gov (United States)

    2010-02-19

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed addition to and deletion from Procurement List. SUMMARY: The Committee is proposing to add to the... W6BA ACA, FT CARSON, COLORADO. Deletion Regulatory Flexibility Act Certification I certify that the...

  7. 77 FR 20795 - Procurement List Proposed Addition and Deletion

    Science.gov (United States)

    2012-04-06

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Addition to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add a.... Deletion Regulatory Flexibility Act Certification I certify that the following action will not have a...

  8. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  9. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  10. Usefulness of MLPA in the detection of SHOX deletions.

    Science.gov (United States)

    Funari, Mariana F A; Jorge, Alexander A L; Souza, Silvia C A L; Billerbeck, Ana E C; Arnhold, Ivo J P; Mendonca, Berenice B; Nishi, Mirian Y

    2010-01-01

    SHOX haploinsufficiency causes a wide spectrum of short stature phenotypes, such as Leri-Weill dyschondrosteosis (LWD) and disproportionate short stature (DSS). SHOX deletions are responsible for approximately two thirds of isolated haploinsufficiency; therefore, it is important to determine the most appropriate methodology for detection of gene deletion. In this study, three methodologies for the detection of SHOX deletions were compared: the fluorescence in situ hybridization (FISH), microsatellite analysis and multiplex ligation-dependent probe amplification (MLPA). Forty-four patients (8 LWD and 36 DSS) were analyzed. The cosmid LLNOYCO3'M'34F5 was used as a probe for the FISH analysis and microsatellite analysis were performed using three intragenic microsatellite markers. MLPA was performed using commercial kits. Twelve patients (8 LWD and 4 DSS) had deletions in SHOX area detected by MLPA and 2 patients generated discordant results with the other methodologies. In the first case, the deletion was not detected by FISH. In the second case, both FISH and microsatellite analyses were unable to identify the intragenic deletion. In conclusion, MLPA was more sensitive, less expensive and less laborious; therefore, it should be used as the initial molecular method for the detection of SHOX gene deletion. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  11. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Complex mosaic CDKL5 deletion with two distinct mutant alleles in a 4-year-old girl.

    Science.gov (United States)

    Boutry-Kryza, Nadia; Ville, Dorothée; Labalme, Audrey; Calender, Alain; Dupont, Jean-Michel; Touraine, Renaud; Edery, Patrick; des Portes, Vincent; Sanlaville, Damien; Lesca, Gaetan

    2014-08-01

    Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene. © 2014 Wiley Periodicals, Inc.

  13. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  14. 17q12 Deletion in a patient with Williams syndrome: Case report and review of the literature.

    Science.gov (United States)

    Cohen, Lilian; Samanich, Joy; Pan, Quilu; Mehta, Lakshmi; Marion, Robert

    2012-06-01

    Williams syndrome (WS) is a complex genomic disorder entailing distinctive facial dysmorphism, cardiovascular abnormalities, intellectual disabilities, unusual behavioral features, and a specific cognitive profile with considerable variability. Additional symptoms include endocrine abnormalities, renal anomalies and connective tissue disorders. We report a monozygotic twin patient with WS who presented with multicystic kidneys in the newborn period, and, in addition to the typical WS deletion at 7q11.23, was found to have a de novo 1.7 Mb deletion in the 17q12 region on microarray comparative genomic hybridization. The co-twin was selectively terminated at 23 wk of gestation after being diagnosed with bilateral multicystic dysplastic kidneys and anhydramnios. Review of the literature shows that deletion of chromosome 17q12, encompassing hepatocyte nuclear factor 1beta gene, is associated with cystic renal disease and is the first recurrent genomic deletion associated with maturity onset diabetes of the young. In addition, reports of female reproductive tract malformations and patients with neurocognitive or psychiatric phenotypes have recently been described. This review of the literature summarizes 47 other cases involving 17q12 deletions with wide variability in phenotype, possibly suggesting a contiguous gene syndrome. It is likely that the additional 17q12 deletion has played a role in modifying the phenotype in our patient. This case highlights the importance of using array comparative genomic hybridization in the clinical setting to uncover the etiology of atypical findings in individuals with known microdeletion syndromes.

  15. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    Science.gov (United States)

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  16. Two rare deletions upstream of the NRXN1 gene (2p16.3) affecting the non-coding mRNA AK127244 segregate with diverse psychopathological phenotypes in a family

    DEFF Research Database (Denmark)

    Duong, L. T. T.; Hoeffding, L. K.; Petersen, K. B.

    2015-01-01

    127244 in addition to the pathogenic 15q11.2 deletion in distinct family members. The two deletions upstream of the NRXN1 gene were found to segregate with psychiatric disorders in the family and further similar deletions have been observed in patients diagnosed with autism spectrum disorder. Thus, we...... susceptibility. In this study, we describe a family affected by a wide range of psychiatric disorders including early onset schizophrenia, schizophreniform disorder, and affective disorders. Microarray analysis identified two rare deletions immediately upstream of the NRXN1 gene affecting the non-coding mRNA AK...... suggest that non-coding regions upstream of the NRXN1 gene affecting AK127244 might (as NRXN1) contain susceptibility regions for a wide spectrum of neuropsychiatric disorders. (C) 2015 Elsevier Masson SAS. All rights reserved....

  17. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana

    Science.gov (United States)

    Omar, Aimi Farehah; Ismail, Ismanizan

    2016-11-01

    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  18. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  19. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. An Interstitial 4q Deletion with a Mosaic Complementary Ring Chromosome in a Child with Dysmorphism, Linear Skin Pigmentation, and Hepatomegaly

    Directory of Open Access Journals (Sweden)

    J. Carter

    2017-01-01

    Full Text Available Interstitial deletions of 4q are rarely reported, vary in size, and have limited genotype-phenotype correlations. Here, genome-wide array CGH analysis identified a 21.6 Mb region of copy number loss at 4q12-q21.1 in a patient diagnosed with dysmorphism, linear skin pigmentation, and hepatomegaly. An additional small ring chromosome was detected in 5/30 cells examined via G-banding. Confirmation of the origin of the ring chromosome was obtained by FISH analysis which identified that the ring chromosome contained material from the deleted region of chromosome 4 and was therefore complementary to the 21.6 Mb deletion. Further microarray studies in the proband using a different microarray platform showed no evidence of mosaicism. This case highlights the importance of an integrated approach to cytogenetic analysis and demonstrates the value of G-banding for detecting mosaicism, as current microarray platforms are unable to detect low level mosaics.

  1. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  2. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  3. 4977-bp mitochondrial DNA deletion in infertile patients with varicocele.

    Science.gov (United States)

    Gashti, N G; Salehi, Z; Madani, A H; Dalivandan, S T

    2014-04-01

    Varicocele is the abnormal inflexion and distension of veins of the pampiniform plexus within spermatic cord and is one of the amendable causes of male infertility. It can increase reactive oxygen species (ROS) production in semen and cause oxidative stress. The purpose of this study was to analyse spermatozoa mtDNA 4977-bp deletion in infertile men with varicocele. To detect 4977-bp deletion in spermatozoa mtDNA, semen samples of 60 infertile patients with clinical varicocele and 90 normal men from northern Iran were prepared. After extraction of spermatozoa total DNA, Gap polymerase chain reaction (Gap PCR) was performed. 4977-bp deletion was observed in 81.66% of patients with varicocele, while approximately 15.55% of controls had this deletion. As spermatozoa from patients with varicocele had a high frequency of occurrence of 4977-bp deletion in mtDNA [OR = 24.18, 95% confidence interval (CI) = 10.15-57.57, P deletion in spermatozoa and cause infertility in north Iranian men. However, to determine the relation between sperm mtDNA 4977-bp deletion and varicocele-induced infertility, larger population-based studies are needed. It is concluded that there is an association between sperm mtDNA 4977-bp deletion and varicocele-induced infertility in the population studied. © 2013 Blackwell Verlag GmbH.

  4. Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Science.gov (United States)

    2014-01-01

    Background Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. Results Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. Conclusions Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence. PMID:24655320

  5. Molecular and clinical description of a girl with a 46,X,t(Y;4)(q11.2;p16)/45,X,der(4)t(Y;4)(q11.2;p16) karyotype and a small cryptic 4p subtelomeric deletion.

    Science.gov (United States)

    Zahed, Laila; Sismani, Carolina; Ioannides, M; Saleh, Monzer; Koumbaris, G; Kenj, Mazen; Abdallah, Amal; Ayyache, Maya; Patsalis, Philippos

    2008-04-01

    We report on a 13-year-old female with short stature, minimal axillary and pubic hair, no breast development, absence of uterus and ovaries, with the following karyotype on lymphocyte cultures: 46,X,t(Y;4)(q11.2;p16)[40]/45,X,der(4)t(Y;4)(q11.2;p16)[10]. Loss of the small derivative Y chromosome in 20% of the cells was also confirmed in skin fibroblast cultures. FISH analyses using Y centromere, SRY, subtelomere XpYp/XqYq, Y and 4 painting probes, confirmed the cytogenetic findings. High-resolution STS analyses using 40 markers covering the Y chromosome did not identify any deletion on the Y. However, de novo absence of the 4p subtelomeric region was noted by FISH, although this deletion was not revealed by Array-CGH at 1 Mb resolution, the last array clone being 0.35 or 1 Mb distal to the 4p FISH probe. The female phenotype of this patient must be due to the loss of the derivative Y chromosomes in some of her cells, especially the gonads, while the 4p subtelomeric deletion does not seem to contribute to her phenotype. Copyright 2008 Wiley-Liss, Inc.

  6. 41 CFR 51-2.3 - Notice of proposed addition or deletion.

    Science.gov (United States)

    2010-07-01

    ... addition or deletion. 51-2.3 Section 51-2.3 Public Contracts and Property Management Other Provisions... or deletion. At least 30 days prior to the Committee's consideration of the addition or deletion of a... Register announcing the proposed addition or deletion and providing interested persons an opportunity to...

  7. Germline Hypermethylation of MLH1 and EPCAM Deletions Are a Frequent Cause of Lynch Syndrome

    NARCIS (Netherlands)

    Niessen, Renee C.; Hofstra, Robert M. W.; Westers, Helga; Ligtenberg, Marjolijn J. L.; Kooi, Krista; Jager, Paul O. J.; de Groote, Marloes L.; Dijkhuizen, Trijnie; Olderode-Berends, Maran J. W.; Hollema, Harry; Kleibeuker, Jan H.; Sijmons, Rolf H.

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  8. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome.

    NARCIS (Netherlands)

    Niessen, R.C.; Hofstra, R.M.; Westers, H.; Ligtenberg, M.J.L.; Kooi, K.; Jager, P.O.; Groote, M.L. de; Dijkhuizen, T.; Olderode-Berends, M.J.; Hollema, H.; Kleibeuker, J.H.; Sijmons, R.H.

    2009-01-01

    It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation.

  9. A 54 Mb 11qter duplication and 0.9 Mb 1q44 deletion in a child with laryngomalacia and agenesis of corpus callosum

    Directory of Open Access Journals (Sweden)

    Lall Meena

    2011-09-01

    Full Text Available Abstract Background Partial Trisomy 11q syndrome (or Duplication 11q has defined clinical features and is documented as a rare syndrome by National Organization of Rare Disorders (NORD. Deletion 1q44 (or Monosomy 1q44 is a well-defined syndrome, but there is controversy about the genes lying in 1q44 region, responsible for agenesis of the corpus callosum. We report a female child with the rare Partial Trisomy 11q syndrome and Deletion 1q44 syndrome. The genomic imbalance in the proband was used for molecular characterization of the critical genes in 1q44 region for agenesis of corpus callosum. Some genes in 11q14q25 may be responsible for laryngomalacia. Results We report a female child with dysmorphic features, microcephaly, growth retardation, seizures, acyanotic heart disease, and hand and foot deformities. She had agenesis of corpus callosum, laryngomalacia, anterior ectopic anus, esophageal reflux and respiratory distress. Chromosome analysis revealed a derivative chromosome 1. Her karyotype was 46,XX,der(1t(1;11(q44;q14pat. The mother had a normal karyotype and the karyotype of the father was 46,XY,t(1;11(q44;q14. SNP array analysis showed that the proband had a 54 Mb duplication of 11q14q25 and a 0.9 Mb deletion of the submicroscopic subtelomeric 1q44 region. Fluorescence Insitu Hybridisation confirmed the duplication of 11qter and deletion of 1qter. Conclusion Laryngomalacia or obstruction of the upper airway is the outcome of increased dosage of some genes due to Partial Trisomy 11q Syndrome. In association with other phenotypic features, agenesis of corpus callosum appears to be a landmark phenotype for Deletion 1q44 syndrome, the critical genes lying proximal to SMYD3 in 1q44 region.

  10. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count

    NARCIS (Netherlands)

    Noordam, Michiel J.; Westerveld, G. Henrike; Hovingh, Suzanne E.; van Daalen, Saskia K. M.; Korver, Cindy M.; van der Veen, Fulco; van Pelt, Ans M. M.; Repping, Sjoerd

    2011-01-01

    The azoospermia factor c (AZFc) region harbors multi-copy genes that are expressed in the testis. Deletions of the AZFc region lead to reduced copy numbers of these genes. Four (partial) AZFc deletions have been described of which the b2/b4 and gr/gr deletions affect semen quality. In most studies,

  11. Homozygous PMS2 deletion causes a severe colorectal cancer and multiple adenoma phenotype without extraintestinal cancer.

    Science.gov (United States)

    Will, Olivia; Carvajal-Carmona, Luis G; Gorman, Patricia; Howarth, Kimberley M; Jones, Angela M; Polanco-Echeverry, Guadalupe M; Chinaleong, Jo-Anne; Günther, Thomas; Silver, Andrew; Clark, Susan K; Tomlinson, Ian

    2007-02-01

    We report a patient of Indian descent with parental consanguinity, who developed 10 carcinomas and 35 adenomatous polyps at age 23 and duodenal adenocarcinoma at age 25. He also had dysmorphic features, mental retardation, and café-au-lait spots but no brain tumor. We aimed to establish his molecular diagnosis. Germ-line screening for APC and MYH/MUTYH mutations was normal as was immunohistochemistry for MLH1 and MSH2 proteins. Investigation by array-comparative genomic hybridization revealed deletion of a small region on chromosome 7. Using polymerase chain reaction, this region was refined to a 400-kilobase deletion, which included exons 9-15 of the PMS2 gene, and all coding regions of oncomodulin, TRIAD3, and FSCN1. The deletion was confirmed as homozygous, and both parents were carriers. Immunohistochemistry showed absent PMS2 expression in all tumors and normal tissue. Most tumors showed microsatellite instability, more marked at dinucleotide than mononucleotide repeats. The tumors harbored no somatic mutations in APC, BRAF, AXIN2, or beta-catenin, but KRAS2 and TGFBR2 mutations were found. Our patient represents a novel phenotype for homozygous PMS2 mutation and perhaps the most severe colorectal cancer phenotype-in terms of numbers of malignancies at an early age-described to date. PMS2 mutations-and perhaps other homozygous mismatch repair mutations-should be considered in any patient presenting with multiple gastrointestinal tumors, since our patient could not be distinguished clinically from cases with attenuated familial adenomatous polyposis or MUTYH-associated polyposis.

  12. Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2) and Histidine-Rich Protein 3 (pfhrp3) Genes in Colombian Parasites.

    Science.gov (United States)

    Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W

    2015-01-01

    A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2

  13. New method for minimizing regular functions with constraints on parameter region

    International Nuclear Information System (INIS)

    Kurbatov, V.S.; Silin, I.N.

    1993-01-01

    The new method of function minimization is developed. Its main features are considered. It is possible minimization of regular function with the arbitrary structure. For χ 2 -like function the usage of simplified second derivatives is possible with the control of correctness. The constraints of arbitrary structure can be used. The means for fast movement along multidimensional valleys are used. The method is tested on real data of K π2 decay of the experiment on rare K - -decays. 6 refs

  14. Identification of a Basic Helix-Loop-Helix-Type Transcription Regulator Gene in Aspergillus oryzae by Systematically Deleting Large Chromosomal Segments▿ †

    OpenAIRE

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-01-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We con...

  15. Genomic Variability of Mycobacterium tuberculosis Strains of the Euro-American Lineage Based on Large Sequence Deletions and 15-Locus MIRU-VNTR Polymorphism

    Science.gov (United States)

    Rindi, Laura; Medici, Chiara; Bimbi, Nicola; Buzzigoli, Andrea; Lari, Nicoletta; Garzelli, Carlo

    2014-01-01

    A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the “Cameroon” family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification. PMID:25197794

  16. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    International Nuclear Information System (INIS)

    Philippe, A.; Malan, V.; De Blois, M.C.; Colleaux, L.; Munnich, A.; Philippe, A.; De Blois, M.C.; Colleaux, L.; Munnich, A.; Boddaert, N.; Vaivre-Douret, L.; Robel, L.; Golse, B.; Vaivre-Douret, L.; Vaivre-Douret, L.; Danon-Boileau, L.; Heron, D.

    2008-01-01

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  17. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, A; Malan, V; De Blois, M C; Colleaux, L; Munnich, A [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Natl Inst Hlth and Med Res, Paris (France); Philippe, A; De Blois, M C; Colleaux, L; Munnich, A [HopNecker Enfants Malad, Assistance Publ Hop Paris, Dept Genet, Paris (France); Boddaert, N [Natl Inst Hlth and Med Res, Mixed Unit Res 0205, Orsay (France); Vaivre-Douret, L; Robel, L; Golse, B [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Dept Psychiat, Paris (France); Vaivre-Douret, L [Univ Paris 10, Mixed Unit Res S0669, Univ Paris 05, Univ Paris 11, Paris 10 (France); Vaivre-Douret, L [Assistance Publ Hop Paris, Dept Obstet et Gynaecol, Paris (France); Danon-Boileau, L [Natl Ctr Sci Res, Mixed Unit Res 7114, Paris (France); Heron, D [Hop La Pitie Salpetriere, Assistance Publ HopParis, Dept Genet, Paris (France)

    2008-07-01

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  18. Genetics Home Reference: 17q12 deletion syndrome

    Science.gov (United States)

    ... with 17q12 deletion syndrome have delayed development (particularly speech and language delays), intellectual disability, or behavioral or psychiatric disorders. Behavioral and psychiatric conditions that have been reported in people with 17q12 deletion syndrome include autism ...

  19. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Deletion or repositioning of broadcast signals... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion or... to § 76.1601: No deletion or repositioning of a local commercial television station shall occur...

  20. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  1. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  2. Deletion of porA by recombination between clusters of repetitive extragenic palindromic sequences in Neisseria meningitidis

    NARCIS (Netherlands)

    van der Ende, A.; Hopman, C. T.; Dankert, J.

    1999-01-01

    PorA is an important component in a vaccine against infection with Neisseria meningitidis. However, porA-negative meningococci were isolated from patients, thereby potentially limiting the role of PorA-mediated immunity. To analyze the mechanism by which the porA deletion occurred, the regions

  3. Panchromatic cooperative hyperspectral adaptive wide band deletion repair method

    Science.gov (United States)

    Jiang, Bitao; Shi, Chunyu

    2018-02-01

    In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.

  4. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    Science.gov (United States)

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-07-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.

  5. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    Braby, L.A.; Morgan, T.L.

    1992-01-01

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  6. An Interstitial Deletion at 7q33-36.1 in a Patient with Intellectual Disability, Significant Language Delay, and Severe Microcephaly

    Directory of Open Access Journals (Sweden)

    Trupti Kale

    2016-01-01

    Full Text Available Interstitial deletions of the distal 7q region are considered a rare entity. In this report, we describe a seven-year-old male with a heterozygous interstitial deletion at 7q33-36.1 with characteristic dysmorphic facial features, intellectual disability, severe microcephaly, and significant language delay. The primary focus of our report is to compare our case with the few others in the literature describing interstitial deletions at the long arm of chromosome 7. Based on the various breakpoints in prior studies, a number of phenotypic variations have been identified that are unique to each of the reports. However, there are also a number of similarities among these cases as well. We hope to provide a concise review of the literature and genes involved within our deletion sequence in the hope that it will contribute to creating a phenotypic profile for this patient population.

  7. 32 CFR 310.34 - Amendment and deletion of system notices.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Amendment and deletion of system notices. 310.34... (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Publication Requirements § 310.34 Amendment and deletion of... system. (see § 310.32(q)). (c) Deletion of system notices. (1) Whenever a system is discontinued...

  8. Studies on the Nucleotide Sequence, Transcription and Deletion Analysis of the BmNPV Protein Kinase Gene.

    Science.gov (United States)

    Zhang, Chuan-Xi; Hu, Cui; Wu, Xiang-Fu

    1998-01-01

    The coding region of BmvPK-1 gene of Bombyx mori NPV (Strain ZJ8) is 828 nt long and encodes a 276 aa polypeptide with predicted molecular mass of 32 kD. Dot blot analysis showed its mRNA to be gene is first detectable at 18 h p.i. and reaching the highest transcriptional level at 48 h p.i. The result suggested that BmvPK-1 gene is a late or very late gene. The most conserved 365 bp of the BmvPK-1 gene was deleted in a transfer vector (pUCPK-lac), and a report gene (lacZ) was inserted in the deleted position. Cotransfection of BmN cells with pUCPK-lac DNA and BmNPV DNA resulted in the recombinant virus which expressed detectable product of lacZ gene. But the virus with the deleted BmvPK-1 gene could not be isolated from the wild BmNPV by plaque purification method. The result showed that the BmvPK-1 gene deleted virus can multiply only with the help of the product of this gene from the wild type virus, and the gene is necessary for the virus to finish its life cycle in the cultured cells.

  9. Congenital disorder of glycosylation Ic due to a de novo deletion and an hALG-6 mutation.

    Science.gov (United States)

    Eklund, Erik A; Sun, Liangwu; Yang, Samuel P; Pasion, Romela M; Thorland, Erik C; Freeze, Hudson H

    2006-01-20

    We describe a new cause of congenital disorder of glycosylation-Ic (CDG-Ic) in a young girl with a rather mild CDG phenotype. Her cells accumulated lipid-linked oligosaccharides lacking three glucose residues, and sequencing of the ALG6 gene showed what initially appeared to be a homozygous novel point mutation (338G>A). However, haplotype analysis showed that the patient does not carry any paternal DNA markers extending 33kb in the telomeric direction from the ALG6 region, and microsatellite analysis extended the abnormal region to at least 2.5Mb. We used high-resolution karyotyping to confirm a deletion (10-12Mb) [del(1)(p31.2p32.3)] and found no structural abnormalities in the father, suggesting a de novo event. Our findings extend the causes of CDG to larger DNA deletions and identify the first Japanese CDG-Ic mutation.

  10. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  11. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.; Perez-Jurado, L.; Francke, U.; Yu-Ker Wang [Stanford Univ. Medical Center, CA (United States); Kaplan, P. [Children`s Hospital of Philadelphia, PA (United States)

    1996-06-01

    Williams syndrome (WS) is a developmental disorder with multiple system manifestations, including supraval var aortic stenosis (SVAS), peripheral pulmonic stenosis, connective tissue abnormalities, short stature, characteristic personality profile and cognitive deficits, and variable hypercalcemia in infancy. It is caused by heterozygosity for a chromosomal deletion of part of band 7q11.23 including the elastin locus (ELN). Since disruption of the ELN gene causes autosomal dominant SVAS, it is assumed that ELN haploinsufficiency is responsible for the cardiovascular features of WS. The deletion that extends from the ELN locus in both directions is {ge}200 kb in size, although estimates of {ge}2 Mb are suggested by high-resolution chromosome banding and physical mapping studies. We have searched for additional dosage-sensitive genes within the deletion that may be responsible for the noncardiovascular features. We report here that the gene for replication factor C subunit 2 (RFC2) maps within the WS deletion region and was found to be deleted in all of 18 WS patients studied. The protein product of RFC2 is part of a multimeric complex involved in DNA elongation during replication. 14 refs., 3 figs.

  12. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  13. 75 FR 49481 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2010-08-13

    ... added to the Procurement List: Services Service Type/Locations: Laundry Service, Atlanta VA Medical...: Additions to and deletion from the Procurement List. SUMMARY: This action adds services to the Procurement... disabilities and deletes a service from the Procurement List previously furnished by such agency. DATES...

  14. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  15. Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines.

    Science.gov (United States)

    Klorin, Geula; Rozenblum, Ester; Glebov, Oleg; Walker, Robert L; Park, Yoonsoo; Meltzer, Paul S; Kirsch, Ilan R; Kaye, Frederic J; Roschke, Anna V

    2013-05-01

    High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired. Published by Elsevier Inc.

  16. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH.

    Directory of Open Access Journals (Sweden)

    Nathalie Itzhar

    Full Text Available Therapy-related acute leukemia (t-AML, is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML. Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case. In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.

  17. Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and deltabeta-thalassemia affects beta- but not gamma-globin gene expression.

    NARCIS (Netherlands)

    R. Calzolari (Roberta); T. McMorrow (Tara); N. Yannoutsos (Nikos); A. Langeveld (An); F.G. Grosveld (Frank)

    1999-01-01

    textabstractThe analysis of a number of cases of beta-globin thalassemia and hereditary persistence of fetal hemoglobin (HPFH) due to large deletions in the beta-globin locus has led to the identification of several DNA elements that have been implicated in the switch

  18. Characteristic face: a key indicator for direct diagnosis of 22q11.2 deletions in Chinese velocardiofacial syndrome patients.

    Science.gov (United States)

    Wu, Dandan; Chen, Yang; Xu, Chen; Wang, Ke; Wang, Huijun; Zheng, Fengyun; Ma, Duan; Wang, Guomin

    2013-01-01

    Velocardiofacial syndrome (VCFS) is a disease in human with an expansive phenotypic spectrum and diverse genetic mechanisms mainly associated with copy number variations (CNVs) on 22q11.2 or other chromosomes. However, the correlations between CNVs and phenotypes remain ambiguous. This study aims to analyze the types and sizes of CNVs in VCFS patients, to define whether correlations exist between CNVs and clinical manifestations in Chinese VCFS patients. In total, 55 clinically suspected Chinese VCFS patients and 100 normal controls were detected by multiplex ligation-dependent probe amplification (MLPA). The data from MLPA and all the detailed clinical features of the objects were documented and analyzed. A total of 44 patients (80.0%) were diagnosed with CNVs on 22q11.2. Among them, 43 (78.2%) presented with 22q11.2 heterozygous deletions, of whom 40 (93.0%) had typical 3-Mb deletion, and 3 (7.0%) exhibited proximal 1.5-Mb deletion; no patient was found with atypical deletion on 22q11.2. One patient (1.8%) presented with a 3-Mb duplication mapping to the typical 3-Mb region on 22q11.2, while none of the chromosomal abnormalities in the MLPA kit were found in the other 11 patients and 100 normal controls. All the 43 patients with 22q11.2 deletions displayed characteristic face and palatal anomalies; 37 of them (86.0%) had cognitive or behavioral disorders, and 23 (53.5%) suffered from immune deficiencies; 10 patients (23.3%) manifested congenital heart diseases. Interestingly, all patients with the characteristic face had 22q11.2 heterozygous deletions, but no difference in phenotypic spectrum was observed between 3-Mb and 1.5-Mb deletions. Our data suggest that the characteristic face can be used as a key indicator for direct diagnosis of 22q11.2 deletions in Chinese VCFS patients.

  19. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori.

    Science.gov (United States)

    Abe, H; Seki, M; Ohbayashi, F; Tanaka, N; Yamashita, J; Fujii, T; Yokoyama, T; Takahashi, M; Banno, Y; Sahara, K; Yoshido, A; Ihara, J; Yasukochi, Y; Mita, K; Ajimura, M; Suzuki, M G; Oshiki, T; Shimada, T

    2005-08-01

    In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+(w-2) chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+(w-2) chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+(w-2) chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.

  20. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  1. 76 FR 78248 - Procurement List; Addition and Deletions

    Science.gov (United States)

    2011-12-16

    .... Service Type/Location: Laundry Service, Stratton Medical Center, 113 Holland Ave, Albany, NY. [[Page 78249...: Addition to and Deletions from the Procurement List. SUMMARY: This action adds a service to the Procurement... disabilities, and deletes products and services from the Procurement List previously furnished by such agencies...

  2. 78 FR 21916 - Procurement List; Addition And Deletions

    Science.gov (United States)

    2013-04-12

    ..., the following service is added to the Procurement List: Service Service Type/Location: Laundry Service...: Addition to and Deletions from the Procurement List. SUMMARY: This action adds a service to the Procurement... disabilities, and deletes products and services from the Procurement List previously furnished by such agencies...

  3. 78 FR 53733 - Procurement List Additions and Deletions

    Science.gov (United States)

    2013-08-30

    .../Location: Industrial Laundry Service, Bureau of Engraving and Printing, 9000 Blue Mound Road, Fort Worth...: Additions to and Deletions from the Procurement List. SUMMARY: This action adds products and services to the... severe disabilities, and deletes services from the Procurement List previously provided by such agencies...

  4. 42 CFR 401.118 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Deletion of identifying details. 401.118 Section 401.118 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or order...

  5. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    Science.gov (United States)

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  6. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II.

    Science.gov (United States)

    Wenzhi, He; Ruijin, Wen; Jieliang, Li; Xiaoyan, Ma; Haibo, Liu; Xiaoman, Wang; Jiajia, Xian; Shaoying, Li; Shuanglin, Li; Qing, Li

    2015-10-01

    Waardenburg syndrome (WS) is a rare disease characterized by sensorineural deafness and pigment disturbance. To date, almost 100 mutations have been reported, but few reports on cases with SOX10 gene deletion. The inheritance pattern of SOX10 gene deletion is still unclear. Our objective was to identify the genetic causes of Waardenburg syndrome type II in a two-generation Chinese family. Clinical evaluations were conducted in both of the patients. Microarray analysis and multiplex ligation-dependent probe amplification (MLPA) were performed to identify disease-related copy number variants (CNVs). DNA sequencing of the SOX10, MITF and SNAI2 genes was performed to identify the pathogenic mutation responsible for WS2. A 280kb heterozygous deletion at the 22q13.1 chromosome region (including SOX10) was detected in both of the patients. No mutation was found in the patients, unaffected family members and 30 unrelated healthy controls. This report is the first to describe SOX10 heterozygous deletions in Chinese WS2 patients. Our result conform the thesis that heterozygous deletions at SOX10 is an important pathogenicity for WS, and present as autosomal dominant inheritance. Nevertheless, heterozygous deletion of the SOX10 gene would be worth investigating to understand their functions and contributions to neurologic phenotypes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. 19 CFR 176.22 - Deletion of protest or entry number.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Deletion of protest or entry number. 176.22... Facts § 176.22 Deletion of protest or entry number. If any protest number or entry number is to be... authorized official making and approving the deletion. [T.D. 70-181, 35 FR 13433, Aug. 22, 1970] ...

  8. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-03-27

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.

  9. A DEL phenotype attributed to RHD Exon 9 sequence deletion: slipped-strand mispairing and blood group polymorphisms.

    Science.gov (United States)

    Lopez, Genghis H; Turner, Robyn M; McGowan, Eunike C; Schoeman, Elizna M; Scott, Stacy A; O'Brien, Helen; Millard, Glenda M; Roulis, Eileen V; Allen, Amanda J; Liew, Yew-Wah; Flower, Robert L; Hyland, Catherine A

    2018-03-01

    The RhD blood group antigen is extremely polymorphic and the DEL phenotype represents one such class of polymorphisms. The DEL phenotype prevalent in East Asian populations arises from a synonymous substitution defined as RHD*1227A. However, initially, based on genomic and cDNA studies, the genetic basis for a DEL phenotype in Taiwan was attributed to a deletion of RHD Exon 9 that was never verified at the genomic level by any other independent group. Here we investigate the genetic basis for a Caucasian donor with a DEL partial D phenotype and compare the genomic findings to those initial molecular studies. The 3'-region of the RHD gene was amplified by long-range polymerase chain reaction (PCR) for massively parallel sequencing. Primers were designed to encompass a deletion, flanking Exon 9, by standard PCR for Sanger sequencing. Targeted sequencing of exons and flanking introns was also performed. Genomic DNA exhibited a 1012-bp deletion spanning from Intron 8, across Exon 9 into Intron 9. The deletion breakpoints occurred between two 25-bp repeat motifs flanking Exon 9 such that one repeat sequence remained. Deletion mutations bordered by repeat sequences are a hallmark of slipped-strand mispairing (SSM) event. We propose this genetic mechanism generated the germline deletion in the Caucasian donor. Extensive studies show that the RHD*1227A is the most prevalent DEL allele in East Asian populations and may have confounded the initial molecular studies. Review of the literature revealed that the SSM model explains some of the extreme polymorphisms observed in the clinically significant RhD blood group antigen. © 2017 AABB.

  10. Small mosaic deletion encompassing the snoRNAs and SNURF-SNRPN results in an atypical Prader-Willi syndrome phenotype.

    Science.gov (United States)

    Anderlid, Britt-Marie; Lundin, Johanna; Malmgren, Helena; Lehtihet, Mikael; Nordgren, Ann

    2014-02-01

    Genetic analyses were performed in a male patient with suspected Prader-Willi syndrome who presented with hypogonadism, excessive eating, central obesity, small hands and feet and cognition within the low normal range. However, he had no neonatal hypotonia or feeding problems during infancy. Chromosome analysis showed a normal male karyotype. Further analysis with array-CGH identified a mosaic 847 kb deletion in 15q11-q13, including SNURF-SNRPN, the snoRNA gene clusters SNORD116 (HBII-85), SNORD115, (HBII-52), SNORD109 A and B (HBII-438A and B), SNORD64 (HBII-13), and NPAP1 (C15ORF2). MLPA confirmed the deletion and the results were compatible with a paternal origin. Metaphase-FISH verified the mosaicism with the deletion present in 58% of leukocytes analyzed. Three smaller deletions in this region have previously been reported in patients with Prader-Willi syndrome phenotype. All three deletions included SNORD116, but only two encompassed parts of SNURF-SNRPN, implicating SNORD116 as the major contributor to the Prader-Willi phenotype. Our case adds further information about genotype-phenotype correlation and supports the hypothesis that SNORD116 plays a major role in the pathogenesis of Prader-Willi syndrome. Furthermore, it examplifies diagnostic difficulties in atypical cases and illustrates the need for additional testing methods when Prader-Willi syndrome is suspected. © 2013 Wiley Periodicals, Inc.

  11. Preservation or Restoration of Segmental and Regional Spinal Lordosis Using Minimally Invasive Interbody Fusion Techniques in Degenerative Lumbar Conditions: A Literature Review.

    Science.gov (United States)

    Uribe, Juan S; Myhre, Sue Lynn; Youssef, Jim A

    2016-04-01

    A literature review. The purpose of this study was to review lumbar segmental and regional alignment changes following treatment with a variety of minimally invasive surgery (MIS) interbody fusion procedures for short-segment, degenerative conditions. An increasing number of lumbar fusions are being performed with minimally invasive exposures, despite a perception that minimally invasive lumbar interbody fusion procedures are unable to affect segmental and regional lordosis. Through a MEDLINE and Google Scholar search, a total of 23 articles were identified that reported alignment following minimally invasive lumbar fusion for degenerative (nondeformity) lumbar spinal conditions to examine aggregate changes in postoperative alignment. Of the 23 studies identified, 28 study cohorts were included in the analysis. Procedural cohorts included MIS ALIF (two), extreme lateral interbody fusion (XLIF) (16), and MIS posterior/transforaminal lumbar interbody fusion (P/TLIF) (11). Across 19 study cohorts and 720 patients, weighted average of lumbar lordosis preoperatively for all procedures was 43.5° (range 28.4°-52.5°) and increased 3.4° (9%) (range -2° to 7.4°) postoperatively (P lordosis increased, on average, by 4° from a weighted average of 8.3° preoperatively (range -0.8° to 15.8°) to 11.2° at postoperative time points (range -0.2° to 22.8°) (P lordosis and change in lumbar lordosis (r = 0.413; P = 0.003), wherein lower preoperative lumbar lordosis predicted a greater increase in postoperative lumbar lordosis. Significant gains in both weighted average lumbar lordosis and segmental lordosis were seen following MIS interbody fusion. None of the segmental lordosis cohorts and only two of the 19 lumbar lordosis cohorts showed decreases in lordosis postoperatively. These results suggest that MIS approaches are able to impact regional and local segmental alignment and that preoperative patient factors can impact the extent of correction gained

  12. NPL deletion policy for RCRA-regulated TSD facilities finalized

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab

  13. A novel contiguous deletion involving NDP, MAOB and EFHC2 gene in a patient with familial Norrie disease: bilateral blindness and leucocoria without other deficits.

    Science.gov (United States)

    Jia, Bei; Huang, Liping; Chen, Yaoyu; Liu, Siping; Chen, Cuihua; Xiong, Ke; Song, Lanlin; Zhou, Yulai; Yang, Xinping; Zhong, Mei

    2017-12-01

    Contiguous microdeletions of the Norrie disease pseudoglioma (NDP) region on chromosome Xp11.3 have been widely confirmed as contributing to the typical clinical features of Norrie disease (ND). However, the precise relation between genotype and phenotype could vary. The contiguous deletion of NDP and its neighbouring genes, MAOA/B and EFHC2, reportedly leads to syndromic clinical features such as microcephaly, intellectual disability, and epilepsy. Herewe report a novel contiguous microdeletion of the NDP region containing the MAOB and EFHC2 genes,which causes eye defects but no cognitive disability.We detected a deletion of 494.6 kb atXp11.3 in both the proband and carrier mother. This deletionwas then used as the molecular marker in prenatal diagnosis for two subsequent pregnancies. The deletion was absent in one of the foetuses, who remain without any abnormalities at 2 years of age. The proband shows the typical ocular clinical features of ND including bilateral retinal detachment, microphthalmia, atrophic irides, corneal opacification, and cataracts, but no symptoms of microcephaly, intellectual disability, and epilepsy. This familial study demonstrates that a deficiency in one of two MAO genes may not lead to psychomotor delay, and deletion of EFHC2 may not cause epilepsy. Our observations provide new information on the genotype-phenotype relations of MAOA/B and EFHC2 genes involved in the contiguous deletions of ND.

  14. The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource

    OpenAIRE

    Ryder, Edward; Ashburner, Michael; Bautista-Llacer, Rosa; Drummond, Jenny; Webster, Jane; Johnson, Glynnis; Morley, Terri; Chan, Yuk Sang; Blows, Fiona; Coulson, Darin; Reuter, Gunter; Baisch, Heiko; Apelt, Christian; Kauk, Andreas; Rudolph, Thomas

    2007-01-01

    We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ∼77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly...

  15. Disparities in visuo-spatial constructive abilities in Williams syndrome patients with typical deletion on chromosome 7q11.23.

    Science.gov (United States)

    Muramatsu, Yukako; Tokita, Yoshihito; Mizuno, Seiji; Nakamura, Miho

    2017-02-01

    Williams syndrome (WS) is known for its uneven cognitive abilities, especially the difficulty in visuo-spatial cognition, though there are some inter-individual phenotypic differences. It has been proposed that the difficulty in visuo-spatial cognition of WS patients can be attributed to a haploinsufficiency of some genes located on the deleted region in 7q11.23, based on an examination of atypical deletions identified in WS patients with atypical cognitive deficits. According to this hypothesis, the inter-individual differences in visuo-spatial cognitive ability arise from variations in deletion. We investigated whether there were inter-individual differences in the visuo-spatial constructive abilities of five unrelated WS patients with the typical deletion on chromosome 7q11.23 that includes the candidate genes contributing visuo-spatial difficulty in WS patients. We used tests with three-dimensional factors such as Benton's three-dimensional block construction test, which are considered to be more sensitive than those with only two-dimensional factors. There were diverse inter-individual differences in the visuo-spatial constructive abilities among the present participants who shared the same typical genomic deletion of WS. One of the participants showed almost equivalent performances to typically developing adults in those tests. In the present study, we found a wide range of cognitive abilities in visuo-spatial construction even among the patients with a common deletion pattern of WS. The findings suggest that attributing differences in the phenotypes entirely to genetic factors such as an atypical deletion may not be always correct. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  17. Wolf-Hirschhorn Syndrome with Epibulbar Dermoid: An Unusual Association in a Patient with 4p Deletion and Functional Xp Disomy.

    Science.gov (United States)

    Bragagnolo, Silvia; Colovati, Mileny E S; Guilherme, Roberta S; Dantas, Anelisa G; de Souza, Malú Zamariolli; de Soares, Maria F; Melaragno, Maria I; Perez, Ana B

    2016-01-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene and multiple malformation syndrome that results from a deletion in the 4p16.3 region. We describe here a 6-month-old girl that presented with WHS features but also displayed unusual findings, such as epibulbar dermoid in the left eye, ear tags, and left microtia. Although on G-banding her karyotype appeared to be normal, chromosomal microarray analysis revealed an ∼13-Mb 4p16.3p15.33 deletion and an ∼9-Mb Xp22.33p22.31 duplication, resulting from a balanced maternal t(X;4)(p22.31;p15.33) translocation. The patient presented with functional Xp disomy due to an unbalanced X-autosome translocation, a rare cytogenetic finding in females with unbalanced rearrangements. Sequencing of both chromosome breakpoints detected no gene disruption. To the best of our knowledge, this is the first patient described in the literature with WHS and epibulbar dermoid, a typical characteristic of the oculoauriculovertebral spectrum (OAVS). Our data suggest that possible candidate genes for OAVS may have been deleted along with the WHS critical region. © 2016 S. Karger AG, Basel.

  18. DNA-based detection of chromosome deletion and amplification: diagnostic and mechanistic significance

    International Nuclear Information System (INIS)

    Latt, S.A.; Lalande, M.; Donlon, T.

    1986-01-01

    This paper describes a few of the many possible examples in which application of a molecular cytogenetic approach can ultimately lead to a new, important understanding about the statics and dynamics of human chromosome structure. In the case of retinoblastoma, cytological observations of deletions and linkage analysis have positioned the retinoblastoma locus to bank 13q14. This locus is grossly deleted in some spontaneous tumors. It is still necessary to locate more precisely and characterize the nature of the retinoblastoma locus, as well as the basis for the heterogeneity in deletions removing one copy of this locus. One is left with the possibility that those deletions that may be observed cytologically reflect but the tip of the iceberg of deletions; detection of others may require molecular probes. A related question is the nature of the DNA sequences at the deletion boundaries and the role they play in promoting these deletions

  19. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  20. Generalised deletion designs | Gachii | African Journal of Science ...

    African Journals Online (AJOL)

    In this paper asymmetrical single replicate factorial designs are constructed from symmetrical single replicate factorial designs using the deletion technique. The study is along the lines of Voss(1986), Chauhan(1989) and Gachii and Odhiambo(1997). We give results for the general order deletion designs of the form sn-m1(s ...

  1. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  2. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  3. Partial USH2A deletions contribute to Usher syndrome in Denmark.

    Science.gov (United States)

    Dad, Shzeena; Rendtorff, Nanna D; Kann, Erik; Albrechtsen, Anders; Mehrjouy, Mana M; Bak, Mads; Tommerup, Niels; Tranebjærg, Lisbeth; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth B

    2015-12-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment, progressive visual loss owing to retinitis pigmentosa and in some cases vestibular dysfunction. Usher syndrome is divided into three subtypes, USH1, USH2 and USH3. Twelve loci and eleven genes have so far been identified. Duplications and deletions in PCDH15 and USH2A that lead to USH1 and USH2, respectively, have previously been identified in patients from United Kingdom, Spain and Italy. In this study, we investigate the proportion of exon deletions and duplications in PCDH15 and USH2A in 20 USH1 and 30 USH2 patients from Denmark using multiplex ligation-dependent probe amplification (MLPA). Two heterozygous deletions were identified in USH2A, but no deletions or duplications were identified in PCDH15. Next-generation mate-pair sequencing was used to identify the exact breakpoints of the two deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.

  4. 36 CFR 902.14 - Deletion of nondiscloseable information from requested records.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of nondiscloseable... AVENUE DEVELOPMENT CORPORATION FREEDOM OF INFORMATION ACT General Administration § 902.14 Deletion of... segregable after deletion of the nondiscloseable portions, will be released. If the information in the...

  5. 46 CFR 67.513 - Application for evidence of deletion from documentation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Application for evidence of deletion from documentation... AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Fees § 67.513 Application for evidence of deletion from documentation. An application fee is charged for evidence of deletion from documentation in...

  6. Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2017-07-01

    Full Text Available Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA and abiotic stresses. Four different-length 5′ deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -1481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf- and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

  7. Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    OpenAIRE

    Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.

    2007-01-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as in...

  8. 34 CFR 5.16 - Deletion of identifying details.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Deletion of identifying details. 5.16 Section 5.16 Education Office of the Secretary, Department of Education AVAILABILITY OF INFORMATION TO THE PUBLIC PURSUANT TO PUB. L. 90-23 (Eff. until 7-14-10) What Records Are Available § 5.16 Deletion of identifying...

  9. Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea.

    Science.gov (United States)

    Choi, Hwan-Won; Nam, Eeuri; Lee, Yoo Jin; Noh, Yun-Hee; Lee, Seung-Chul; Yoon, In-Joong; Kim, Hyun-Soo; Kang, Shien-Young; Choi, Young-Ki; Lee, Changhee

    2014-06-04

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine virus that exhibits genetic and pathogenic heterogeneity among isolates. The present study was conducted to determine the complete genome sequence and pathogenicity of two Korean type 2 PRRSV nonstructural protein 2 (nsp2) deletion mutants, CA-2 and KNU-12-KJ4. The full-length genomes of CA-2 and KNU-12-KJ4 were determined to be 15,018 and 15,019 nucleotides in length, excluding the poly(A) tail, respectively, which were 393- or 392-nucleotide shorter than that of the type 2 NA prototype strain VR-2332 due to the presence of notable large deletions within the nsp2 gene. The genomes of CA-2 and KNU-12-KJ4 consisted of a 189- or 190-nucleotide 5' untranslated region (UTR), a 14,677-nucleotide protein-coding region, and a 151-nucleotide 3' UTR. Whole genome evaluation revealed that the nucleotide sequences of CA-2 and KNU-12-KJ4 are most similar to each other (10.7% sequence divergence), and then to the Korean strain CA-1 (11.3% sequence divergence) and the US strain MN184C (13.1% sequence divergence), respectively. To evaluate the in vitro immunity of nsp2 deletion variants, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM-pCD163 cells infected with each virus strain using quantitative real-time RT-PCR. Cytokine genes including IL-8, IL-10, and TNF-α, and chemokines such as MCP-1 and RANTES were found to be significantly elevated in nsp2 deletion virus-infected PAM cells. In contrast, expression of interferons (IFN-β, γ, and λ) and antiviral genes including ISG-15, -54, and -56 were unchanged or down-regulated in PAM cells infected with the nsp2 deletion mutants. Animal studies to assess the pathogenicity of nsp2 deletion PRRSVs demonstrated that both CA-2 and KNU-12-KJ4 strains notably produce weight loss in infected pigs. Furthermore, the nsp2 deletion mutants replicated well in pigs with significantly increased and prolonged

  10. Clinical and molecuar characterization of Brazilian patients with growth hormone gene deletions

    Directory of Open Access Journals (Sweden)

    I.J.P. Arnhold

    1998-04-01

    Full Text Available Genomic DNA from 23 patients with isolated growth hormone (GH deficiency (12 males and 11 females: heights -4.9 ± 1.4 SDS was screened for GH gene deletions by restriction endonuclease analysis of polymerase chain reaction amplification products. Three unrelated patients had typical features of severe GH deficiency and deletions (6.7 kb in two and 7.6 kb in one of the GH gene. The two patients with 6.7-kb deletions developed growth-attenuating anti-GH antibodies whereas the patient with the 7.6-kb deletion continued to grow with GH replacement therapy. Our finding that 3/23 (~13% Brazilian subjects had GH gene deletions agrees with previous studies of severe isolated GH deficiency subjects in other populations. Two of three subjects (67% with deletions developed blocking antibodies despite administration of exogenous GH at low doses. Interestingly, only 1/10 of cases with affected relatives or parental consanguinity had GH-1 gene deletions

  11. UCP2 and 3 deletion screening and distribution in 15 pig breeds.

    Science.gov (United States)

    Li, Yanhua; Li, Hanjie; Zhao, Xingbo; Li, Ning; Wu, Changxin

    2007-02-01

    The uncoupling protein family is a mitochondrial anion carrier family. It plays an important role in the biological traits of animal body weight, basal metabolic rate and energy conversion. Using PCR and PCR-SSCP, we scanned the porcine uncoupling protein 2 gene (UCP2) and uncoupling protein 3 gene (UCP3) and found seven deletion sites, three in UCP2 and four in UCP3. The deletions in 15 pig breeds showed that deletion influenced weight. The genotype compounding of seven deletion sites in 15 pig breeds had significant effects on performance traits of the pig, such as body weight. We predicted the potential protein factor binding sites using the transcription factor analysis tool TFSearch version 1.3 online. Two deletions (1830 nt and 3219 nt) in UCP3 were found to change the transcriptional factor sites. The 16 bp deletion in 1830 nt added a SP1 site and a 6 bp deletion in 3219 nt removed two MZF1 sites. Seven deletion polymorphisms were covered in introns of linkage genes of UCP2 and UCP3, showing that UCPs have conservation and genetic reliability.

  12. Clival encephalocele and 5q15 deletion: a case report.

    Science.gov (United States)

    Puvabanditsin, Surasak; Malik, Imran; Garrow, Eugene; Francois, Lissa; Mehta, Rajeev

    2015-03-01

    A preterm neonate presenting with respiratory distress after birth was found to have a clival encephalocele, which is a variant of a basal encephalocele, and hypoplasia of the cerebellum. Genetic studies revealed a small deletion of the long arm of chromosome 5: 5q15 deletion. We report a rare variant of a basal encephalocele with a cerebellar malformation and 5q15 deletion. © The Author(s) 2014.

  13. Male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, A.; Maizonnier, D. (Station d' Amelioration des Plantes de l' I.N.R.A., Dijon (France))

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined.

  14. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    Energy Technology Data Exchange (ETDEWEB)

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  15. Characterization of a large deletion in the {beta}-globin gene cluster in a newborn with hemoglobin FE

    Energy Technology Data Exchange (ETDEWEB)

    Louie, E.; Dietz, L.; Shafer, F. [Children`s Hosptial, Oakland, CA (United States)] [and others

    1994-09-01

    A sample on a newborn with hemoglobin FE screen results was obtained to investigate whether E/E or B/{beta}{degrees} thalassemia was present using polymerase chain reaction (PCR) methodology. The newborn appeared homozygous for the hemoglobin E mutation in our initial study, but the parents` genotypes did not support this diagnosis. The father is homozygous for the absence of the hemoglobin E mutation (non E/non E) and the mother is heterozygous (E/non E) for this mutation. The limitation of PCR analysis is an assumption that the amplification of the two {beta}-globin alleles is equivalent. A large deletion on one {beta}-globin gene, which would produce E/{beta}{degrees} thalassemia, would be missed if it included part or the entire region subjected to amplification. The family results were consistent with either non-paternity, sample mix-up or such a deletion of the {beta}-globin gene in the father and child. To rule out the possibility of non-paternity, two polymorphic loci (HLA on chromosome 6 and a VNTR system of chromosome 17) that are outside of the {beta}-globin gene were analyzed and show that inheritance is consistent and the likelihood of a sample mix-up is then reduced. We therefore believe there is a gene deletion in this family. At the present time, analyses of the RFLPs that are 5{prime} of the {beta}-globin gene cluster show that the polymorphisms most distal from the 5{prime} {beta}-globin gene are not being inherited as expected. These results support our interpretation that a deletion exists in the father and was inherited by the child. The father`s clinical picture of possible HPFH (the father has 12% hemoglobin F) also supports the interpretation of a deletion in this family. Deletions of the {beta}-globin gene within this ethnic group are rare. Currently, Southern blots on the family are being probed to determine the extent of the putative deletion.

  16. [Mitochondrial DNA4568 deletions in guinea-pig associated with presbycusis].

    Science.gov (United States)

    Wei, Xue-mei; Yang, Yuan; Liang, Chuang-yu; Zheng, Zhong

    2006-12-01

    To determine weather or not the mtDNA(4568) deletions in guinea-pig contribute to the development of presbycusis. Forty-four guinea-pigs were divided into 2 groups: group A (young control group, normal hearing, 22 guineas) and group B (aged group). The group B was subdivided into group B(1) (old normal hearing, 6 guineas) and group B(2) (old hearing loss, 16 guineas). First the guineas were tested by auditory brainstem response (ABR), and then the Cortis's tissues, auditory nerve tissues, brain and blood were harvested and the total DNA was extracted. The mtDNA(4568) deletion was analyzed by PCR. Hearing loss was occurred with age. The mtDNA(4568) deletion incidence of aged group in all tissues was significant higher than that of young control group (Ppresbycusis (B(2) group) were significant higher than that of aged normal hearing group (B(1) group) (Ppresbycusis and aged normal hearing group (P> 0.05). mtDNA(4568) deletion of guinea-pig possibly contributes to aging and mtDNA(4568) deletion in Cortis's and auditory nerve tissues of guinea-pig may be associated with presbycusis. There is no enough evidence to prove that the mtDNA(4568) deletions in brain and blood are related with presbycusis.

  17. Molecular cytogenetic characterization of the first reported case of an inv dup (4p)(p15.1-pter) with a concomitant 4q35.1-qter deletion and normal parents.

    Science.gov (United States)

    Tassano, E; Alpigiani, M G; Salvati, P; Gimelli, S; Lorini, R; Gimelli, G

    2012-12-15

    Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with "recombinant 4 syndrome". This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. 14 CFR 1206.202 - Deletion of segregable portions of a record.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Deletion of segregable portions of a record... AVAILABILITY OF AGENCY RECORDS TO MEMBERS OF THE PUBLIC Records Available § 1206.202 Deletion of segregable... that indication would harm an interest protected by the exemption in Subpart 3 under which the deletion...

  19. TTY2 genes deletions as genetic risk factor of male infertility.

    Science.gov (United States)

    Shaveisi-Zadeh, F; Alibakhshi, R; Asgari, R; Rostami-Far, Z; Bakhtiari, M; Abdi, H; Movafagh, A; Mirfakhraie, R

    2017-02-28

    Y chromosome has a number of genes that are expressed in testis and have a role in spermatogenesis. TTY2L12A and TTY2L2A are the members of testis transcript Y2 (TTY2) that are Y linked multi-copy gene families, located on Yp11 and Yq11 loci respectively. The aim of this study was to investigate frequency of TTY2L12A and TTY2L2A deletions in azoospermic patients compared with fertile males. This study was performed on 45 infertile males with idiopathic azoospermia without any AZF micro deletions (group A), 33 infertile males with azoospermia which do not screened for AZF micro deletions (group B) and 65 fertile males (group C), from October 2013 to April 2015 in west of Iran. Polymerase chain reaction (PCR) method was used for detection of TTY2L12A and TTY2L2A gene deletions in studied groups. No deletions were detected in normal fertile males of group C. 1 out of 45 azoospermic males of group A (2.22%) and 3 out of 33 azoospermic males of group B (9.09%) had TTY2L2A deletion (p= 0.409 and p= 0.036 respectively), also 1 out of 45 azoospermic males of group A (2.22%) and 4 out of 33 azoospermic males of group B (12.12%) had TTY2L12A deletion (p= 0.409 and p= 0.011 respectively).  None of azoospermic males in Group A and B had deletions in both genes. Our data showed significant correlation between non-obstructive azoospermia and TTY2L12A and TTY2L2A deletions. Thus, it seems that TTY2L12A and TTY2L2A deletions can consider as one of the genetic risk factors for non-obstructive azoospermia.

  20. Contribution of insertions and deletions to the variability of hepatitis C virus populations.

    Science.gov (United States)

    Torres-Puente, Manuela; Cuevas, José M; Jiménez-Hernández, Nuria; Bracho, María A; García-Robles, Inmaculada; Carnicer, Fernando; del Olmo, Juan; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2007-08-01

    Little is known about the potential effects of insertions and deletions (indels) on the evolutionary dynamics of hepatitis C virus (HCV). In fact, the consequences of indels on antiviral treatment response are a field of investigation completely unexplored. Here, an extensive sequencing project was undertaken by cloning and sequencing serum samples from 25 patients infected with HCV subtype 1a and 48 patients with subtype 1b. For 23 patients, samples obtained after treatment with alpha interferon plus ribavirin were also available. Two genome fragments containing the hypervariable regions in the envelope 2 glycoprotein and the PKR-BD domain in NS5A were sequenced, yielding almost 16 000 sequences. Our results show that insertions are quite rare, but they are often present in biologically relevant domains of the HCV genome. Moreover, their frequency distributions between different time samples reflect the quasispecies dynamics of HCV populations. Deletions seem to be subject to negative selection.

  1. Partial USH2A deletions contribute to Usher syndrome in Denmark

    DEFF Research Database (Denmark)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Kann, Erik

    2015-01-01

    deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.European Journal of Human Genetics advance online publication, 25 March 2015; doi:10.1038...

  2. A Rare Syndrome of Deletion in 2 Siblings

    Directory of Open Access Journals (Sweden)

    Aravindhan Veerapandiyan MBBS

    2017-08-01

    Full Text Available The Glutamate receptor, ionotropic, delta 2 gene codes for an ionotropic glutamate delta-2 receptor, which is selectively expressed in cerebellar Purkinje cells, and facilitates cerebellar synapse organization and transmission. The phenotype associated with the deletion of Glutamate receptor, ionotropic, delta 2 gene in humans was initially defined in 2013. In this case report, the authors describe 2 brothers who presented with developmental delay, tonic upward gaze, nystagmus, oculomotor apraxia, hypotonia, hyperreflexia, and ataxia. They were found to have a homozygous intragenic deletion within the Glutamate receptor, ionotropic, delta 2 gene at exon 2. Our patients serve as an addition to the literature of previously reported children with this rare clinical syndrome associated with Glutamate receptor, ionotropic, delta 2 deletion.

  3. 10 CFR 9.19 - Segregation of exempt information and deletion of identifying details.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Segregation of exempt information and deletion of... Information Act Regulations § 9.19 Segregation of exempt information and deletion of identifying details. (a... deletions are made from parts of the record by computer, the amount of information deleted will be indicated...

  4. Multiple Patterns of FHIT Gene Homozygous Deletion in Egyptian Breast Cancer Patients

    International Nuclear Information System (INIS)

    Ismail, H.M.S.; Zakhary, N.I.; Medhat, A.M.; Karim, A.M.

    2011-01-01

    Fragile histidine triad (FHIT) gene encodes a putative tumour suppressor protein. Loss of Fhit protein in cancer is attributed to different genetic alterations that affect the FHIT gene structure. In this study, we investigated the pattern of homozygous deletion that target the FHIT gene exons 3 to 9 genomic structure in Egyptian breast cancer patients. We have found that 65% (40 out of 62) of the cases exhibited homozygous deletion in at least one FHIT exon. The incidence of homozygous deletion was not associated with patients clinico pathological parameters including patients age, tumour grade, tumour type, and lymph node involvement. Using correlation analysis, we have observed a strong correlation between homozygous deletions of exon 3 and exon 4 (P<0.0001). Deletions in exon 5 were positively correlated with deletions in exon 7 (P<0.0001), Exon 8 (P<0.027), and exon 9 (P=0.04). Additionally, a strong correlation was observed between exons 8 and exon 9 (P<0.0001).We conclude that FHIT gene exons are homozygously deleted at high frequency in Egyptian women population diagnosed with breast cancer. Three different patterns of homozygous deletion were observed in this population indicating different mechanisms of targeting FHIT gene genomic structure.

  5. 4p16.1-p15.31 duplication and 4p terminal deletion in a 3-years old Chinese girl: Array-CGH, genotype-phenotype and neurological characterization.

    Science.gov (United States)

    Piccione, Maria; Salzano, Emanuela; Vecchio, Davide; Ferrara, Dante; Malacarne, Michela; Pierluigi, Mauro; Ferrara, Ines; Corsello, Giovanni

    2015-07-01

    Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Contiguous deletion of the NDP, MAOA, MAOB, and EFHC2 genes in a patient with Norrie disease, severe psychomotor retardation and myoclonic epilepsy.

    Science.gov (United States)

    Rodriguez-Revenga, L; Madrigal, I; Alkhalidi, L S; Armengol, L; González, E; Badenas, C; Estivill, X; Milà, M

    2007-05-01

    Norrie disease (ND) is an X-linked disorder, inherited as a recessive trait that, therefore, mostly affects males. The gene responsible for ND, called NDP, maps to the short arm of chromosome X (Xp11.4-p11.3). We report here an atypical case of ND, consisting of a patient harboring a large submicroscopic deletion affecting not only the NDP gene but also the MAOA, MAOB, and EFHC2 genes. Microarray comparative genomic hybridization (CGH) analysis showed that 11 consecutive bacterial artificial chromosome (BAC) clones, mapping around the NDP gene, were deleted. These clones span a region of about 1 Mb on Xp11.3. The deletion was ascertained by fluorescent in situ hybridization (FISH) analysis with different BAC clones located within the region. Clinical features of the proband include bilateral retinal detachment, microcephaly, severe psychomotor retardation without verbal language skills acquired, and epilepsy. The identification and molecular characterization of this case reinforces the idea of a new contiguous gene syndrome that would explain the complex phenotype shared by atypical ND patients.

  7. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    International Nuclear Information System (INIS)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico

    2011-01-01

    Highlights: ► Expanded array of mtDNA deletions. ► Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. ► Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. ► Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  8. Detection of three-base deletion by exciplex formation with perylene derivatives.

    Science.gov (United States)

    Kashida, Hiromu; Kondo, Nobuyo; Sekiguchi, Koji; Asanuma, Hiroyuki

    2011-06-14

    Here, we synthesized fluorescent DNA probes labeled with two perylene derivatives for the detection of a three-base deletion mutant. One such probe discriminated the three-base deletion mutant from the wild-type sequence by exciplex emission, and the deletion mutant was identifiable even by the naked eye. This journal is © The Royal Society of Chemistry 2011

  9. Variability in a three-generation family with Pierre Robin sequence, acampomelic campomelic dysplasia, and intellectual disability due to a novel ∼1 Mb deletion upstream of SOX9, and including KCNJ2 and KCNJ16.

    Science.gov (United States)

    Castori, Marco; Bottillo, Irene; Morlino, Silvia; Barone, Chiara; Cascone, Piero; Grammatico, Paola; Laino, Luigi

    2016-01-01

    Campomelic dysplasia and acampomelic campomelic dysplasia (ACD) are allelic disorders due to heterozygous mutations in or around SOX9. Translocations and deletions involving the SOX9 5' regulatory region are rare causes of these disorders, as well as Pierre Robin sequence (PRS) and 46,XY gonadal dysgenesis. Genotype-phenotype correlations are not straightforward due to the complex epigenetic regulation of SOX9 expression during development. We report a three-generation pedigree with a novel ∼1 Mb deletion upstream of SOX9 and including KCNJ2 and KCNJ16, and ascertained for dominant transmission of PRS. Further characterization of the family identified subtle appendicular anomalies and a variable constellation of axial skeletal features evocative of ACD in several members. Affected males showed learning disability. The identified deletion was smaller than all other chromosome rearrangements associated with ACD. Comparison with other reported translocations and deletions involving this region allowed further refining of genotype-phenotype correlations and an update of the smallest regions of overlap associated with the different phenotypes. Intrafamilial variability in this pedigree suggests a phenotypic continuity between ACD and PRS in patients carrying mutations in the SOX9 5' regulatory region. © 2015 Wiley Periodicals, Inc.

  10. The Effect of the Retroperitoneal Transpsoas Minimally Invasive Lateral Interbody Fusion on Segmental and Regional Lumbar Lordosis

    Directory of Open Access Journals (Sweden)

    Tien V. Le

    2012-01-01

    Full Text Available Background. The minimally invasive lateral interbody fusion (MIS LIF in the lumbar spine can correct coronal Cobb angles, but the effect on sagittal plane correction is unclear. Methods. A retrospective review of thirty-five patients with lumbar degenerative disease who underwent MIS LIF without supplemental posterior instrumentation was undertaken to study the radiographic effect on the restoration of segmental and regional lumbar lordosis using the Cobb angles on pre- and postoperative radiographs. Mean disc height changes were also measured. Results. The mean follow-up period was 13.3 months. Fifty total levels were fused with a mean of 1.42 levels fused per patient. Mean segmental Cobb angle increased from 11.10° to 13.61° (<0.001 or 22.6%. L2-3 had the greatest proportional increase in segmental lordosis. Mean regional Cobb angle increased from 52.47° to 53.45° (=0.392. Mean disc height increased from 6.50 mm to 10.04 mm (<0.001 or 54.5%. Conclusions. The MIS LIF improves segmental lordosis and disc height in the lumbar spine but not regional lumbar lordosis. Anterior longitudinal ligament sectioning and/or the addition of a more lordotic implant may be necessary in cases where significant increases in regional lumbar lordosis are desired.

  11. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    Science.gov (United States)

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  12. Human polyomavirus JCV late leader peptide region contains important regulatory elements

    International Nuclear Information System (INIS)

    Akan, Ilhan; Sariyer, Ilker Kudret; Biffi, Renato; Palermo, Victoria; Woolridge, Stefanie; White, Martyn K.; Amini, Shohreh; Khalili, Kamel; Safak, Mahmut

    2006-01-01

    Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader

  13. Haemophilia A: Database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Tuddenham, E.G.D. (Clinical Research Centre, Harrow (United Kingdom)); Cooper, D.N. (Thrombosis Research Inst., London (United Kingdom)); Gitschier, J. (Univ. of California, San Francisco (United States)); Higuchi, M.; Kazazian, H.H.; Antonarakis, S.E. (Johns Hopkins Univ., Baltimore (United States)); Hoyer, L.W. (American Red Cross, Rockville (United States)); Yoshioka, A. (Nara Medical Coll., Kashihara City (Japan)); Peake, I.R. (Royal Hallamshire Hospital, Sheffield (United Kingdom)); Schwaab, R. (Inst. fuer Klinische Biochemie der Univ. Bonn (West Germany)); Lavergne, J.M. (Hopital de Bicetre (France)); Giannelli, F. (Guy' s Hospital, London (United Kingdom))

    1991-09-25

    Mutations at the factor VIII gene locus causing Haemophilia A have now been identified in many patients from a many ethnic groups. Earlier studies used biased methods which detected repetitive mutations at a few CG dinucleotides. More recently rapid gene scanning methods have uncovered an extreme diversity of mutations. Over 80 different point mutations, 6 insertions, 7 small deletions, and 60 large deletions have been characterized. Repetitive mutation has been proved for at least 16 CpG sites. All nonsense mutations cause severe disease. Most missense mutations appear to cause instability of the protein, but some are associated with production of dysfunctional factor VIII molecules, thereby localizing functionally critical regions of the cofactor. Variable phenotype has been observed in association with three of the latter class of genotype. This catalogue of gene lesions in Haemophilia A will be updated annually.

  14. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  15. A local-world node deleting evolving network model

    International Nuclear Information System (INIS)

    Gu Yuying; Sun Jitao

    2008-01-01

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p a decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k max . Hence, the expanding local-world can compensate the infection of the node deleting

  16. A local-world node deleting evolving network model

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yuying [Department of Mathematics, Tongji University, Shanghai 200092 (China); Sun Jitao [Department of Mathematics, Tongji University, Shanghai 200092 (China)], E-mail: sunjt@sh163.net

    2008-06-16

    A new type network growth rule which comprises node addition with the concept of local-world connectivity and node deleting is studied. A series of theoretical analysis and numerical simulation to the LWD network are conducted in this Letter. Firstly, the degree distribution p(k) of this network changes no longer pure scale free but truncates by an exponential tail and the truncation in p(k) increases as p{sub a} decreases. Secondly, the connectivity is tighter, as the local-world size M increases. Thirdly, the average path length L increases and the clustering coefficient decreases as generally node deleting increases. Finally, trends up when the local-world size M increases, so as to k{sub max}. Hence, the expanding local-world can compensate the infection of the node deleting.

  17. Brand deletion: How the decision-making approach affects deletion success

    OpenAIRE

    Víctor Temprano-García; Ana Isabel Rodríguez-Escudero; Javier Rodríguez-Pinto

    2018-01-01

    Literature on brand deletion (BD), a critical and topical decision within a firm's marketing strategy, is extremely scarce. The present research is concerned with the decision-making process and examines the effect on BD success of three different approaches to decision-making – rational, intuitive and political – and of the interaction between the rational and political approaches. The moderating effect of the type of BD – i.e., total brand killing or disposal vs. brand name change – is also...

  18. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  19. [Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System].

    Science.gov (United States)

    Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi

    2015-09-01

    For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.

  20. Dual entanglement measures based on no local cloning and no local deleting

    International Nuclear Information System (INIS)

    Horodecki, Michal; Sen, Aditi; Sen, Ujjwal

    2004-01-01

    The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and no local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity

  1. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis.

    Science.gov (United States)

    Goettel, Wolfgang; Ramirez, Martha; Upchurch, Robert G; An, Yong-Qiang Charles

    2016-08-01

    Identification and characterization of a 254-kb genomic deletion on a duplicated chromosome segment that resulted in a low level of palmitic acid in soybean seeds using transcriptome sequencing. A large number of soybean genotypes varying in seed oil composition and content have been identified. Understanding the molecular mechanisms underlying these variations is important for breeders to effectively utilize them as a genetic resource. Through design and application of a bioinformatics approach, we identified nine co-regulated gene clusters by comparing seed transcriptomes of nine soybean genotypes varying in oil composition and content. We demonstrated that four gene clusters in the genotypes M23, Jack and N0304-303-3 coincided with large-scale genome rearrangements. The co-regulated gene clusters in M23 and Jack mapped to a previously described 164-kb deletion and a copy number amplification of the Rhg1 locus, respectively. The coordinately down-regulated gene clusters in N0304-303-3 were caused by a 254-kb deletion containing 19 genes including a fatty acyl-ACP thioesterase B gene (FATB1a). This deletion was associated with reduced palmitic acid content in seeds and was the molecular cause of a previously reported nonfunctional FATB1a allele, fap nc . The M23 and N0304-304-3 deletions were located in duplicated genome segments retained from the Glycine-specific whole genome duplication that occurred 13 million years ago. The homoeologous genes in these duplicated regions shared a strong similarity in both their encoded protein sequences and transcript accumulation levels, suggesting that they may have conserved and important functions in seeds. The functional conservation of homoeologous genes may result in genetic redundancy and gene dosage effects for their associated seed traits, explaining why the large deletion did not cause lethal effects or completely eliminate palmitic acid in N0304-303-3.

  2. 24 CFR 990.155 - Addition and deletion of units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Addition and deletion of units. 990.155 Section 990.155 Housing and Urban Development Regulations Relating to Housing and Urban...; Computation of Eligible Unit Months § 990.155 Addition and deletion of units. (a) Changes in public housing...

  3. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    Science.gov (United States)

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  4. Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review.

    Science.gov (United States)

    Lennon, P A; Cooper, M L; Peiffer, D A; Gunderson, K L; Patel, A; Peters, Sarika; Cheung, S W; Bacino, C A

    2007-04-15

    We report on a young male with moderate mental retardation, dysmorphic features, and language delay who is deleted for 7q31.1-7q31.31. His full karyotype is 46,XY,der(7)del(7)(q31.1q31.31)ins(10;7)(q24.3;q31.1q31.31)mat. This child had language impairment, including developmental verbal dyspraxia, but did not meet criteria for autism according to standardized ADOS testing. Our patient's deletion, which is the smallest reported deletion including FOXP2, adds to the body of evidence that supports the role of FOXP2 in speech and language impairment, but not in autism. A reported association between autism and deletions of WNT2, a gene also deleted in our patient, is likewise not supported by our case. Previously, fine mapping with microsatellites markers within in a large three-generation family, in which half the members had severe specific language impairment, aided the localization of the SPCH1 locus to 7q31 within markers D7S2459 (107.1 Mb) and D7S643 (120.5 Mb). Additionally, chromosome rearrangement of 7q31 and mutational analyses have supported the growing evidence that FOXP2, a gene within the SPCH1 region, is involved with speech and language development. It is unclear however whether the AUTS1 (autistic spectrum 1) locus, highly linked to 7q31, overlaps with the SPCH1 and FOXP2. Copyright 2007 Wiley-Liss, Inc.

  5. Thorough analysis of unorthodox ABO deletions called by the 1000 Genomes project.

    Science.gov (United States)

    Möller, M; Hellberg, Å; Olsson, M L

    2018-02-01

    ABO remains the clinically most important blood group system, but despite earlier extensive research, significant findings are still being made. The vast majority of catalogued ABO null alleles are based on the c.261delG polymorphism. Apart from c.802G>A, other mechanisms for O alleles are rare. While analysing the data set from the 1000 Genomes (1000G) project, we encountered two previously uncharacterized deletions, which needed further exploration. The Erythrogene database, complemented with bioinformatics software, was used to analyse ABO in 2504 individuals from 1000G. DNA samples from selected 1000G donors and African blood donors were examined by allele-specific PCR and Sanger sequencing to characterize predicted deletions. A 5821-bp deletion encompassing exons 5-7 was called in twenty 1000G individuals, predominantly Africans. This allele was confirmed and its exact deletion point defined by bioinformatic analyses and in vitro experiments. A PCR assay was developed, and screening of African samples revealed three donors heterozygous for this deletion, which was thereby phenotypically established as an O allele. Analysis of upstream genetic markers indicated an ancestral origin from ABO*O.01.02. We estimate this deletion as the 3rd most common mechanism behind O alleles. A 24-bp deletion was called in nine individuals and showed greater diversity regarding ethnic distribution and allelic background. It could neither be confirmed by in silico nor in vitro experiments. A previously uncharacterized ABO deletion among Africans was comprehensively mapped and a genotyping strategy devised. The false prediction of another deletion emphasizes the need for cautious interpretation of NGS data and calls for strict validation routines. © 2017 International Society of Blood Transfusion.

  6. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    Directory of Open Access Journals (Sweden)

    Zhi Yon Charles Toh

    Full Text Available Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.

  7. A rapid detection method for PAI-1 promoter insertion/deletion polymorphism (4G/5G

    Directory of Open Access Journals (Sweden)

    Annichino-Bizzacchi Joyce M.

    1998-01-01

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1 is an important inhibitor of fibrinolysis, and increased levels of PAI-1 are associated with atheroma and myocardial infarction. A common 4G/5G insertion/deletion polymorphism located in the promoter region of PAI-1 gene has been described associated with PAI-1 activity in plasma levels. Genotyping of this polymorphism is commonly conducted with an allele-specific oligonucleotide melting technique. In the present study, we describe a quick, easy method for genotyping 4G/5G polymorphism in the promoter region of the PAI-1 gene.

  8. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  9. The male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    International Nuclear Information System (INIS)

    Cornu, A.; Maizonnier, D.

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined [fr

  10. ABCA7 frameshift deletion associated with Alzheimer disease in African Americans

    Science.gov (United States)

    Cukier, Holly N.; Kunkle, Brian W.; Vardarajan, Badri N.; Rolati, Sophie; Hamilton-Nelson, Kara L.; Kohli, Martin A.; Whitehead, Patrice L.; Dombroski, Beth A.; Van Booven, Derek; Lang, Rosalyn; Dykxhoorn, Derek M.; Farrer, Lindsay A.; Cuccaro, Michael L.; Vance, Jeffery M.; Gilbert, John R.; Beecham, Gary W.; Martin, Eden R.; Carney, Regina M.; Mayeux, Richard; Schellenberg, Gerard D.; Byrd, Goldie S.; Haines, Jonathan L.

    2016-01-01

    Objective: To identify a causative variant(s) that may contribute to Alzheimer disease (AD) in African Americans (AA) in the ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene, a known risk factor for late-onset AD. Methods: Custom capture sequencing was performed on ∼150 kb encompassing ABCA7 in 40 AA cases and 37 AA controls carrying the AA risk allele (rs115550680). Association testing was performed for an ABCA7 deletion identified in large AA data sets (discovery n = 1,068; replication n = 1,749) and whole exome sequencing of Caribbean Hispanic (CH) AD families. Results: A 44-base pair deletion (rs142076058) was identified in all 77 risk genotype carriers, which shows that the deletion is in high linkage disequilibrium with the risk allele. The deletion was assessed in a large data set (531 cases and 527 controls) and, after adjustments for age, sex, and APOE status, was significantly associated with disease (p = 0.0002, odds ratio [OR] = 2.13 [95% confidence interval (CI): 1.42–3.20]). An independent data set replicated the association (447 cases and 880 controls, p = 0.0117, OR = 1.65 [95% CI: 1.12–2.44]), and joint analysis increased the significance (p = 1.414 × 10−5, OR = 1.81 [95% CI: 1.38–2.37]). The deletion is common in AA cases (15.2%) and AA controls (9.74%), but in only 0.12% of our non-Hispanic white cohort. Whole exome sequencing of multiplex, CH families identified the deletion cosegregating with disease in a large sibship. The deleted allele produces a stable, detectable RNA strand and is predicted to result in a frameshift mutation (p.Arg578Alafs) that could interfere with protein function. Conclusions: This common ABCA7 deletion could represent an ethnic-specific pathogenic alteration in AD. PMID:27231719

  11. A 590 kb deletion caused by non-allelic homologous recombination between two LINE-1 elements in a patient with mesomelia-synostosis syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Naruto, Takuya; Watanabe, Miki; Fujita, Yuji; Ujiro, Sae; Okamoto, Nana; Horikawa, Hideaki; Masuda, Kiyoshi; Imoto, Issei

    2017-04-01

    Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS. © 2017 Wiley Periodicals, Inc.

  12. 41 CFR 51-6.8 - Deletion of items from the Procurement List.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Deletion of items from...-PROCUREMENT PROCEDURES § 51-6.8 Deletion of items from the Procurement List. (a) When a central nonprofit... shall notify the Committee staff immediately. Before reaching a decision to request a deletion of an...

  13. Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions

    Directory of Open Access Journals (Sweden)

    Green Eric D

    2004-05-01

    Full Text Available Abstract Background The elastin gene (ELN is implicated as a factor in both supravalvular aortic stenosis (SVAS and Williams Beuren Syndrome (WBS, two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. Results Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. Conclusions The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features.

  14. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.

    Science.gov (United States)

    Fazli, Mustafa; Harrison, Joe J; Gambino, Michela; Givskov, Michael; Tolker-Nielsen, Tim

    2015-06-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.).

    Science.gov (United States)

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei

    2009-01-01

    A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.

  16. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102

    International Nuclear Information System (INIS)

    Levin, D.E.; Marnett, L.J.; Ames, B.N.

    1984-01-01

    Salmonella tester strain TA102 carries the hisG428 ochre mutation on the multicopy plasmid pAQ1. DNA sequence analysis of 45 spontaneous revertants of hisG428 on the chromosome in the presence of pKM101 (strain TA103) indicates that hisG428 revertants fall into three major categories: (i) small, in-frame deletions (3 or 6 base pairs) that remove part or all of the ochre triplet; (ii) base substitution mutations at the ochre site; (iii) extragenic ochre suppressors. Deletion revertants are identified in a simple phenotypic screen by their resistance to the inhibitory histidine analog thiazolealanine, which feedback inhibits the wild-type hisG enzyme but not the enzyme resulting from the deletions. The effect of various genetic backgrounds on the generation of spontaneous deletion revertants was examined. The presence of a uvrB mutation or a recA mutation suppressed the generation of spontaneous deletion revertants to approximately 1/2.5. When hisG428 was in multiple copies on pAQ1, the frequency of spontaneous deletion revertants increased by 40-fold, which is the approximate copy number of pAQ1. Mutagenic agents that induce single-strand breaks in DNA (e.g., x-rays, bleomycin, and nalidixic acid) induced deletion revertants in TA102. These agents induced deletion revertants only in hisG428 on pAQ1 and only in the presence of pKM101. Deletion revertants were not induced by frameshift mutagens (i.e., ICR-191 and 9aminoacridine). These results indicate that different pathways exist for the generation of spontaneous and mutagen-induced deletion revertants of hisG428. 41 references, 2 figures, 3 tables

  17. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.

    Science.gov (United States)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-08-01

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  18. An environment-mediated quantum deleter

    International Nuclear Information System (INIS)

    Srikanth, R.; Banerjee, Subhashish

    2007-01-01

    Environment-induced decoherence presents a great challenge to realizing a quantum computer. We point out the somewhat surprising fact that decoherence can be useful, indeed necessary, for practical quantum computation, in particular, for the effective erasure of quantum memory in order to initialize the state of the quantum computer. The essential point behind the deleter is that the environment, by means of a dissipative interaction, furnishes a contractive map towards a pure state. We present a specific example of an amplitude damping channel provided by a two-level system's interaction with its environment in the weak Born-Markov approximation. This is contrasted with a purely dephasing, non-dissipative channel provided by a two-level system's interaction with its environment by means of a quantum nondemolition interaction. We point out that currently used state preparation techniques, for example using optical pumping, essentially perform as quantum deleters

  19. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight

    Science.gov (United States)

    Johanson, Kelly; Allen, Patricia L.; Gonzalez-Villalobos, Romer A.; Nesbit, Jacqueline; Nickerson, Cheryl A.; Höner zu Bentrup, Kerstin; Wilson, James W.; Ramamurthy, Rajee; D'Elia, Riccardo; Muse, Kenneth E.; Hammond, Jeffrey; Freeman, Jake; Stodieck, Louis S.; Hammond, Timothy G.

    2007-02-01

    This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77-40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.

  20. Bad Clade Deletion Supertrees: A Fast and Accurate Supertree Algorithm.

    Science.gov (United States)

    Fleischauer, Markus; Böcker, Sebastian

    2017-09-01

    Supertree methods merge a set of overlapping phylogenetic trees into a supertree containing all taxa of the input trees. The challenge in supertree reconstruction is the way of dealing with conflicting information in the input trees. Many different algorithms for different objective functions have been suggested to resolve these conflicts. In particular, there exist methods based on encoding the source trees in a matrix, where the supertree is constructed applying a local search heuristic to optimize the respective objective function. We present a novel heuristic supertree algorithm called Bad Clade Deletion (BCD) supertrees. It uses minimum cuts to delete a locally minimal number of columns from such a matrix representation so that it is compatible. This is the complement problem to Matrix Representation with Compatibility (Maximum Split Fit). Our algorithm has guaranteed polynomial worst-case running time and performs swiftly in practice. Different from local search heuristics, it guarantees to return the directed perfect phylogeny for the input matrix, corresponding to the parent tree of the input trees, if one exists. Comparing supertrees to model trees for simulated data, BCD shows a better accuracy (F1 score) than the state-of-the-art algorithms SuperFine (up to 3%) and Matrix Representation with Parsimony (up to 7%); at the same time, BCD is up to 7 times faster than SuperFine, and up to 600 times faster than Matrix Representation with Parsimony. Finally, using the BCD supertree as a starting tree for a combined Maximum Likelihood analysis using RAxML, we reach significantly improved accuracy (1% higher F1 score) and running time (1.7-fold speedup). © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Multigene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1996-01-01

    K-ras codon 12 point mutations mRb and p53 gene deletions were examined in tissues from 120 normal lungs and lung adenocarcinomas that were Formalin-treated and paraffin-embedded 25 years ago. The results showed that 12 of 60 (20%) lung adenocarcinomas had mRb deletions. All lung adenocarcinomas that were initially found bearing deleted mRb had p53 deletions (15 of 15; 100%). A significantly higher mutation frequency for K-ras codon 12 point mutations was also found in the lung adenocarcinomas from mice exposed to 24 once-weekly neutron irradiation (10 of 10; 100%) compared with those exposed to 24 or 60 once-weekly γ-ray doses (5 of 10; 50%). The data suggested that p53 and K-ras gene alterations were two contributory factors responsible for the increased incidence of lung adenocarcinoma in B6CF 1 male mice exposed to protracted neutron radiation

  2. Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder.

    Science.gov (United States)

    Mullegama, Sureni V; Rosenfeld, Jill A; Orellana, Carmen; van Bon, Bregje W M; Halbach, Sara; Repnikova, Elena A; Brick, Lauren; Li, Chumei; Dupuis, Lucie; Rosello, Monica; Aradhya, Swaroop; Stavropoulos, D James; Manickam, Kandamurugu; Mitchell, Elyse; Hodge, Jennelle C; Talkowski, Michael E; Gusella, James F; Keller, Kory; Zonana, Jonathan; Schwartz, Stuart; Pyatt, Robert E; Waggoner, Darrel J; Shaffer, Lisa G; Lin, Angela E; de Vries, Bert B A; Mendoza-Londono, Roberto; Elsea, Sarah H

    2014-01-01

    Copy number variations associated with abnormal gene dosage have an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID) and autism. We hypothesize that the chromosome 2q23.1 region encompassing MBD5 is a dosage-dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes ID, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 68 kb to 53.7 Mb, encompassing a region that includes MBD5, an important factor in methylation patterning and epigenetic regulation. We previously reported that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. In this study, we demonstrate that MBD5 is the only gene in common among all duplication cases and that overexpression of MBD5 is likely responsible for the core clinical features present in 2q23.1 microduplication syndrome. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage-sensitive gene critical for normal development.

  3. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  4. Neuropsychological phenotype of a patient with a de novo 970 kb interstitial deletion in the distal 16p11.2 region

    NARCIS (Netherlands)

    Egger, J.I.; Verhoeven, W.M.A.; Verbeeck, W.J.C.; Leeuw, N. de

    2014-01-01

    The 16p11.2 microdeletion syndrome is characterized by a wide range of phenotypic expressions and is frequently associated with developmental delay, symptoms from the autism spectrum, epilepsy, congenital anomalies, and obesity. These phenotypes are often related to a proximal 16p11.2 deletion of

  5. Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity

    NARCIS (Netherlands)

    Rocker, N. de; Vergult, S.; Koolen, D.A.; Jacobs, E.; Hoischen, A.; Zeesman, S.; Bang, B.; Bena, F.; Bockaert, N.; Bongers, E.M.H.F.; Ravel, T. de; Devriendt, K.; Giglio, S.; Faivre, L.; Joss, S.; Maas, S.; Marle, N.; Novara, F.; Nowaczyk, M.J.; Peeters, H.; Polstra, A.; Roelens, F.; Rosenberg, C.; Thevenon, J.; Tumer, Z.; Vanhauwaert, S.; Varvagiannis, K.; Willaert, A.; Willemsen, M.H.; Willems, M.; Zuffardi, O.; Coucke, P.; Speleman, F.; Eichler, E.E.; Kleefstra, T.; Menten, B.

    2015-01-01

    PURPOSE: Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. METHODS: In this study

  6. MYD88 L265P Mutations Are Correlated with 6q Deletion in Korean Patients with Waldenström Macroglobulinemia

    Directory of Open Access Journals (Sweden)

    Jung-Ah Kim

    2014-01-01

    Full Text Available Waldenström macroglobulinemia (WM is a malignant lymphoplasma-proliferative disorder with IgM monoclonal gammopathy. A recent whole-genome study identified MYD88 L265P as the key mutation in WM. We investigated MYD88 mutations in conjunction with cytogenetic study in 22 consecutive Korean WM patients. Conventional G-banding and interphase fluorescence in situ hybridization (FISH were performed at regions including 6q21 using bone marrow (BM aspirates. Sixteen patients were subjected to Sanger sequencing-based MYD88 mutation study. Five patients (28% showed cytogenetic aberrations in G-banding. The incidence of 6q21 deletion was 17% by conventional G-banding and 37% by FISH. Ten patients (45% showed cytogenetic aberrations using FISH: 6q deletion in eight (37% and IGH rearrangement in four (18%. Two patients had both the 6q deletion and IGH rearrangement, and two had only the IGH rearrangement. Eleven patients (69% presented with the MYD88 L265P mutation. MYD88 mutations were significantly associated with the presence of 6q deletions (P=0.037. Six patients with the 6q deletion for whom sequencing was possible were found to harbor MYD88 mutations. The MYD88 L265P mutation was also associated with increased lymphocyte burden in BM biopsy. This is the first report of high frequency MYD88 L265P mutations in Korean WM patients.

  7. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  8. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. UGT2B17 gene deletion associated with an increase in bone mineral density similar to the effect of hormone replacement in postmenopausal women.

    Science.gov (United States)

    Giroux, S; Bussières, J; Bureau, A; Rousseau, F

    2012-03-01

    UGT2B17 is one of the most important enzymes for androgen metabolism. In addition, the UGT2B17 gene is one of the most commonly deleted regions of the human genome. The deletion was previously found associated with higher femoral bone density in men and women, and we replicated this association in a sample of postmenopausal who never used hormone therapy. Deletion of the UGT2B17 gene was previously shown to be associated with a higher hip bone mineral density (BMD). Using a PCR assay, we tried to replicate the association among a large group of 2,379 women. We examined the effect of the deletion on femoral neck BMD and lumbar spine BMD according to the menopausal status and hormone replacement therapy (HRT). We used a high-throughput PCR assay to identify the gene and the deletion in a population of well-characterized women. Two additional polymorphisms, UGT2B28 deletion and UGT2B15 rs1902023 G > T were also investigated. Only UGT2B17 deletion was associated with LS and FN BMD. Furthermore, the association was seen only among postmenopausal women who had never used hormone replacement as in the first reported association. We confirmed the association between UGT2B17 deletion and a higher LS and FN BMD. In addition, we show that the association is observed among postmenopausal women who never used HRT consistent with the enzymatic function of UGT2B17. The analysis shows that those having one or two UGT2B17 alleles benefit from HRT, which is not the case for null carriers.

  10. Deletions induced by gamma rays in the genome of Escherichia coli

    International Nuclear Information System (INIS)

    Raha, Manidipa; Hutchinson, Franklin

    1991-01-01

    An Escherichia coli lysogen was constructed with a lambda phage bearing a lacZ gene surrounded by about 100 x 10 3 base-pairs of dispensable DNA. The lacZ mutants induced by gamma rays in this lysogen were more than 10% large deletions, ranging in size from 0.6 x 10 -3 to 70 x 10 3 base-pairs. These deletions were centered, not on lacZ, but on a ColE1 origin of DNA replication located 1.2 x 10 3 bases downstream from lacZ, suggesting that this origin of replication was involved in the process by which deletions were formed. In agreement with this hypothesis, a lysogen of the same phage without the ColE1 origin showed a very much lower percentage of radiation-induced deletions, as did a second lysogen of a lambda phage without any known plasmid origin of replication. Indirect evidence is presented for radiation-induced deletions centered on the lambda origin of DNA replication in a lysogen. (author)

  11. The first Dutch SDHB founder deletion in paraganglioma – pheochromocytoma patients

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2009-04-01

    Full Text Available Abstract Background Germline mutations of the tumor suppressor genes SDHB, SDHC and SDHD play a major role in hereditary paraganglioma and pheochromocytoma. These three genes encode subunits of succinate dehydrogenase (SDH, the mitochondrial tricarboxylic acid cycle enzyme and complex II component of the electron transport chain. The majority of variants of the SDH genes are missense and nonsense mutations. To date few large deletions of the SDH genes have been described. Methods We carried out gene deletion scanning using MLPA in 126 patients negative for point mutations in the SDH genes. We then proceeded to the molecular characterization of deletions, mapping breakpoints in each patient and used haplotype analysis to determine whether the deletions are due to a mutation hotspot or if a common haplotype indicated a single founder mutation. Results A novel deletion of exon 3 of the SDHB gene was identified in nine apparently unrelated Dutch patients. An identical 7905 bp deletion, c.201-4429_287-933del, was found in all patients, resulting in a frameshift and a predicted truncated protein, p.Cys68HisfsX21. Haplotype analysis demonstrated a common haplotype at the SDHB locus. Index patients presented with pheochromocytoma, extra-adrenal PGL and HN-PGL. A lack of family history was seen in seven of the nine cases. Conclusion The identical exon 3 deletions and common haplotype in nine patients indicates that this mutation is the first Dutch SDHB founder mutation. The predominantly non-familial presentation of these patients strongly suggests reduced penetrance. In this small series HN-PGL occurs as frequently as pheochromocytoma and extra-adrenal PGL.

  12. Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity

    NARCIS (Netherlands)

    de Rocker, Nina; Vergult, Sarah; Koolen, David; Jacobs, Eva; Hoischen, Alexander; Zeesman, Susan; Bang, Birgitte; Béna, Frédérique; Bockaert, Nele; Bongers, Ernie M.; de Ravel, Thomy; Devriendt, Koenraad; Giglio, Sabrina; Faivre, Laurence; Joss, Shelagh; Maas, Saskia; Marle, Nathalie; Novara, Francesca; Nowaczyk, Malgorzata J. M.; Peeters, Hilde; Polstra, Abeltje; Roelens, Filip; Rosenberg, Carla; Thevenon, Julien; Tümer, Zeynep; Vanhauwaert, Suzanne; Varvagiannis, Konstantinos; Willaert, Andy; Willemsen, Marjolein; Willems, Marjolaine; Zuffardi, Orsetta; Coucke, Paul; Speleman, Frank; Eichler, Evan E.; Kleefstra, Tjitske; Menten, Björn

    2015-01-01

    Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. In this study we evaluated a

  13. Large-scale deletions of the ABCA1 gene in patients with hypoalphalipoproteinemia.

    Science.gov (United States)

    Dron, Jacqueline S; Wang, Jian; Berberich, Amanda J; Iacocca, Michael A; Cao, Henian; Yang, Ping; Knoll, Joan; Tremblay, Karine; Brisson, Diane; Netzer, Christian; Gouni-Berthold, Ioanna; Gaudet, Daniel; Hegele, Robert A

    2018-06-04

    Copy-number variations (CNVs) have been studied in the context of familial hypercholesterolemia but have not yet been evaluated in patients with extremes of high-density lipoprotein (HDL) cholesterol levels. We evaluated targeted next-generation sequencing data from patients with very low HDL cholesterol (i.e. hypoalphalipoproteinemia) using the VarSeq-CNV caller algorithm to screen for CNVs disrupting the ABCA1, LCAT or APOA1 genes. In four individuals, we found three unique deletions in ABCA1: a heterozygous deletion of exon 4, a heterozygous deletion spanning exons 8 to 31, and a heterozygous deletion of the entire ABCA1 gene. Breakpoints were identified using Sanger sequencing, and the full-gene deletion was also confirmed using exome sequencing and the Affymetrix CytoScanTM HD Array. Before now, large-scale deletions in candidate HDL genes have not been associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1 may be a previously unappreciated genetic determinant of low HDL cholesterol levels. By coupling bioinformatic analyses with next-generation sequencing data, we can successfully assess the spectrum of genetic determinants of many dyslipidemias, now including hypoalphalipoproteinemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    NARCIS (Netherlands)

    Kuiper, Roland P.; Vissers, Lisenka E. L. M.; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renee C.; Hogervorst, Frans B. L.; Gille, Johan J. P.; Redeker, Bert; Tops, Carli M. J.; van Gijn, Marielle E.; van den Ouweland, Ans M. W.; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J.; Syngal, Sapna; Culver, Julie O.; Graham, Tracy; Chan, Tsun L.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Schackert, Hans K.; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J. L.

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like

  15. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction.

    Science.gov (United States)

    Nikolova, Mila; Ng, Michael K; Tam, Chi-Pan

    2010-12-01

    Nonconvex nonsmooth regularization has advantages over convex regularization for restoring images with neat edges. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonconvex nonsmooth minimization. In this paper, we deal with nonconvex nonsmooth minimization methods for image restoration and reconstruction. Our theoretical results show that the solution of the nonconvex nonsmooth minimization problem is composed of constant regions surrounded by closed contours and neat edges. The main goal of this paper is to develop fast minimization algorithms to solve the nonconvex nonsmooth minimization problem. Our experimental results show that the effectiveness and efficiency of the proposed algorithms.

  16. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages.

    Science.gov (United States)

    Han, Kyudong; Sen, Shurjo K; Wang, Jianxin; Callinan, Pauline A; Lee, Jungnam; Cordaux, Richard; Liang, Ping; Batzer, Mark A

    2005-01-01

    Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of approximately 18 kb of sequence from the human genome and approximately 15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.

  17. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    Science.gov (United States)

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This

  18. Conditional deletion of Pten causes bronchiolar hyperplasia.

    Science.gov (United States)

    Davé, Vrushank; Wert, Susan E; Tanner, Tiffany; Thitoff, Angela R; Loudy, Dave E; Whitsett, Jeffrey A

    2008-03-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.

  19. An unusual insertion/deletion in the gene encoding the β-subunit of propionyl-CoA carboxylase is a frequent mutation in Caucasian propionic acidemia

    International Nuclear Information System (INIS)

    Tahara, T.; Kraus, J.P.; Rosenberg, L.E.

    1990-01-01

    Propionic acidemia is an inherited disorder of organic acid metabolism that is caused by deficiency of propionly-CoA carboxylase. Affected patients fall into two complementation groups, pccA and pccBC (subgroups B, C, and BC), resulting from deficiency of the nonidentical α and β subunits of PCC, respectively. The authors have detected an unusual insertion/deletion in the DNA of patients from the pccBC and pccC subgroups that replaces 14 nucleotides in the coding sequence of the β subunit with 12 nucleotides unrelated to this region of the gene. Among 14 unrelated Caucasian patients in the pccBc complementation group, this unique mutation was found in 8 of 28 mutant alleles examined. Mutant allele-specific oligonucleotide hybridization to amplified genomic DNAs revealed that the inserted 12 nucleotides do not originate in an ∼1000-bp region around the mutation. In the course of the investigation, they identified another mutation in the same exon: a 3-bp in-frame deletion that eliminates one of two isoleucine codons immediately preceding the Msp I site. Two unrelated patients were compound heterozygotes for this single-codon deletion and for the insertion/deletion described above. They conclude that either there is a propensity for the PCC β-subunit gene to undergo mutations of this sort at this position or, more likely, the mutations in all of the involved Caucasian patients have a common origin in preceding generations

  20. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  1. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  2. Mutational Analysis of the Hypervariable Region of Hepatitis E Virus Reveals Its Involvement in the Efficiency of Viral RNA Replication ▿

    OpenAIRE

    Pudupakam, R. S.; Kenney, Scott P.; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A.; LeRoith, Tanya; Pierson, F. William; Meng, Xiang-Jin

    2011-01-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication...

  3. 22q13.3 Deletion Syndrome: An Underdiagnosed Cause of Mental Retardation

    Directory of Open Access Journals (Sweden)

    ilknur Erol

    2015-03-01

    Full Text Available Phelan-McDermid syndrome, also known as 22q13.3 deletion syndrome, is characterized by global developmental delay, absent or delayed speech, generalized hypotonia, and minor physical anomalies. The deletion typically involves the terminal band 22q13.3 and has been associated with both familial and de-novo translocations. We report the case of an 11-year-old Turkish girl with 22q13.3 deletion syndrome presenting with repeated seizures during the course of a rubella infection. We also review the clinical features of 22q13.3 deletion syndrome and emphasize the importance of considering a rare microdeletion syndrome for idiopathic mental retardation when results of a routine karyotype analysis are normal. To the best of our knowledge, this is the first reported case of a Turkish patient with isolated 22q13.3 deletion syndrome. [Cukurova Med J 2015; 40(1.000: 169-173

  4. Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India.

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Bharti

    Full Text Available Plasmodium falciparum encoded histidine rich protein (HRP2 based malaria rapid diagnostic tests (RDTs are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions.This is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR.Among 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521 and 1.8% (27/1521 of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0-25% (2.4, 95% CI; 1.6-3.3. The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0-8% (1.6, 95% CI; 1.0-2.4.This study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs.

  5. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  6. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  7. A novel frameshift deletion in the albumin gene causes analbuminemia in a young Turkish woman.

    Science.gov (United States)

    Dagnino, Monica; Caridi, Gianluca; Aydin, Zeki; Ozturk, Savas; Karaali, Zeynep; Kazancioglu, Rumeyza; Cefle, Kivanc; Gursu, Meltem; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2010-11-11

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin. The analbuminemic trait was diagnosed in a young Turkish woman on the basis of her clinical symptoms (bilateral lower limb edema) and biochemical findings (minimal albumin amount and variable increases in other protein fractions). Total DNA from the analbuminemic proband and her parents was PCR-amplified using oligonucleotide primers designed to amplify the 14 exons of the albumin gene (ALB) and the flanking intron regions. The products were screened for mutations by single-strand conformation polymorphism (SSCP) and heteroduplex analyses (HA). HA allowed the identification of the mutation site in exon 12. Direct DNA sequencing of this abnormal fragment revealed that the analbuminemic trait was caused by a homozygous CA deletion at nucleotide positions c. 1614-1615 in the codons for Cys538 and Thr539. The subsequent frameshift should give rise to a putative truncated albumin variant in which the sequence Cys(538)-Thr-Leu-Ser has been changed to Cys(538)-Thr-Phe-Stop. The parents were heterozygous for the same mutation. Gel-based mutation detection and DNA sequencing substantiate the clinical diagnosis of congenital analbuminemia in our patient and show that the condition is caused by a novel mutation within the ALB gene. These results contribute to shed light on the molecular basis of this rare condition. 2010 Elsevier B.V. All rights reserved.

  8. Association between F508 deletion in CFTR and chronic pancreatitis risk.

    Science.gov (United States)

    Zhao, Dong; Xu, Yanzhen; Li, Jiatong; Fu, Shien; Xiao, Feifan; Song, Xiaowei; Xie, Zhibin; Jiang, Min; He, Yan; Liu, Chengwu; Wen, Qiongxian; Yang, Xiaoli

    2017-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) has been reported to influence individual susceptibility to chronic pancreatitis (CP), but the results of previous studies are controversial. We performed a study to demonstrate the relationship between CFTR and CP. We searched PubMed, Scopus, and Embase for studies of patients with CP. Seven studies from 1995 to 2016 were identified, and included 64,832 patients. Pooled prevalence and 95% confidence intervals (CIs) were calculated. F508 deletion in CFTR was significantly positively associated with CP risk in the overall analysis (odds ratio [OR]=3.20, 95% CI: 2.30-4.44, I 2 =31.7%). In subgroup analysis stratified by ethnicity, F508 deletion was significantly associated with CP risk in Indian populations, using a fixed effects model (ORs=5.45, 95% CI: 2.52-11.79, I 2 =0.0%), and in non-Indian populations, using a random effects model (ORs=3.59, 95% CI: 1.73-7.48, I 2 =60.9%). At the same time, we found that Indians with F508 deletion had much higher CP prevalence than non-Indians. Interestingly, F508 deletion was also associated with CP and idiopathic CP risk in subgroup analysis stratified by aeitiology, using the fixed effects model. Based on current evidence, F508 deletion is a risk factor for CP, and Indians with F508 deletion have much higher CP morbidity. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  9. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    Science.gov (United States)

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  10. Insertion and deletion mutations in the dinucleotide repeat region of the Norrie disease gene in patients with advanced retinopathy of prematurity.

    Science.gov (United States)

    Hiraoka, M; Berinstein, D M; Trese, M T; Shastry, B S

    2001-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in premature children. It is a multifactorial disorder which causes fibrovascular tissue changes that affect the retina in low birth-weight and short gestational age infants. To determine the prevalence of Norrie disease (ND) gene mutations, clinical examination and molecular genetic analyses were performed in 100 pre-term babies of different ethnic backgrounds who developed advanced ROP. The leukocyte DNA was extracted, amplified by the polymerase chain reaction (PCR), and analyzed by single-strand conformation polymorphism (SSCP), G/T and C/A scanning, and by DNA sequencing. All three exons, including splice sites and the 3'-untranslated region, were screened. Of the 100 patients analyzed, 2 patients with advanced ROP showed a mobility shift in the DNA. In 1 patient, this mobility shift was caused by the insertion of an additional 12-bp CT repeat in exon 1, and in the second patient, there was a 14-bp deletion in the same exon of the ND gene, as evidenced by direct sequencing of the amplified products. Similar analyses of exons 2 and 3 and the 3'-untranslated region failed to detect additional mutations in the gene. None of the 130 normal, unrelated controls revealed similar changes. Taking into account the above results, as well as those of other studies, it appears that the ND gene mutations can account for 3% of cases of advanced ROP. Although the ND gene is not frequently involved in advanced ROP, the present large-scale study further supports the hypothesis that genetic influences may play an important role in the development of severe ROP in some premature infants.

  11. Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis.

    Science.gov (United States)

    Yamaguchi, Kiyoshi; Nagayama, Satoshi; Shimizu, Eigo; Komura, Mitsuhiro; Yamaguchi, Rui; Shibuya, Tetsuo; Arai, Masami; Hatakeyama, Seira; Ikenoue, Tsuneo; Ueno, Masashi; Miyano, Satoru; Imoto, Seiya; Furukawa, Yoichi

    2016-05-24

    Germline mutations in the tumor suppressor gene APC are associated with familial adenomatous polyposis (FAP). Here we applied whole-genome sequencing (WGS) to the DNA of a sporadic FAP patient in which we did not find any pathological APC mutations by direct sequencing. WGS identified a promoter deletion of approximately 10 kb encompassing promoter 1B and exon1B of APC. Additional allele-specific expression analysis by deep cDNA sequencing revealed that the deletion reduced the expression of the mutated APC allele to as low as 11.2% in the total APC transcripts, suggesting that the residual mutant transcripts were driven by other promoter(s). Furthermore, cap analysis of gene expression (CAGE) demonstrated that the deleted promoter 1B region is responsible for the great majority of APC transcription in many tissues except the brain. The deletion decreased the transcripts of APC-1B to 39-45% in the patient compared to the healthy controls, but it did not decrease those of APC-1A. Different deletions including promoter 1B have been reported in FAP patients. Taken together, our results strengthen the evidence that analysis of structural variations in promoter 1B should be considered for the FAP patients whose pathological mutations are not identified by conventional direct sequencing.

  12. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  13. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  14. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    Science.gov (United States)

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  15. The detection of large deletions or duplications in genomic DNA.

    Science.gov (United States)

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  16. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  17. The -2549 insertion/deletion polymorphism in the promoter region of VEGF is associated with the risk of recurrent spontaneous abortion.

    Science.gov (United States)

    Hashemi, Mohammad; Danesh, Hiva; Bizhani, Fatemeh; Mokhtari, Mojgan; Bahari, Gholamreza; Tabasi, Farhad; Taheri, Mohsen

    2018-03-01

    Recurrent spontaneous abortion (RSA) is a common health problem affecting women of reproductive age. Altered expression of vascular endothelial growth factor ( VEGF ) has been associated with spontaneous abortion. The present case-control study aimed to evaluate the impact of the 18-bp insertion/deletion (ins/del) polymorphism (rs35569394) in the promoter region of the VEGF gene on idiopathic RSA. Genomic DNA from 93 patients with RSA and 93 healthy fertile women of southeastern Iran was isolated using the salting-out method. Genotyping of the rs35569394 variant was performed by a polymerase chain reaction (PCR) method. The findings indicated that the VEGF 18-bp ins/del variant significantly increased the risk of RSA under codominant (ins/ins vs. del/del; OR=2.85, 95% CI=1.31-6.22, P=0.019), dominant (del/ins+ins/ins vs. del/del; OR=2.19, 95% CI=1.20-4.01, P=0.015) and allelic (ins vs. del; OR=1.90, 95% CI=1.25-2.88, P=0.003) inheritance models. In summary, the findings propose a significant association between the VEGF 18-bp ins/del polymorphism and risk of RSA in a sample of the southeast Iranian population. Further studies on larger sample sizes and different ethnicities are required to validate the present findings.

  18. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  19. ASYMMETRIC EFFECTS OF ADDED VERSUS DELETED FEATURE OF STIMULUS ON RECOGNITION MEMORY

    OpenAIRE

    内野, 八潮; 箱田, 裕司

    2000-01-01

    This article reviewed a number of studies which revealed superiority of addition over deletion. Such an asymmetric effect was found in picture recognitioa memory, discrimination learning, proofreading for misspellings and so on. However, few studies have controlled typicality of original stimulus or the effect of addition and deletion on typicality of changed stimulus. Therefore this article focussed particularly on the studies in which addition and deletion applied to original stimulus was d...

  20. A New Intergenic α-Globin Deletion (α-αΔ125) Found in a Kabyle Population.

    Science.gov (United States)

    Singh, Amrathlal Rabbind; Lacan, Philippe; Cadet, Estelle; Bignet, Patricia; Dumesnil, Cécile; Vannier, Jean-Pierre; Joly, Philippe; Rochette, Jacques

    2016-01-01

    We have identified a deletion of 125 bp (α-α(Δ125)) (NG_000006.1: g.37040_37164del) in the α-globin gene cluster in a Kabyle population. A combination of singlex and multiplex polymerase chain reaction (PCR)-based assays have been used to identify the molecular defect. Sequencing of the abnormal PCR amplification product revealed a novel α1-globin promoter deletion. The endpoints of the deletion were characterized by sequencing the deletion junctions of the mutated allele. The observed deletion was located 378 bp upstream of the α1-globin gene transcription initiation site and leaves the α2 gene intact. In some patients, the α-α(Δ125) deletion was shown to segregate with Hb S (HBB: c.20A>T) and/or Hb C (HBB: c.19G>A) or a β-thalassemic allele. The α-α(Δ125) deletion has no discernible effect on red cell indices when inherited with no other abnormal globin genes. The family study demonstrated that the deletion is heritable. This is the only example of an intergenic α2-α1 non coding DNA deletion, leaving the α2-globin gene and the α1 coding part intact.

  1. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  2. Deletion genotypes reduce occlusion body potency but increase occlusion body production in a Colombian Spodoptera frugiperda nucleopolyhedrovirus population.

    Directory of Open Access Journals (Sweden)

    Gloria Barrera

    Full Text Available A Colombian field isolate (SfCOL-wt of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J. SfCOL-A was the most prevalent (71±2%; mean ± SE showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F. Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host.

  3. Deletion Genotypes Reduce Occlusion Body Potency but Increase Occlusion Body Production in a Colombian Spodoptera frugiperda Nucleopolyhedrovirus Population

    Science.gov (United States)

    Barrera, Gloria; Williams, Trevor; Villamizar, Laura; Caballero, Primitivo; Simón, Oihane

    2013-01-01

    A Colombian field isolate (SfCOL-wt) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J). SfCOL-A was the most prevalent (71±2%; mean ± SE) showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs) sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs) was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F). Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host. PMID:24116220

  4. Investigation of 305 patients with myelodysplastic syndromes and 20q deletion for associated cytogenetic and molecular genetic lesions and their prognostic impact.

    Science.gov (United States)

    Bacher, Ulrike; Haferlach, Torsten; Schnittger, Susanne; Zenger, Melanie; Meggendorfer, Manja; Jeromin, Sabine; Roller, Andreas; Grossmann, Vera; Krauth, Maria-Theresa; Alpermann, Tamara; Kern, Wolfgang; Haferlach, Claudia

    2014-03-01

    In patients with myelodysplastic syndromes (MDS), sole 20q deletion [del(20q)] is a recurrent favourable abnormality. We studied additional molecular and cytogenetic lesions and their prognostic impact in 305 MDS patients with del(20q) (229 males/76 females; 29-90 years). All patients were investigated by cytomorphology and chromosome banding analysis (CBA), subsets by fluorescence in situ hybridization, molecular mutation screening, and array comparative genomic hybridization (aCGH). By aCGH (n = 30), the minimal common deleted region (CDR) was flanked by PTPRT (20q13·11) and EYA2 (20q13·12). 210 (68·9%) patients had 'early MDS' without blast increase, 95 (31·1%) 'advanced' MDS with blast increase (5-19%). Additional chromosomal abnormalities (ACAs) were detected in 88/305 (28·9%) patients. Patients with advanced MDS more frequently had ACAs (P = 0·003) and had a higher mean number of ACAs (P = 0·020) and of molecular mutations (P = 0·060). Spliceosome mutations were frequent (U2AF1: n = 31/155; 20·0%; SRSF2: n = 31/159; 19·5%; SF3B1mut: n = 8/159; 5·0%). ASXL1mut (25/153; 16·3%) were associated with advanced MDS (P = 0·001). Presence of ≥3 ACAs (P = 0·003) and ASXL1mut (P = 0·002) were associated with worse 2-year survival. In conclusion, the cytogenetic subgroup of MDS with del(20q) has a good prognosis but may be further subclassified by additional cytogenetic and molecular lesions. U2AF1mut is overrepresented in MDS with del(20q), and ASXL1mut is prognostically adverse. © 2013 John Wiley & Sons Ltd.

  5. Heart defects and other features of the 22q11 distal deletion syndrome

    DEFF Research Database (Denmark)

    Fagerberg, Christina Ringmann; Graakjaer, Jesper; Heinl, Ulrike D

    2013-01-01

    patients with 22q11 distal deletions, of whom two have complex congenital heart malformation, thus broadening the phenotypic spectrum. We compare cardiac malformations reported in 22q11 distal deletion to those reported in the common 22q11 deletion syndrome. We also review the literature for patients...... with 22q11 distal deletions, and discuss the possible roles of haploinsufficiency of the MAPK1 gene. We find the most frequent features in 22q11 distal deletion to be developmental delay or learning disability, short stature, microcephalus, premature birth with low birth weight, and congenital heart...... malformation ranging from minor anomalies to complex malformations. Behavioral problems are also seen in a substantial portion of patients. The following dysmorphic features are relatively common: smooth philtrum, abnormally structured ears, cleft palate/bifid uvula, micro-/retrognathia, upslanting palpebral...

  6. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus

    2015-01-01

    Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering ...

  7. Severe intellectual disability, omphalocele, hypospadia and high blood pressure associated to a deletion at 2q22.1q22.3: case report

    Directory of Open Access Journals (Sweden)

    Mulatinho Milene

    2012-06-01

    Full Text Available Abstract Background Recently, array-comparative genomic hybridization (aCGH platforms have significantly improved the resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder, congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure. An ~ 6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH. Results Our index case exhibited a de novo chromosomal abnormality at 2q22 [del(2(q22.1q22.3dn] which was not visible at the 550 haploid band level. The deleted region includes eight genes: HNMT, SPOPL, NXPH2, LOC64702, LRP1B, KYNU, ARHGAP15 and GTDC1. Discussion aCGH revealed an ~ 6 Mb deletion in 2q22.1 to 2q22.3 in an as-yet unique clinical case associated with intellectual disability, congenital malformations and autism spectrum disorder. Interestingly, the deletion is co-localized with a fragile site (FRA2K, which could be involved in the formation of this chromosomal aberration. Further studies are needed to determine if deletions of 2q22.1 to 2q22.3 define a new microdeletion syndrome.

  8. Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization.

    OpenAIRE

    Fantes, J A; Bickmore, W A; Fletcher, J M; Ballesta, F; Hanson, I M; van Heyningen, V

    1992-01-01

    Fluorescence in situ hybridization (FISH) with biotin-labeled probes mapping to 11p13 has been used for the molecular analysis of deletions of the WAGR (Wilms tumor, aniridia, genitourinary abnormalities, and mental retardation) locus. We have detected a submicroscopic 11p13 deletion in a child with inherited aniridia who subsequently presented with Wilms tumor in a horseshoe kidney, only revealed at surgery. The mother, who has aniridia, was also found to carry a deletion including both the ...

  9. Subtelomeric Copy Number Variations: The Importance of 4p/4q Deletions in Patients with Congenital Anomalies and Developmental Disability.

    Science.gov (United States)

    Novo-Filho, Gil M; Montenegro, Marília M; Zanardo, Évelin A; Dutra, Roberta L; Dias, Alexandre T; Piazzon, Flavia B; Costa, Taís V M M; Nascimento, Amom M; Honjo, Rachel S; Kim, Chong A; Kulikowski, Leslie D

    2016-01-01

    The most prevalent structural variations in the human genome are copy number variations (CNVs), which appear predominantly in the subtelomeric regions. Variable sizes of 4p/4q CNVs have been associated with several different psychiatric findings and developmental disability (DD). We analyzed 105 patients with congenital anomalies (CA) and developmental and/or intellectual disabilities (DD/ID) using MLPA subtelomeric specific kits (P036 /P070) and 4 of them using microarrays. We found abnormal subtelomeric CNVs in 15 patients (14.3%), including 8 patients with subtelomeric deletions at 4p/4q (53.3%). Additional genomic changes were observed at 1p36, 2q37.3, 5p15.3, 5q35.3, 8p23.3, 13q11, 14q32.3, 15q11.2, and Xq28/Yq12. This indicates the prevalence of independent deletions at 4p/4q, involving PIGG, TRIML2, and FRG1. Furthermore, we identified 15 genes with changes in copy number that contribute to neurological development and/or function, among them CRMP1, SORCS2, SLC25A4, and HELT. Our results highlight the association of genes with changes in copy number at 4p and 4q subtelomeric regions and the DD phenotype. Cytogenomic characterization of additional cases with distal deletions should help clarifying the role of subtelomeric CNVs in neurological diseases. © 2016 S. Karger AG, Basel.

  10. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  11. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  12. Clinical and molecular consequences of exon 78 deletion in DMD gene.

    Science.gov (United States)

    Traverso, Monica; Assereto, Stefania; Baratto, Serena; Iacomino, Michele; Pedemonte, Marina; Diana, Maria Cristina; Ferretti, Marta; Broda, Paolo; Minetti, Carlo; Gazzerro, Elisabetta; Madia, Francesca; Bruno, Claudio; Zara, Federico; Fiorillo, Chiara

    2018-03-19

    We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease.

  13. Alu-mediated deletion of SOX10 regulatory elements in Waardenburg syndrome type 4.

    Science.gov (United States)

    Bondurand, Nadége; Fouquet, Virginie; Baral, Viviane; Lecerf, Laure; Loundon, Natalie; Goossens, Michel; Duriez, Benedicte; Labrune, Philippe; Pingault, Veronique

    2012-09-01

    Waardenburg syndrome type 4 (WS4) is a rare neural crest disorder defined by the combination of Waardenburg syndrome (sensorineural hearing loss and pigmentation defects) and Hirschsprung disease (intestinal aganglionosis). Three genes are known to be involved in this syndrome, that is, EDN3 (endothelin-3), EDNRB (endothelin receptor type B), and SOX10. However, 15-35% of WS4 remains unexplained at the molecular level, suggesting that other genes could be involved and/or that mutations within known genes may have escaped previous screenings. Here, we searched for deletions within recently identified SOX10 regulatory sequences and describe the first characterization of a WS4 patient presenting with a large deletion encompassing three of these enhancers. Analysis of the breakpoint region suggests a complex rearrangement involving three Alu sequences that could be mediated by a FosTes/MMBIR replication mechanism. Taken together with recent reports, our results demonstrate that the disruption of highly conserved non-coding elements located within or at a long distance from the coding sequences of key genes can result in several neurocristopathies. This opens up new routes to the molecular dissection of neural crest disorders.

  14. Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease

    Energy Technology Data Exchange (ETDEWEB)

    Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg; Baptist, Myma; Chang, Jessie; Collette, Nicole M.; Ovcharenko, Dmitriy; Plajzer-Frick, Ingrid; Rubin, Edward M.

    2005-04-15

    Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent with the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.

  15. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee

    2009-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with 137 Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H 2 O 2 -treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H 2 O 2 -treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells

  16. The SHOX region and its mutations.

    Science.gov (United States)

    Capone, L; Iughetti, L; Sabatini, S; Bacciaglia, A; Forabosco, A

    2010-06-01

    The short stature homeobox-containing (SHOX) gene lies in the pseudoautosomal region 1 (PAR1) that comprises 2.6 Mb of the short-arm tips of both the X and Y chromosomes. It is known that its heterozygous mutations cause Leri-Weill dyschondrosteosis (LWD) (OMIM #127300), while its homozygous mutations cause a severe form of dwarfism known as Langer mesomelic dysplasia (LMD) (OMIM #249700). The analysis of 238 LWD patients between 1998 and 2007 by multiple authors shows a prevalence of deletions (46.4%) compared to point mutations (21.2%). On the whole, deletions and point mutations account for about 67% of LWD patients. SHOX is located within a 1000 kb desert region without genes. The comparative genomic analysis of this region between genomes of different vertebrates has led to the identification of evolutionarily conserved non-coding DNA elements (CNE). Further functional studies have shown that one of these CNE downstream of the SHOX gene is necessary for the expression of SHOX; this is considered to be typical "enhancer" activity. Including the enhancer, the overall mutation of the SHOX region in LWD patients does not hold in 100% of cases. Various authors have demonstrated the existence of other CNE both downstream and upstream of SHOX regions. The resulting conclusion is that it is necessary to reanalyze all LWD/LMD patients without SHOX mutations for the presence of mutations in the 5'- and 3'-flanking SHOX regions.

  17. Rare copy number deletions predict individual variation in intelligence.

    Directory of Open Access Journals (Sweden)

    Ronald A Yeo

    2011-01-01

    Full Text Available Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in "mutation load" emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent copy number variations (CNVs, and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77 had been administered the Wechsler Abbreviated Scale of Intelligence (WASI. After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = -.30, p = .01. As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES, we also examined the impact of ethnicity (Anglo/White vs. Other, as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed.

  18. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Science.gov (United States)

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  19. Homozygous Deletions and Recurrent Amplifications Implicate New Genes Involved in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Wennuan Liu

    2008-08-01

    Full Text Available Prostate cancer cell lines provide ideal in vitro systems for the identification and analysis of prostate tumor suppressors and oncogenes. A detailed characterization of the architecture of prostate cancer cell line genomes would facilitate the study of precise roles of various genes in prostate tumorigenesis in general. To contribute to such a characterization, we used the GeneChip 500K single nucleotide polymorphic (SNP array for analysis of genotypes and relative DNA copy number changes across the genome of 11 cell lines derived from both normal and cancerous prostate tissues. For comparison purposes, we also examined the alterations observed in the cell lines in tumor/normal pairs of clinical samples from 72 patients. Along with genome-wide maps of DNA copy number changes and loss of heterozygosity for these cell lines, we report previously unreported homozygous deletions and recurrent amplifications in prostate cancers in this study. The homozygous deletions affected a number of biologically important genes, including PPP2R2A and BNIP3L identified in this study and CDKN2A/CDKN2B reported previously. Although most amplified genomic regions tended to be large, amplifications at 8q24.21 were of particular interest because the affected regions are relatively small, are found in multiple cell lines, are located near MYC, an oncogene strongly implicated in prostate tumorigenesis, and are known to harbor SNPs that are associated with inherited susceptibility for prostate cancer. The genomic alterations revealed in this study provide an important catalog of positional information relevant to efforts aimed at deciphering the molecular genetic basis of prostate cancer.

  20. A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy.

    Science.gov (United States)

    Ben-Salem, Salma; Al-Shamsi, Aisha M; John, Anne; Ali, Bassam R; Al-Gazali, Lihadh

    2015-05-01

    Recent studies have implicated the WW domain-containing oxidoreductase encoding gene (WWOX) in a severe form of autosomal recessive neurological disorder. This condition showed an overlapping spectrum of clinical features including spinocerebellar ataxia associated with generalized seizures and delayed psychomotor development to growth retardation, spasticity, and microcephaly. We evaluated a child from a consanguineous Emirati family that presented at birth with growth retardation, microcephaly, epileptic seizures, and later developed spasticity and delayed psychomotor development. Screening for deletions and duplications using whole-chromosomal microarray analysis identified a novel homozygous microdeletion encompassing exon 5 of the WWOX gene. Analysis of parental DNA indicated that this deletion was inherited from both parents and lies within a large region of homozygosity. Sanger sequencing of the cDNA showed that the deletion resulted in exon 5 skipping leading to a frame-shift and creating a premature stop codon at amino acid position 212. Quantification of mRNA revealed striking low level of WWOX expression in the child and moderate level of expression in the mother compared to a healthy control. To the best of our knowledge, this is the first homozygous germline structural variation in WWOX gene resulting in truncated transcripts that were presumably subject to NMD pathway. Our findings extend the clinical and genetic spectrum of WWOX mutations and support a crucial role of this gene in neurological development.

  1. Angiotensin-converting enzyme insertion/deletion gene ...

    Indian Academy of Sciences (India)

    Angiotensin-converting enzyme insertion/deletion gene polymorphism in cystic fibrosis patients. Sabrine Oueslati Sondess Hadj Fredj Hajer Siala Amina Bibi Hajer Aloulou Lamia Boughamoura Khadija Boussetta Sihem Barsaoui Taieb Messaoud. Research Note Volume 95 Issue 1 March 2016 pp 193-196 ...

  2. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  3. Acquired retinal pigmentary degeneration in a child with 13q deletion syndrome.

    Science.gov (United States)

    Aguilera, Zenia P; Belin, Peter J; Cavuoto, Kara M; Jayakar, Parul; McKeown, Craig A

    2015-10-01

    Orbeli syndrome, or 13q deletion syndrome, is a rare condition caused by a distal deletion in the long arm of chromosome 13. The syndrome is characterized by severe physical malformations and developmental delays and has been associated with numerous ocular manifestations. We report the case of a 10-year-old boy with 13q deletion syndrome, who was evaluated for impaired vision and found to have bilateral retinal pigmentary changes resembling those seen in retinitis pigmentosa. There has only been one other case of retinal pigment variation in association with 13q deletion syndrome; however, this represents the first case of bilateral symmetric retinal pigmentary changes with corresponding rod and cone dysfunction on electroretinography. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  4. Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Science.gov (United States)

    Schnable, James C.; Freeling, Michael; Lyons, Eric

    2012-01-01

    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519

  5. Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors.

    Science.gov (United States)

    Catón, Javier; Luder, Hans-Ulrich; Zoupa, Maria; Bradman, Matthew; Bluteau, Gilles; Tucker, Abigail S; Klein, Ophir; Mitsiadis, Thimios A

    2009-04-15

    TBX1 is a principal candidate gene for DiGeorge syndrome, a developmental anomaly that affects the heart, thymus, parathyroid, face, and teeth. A mouse model carrying a deletion in a functional region of the Tbx1 gene has been extensively used to study anomalies related to this syndrome. We have used the Tbx1 null mouse to understand the tooth phenotype reported in patients afflicted by DiGeorge syndrome. Because of the early lethality of the Tbx1-/- mice, we used long-term culture techniques that allow the unharmed growth of incisors until their full maturity. All cultured incisors of Tbx1-/- mice were hypoplastic and lacked enamel, while thorough histological examinations demonstrated the complete absence of ameloblasts. The absence of enamel is preceded by a decrease in proliferation of the ameloblast precursor cells and a reduction in amelogenin gene expression. The cervical loop area of the incisor, which contains the niche for the epithelial stem cells, was either severely reduced or completely missing in mutant incisors. In contrast, ectopic expression of Tbx1 was observed in incisors from mice with upregulated Fibroblast Growth Factor signalling and was closely linked to ectopic enamel formation and deposition in these incisors. These results demonstrate that Tbx1 is essential for the maintenance of ameloblast progenitor cells in rodent incisors and that its deletion results in the absence of enamel formation.

  6. X-ray-induced specific-locus mutations in the ad-3 region of two-component heterokaryons of Neurospora crass

    International Nuclear Information System (INIS)

    De Serres, F.J.

    1990-01-01

    More extensive complementation tests than those performed initially on a series of 832 X-ray-induced specific-locus mutations in the adenine-4 (ad-3) region of a two-component heterokaryon (H-12) of Neurospora crassa showed that unexpectedly high frequencies of specific-locus mutations in the ad-3 region have additional, but separate, sites of recessive lethal damage in the immediately adjacent genetic regions. In the present paper, X-ray-induced irreparable ad-3 mutants of the folowing genotypes and numbers (ad-3A ad-3B, ad-3A ad-3B nic-2, and ad-3B nic-2) have also subjected to the same genetic fine structure analysis. These experiments, in the previous and present papers, were designed to determine the extent of the functional inactivation in the ad-3 and immediately adjacent genetic regions in individual mutants classified as presumptive multilocus deletions or multiplelocus mutations. The data in the present paper have shown that in Neurospora crassa most X-ray-induced irreparable mutants of genotype ad-3A ad-3B, ad-3A ad-3B nic-2, and ad-3 nic-2 map as a series of overlapping multilocus deletions. In addition, genetic fine structure analysis has shown that some of the mutants classified, initially, as multilocus deletions, are actually multiple-locus mutations: multilocus deletions with closely linked, and separate, sites of recessive lethal damage with a wide variety of genotyes. Combining data from the present experiments with previously published date, the frequency of multiple-locus mutations among X-ray-induced gene/point mutations and multilocus deletions in the ad-3 region is 6.2%. (author). 27 refs.; 4 figs.; 7 tab

  7. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Directory of Open Access Journals (Sweden)

    Knol Dirk L

    2006-08-01

    Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.

  8. Physical and transcript map of the region between D6S264 and D6S149 on chromosome 6q27, the minimal region of allele loss in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Emilion, Gracy; Mungall, Andrew J

    2002-01-01

    We have previously shown a high frequency of allele loss at D6S193 (62%) on chromosomal arm 6q27 in ovarian tumours and mapped the minimal region of allele loss between D6S297 and D6S264 (3 cM). We isolated and mapped a single non-chimaeric YAC (17IA12, 260-280 kb) containing D6S193 and D6S297...

  9. Genome-Wide Spectra of Transcription Insertions and Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity.

    Science.gov (United States)

    Traverse, Charles C; Ochman, Howard

    2017-08-29

    Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola , which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions-errors that potentially have more dire effects on protein function-is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions

  10. Pregnancy after preimplantation diagnosis for a deletion in the dystrophin gene by polymerase chain reaction in embryos obtained after intracytoplasmic sperm injection

    Energy Technology Data Exchange (ETDEWEB)

    Lissens, W.; Liu, J.; Van Broeckhoven, C. [University Hospital, Brussels (Belgium)] [and others

    1994-09-01

    Duchenne muscular dystrophy (DMD) is one of the most common X-linked recessive diseases. In order to be able to perform a DMD-specific preimplantation diagnosis (PID) in a female carrier of a deletion of exons 3 to 18 in the dystrophin gene, we have developed a PCR assay to detect the deletion based on sequences of exon 17. The efficiency of this PCR was evaluated on 50 single blastomeres from 12 normal control embryos and on 41 blastomeres for 9 male and 3 female embryos from the female DMD carrier, obtained after a first preimplantation diagnosis by sexing. The exon 17 region was amplified with 100% efficiency, except in all 21 blastomeres from 6 male embryos from the carrier where no PCR signals were observed. The negative results in these blastomeres were interpreted as being found only in male embryos carrying the deletion. Intracytoplasmic sperm injection was carried out on the carrier`s metaphase II oocytes retrieved after ovarian stimulation. Embryos were analyzed for the presence of exon 17 and 2 male embryos were found to be deleted, while 4 embryos showed normal amplification signals. Three of the latter embryos were replaced, resulting in a singleton pregnancy. Amniotic cell analysis showed a normal female karyotype and DNA analysis indicated a non-carrier.

  11. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-06-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with {sup 137}Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H{sub 2}O{sub 2}-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H{sub 2}O{sub 2}-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

  12. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    Science.gov (United States)

    2014-01-01

    Background Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome. PMID:24958239

  13. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation.

    Science.gov (United States)

    Isobe, Kazutoshi; Kakimoto, Atsushi; Mikami, Tetsuo; Kaburaki, Kyohei; Kobayashi, Hiroshi; Yoshizawa, Takahiro; Makino, Takashi; Otsuka, Hajime; Sano, G O; Sugino, Keishi; Sakamoto, Susumu; Takai, Yujiro; Tochigi, Naobumi; Iyoda, Akira; Homma, Sakae

    This pilot study assessed the association of BIM deletion polymorphism and BIM RNA isoform in patients with EGFR-positive non-small cell lung cancer (NSCLC). The study included 33 patients with EGFR-positive NSCLC treated with gefitinib. BIM deletion polymorphism and BIM RNA isoform (EL/L/S/γ) were determined by polymerase chain reaction (PCR). BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism inside tumors (p=0.038) and around tumors (p=0.0024). Relative BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism (p=0.0017). Patients with BIM-γ had significantly shorter progression-free survival than those without BIM-γ (median: 304 vs. 732 days; p=0.023). Expression of BIM-γ mRNA and BIM deletion polymorphism were strongly associated. BIM-γ overexpression may have a role in apoptosis related to EGFR-tyrosine kinase inhibitor. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  14. Parameter-free Network Sparsification and Data Reduction by Minimal Algorithmic Information Loss

    KAUST Repository

    Zenil, Hector

    2018-02-16

    The study of large and complex datasets, or big data, organized as networks has emerged as one of the central challenges in most areas of science and technology. Cellular and molecular networks in biology is one of the prime examples. Henceforth, a number of techniques for data dimensionality reduction, especially in the context of networks, have been developed. Yet, current techniques require a predefined metric upon which to minimize the data size. Here we introduce a family of parameter-free algorithms based on (algorithmic) information theory that are designed to minimize the loss of any (enumerable computable) property contributing to the object\\'s algorithmic content and thus important to preserve in a process of data dimension reduction when forcing the algorithm to delete first the least important features. Being independent of any particular criterion, they are universal in a fundamental mathematical sense. Using suboptimal approximations of efficient (polynomial) estimations we demonstrate how to preserve network properties outperforming other (leading) algorithms for network dimension reduction. Our method preserves all graph-theoretic indices measured, ranging from degree distribution, clustering-coefficient, edge betweenness, and degree and eigenvector centralities. We conclude and demonstrate numerically that our parameter-free, Minimal Information Loss Sparsification (MILS) method is robust, has the potential to maximize the preservation of all recursively enumerable features in data and networks, and achieves equal to significantly better results than other data reduction and network sparsification methods.

  15. Detailed clinical and molecular study of 20 females with Xq deletions with special reference to menstruation and fertility.

    Science.gov (United States)

    Mercer, Catherine L; Lachlan, Katherine; Karcanias, Alexandra; Affara, Nabeel; Huang, Shuwen; Jacobs, Patricia A; Thomas, N Simon

    2013-01-01

    Integrity of the long arm of the X chromosome is important for maintaining female fertility and several critical regions for normal ovarian function have been proposed. In order to understand further the importance of specific areas of the X chromosome, we describe a series of 20 previously unreported patients missing part of Xq in whom detailed phenotypic information has been gathered as well as precise chromosome mapping using array Comparative Genomic Hybridization. Features often associated with Turner syndrome were not common in our study and excluding puberty, menarche and menstruation, the phenotypes observed were present in only a minority of women and were not specific to the X chromosome. The most frequently occurring phenotypic features in our patients were abnormalities of menstruation and fertility. Larger terminal deletions were associated with a higher incidence of primary ovarian failure, occurring at a younger age; however patients with similar or even identical deletions had discordant menstrual phenotypes, making accurate genetic counselling difficult. Nevertheless, large deletions are likely to be associated with complete skewing of X inactivation so that the resulting phenotypes are relatively benign given the amount of genetic material missing, even in cases with unbalanced X;autosome translocations. Some degree of ovarian dysfunction is highly likely, especially for terminal deletions extending proximal to Xq27. In conjunction with patient data from the literature, our study suggests that loss of Xq26-Xq28 has the most significant effect on ovarian function. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Lardon, A.; Georgiev, S.; Aghmir, A.; Le Merrer, G.; Negrutiu, I.

    1999-01-01

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  17. Boyer-Moore Algorithm in Retrieving Deleted Short Message Service in Android Platform

    Science.gov (United States)

    Rahmat, R. F.; Prayoga, D. F.; Gunawan, D.; Sitompul, O. S.

    2018-02-01

    Short message service (SMS) can be used as digital evidence of disclosure of crime because it can strengthen the charges against the offenders. Criminals use various ways to destroy the evidence, including by deleting SMS. On the Android OS, SMS is stored in a SQLite database file. Deletion of SMS data is not followed by bit deletion in memory so that it is possible to rediscover the deleted SMS. Based on this case, the mobile forensic needs to be done to rediscover the short message service. The proposed method in this study is Boyer-Moore algorithm for searching string matching. An auto finds feature is designed to rediscover the short message service by searching using a particular pattern to rematch a text with the result of the hex value conversion in the database file. The system will redisplay the message for each of a match. From all the testing results, the proposed method has quite a high accuracy in rediscovering the short message service using the used dataset. The search results to rediscover the deleted SMS depend on the possibility of overwriting process and the vacuum procedure on the database file.

  18. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions

    Directory of Open Access Journals (Sweden)

    Liang Rubing

    2010-08-01

    Full Text Available Abstract Background The lambda Red recombination system has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR fragment containing antibiotic cassette flanked by homology regions to the target locus into a strain that can express the lambda Red proteins (Gam, Bet, Exo. Results Here a scarless gene modification strategy based on the Red recombination system has been developed to modify Pseudomonas genome DNA via sequential deletion of multiple targets. This process was mediated by plasmid pRKaraRed encoding the Red proteins regulated by PBAD promoter, which was functional in P. aeruginosa as well as in other bacteria. First the target gene was substituted for the sacB-bla cassette flanked by short homology regions (50 bp, and then this marker gene cassette could be replaced by the PCR fragment flanking itself, generating target-deleted genome without any remnants and no change happened to the surrounding region. Twenty genes involved in the synthesis and regulation pathways of the phenazine derivate, pyocyanin, were modified, including one single-point mutation and deletion of two large operons. The recombination efficiencies ranged from 88% to 98%. Multiple-gene modification was also achieved, generating a triple-gene deletion strain PCA (PAO1, ΔphzHΔphzMΔphzS, which could produce another phenazine derivate, phenazine-1-carboxylic acid (PCA, efficiently and exclusively. Conclusions This lambda Red-based technique can be used to generate scarless and sequential gene modification mutants of P. aeruginosa efficiently, using one-step PCR product flanked by short homology regions. Single-point mutation, scarless deletion of genes can be achieved easily in less than three days. This method may give a new way to construct genetically modified P. aeruginosa strains more efficiently and advance the regulatory network study of this organism.

  19. Differentiated psychopharmacological treatment in three genetic subtypes of 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Leeuw, N. de

    2017-01-01

    Introduction: The 22q11.2 deletion syndrome (22q11DS), mostly caused by the common deletion including the TBX- and COMT-genes (LCR22A-D), is highly associated with somatic anomalies. The distal deletion (distal of LCR22D) comprises the MAPK1-gene and is associated with specific heart defects. The

  20. Detection of a new submicroscopic Norrie disease deletion interval with a novel DNA probe isolated by differential Alu PCR fingerprint cloning

    NARCIS (Netherlands)

    Bergen, A. A.; Wapenaar, M. C.; Schuurman, E. J.; Diergaarde, P. J.; Lerach, H.; Monaco, A. P.; Bakker, E.; Bleeker-Wagemakers, E. M.; van Ommen, G. J.

    1993-01-01

    Differential Alu PCR fingerprint cloning was used to isolate a DNA probe from the Xp11.4-->p11.21 region of the human X chromosome. This novel sequence, cpXr318 (DXS742), detects a new submicroscopic deletion interval at the Norrie disease locus (NDP). Combining our data with the consensus genetic

  1. A novel deletion in the thyrotropin Beta-subunit gene identified by array comparative genomic hybridization analysis causes central congenital hypothyroidism in a boy originating from Turkey.

    Science.gov (United States)

    Hermanns, Pia; Couch, Robert; Leonard, Norma; Klotz, Cherise; Pohlenz, Joachim

    2014-01-01

    Isolated central congenital hypothyroidism (ICCH) is rare but important. Most ICCH patients are diagnosed later, which results in severe growth failure and intellectual disability. We describe a boy with ICCH due to a large homozygous TSHβ gene deletion. A 51-day-old male Turkish infant, whose parents were first cousins, was admitted for evaluation of prolonged jaundice. His clinical appearance was compatible with hypothyroidism. Venous thyrotropin (TSH) was undetectably low, with a subsequent low free T4 and a low free T3, suggestive of central hypothyroidism. Using different PCR protocols, we could not amplify both coding exons of the boy's TSHβ gene, which suggested a deletion. An array comparative genomic hybridization (aCGH) using specific probes around the TSHβ gene locus showed him to be homozygous for a 6-kb deletion spanning all exons and parts of the 5' untranslated region of the gene. Infants who are clinically suspected of having hypothyroidism should be evaluated thoroughly, even if their TSH-based screening result is normal. In cases with ICCH and undetectably low TSH serum concentrations, a TSHβ gene deletion should be considered; aCGH should be performed when gene deletions are suspected. In such cases, PCR-based sequencing techniques give negative results.

  2. Identification of Three Types of α-Thalassemia Deletion, -α21.9, -α2.4, and - -THAI, and Their Frequencies, in One Family in the Population of Southern Guangxi Zhuang Autonomous Region, People's Republic of China.

    Science.gov (United States)

    Pang, Wanrong; Long, Ju; Weng, Xunjin; Fan, Qiongying; Sun, Lei; Pan, Zhijian; Fan, Zuqian

    2018-01-01

    Different types of deletional α-thalassemia (α-thal) have been reported by researchers in China. This study describes one family carrying -α 21.9 (NG_000006.1: g.14373_36299delinsGGGAAGGGTGGGTGGGAATAACAGCTTTT), -α 2.4 (NG_000006.1: g.36860_39251del) and - - THAI (Thailand) (NG_000006.1: g.10664_44164del) alleles in Guangxi Zhuang Autonomous Region, People's Republic of China (PRC), and reports the frequencies of these types in the population of this region. The proband was a 4-year-old girl, who screened positive for thalassemia, although the thalassemia genotype results were normal when screened using the routine kits. Samples of the proband's parents were also collected to perform further analyses. Two real-time gap-polymerase chain reaction (gap-PCR) systems were designed for separate detection of - - THAI and screening for -α 21.9 and -α 2.4 . The genotype of the proband was -α 21.9 /-α 2.4 , and the two variants were inherited from her parents. In the frequency study, five - - THAI , four -α 21.9 and 11 -α 2.4 positive individuals were detected in the 3410 random samples. Thus, allele frequencies of -α 21.9 , - - THAI and -α 2.4 in the population of southern Guangxi were determined as 0.059, 0.073 and 0.161%, respectively. This is the first report of an individual carrying the -α 21.9 /-α 2.4 genotype, and the first report of the detection of -α 21.9 , -α 2.4 and - - THAI in a single family. The total frequency for these alleles was 0.293% in southern Guangxi, suggesting that the thalassemia clinical center in this region should utilize a screening kit that allows detection of these types of deletions for a more comprehensive evaluation of thalassemia risk.

  3. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication.

    Science.gov (United States)

    Pudupakam, R S; Kenney, Scott P; Córdoba, Laura; Huang, Yao-Wei; Dryman, Barbara A; Leroith, Tanya; Pierson, F William; Meng, Xiang-Jin

    2011-10-01

    The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.

  4. [Grave's disease in children with 22q11 deletion. Report of three cases].

    Science.gov (United States)

    Gosselin, J; Lebon-Labich, B; Lucron, H; Marçon, F; Leheup, B

    2004-12-01

    Hypothyroidism is a well recognized complication of 22q11.2 deletion syndrome. Auto-immune hyperthyroidism is less common. We report three patients with a 22q11.2 deletion and Graves' disease diagnosed at age 17, 14 and 11 years, respectively. The clinical and biological presentation was typical for auto-immune hyperthyroidism. Graves' disease should be periodically sought during the follow-up program of patients with 22q11.2 deletion syndrome.

  5. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice

    DEFF Research Database (Denmark)

    Lehre, A C; Rowley, N M; Zhou, Y

    2011-01-01

    of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic...... to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However......, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test...

  6. Deletion of the B-B' and C-C' regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression.

    Science.gov (United States)

    Zhou, Qingzhang; Tian, Wenhong; Liu, Chunguo; Lian, Zhonghui; Dong, Xiaoyan; Wu, Xiaobing

    2017-07-14

    Inverted terminal repeats (ITRs) of the adeno-associated virus (AAV) are essential for rescue, replication, packaging, and integration of the viral genome. While ITR mutations have been identified in previous reports, we designed a new truncated ITR lacking the B-B' and C-C' regions named as ITRΔBC and investigated its effects on viral genome replication, packaging, and expression of recombinant AAV (rAAV). The packaging ability was compared between ITRΔBC rAAV and wild-type (wt) ITR rAAV. Our results showed the productivity of ITRΔBC rAAV was reduced 4-fold, which is consistent with the 8-fold decrease in the replication of viral genomic DNA of ITRΔBC rAAV compared with wt ITR rAAV. Surprisingly, transgene expression was significantly higher for ITRΔBC rAAV. A preliminary exploration of the underlying mechanisms was carried out by inhibiting and degrading the ataxia telangiectasia mutated (ATM) protein and the Mre11 complex (MRN), respectively, since the rAAV expression was inhibited by the ATM and/or MRN through cis interaction or binding with wt ITRs. We demonstrated that the inhibitory effects were weakened on ITRΔBC rAAV expression. This study suggests deletion in ITR can affect the transgene expression of AAV, which provides a new way to improve the AAV expression through ITRs modification.

  7. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  8. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Timm, Sally; Wang, August G

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  9. NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation

    Directory of Open Access Journals (Sweden)

    Bruix Marta

    2010-01-01

    Full Text Available Abstract Background Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. Results We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. Conclusions These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.

  10. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans

    Directory of Open Access Journals (Sweden)

    Chin Kara

    2007-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans. Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.

  11. Frequency of heterozygous TET2 deletions in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Joseph Tripodi

    2010-09-01

    Full Text Available Joseph Tripodi1, Ronald Hoffman1, Vesna Najfeld2, Rona Weinberg31The Myeloproliferative Disorders Program, Tisch Cancer Institute, Department of Medicine and 2Department of Medicine and Pathology, Mount Sinai School of Medicine, 3The Myeloproliferative Disorders Program, Cellular Therapy Laboratory, The New York Blood Center, New York, NY, USAAbstract: The Philadelphia chromosome (Ph-negative myeloproliferative neoplasms (MPNs, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a group of clonal hematopoietic stem cell disorders with overlapping clinical and cytogenetic features and a variable tendency to evolve into acute leukemia. These diseases not only share overlapping chromosomal abnormalities but also a number of acquired somatic mutations. Recently, mutations in a putative tumor suppressor gene, ten-eleven translocation 2 (TET2 on chromosome 4q24 have been identified in 12% of patients with MPN. Additionally 4q24 chromosomal rearrangements in MPN, including TET2 deletions, have also been observed using conventional cytogenetics. The goal of this study was to investigate the frequency of genomic TET2 rearrangements in MPN using fluorescence in situ hybridization as a more sensitive method for screening and identifying genomic deletions. Among 146 MPN patients, we identified two patients (1.4% who showed a common 4q24 deletion, including TET2. Our observations also indicated that the frequency of TET2 deletion is increased in patients with an abnormal karyotype (5%.Keywords: TET2, myeloproliferative neoplasms, fluorescence in situ hybridization, cytogenetics

  12. Proximal 21q deletion as a result of a de novo unbalanced t(12;21) translocation in a patient with dysmorphic features, hepatomegaly, thick myocardium and delayed psychomotor development

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Damgaard, Ida N; Cornelius, Nanna

    2016-01-01

    of the region from 32.3 Mb to 37.1 Mb was more crucial than the deletion of other regions. CASE PRESENTATION: In this study we describe a female patient with dysmorphic features, hepatomegaly, thick myocardium and psychomotor delay. Conventional karyotyping was initially interpreted as full monosomy 21...

  13. Deletion affecting band 7q36 not associated with holoprosencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, S.A.D.; Krivchenia, E.; Mohamed, A.N. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Although the appearance of 7q36 aberrations have been postulated to be responsible for holoprosencephaly (HPE), the presence of a de novo 7q36 deletion in fetus without HPE has not been reported. We report the first case of a fetus with 7q36 deletion but lacking HPE. Ultrasound examination of a 25-year-old G3P1 Caucasian female showed small head circumference with microcephaly at 28 weeks. Decreased amniotic fluid volume, bilateral renal dilatation and abnormal facial features were also noted. Chromosome analysis after cordocentesis showed an abnormal female karyotype with a deletion involving the chromosome band 7q36, 46,XX,del(7)(q36). Chromosome studies on the biological parents were normal. In view of the chromosome finding and after extensive counseling, the couple elected to terminate the pregnancy. The chromosome findings were confirmed by fetal blood chromosome analysis at termination. Post-mortem examination confirmed dysmorphic features including a depressed nasal bridge and large flat ears with no lobules, but no cleft lip or palate was noted. Internal abnormalities included a bicuspid pulmonary valve and abnormally located lungs. The brain weighed 190g (249 {plus_minus} 64g expected) and had symmetric cerebral hemispheres without evidence of HPE or other gross or microscopic malformation, except focal cerebellar cortical dysplasia. In summary, our patient showed a deletion of the same chromosomal band implicated in HPE but lacked HPE. This finding indicates that 7q36 deletion may be seen in the absence of HPE and suggests that other genetic mechanisms may be responsible for HPE in this setting.

  14. The role of mitochondrial DNA large deletion for the development of presbycusis in Fischer 344 rats.

    Science.gov (United States)

    Yin, Shankai; Yu, Zhiping; Sockalingam, Ravi; Bance, Manohar; Sun, Genlou; Wang, Jian

    2007-09-01

    Age-related hearing loss, or presbycusis, has been associated with large-scale mitochondrial DNA (mtDNA) deletion in previous studies. However, the role of this mtDNA damage in presbycusis is still not clear because the deletion in inner ears has not been measured quantitatively and analyzed in parallel with the time course of presbycusis. In the present study, the deletion was quantified using quantitative real-time PCR (qRT-PCR) in male Fischer 344 rats of different ages. It was found that the deletion increased quickly during young adulthood and reached over 60% at 6 months of age. However, a significant hearing loss was not seen until after 12 months of age. The results suggest that the existence of the deletion per se does not necessarily imply cochlear damage, but rather a critical level of the accumulated deletion seems to precede the hearing loss. The long delay may indicate the involvement of mechanisms other than mtDNA deletion in the development of presbycusis.

  15. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  16. Pseudotumor of the pituitary due to PROP-1 deletion.

    Science.gov (United States)

    Teinturier, C; Vallette, S; Adamsbaum, C; Bendaoud, M; Brue, T; Bougnères, P F

    2002-01-01

    Hypopituitarism associated with pituitary mass in childhood is most frequently the consequence of craniopharyngioma or Rathke's cleft cyst. We report a patient with an intrasellar pseudotumor associated with hypopituitarism, which led us to a misdiagnosis of intrasellar craniopharyngioma. After spontaneous involution of the mass, diagnosis was revised. DNA analysis showed a deletion in the Prophet of Pit-1 (PROP-1) gene, a pituitary transcription factor. It is important to recognize that a PROP-1 deletion can cause pituitary pseudotumor that can be mistaken for a craniopharyngioma or Rathke's pouch cyst.

  17. Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer.

    Science.gov (United States)

    Kluth, Martina; Runte, Frederic; Barow, Philipp; Omari, Jazan; Abdelaziz, Zaid M; Paustian, Lisa; Steurer, Stefan; Christina Tsourlakis, Maria; Fisch, Margit; Graefen, Markus; Tennstedt, Pierre; Huland, Hartwig; Michl, Uwe; Minner, Sarah; Sauter, Guido; Simon, Ronald; Adam, Meike; Schlomm, Thorsten

    2015-11-15

    The deletion of 16q23-q24 belongs to the most frequent chromosomal changes in prostate cancer, but the clinical consequences of this alteration have not been studied in detail. We performed fluorescence in situ hybridization analysis using a 16q23 probe in more than 7,400 prostate cancers with clinical follow-up data assembled in a tissue microarray format. Chromosome 16q deletion was found in 21% of cancers, and was linked to advanced tumor stage, high Gleason grade, accelerated cell proliferation, the presence of lymph node metastases (p Deletion was more frequent in ERG fusion-positive (27%) as compared to ERG fusion-negative cancers (16%, p deletions including phosphatase and tensin homolog (PTEN) (p deletion of 16q was linked to early biochemical recurrence independently from the ERG status (p deletion of 16q alone. Multivariate modeling revealed that the prognostic value of 16q/PTEN deletion patterns was independent from the established prognostic factors. In summary, the results of our study demonstrate that the deletion of 16q and PTEN cooperatively drives prostate cancer progression, and suggests that deletion analysis of 16q and PTEN could be of important clinical value particularly for preoperative risk assessment of the clinically most challenging group of low- and intermediated grade prostate cancers. © 2015 UICC.

  18. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome

    Science.gov (United States)

    Bertelsen, Birgitte; Melchior, Linea; Jensen, Lars R; Groth, Camilla; Glenthøj, Birte; Rizzo, Renata; Debes, Nanette Mol; Skov, Liselotte; Brøndum-Nielsen, Karen; Paschou, Peristera; Silahtaroglu, Asli; Tümer, Zeynep

    2014-01-01

    Tourette syndrome is a neurodevelopmental disorder characterized by multiple motor and vocal tics, and the disorder is often accompanied by comorbidities such as attention-deficit hyperactivity-disorder and obsessive compulsive disorder. Tourette syndrome has a complex etiology, but the underlying environmental and genetic factors are largely unknown. IMMP2L (inner mitochondrial membrane peptidase, subunit 2) located on chromosome 7q31 is one of the genes suggested as a susceptibility factor in disease pathogenesis. Through screening of a Danish cohort comprising 188 unrelated Tourette syndrome patients for copy number variations, we identified seven patients with intragenic IMMP2L deletions (3.7%), and this frequency was significantly higher (P=0.0447) compared with a Danish control cohort (0.9%). Four of the seven deletions identified did not include any known exons of IMMP2L, but were within intron 3. These deletions were found to affect a shorter IMMP2L mRNA species with two alternative 5′-exons (one including the ATG start codon). We showed that both transcripts (long and short) were expressed in several brain regions, with a particularly high expression in cerebellum and hippocampus. The current findings give further evidence for the role of IMMP2L as a susceptibility factor in Tourette syndrome and suggest that intronic changes in disease susceptibility genes should be investigated further for presence of alternatively spliced exons. PMID:24549057

  19. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    Science.gov (United States)

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  20. A fast and easy real-time PCR genotyping method for the HLA-G 14-bp insertion/deletion polymorphism in the 3' untranslated region

    DEFF Research Database (Denmark)

    Djurisic, S; Sørensen, A E; Hviid, T V F

    2012-01-01

    and reliable method to screen for the HLA-G 14-bp insertion/deletion polymorphism using an optimized real-time polymerase chain reaction protocol. The genotyping assay has been validated by comparison with conventional methods. As results can be obtained within a few hours, the assay will have a potential...