WorldWideScience

Sample records for miniaturized probe based

  1. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  2. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  3. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  4. Miniature probe with semiconductor photodiode for measuring dose rates in radiotherapy

    International Nuclear Information System (INIS)

    Burian, A.

    1991-01-01

    The probe is designed for gaining information on the magnitude and spatial distribution of the dose which will be absorbed by the patient's body during radiotherapy. The probe satisfies requirements of high-level miniaturization and requirements on the shape and tissue-equivalence of the casing, as well as on efficient electromagnetic shielding. It is fitted with a miniature photodiode. Conductive carbon cement was used for attaching contacts to the photodiode. Efficient electromagnetic shielding was achieved by means of a carbon-based conductive layer. The photodiode casing was made from a mixture of organic materials whose biogenic elements approximate the standard soft human tissue. The geometry of the casing is adapted to the particular field of application of the probe. (Z.S). 2 figs

  5. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    Science.gov (United States)

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  6. Miniature fibre optic probe for minimally invasive photoacoustic sensing

    Science.gov (United States)

    Mathews, Sunish J.; Zhang, Edward Z.; Desjardins, Adrien E.; Beard, Paul C.

    2016-03-01

    A miniature (175 μm) all-optical photoacoustic probe has been developed for minimally invasive sensing and imaging applications. The probe comprises a single optical fibre which delivers the excitation light and a broadband 50 MHz Fabry-Pérot (F-P) ultrasound sensor at the distal end for detecting the photoacoustic waves. A graded index lens proximal to the F-P sensor is used to reduce beam walk-off and thus increase sensitivity as well as confine the excitation beam in order to increase lateral spatial resolution. The probe was evaluated in non-scattering media and found to provide lateral and axial resolutions of < 100 μm and < 150 μm respectively for distances up to 1 cm from the tip of the probe. The ability of the probe to detect a blood vessel mimicking phantom at distances up to 7 mm from the tip was demonstrated in order to illustrate its potential suitability for needle guidance applications.

  7. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  8. Miniature probe for the delivery and monitoring of a photopolymerizable material

    Science.gov (United States)

    Schmocker, Andreas; Khoushabi, Azadeh; Schizas, Constantin; Bourban, Pierre-Etienne; Pioletti, Dominique P.; Moser, Christophe

    2015-12-01

    Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532-nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluorescence and Raman signal.

  9. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    Science.gov (United States)

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  10. A miniaturized silicon based device for nucleic acids electrochemical detection

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2015-12-01

    Full Text Available In this paper we describe a novel portable system for nucleic acids electrochemical detection. The core of the system is a miniaturized silicon chip composed by planar microelectrodes. The chip is embedded on PCB board for the electrical driving and reading. The counter, reference and work microelectrodes are manufactured using the VLSI technology, the material is gold for reference and counter electrodes and platinum for working electrode. The device contains also a resistor to control and measuring the temperature for PCR thermal cycling. The reaction chamber has a total volume of 20 μL. It is made in hybrid silicon–plastic technology. Each device contains four independent electrochemical cells.Results show HBV Hepatitis-B virus detection using an unspecific DNA intercalating redox probe based on metal–organic compounds. The recognition event is sensitively detected by square wave voltammetry monitoring the redox signals of the intercalator that strongly binds to the double-stranded DNA. Two approaches were here evaluated: (a intercalation of electrochemical unspecific probe on ds-DNA on homogeneous solution (homogeneous phase; (b grafting of DNA probes on electrode surface (solid phase.The system and the method here reported offer better advantages in term of analytical performances compared to the standard commercial optical-based real-time PCR systems, with the additional incomes of being potentially cheaper and easier to integrate in a miniaturized device. Keywords: Electrochemical detection, Real time PCR, Unspecific DNA intercalator

  11. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  12. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    International Nuclear Information System (INIS)

    Wang, Youmin; Raj, Milan; Bhave, Gauri; Yang, Bin; Zhang, Xiaojing; McGuff, H. Stan; Shen, Ting

    2012-01-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE V R® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment. (paper)

  13. Low-Power Receive-Electronics for a Miniature 3D Ultrasound Probe

    NARCIS (Netherlands)

    Yu, Z.

    2012-01-01

    This thesis describes the design of a front-end application-specific integrated circuit (ASIC), which will be put into the tip of a miniature ultrasound probe for 3D Trans-Esophageal Echocardiography (TEE). To enable 3D TEE, a matrix piezoelectric ultrasound transducer with more than 2000 elements

  14. Miniature Flow-Direction/Pitot-Static Pressure Probes

    Science.gov (United States)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  15. A Miniature Four-Hole Probe for Measurement of Three-Dimensional Flow with Large Gradients

    Directory of Open Access Journals (Sweden)

    Ravirai Jangir

    2014-01-01

    Full Text Available A miniature four-hole probe with a sensing area of 1.284 mm2 to minimise the measurement errors due to the large pressure and velocity gradients that occur in highly three-dimensional turbomachinery flows is designed, fabricated, calibrated, and validated. The probe has good spatial resolution in two directions, thus minimising spatial and flow gradient errors. The probe is calibrated in an open jet calibration tunnel at a velocity of 50 m/s in yaw and pitch angles range of ±40 degrees with an interval of 5 degrees. The calibration coefficients are defined, determined, and presented. Sensitivity coefficients are also calculated and presented. A lookup table method is used to determine the four unknown quantities, namely, total and static pressures and flow angles. The maximum absolute errors in yaw and pitch angles are 2.4 and 1.3 deg., respectively. The maximum absolute errors in total, static, and dynamic pressures are 3.4, 3.9, and 4.9% of the dynamic pressures, respectively. Measurements made with this probe, a conventional five-hole probe and a miniature Pitot probe across a calibration section, demonstrated that the errors due to gradient and surface proximity for this probe are considerably reduced compared to the five-hole probe.

  16. A fast response miniature probe for wet steam flow field measurements

    International Nuclear Information System (INIS)

    Bosdas, Ilias; Mansour, Michel; Abhari, Reza S; Kalfas, Anestis I

    2016-01-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%. (paper)

  17. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  18. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands)

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  19. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  20. Real-time, in vivo measurement of radiation dose during radioimmunotherapy in mice using a miniature MOSFET dosimeter probe

    International Nuclear Information System (INIS)

    Gladstone, D.J.; Chin, L.M.

    1995-01-01

    This report presents the first real-time measurement of absorbed radiation dose during radioimmunotherapy in mice. Dose rate and total dose at the center of the tumor were measured after administration of 90 Y-labeled antibodies using a miniature metal oxide semiconductor field-effect transistor radiation dosimeter probe which was inserted into the center of the tumor volume. Continuous real-time measurements were made for as long as 23 h after injection of the radiolabeled antibodies. Comparison of the real-time dose-rate measurements with estimates based on the MIRD formalism indicates good agreement. The real-time measurements are further compared to measurements made in a second experiment in which groups of mice were sacrificed at individual times after injection of the same radiolabeled antibodies. The real-time measurements agree well with the measurements in excised tumors. The real-time measurements have greater time resolution and are much more efficient than traditional uptake measurements. 17 refs., 2 figs

  1. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  2. Chemically modified graphene based supercapacitors for flexible and miniature devices

    Science.gov (United States)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  3. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif

    2014-10-16

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  4. High Q, Miniaturized LCP-Based Passive Components

    KAUST Repository

    Shamim, Atif; Arabi, Eyad A.

    2014-01-01

    Various methods and systems are provided for high Q, miniaturized LCP-based passive components. In one embodiment, among others, a spiral inductor includes a center connection and a plurality of inductors formed on a liquid crystal polymer (LCP) layer, the plurality of inductors concentrically spiraling out from the center connection. In another embodiment, a vertically intertwined inductor includes first and second inductors including a first section disposed on a side of the LCP layer forming a fraction of a turn and a second section disposed on another side of the LCP layer. At least a portion of the first section of the first inductor is substantially aligned with at least a portion of the second section of the second inductor and at least a portion of the first section of the second inductor is substantially aligned with at least a portion of the second section of the first inductor.

  5. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    Science.gov (United States)

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  6. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning

    Science.gov (United States)

    Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-01-01

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406

  7. Probe-based recording technology

    International Nuclear Information System (INIS)

    Naberhuis, Steve

    2002-01-01

    The invention of the scanning tunneling microscope (STM) prompted researchers to contemplate whether such technology could be used as the basis for the storage and retrieval of information. With magnetic data storage technology facing limits in storage density due to the thermal instability of magnetic bits, the super-paramagnetic limit, the heir-apparent for information storage at higher densities appeared to be variants of the STM or similar probe-based storage techniques such as atomic force microscopy (AFM). Among these other techniques that could provide replacement technology for magnetic storage, near-field optical scanning optical microscopy (NSOM or SNOM) has also been investigated. Another alternative probe-based storage technology called atomic resolution storage (ARS) is also currently under development. An overview of these various technologies is herein presented, with an analysis of the advantages and disadvantages inherent in each particularly with respect to reduced device dimensions. The role of micro electro mechanical systems (MEMS) is emphasized

  8. RF Front End Based on MEMS Components for Miniaturized Digital EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, AlphaSense, Inc. and the Carnegie Mellon University propose to develop a RF receiver front end based on CMOS-MEMS components for miniaturized...

  9. An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

    OpenAIRE

    Hyun Jin Kim; Hyun Nam Kim; Hamid Saeed Raza; Han Beom Park; Sung Oh Cho

    2016-01-01

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be ...

  10. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    International Nuclear Information System (INIS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-01-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π -type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm 3 , which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band. (paper)

  11. A plastic miniature x-ray emission spectrometer based on the cylindrical von Hamos geometry

    International Nuclear Information System (INIS)

    Mattern, B. A.; Seidler, G. T.; Haave, M.; Pacold, J. I.; Gordon, R. A.; Planillo, J.; Quintana, J.; Rusthoven, B.

    2012-01-01

    We present a short working distance miniature x-ray emission spectrometer (miniXES) based on the cylindrical von Hamos geometry. We describe the general design principles for the spectrometer and detail a specific implementation that covers Kβ and valence level emission from Fe. Large spatial and angular access to the sample region provides compatibility with environmental chambers, microprobe, and pump/probe measurements. The primary spectrometer structure and optic is plastic, printed using a 3-dimensional rapid-prototype machine. The spectrometer is inexpensive to construct and is portable; it can be quickly set up at any focused beamline with a tunable narrow bandwidth monochromator. The sample clearance is over 27 mm, providing compatibility with a variety of environment chambers. An overview is also given of the calibration and data processing procedures, which are implemented by a multiplatform user-friendly software package. Finally, representative measurements are presented. Background levels are below the level of the Kβ 2,5 valence emission, the weakest diagram line in the system, and photometric analysis of count rates finds that the instrument is performing at the theoretical limit.

  12. A miniature X-ray tube based on carbon nanotube for an intraoral dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Park, Han Beom; Lee, Ju Hyuk; Cho, Sung Oh [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The number of human teeth that can be radiographically taken is limited. Moreover, at least two X-ray shots are required to get images of teeth from both sides of the mouth. In order to overcome the disadvantages of conventional dental radiography, a dental radiograph has been proposed in which an X-ray tube is inserted into the mouth while an X-ray detector is placed outside the mouth. The miniature X-ray tube is required small size to insert into the mouth. Recently, we have fabricated a miniature x-ray tube with the diameter of 7 mm using a carbon nanotube (CNT) field. But, commercialized miniature X-ray tube were adopted a thermionic type using tungsten filament. The X-ray tubes adopted thermionic emission has a disadvantage of increasing temperature of x-ray tube. So it need to cooling system to cool x-ray tube. On the other hands, X-ray tubes adopted CNT field emitters don't need cooling systems because electrons are emitted from CNT by applying high voltage without heating. We have developed the miniature x-ray tube that produce x-ray with uniform spatial distribution based on carbon nanotube field emitters. The fabricated miniature x-ray tube can be stably and reliably operated at 50kV without any vacuum pump. The developed miniature X-ray tube was applied for intraoral dental radiography that employs an intra-oral CNT-based miniature X-ray tube and extra-oral X-ray detectors. An X-ray image of many teeth was successfully obtained by a single X-ray shot using the intra-oral miniature X-ray tube system. Furthermore, images of both molar teeth of pig were simultaneously obtained by a single X-ray shot. These results show that the intraoral dental radiography, which employs an intraoral miniature X-ray tube and an extraoral X-ray detector, performs better than conventional dental radiography.

  13. A miniature X-ray tube based on carbon nanotube for an intraoral dental radiography

    International Nuclear Information System (INIS)

    Kim, Hyun Jin; Park, Han Beom; Lee, Ju Hyuk; Cho, Sung Oh

    2016-01-01

    The number of human teeth that can be radiographically taken is limited. Moreover, at least two X-ray shots are required to get images of teeth from both sides of the mouth. In order to overcome the disadvantages of conventional dental radiography, a dental radiograph has been proposed in which an X-ray tube is inserted into the mouth while an X-ray detector is placed outside the mouth. The miniature X-ray tube is required small size to insert into the mouth. Recently, we have fabricated a miniature x-ray tube with the diameter of 7 mm using a carbon nanotube (CNT) field. But, commercialized miniature X-ray tube were adopted a thermionic type using tungsten filament. The X-ray tubes adopted thermionic emission has a disadvantage of increasing temperature of x-ray tube. So it need to cooling system to cool x-ray tube. On the other hands, X-ray tubes adopted CNT field emitters don't need cooling systems because electrons are emitted from CNT by applying high voltage without heating. We have developed the miniature x-ray tube that produce x-ray with uniform spatial distribution based on carbon nanotube field emitters. The fabricated miniature x-ray tube can be stably and reliably operated at 50kV without any vacuum pump. The developed miniature X-ray tube was applied for intraoral dental radiography that employs an intra-oral CNT-based miniature X-ray tube and extra-oral X-ray detectors. An X-ray image of many teeth was successfully obtained by a single X-ray shot using the intra-oral miniature X-ray tube system. Furthermore, images of both molar teeth of pig were simultaneously obtained by a single X-ray shot. These results show that the intraoral dental radiography, which employs an intraoral miniature X-ray tube and an extraoral X-ray detector, performs better than conventional dental radiography

  14. Miniature, Single Channel, Memory-Based, High-G Acceleration Recorder (Millipen)

    International Nuclear Information System (INIS)

    Rohwer, Tedd A.

    1999-01-01

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been instrumenting earth penetrators for over thirty years. Recorded acceleration data is used to quantify penetrator performance. Penetrator testing has become more difficult as desired impact velocities have increased. This results in the need for small-scale test vehicles and miniature instrumentation. A miniature recorder will allow penetrator diameters to significantly decrease, opening the window of testable parameters. Full-scale test vehicles will also benefit from miniature recorders by using a less intrusive system to instrument internal arming, fusing, and firing components. This single channel concept is the latest design in an ongoing effort to miniaturize the size and reduce the power requirement of acceleration instrumentation. A micro-controller/memory based system provides the data acquisition, signal conditioning, power regulation, and data storage. This architecture allows the recorder, including both sensor and electronics, to occupy a volume of less than 1.5 cubic inches, draw less than 200mW of power, and record 15kHz data up to 40,000 gs. This paper will describe the development and operation of this miniature acceleration recorder

  15. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

    NARCIS (Netherlands)

    Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.; Jansen, R.; Tam, H.Y.

    2017-01-01

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and

  16. Miniaturized and reconfigurable notch antenna based on a BST ferroelectric thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung Viet [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Borderon, Caroline [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France); Delaveaud, Christophe [CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Sharaiha, Ala [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Renoud, Raphael [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France); Paven, Claire Le [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Pavy, Sabrina; Nadaud, Kevin; Gundel, Hartmut W. [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France)

    2015-07-15

    Highlights: • A miniature and agile antenna based on a BST MIM capacitor is simulated and made. • Mn{sup 2+} doped BST thin films are synthesized by chemical deposition and spin coating. • Permittivity and losses of the BST thin film are respectively 225 and 0.02 at 1 GHz. • A miniaturization rate of 70% is obtained with a MIM capacitance of 3.7 pF. • A frequency tunability of 14.5% and a tunability performance of 0.04 are measured. - Abstract: This work deals with the design, realization and characterization of a miniature and frequency agile antenna based on a ferroelectric Ba{sub 0,80}Sr{sub 0,20}TiO{sub 3} thin film. The notch antenna is loaded with a variable metal/insulator/metal (MIM) capacitor and is achieved by a monolithic method. The MIM capacitance is 3.7 pF, which results in a resonant frequency of 670 MHz compared to 2.25 GHz for the unloaded simulated antenna; the resulting miniaturization rate is 70%. The characterization of the antenna prototype shows a frequency tunable rate of 14.5% under an electric field of 375 kV/cm, with a tunability performance η = 0.04.

  17. An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2016-06-01

    Full Text Available A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  18. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    International Nuclear Information System (INIS)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh

    2016-01-01

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube

  19. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  20. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  1. Biosensing with Paper-Based Miniaturized Printed Electrodes-A Modern Trend.

    Science.gov (United States)

    Silveira, Célia M; Monteiro, Tiago; Almeida, Maria Gabriela

    2016-09-28

    From the bench-mark work on microfluidics from the Whitesides's group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors.

  2. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    International Nuclear Information System (INIS)

    Petersson, Linn; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Wingren, Christer; Berthet Duroure, Nathalie; Auger, Angèle; Ait Ikhlef, Ali

    2014-01-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm −2 ) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, Bioplume TM —consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um 2 , Ø 10 μm) at a 7–125-times increased spot density (250 000 spots cm −2 ), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined. (paper)

  3. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    Science.gov (United States)

    Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer

    2014-07-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.

  4. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    International Nuclear Information System (INIS)

    Jiang, Huawei; Dong, Liang; Halverson, Larry J

    2015-01-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm −3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs. (paper)

  5. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  6. Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology

    Science.gov (United States)

    Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert

    2015-07-01

    Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.

  7. Design of high voltage power supply of miniature X-ray tube based on resonant Royer

    International Nuclear Information System (INIS)

    Liu Xiyao; Zeng Guoqiang; Tan Chengjun; Luo Qun; Gong Chunhui; Huang Rui

    2013-01-01

    Background: In recent years, X rays are widely used in various fields. With the rapid development of national economy, the demand of high quality, high reliability, and high stability miniature X-ray tube has grown rapidly. As an important core component of miniature X-ray tube, high voltage power supply has attracted wide attention. Purpose: To match miniature, the high voltage power supply should be small, lightweight, good quality, etc. Based on the basic performance requirements of existing micro-X-ray tube high voltage power supply, this paper designs an output from 0 to -30 kV adjustable miniature X-ray tube voltage DC power supply. Compared to half-bridge and full-bridge switching-mode power supply, its driving circuit is simple. With working on the linear condition, it has no switching noise. Methods: The main circuit makes use of DC power supply to provide the energy. The resonant Royer circuit supplies sine wave which drives to the high frequency transformer's primary winding with resultant sine-like high voltage appearing across the secondary winding. Then, the voltage doubling rectifying circuit would achieve further boost. In the regulator circuit, a feedback control resonant transistor base current is adopted. In order to insulate air, a silicone rubber is used for high pressure part packaging, and the output voltage is measured by the dividing voltage below -5 kV. Results: The stability of circuit is better than 0.2%/6 h and the percent of the output ripple voltage is less than 0.3%. Keeping the output voltage constant, the output current can reach 57 μA by changing the size of load resistor. This high voltage power supply based on resonant Royer can meet the requirement of miniature X-ray tube. Conclusions: The circuit can satisfy low noise, low ripple, low power and high voltage regulator power supply design. However, its efficiency is not high enough because of the linear condition. In the next design, to further reduce power consumption, we

  8. Design, Fabrication and Temperature Sensitivity Testing of a Miniature Piezoelectric-Based Sensor for Current Measurements

    Directory of Open Access Journals (Sweden)

    Steven B. Lao

    2014-07-01

    Full Text Available Grid capacity, reliability, and efficient distribution of power have been major challenges for traditional power grids in the past few years. Reliable and efficient distribution within these power grids will continue to depend on the development of lighter and more efficient sensing units with lower costs in order to measure current and detect failures across the grid. The objective of this paper is to present the development of a miniature piezoelectric-based sensor for AC current measurements in single conductors, which are used in power transmission lines. Additionally presented in this paper are the thermal testing results for the sensor to assess its robustness for various operating temperatures.

  9. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    Directory of Open Access Journals (Sweden)

    Jiawen Chen

    2018-03-01

    Full Text Available A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device.

  10. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  11. Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

    Science.gov (United States)

    Silveira, Célia M.; Monteiro, Tiago; Almeida, Maria Gabriela

    2016-01-01

    From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors. PMID:27690119

  12. Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend

    Directory of Open Access Journals (Sweden)

    Célia M. Silveira

    2016-09-01

    Full Text Available From the bench-mark work on microfluidics from the Whitesides’s group in 2007, paper technology has experienced significant growth, particularly regarding applications in biomedical research and clinical diagnostics. Besides the structural properties supporting microfluidics, other advantageous features of paper materials, including their versatility, disposability and low cost, show off the great potential for the development of advanced and eco-friendly analytical tools. Consequently, paper was quickly employed in the field of electrochemical sensors, being an ideal material for producing custom, tailored and miniaturized devices. Stencil-, inkjet-, or screen-printing are the preferential techniques for electrode manufacturing. Not surprisingly, we witnessed a rapid increase in the number of publications on paper based screen-printed sensors at the turn of the past decade. Among the sensing strategies, various biosensors, coupling electrochemical detectors with biomolecules, have been proposed. This work provides a critical review and a discussion on the future progress of paper technology in the context of miniaturized printed electrochemical biosensors.

  13. MEMS and EFF technology based micro connector for future miniature devices

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Alamgir, T; Bhuiyan, M; Kajihara, M

    2013-01-01

    The development of a miniature; size, light and high performance electronic devices; has been accelerated for further development. In commercial stamping method, connector pitch size (radius) is more than 300μm due to its size limitation. Therefore, the stamped contact hertz stress becomes lower and less suitable for fine pitch connector. To overcome this pitch size problem a narrow pitch Board-to-Board (BtoB) interface connectors are in demand for the current commercial design. Therefore, this paper describes a fork type micro connector design with high Hertz-Stress using MEMS and Electro Fine Forming (EFF) fabrication techniques. The connector is designed high aspect ratio and high-density packaging using UV thick resist and electroforming. In this study a newly fabricated micro connector's maximum aspect ratio is 50μm and pitch is 80μm is designed successfully which is most compact fork-type connector in the world. When these connectors are connected, a contact resistance of less than 50mΩ has been attained by using four-point probe technique

  14. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hund, Markus; Herold, Hans

    2007-01-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film

  15. Miniature Inertial and Augmentation Sensors for Integrated Inertial/GPS Based Navigation Applications

    Science.gov (United States)

    2010-03-01

    Magnetometer (Ref [23]) Until miniature atomic magnetometers transition from laboratory demonstration units to a mass produced product, fluxgate ...and/or magnetoresistive designs are a better suited magnetometer technology for a miniature navigation system. Figure 8 below shows the basic fluxgate ...is required to resolve magnetic field orientation. Fig 8. Fluxgate Magnetometer Schematic The PNI Sensor Corporation (Santa Rosa, CA

  16. Impedance-Based Miniaturized Biosensor for Ultrasensitive and Fast Prostate-Specific Antigen Detection

    Directory of Open Access Journals (Sweden)

    Ganna Chornokur

    2011-01-01

    Full Text Available This paper reports the successful fabrication of an impedance-based miniaturized biosensor and its application for ultrasensitive Prostate-Specific Antigen (PSA detection in standard and real human plasma solution, spiked with different PSA concentrations. The sensor was fabricated using photolithographic techniques, while monoclonal antibodies specific to human PSA were used as primary capture antibodies. Electrochemical impedance spectroscopy (EIS was employed as a detection technique. The sensor exhibited a detection limit of 1 pg/ml for PSA with minimal nonspecific binding (NSB. This detection limit is an order of magnitude lower than commercial PSA ELISA assays available on the market. The sensor can be easily modified into an array for the detection of other biomolecules of interest, enabling accurate, ultrasensitive, and inexpensive point-of-care sensing technologies.

  17. Investigation of graphene based miniaturized terahertz antenna for novel substrate materials

    Directory of Open Access Journals (Sweden)

    Rajni Bala

    2016-03-01

    Full Text Available The selection of appropriate substrate material acts as a performance regulator for miniaturized graphene patch antenna. The substrate material not only controls the transport properties of graphene but also influences the resonant properties of the graphene patch antenna. The edge fed microstrip line graphene based rectangular patch antenna is designed here for operating in the frequency range 2.67–2.92 THz for wireless applications. The performance is investigated for silicon nitride, aluminum oxide, boron nitride, silica and quartz substrate materials on the basis of return loss, voltage standing wave ratio (VSWR, absorption cross section, bandwidth and radiation efficiency. The comparison of results shows that silicon nitride exhibits overall excellent performance by the virtue of having higher bandwidth and radiation efficiency as compared to other chosen substrate materials.

  18. Development of miniaturized pH biosensors based on electrosynthesized polymer films.

    Science.gov (United States)

    Segut, Olivier; Lakard, Boris; Herlem, Guillaume; Rauch, Jean-Yves; Jeannot, Jean-Claude; Robert, Laurent; Fahys, Bernard

    2007-08-06

    A new type of pH biosensor was developed for biological applications. This biosensor was fabricated using silicon microsystem technology and consists in two platinum microelectrodes. The first microelectrode was coated by an electrosynthesized polymer and acted as the pH sensitive electrode when the second one was coated by a silver layer and was used as the reference electrode. Then, this potentiometric pH miniaturized biosensor based on electrosynthesized polypyrrole or electrosynthesized linear polyethylenimine films was tested. The potentiometric responses appeared reversible and linear to pH changes in the range from pH 4 to 9. More, the responses were fast (less than 1 min for all sensors), they were stable in time since PPy/PEI films were stable during more than 30 days, and no interference was observed. The influence of the polymer thickness was also studied.

  19. A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer

    International Nuclear Information System (INIS)

    Rong, Qiangzhou; Sun, Hao; Qiao, Xueguang; Zhang, Jing; Hu, Manli; Feng, Zhongyao

    2012-01-01

    A miniature fiber Fabry–Perot interferometer (FFPI) for temperature measurement is proposed and demonstrated. The sensor consists of a section of single-mode fiber (SMF) tip coated with a thin film of polyvinyl alcohol (PVA) at the end of the fiber tip. A well-defined interference pattern is obtained as the result of the FFPI based on Fresnel reflection. The sensing head is extremely sensitive to ambient temperature, and provides a stable temperature sensitivity with a maximum value up to 173.5 pm °C −1 above 80 °C. This proposed sensor has advantages of low cost, ultra-compactness, a small degree of hysteresis and high stability. (paper)

  20. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    , namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without

  1. Electrical resistivity probes

    Science.gov (United States)

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  2. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  3. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  4. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  5. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  6. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-05-01

    Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  7. Recent advancements in system design for miniaturized MEMS-based laser projectors

    Science.gov (United States)

    Scholles, M.; Frommhagen, K.; Gerwig, Ch.; Knobbe, J.; Lakner, H.; Schlebusch, D.; Schwarzenberg, M.; Vogel, U.

    2008-02-01

    Laser projection systems that use the flying spot principle and which are based on a single MEMS micro scanning mirrors are a very promising way to build ultra-compact projectors that may fit into mobile devices. First demonstrators that show the feasibility of this approach and the applicability of the micro scanning mirror developed by Fraunhofer IPMS for these systems have already been presented. However, a number of items still have to be resolved until miniaturized laser projectors are ready for the market. This contribution describes progress on several different items, each of them of major importance for laser projection systems. First of all, the overall performance of the system has been increased from VGA resolution to SVGA (800×600 pixels) with easy connection to a PC via DVI interface or by using the projector as embedded system with direct camera interface. Secondly, the degree of integration of the electronics has been enhanced by design of an application specific analog front end IC for the micro scanning mirror. It has been fabricated in a special high voltage technology and does not only allow to generate driving signals for the scanning mirror with amplitudes of up to 200V but also integrates position detection of the mirror by several methods. Thirdly, first results concerning Speckle reduction have been achieved, which is necessary for generation of images with high quality. Other aspects include laser modulation and solutions regarding projection on tilted screens which is possible because of the unlimited depth of focus.

  8. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    Science.gov (United States)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  9. Miniature CRLH-based ultra wideband antenna with gain enhancement for wireless communication applications

    Directory of Open Access Journals (Sweden)

    Mohammad Alibakhshi-Kenari

    2016-06-01

    Full Text Available A novel miniaturized ultra wideband (UWB antenna based on composite right/left-handed (CRLH metamaterial unit cells for modern wireless communication applications is presented. The physical size of the small and compact antenna is 15×7.87×1.6 mm3 or 0.15λo×0.07λo×0.01λo in terms of the free-space wavelength at 3 GHz. The proposed antenna covers an impedance bandwidth of 3–10.6 GHz, which is equivalent to a fractional bandwidth of 111%. The gain and efficiency of the antenna are greater than 2.89 dBi and 38.54%, respectively, with a peak gain of 9.41 dBi and a peak efficiency of 99.93%. The characteristics of the antenna were validated with measured results obtained from a fabricated prototype to establish the proof of concept.

  10. Protein-based stable isotope probing.

    Science.gov (United States)

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  11. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  12. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  13. Model-based tracking of miniaturized grippers using particle swarm optimization

    NARCIS (Netherlands)

    Scheggi, Stefano; Yoon, ChangKyu; Gracias, David H.; Misra, Sarthak

    2016-01-01

    Micro-sized agents can benefit robotic minimally invasive surgery since they can be inserted into the human body and use natural pathways such as arteries and veins or the gastrointestinal tract, to reach their target for drug delivery or diagnosis. Recently, miniaturized agents with shape-changing

  14. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  15. Design and construction of miniature artificial ecosystem based on dynamic response optimization

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu

    The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and

  16. Probing friction in actin-based motility

    International Nuclear Information System (INIS)

    Marcy, Yann; Joanny, Jean-Francois; Prost, Jacques; Sykes, Cecile

    2007-01-01

    Actin dynamics are responsible for cell protrusion and certain intracellular movements. The transient attachment of the actin filaments to a moving surface generates a friction force that resists the movement. We probe here the dynamics of these attachments by inducing a stick-slip behavior via micromanipulation of a growing actin comet. We show that general principles of adhesion and friction can explain our observations

  17. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  18. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-04-01

    Wireless systems with emerging applications are leaning towards small size, light-weight and low cost. Another trend for these wireless devices is that new applications and functionalities are being added without increasing the size of the device. To accomplish this, individual components must be miniaturized and the system should be designed to maximize the integration of the individual components. The high level of 3D integration feasible in system on package design (SoP) concept can fulfill the latter requirement. Bandpass filters are important components on all wireless systems to reject the unwanted signals and reduce interference. Being mostly implemented with passive and distributed components, bandpass filters take considerable space in a wireless system. Moreover, with emerging bands and multiple applications encompassed in a single device, many bandpass filters are required. The miniaturization related to bandpass filters can be approached by three main ways: (1) at the component level through the miniaturization of individual bandpass filters, (2) at the system level through the use of tunable filters to reduce the overall number of filters, and (3) at the system level through the high level of integration in a 3D SoP platform. In this work we have focused on all three aspects of miniaturization of band pass filters mentioned above. In the first part of this work, a low frequency (1.5 GHz global positioning system (GPS) band) filter implemented through 3D lumped components in two leading SoP technologies, namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without increasing the size. Moreover, for the case of LCP, the filter is realized in an ultra-thin stack up comprising four metallization layers with an overall thickness of only 100 _m. Due to its ultra

  19. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  20. A miniaturized micro strip antenna based on sinusoidal patch geometry for implantable biomedical applications

    Science.gov (United States)

    Ibrahim, Omar A.; Elwi, Taha A.; Islam, Naz E.

    2012-11-01

    A miniaturized microstrip antenna is analyzed for implantable biomedical applications. The antenna is designed using two different commercial software packages, CST Microwave Studio and HFSS, to validate the results. The proposed design operates in the WMTS frequency band. The antenna performance is tested inside the human body, Hugo model. The antenna design is readjusted to get the desired resonant frequency. The resonant frequency, bandwidth, gain, and radiation pattern of the proposed antenna are provided in this paper. Furthermore, the effect of losses inside human body due to the fat layer is recognized.

  1. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  2. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    Science.gov (United States)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lu

    2015-06-01

    Full Text Available A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  4. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide.

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff

    2015-06-19

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  5. SECURE SERVICE DISCOVERY BASED ON PROBE PACKET MECHANISM FOR MANETS

    Directory of Open Access Journals (Sweden)

    S. Pariselvam

    2015-03-01

    Full Text Available In MANETs, Service discovery process is always considered to be crucial since they do not possess a centralized infrastructure for communication. Moreover, different services available through the network necessitate varying categories. Hence, a need arises for devising a secure probe based service discovery mechanism to reduce the complexity in providing the services to the network users. In this paper, we propose a Secure Service Discovery Based on Probe Packet Mechanism (SSDPPM for identifying the DoS attack in MANETs, which depicts a new approach for estimating the level of trust present in each and every routing path of a mobile ad hoc network by using probe packets. Probing based service discovery mechanisms mainly identifies a mobile node’s genuineness using a test packet called probe that travels the entire network for the sake of computing the degree of trust maintained between the mobile nodes and it’s attributed impact towards the network performance. The performance of SSDPPM is investigated through a wide range of network related parameters like packet delivery, throughput, Control overhead and total overhead using the version ns-2.26 network simulator. This mechanism SSDPPM, improves the performance of the network in an average by 23% and 19% in terms of packet delivery ratio and throughput than the existing service discovery mechanisms available in the literature.

  6. Miniaturized Environmental Monitoring Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  7. Design of a Novel Miniaturized Frequency Selective Surface Based on 2.5-Dimensional Jerusalem Cross for 5G Applications

    Directory of Open Access Journals (Sweden)

    Peng Zhao

    2018-01-01

    Full Text Available A compact frequency selective surface (FSS for 5G applications has been designed based on 2.5-dimensional Jerusalem cross. The proposed element consists of two main parts: the successive segments of the metal traces placed alternately on the two surfaces of the substrate and the vertical vias connecting traces. Compared with previous published two-dimensional miniaturized elements, the transmission curves indicate a significant size reduction (1/26 wavelengths at the resonant frequency and exhibit good angular and polarization stabilities. Furthermore, a general equivalent circuit model is established to provide direct physical insight into the operating principle of this FSS. A prototype of the proposed FSS has been fabricated and measured, and the results validate this design.

  8. Thermo-mechanical actuator-based miniature tagging module for localization in capsule endoscopy

    Science.gov (United States)

    Chandrappan, Jayakrishnan; Ruiqi, Lim; Su, Nandar; Yen Yi, Germaine Hoe; Vaidyanathan, Kripesh

    2011-04-01

    Capsule endoscopy is a frontline medical diagnostic tool for the gastro intestinal tract disorders. During diagnosis, efficient localization techniques are essential to specify a pathological area that may require further diagnosis or treatment. This paper presents the development of a miniature tagging module that relies on a novel concept to label the region of interest and has the potential to integrate with a capsule endoscope. The tagging module is a compact thermo-mechanical actuator loaded with a biocompatible micro tag. A low power microheater attached to the module serves as the thermal igniter for the mechanical actuator. At optimum temperature, the actuator releases the micro tag instantly and penetrates the mucosa layer of a GI tract, region of interest. Ex vivo animal trials are conducted to verify the feasibility of the tagging module concept. X-ray imaging is used to detect the location of the micro tag embedded in the GI tract wall. The method is successful, and radiopaque micro tags can provide valuable pre-operative position information on the infected area to facilitate further clinical procedures.

  9. A heating and diffusion barrier based on TaSiN x for miniaturized IC devices

    International Nuclear Information System (INIS)

    Cheng, H.-Y.; Chen, Y.-C.; Lee, C.-M.; Wang, S.-H.; Chin, T.-S.

    2006-01-01

    Highly resistive TaSiN x films investigated as candidates for heating and diffusion-barrier layers for miniaturized IC devices such as a sensor or a phases-change random access memory (PCRAM). The obtained resistivity, between 0.069-1.21 Ω cm, increases with increasing nitrogen content up to 52.83%, and fulfills the requirements as a suitable heating layer. All the as-deposited films were amorphous, and the films with substantial nitrogen content showed excellent thermal stability The amorphous structure had a very smooth surface which was stable at temperatures up to 800 deg. C. In addition to its heating capability, the amorphous structure with no grain boundaries was found to also act as a good diffusion barrier effect in contact with a tungsten electrode as determined by AES an TEM analysis. The barrier effect was evaluated by an annealing at 500 and 600 deg. C in Ar atmosphere for 30 min, respectively. The highly resistive TaSiN x heating layer successfully obstructed the diffusion of tungsten atoms from the W electrodes even when the layer was only 10 nm thick. With increasing N content, the heating and diffusion-barrier layer for PCRAM was proposed as a typical example of many potential applications

  10. A transmission and reflection coupled ultrasonic process tomography based on cylindrical miniaturized transducers using PVDF films

    Science.gov (United States)

    Gu, J.; Yang, H.; Fan, F.; Su, M.

    2017-12-01

    A transmission and reflection coupled ultrasonic process tomography has been developed, which is characterized by a proposed dual-mode (DM) reconstruction algorithm, as well as an adaptive search approach to determine an optimal image threshold during the image binarization. In respect of hardware, to improve the accuracy of time-of-flight (TOF) and extend the lowest detection limit of particle size, a cylindrical miniaturized transducer using polyvinylidene fluoride (PVDF) films is designed. Besides, the development of range-gating technique for the identification of transmission and reflection waves in scanning is discussed. A particle system with four iron particles is then investigated numerically and experimentally to evaluate these proposed methods. The sound pressure distribution in imaging area is predicted numerically, followed by the analysis of the relationship between the emitting surface width of transducer and particle size. After the processing of experimental data for effective waveform extraction and fusion, the comparison between reconstructed results from transmission-mode (TM), reflection-mode (RM), and dual-mode reconstructions is carried out and the latter manifests obvious improvements from the blurring reduction to the enhancement of particle boundary.

  11. Neurosurgery contact handheld probe based on sapphire shaped crystal

    Science.gov (United States)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  12. A Taguchi PCA fuzzy-based approach for the multi-objective extended optimization of a miniature optical engine

    International Nuclear Information System (INIS)

    Fan Yichin; Tzeng Yihfong; Li Sixiang

    2008-01-01

    The paper proposes a hybrid approach, integrating a combination of Taguchi methods, principal component analysis (PCA) and fuzzy theory for the extended optimization of multiple quality characteristics in optimization experiments of non-image optics; a miniature light emitting diode pocket-sized projection display system is demonstrated in this research as an optimization sample. Traditionally, the performance of projector optics can be evaluated by modulation transfer function and its optimization method is DLS (damped least square). Comparatively, light efficiency and uniformity play a part in non-image optics where the optimized method is based on the concept of non-sequential rays; for example, in the optical engine of a projector, which demands better light efficiency and uniformity. The DLS method is occasionally employed in the optimization of non-image optics such as optical engines, but it is sometimes sensitive to the number of rays employed and some over-optimization problems. In this research we propose as an alternative method to optimize in an extended way the optical engine of a miniature projector. Control factors were checked and then repeatedly examined before the experiments started. In the experiment, optimization works through an L18 orthogonal array. Finally, this proposed optimization work shows good success for the optimization of non-image optical engines because this method is less sensitive to the number of non-sequential rays. Compared with the initial design, the optimized parameter design is able to improve the luminous flux by 11.46 dB, the illumination uniformity by 3.14 and the packing size by 1.125 dB

  13. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.

    Science.gov (United States)

    Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido

    2014-06-01

    The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Listener: a probe into information based material specification

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Karmon, Ayelet

    2011-01-01

    This paper presents the thinking and making of the architectural research probe Listener. Developed as an interdisciplinary collaboration between textile design and architecture, Listener explores how information based fabrication technologies are challenging the material practices of architecture....... The paper investigates how textile design can be understood as a model for architectural production providing new strategies for material specification and allowing the thinking of material as inherently variegated and performative. The paper traces the two fold information based strategies present...

  15. Toward Exposing Timing-Based Probing Attacks in Web Applications.

    Science.gov (United States)

    Mao, Jian; Chen, Yue; Shi, Futian; Jia, Yaoqi; Liang, Zhenkai

    2017-02-25

    Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT) systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users' browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach.

  16. Toward Exposing Timing-Based Probing Attacks in Web Applications

    Directory of Open Access Journals (Sweden)

    Jian Mao

    2017-02-01

    Full Text Available Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users’ browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach.

  17. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    Science.gov (United States)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  18. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    Science.gov (United States)

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  19. ESIPT-Based Photoactivatable Fluorescent Probe for Ratiometric Spatiotemporal Bioimaging

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2016-10-01

    Full Text Available Photoactivatable fluorophores have become an important technique for the high spatiotemporal resolution of biological imaging. Here, we developed a novel photoactivatable probe (PHBT, which is based on 2-(2-hydroxyphenylbenzothiazole (HBT, a small organic fluorophore known for its classic luminescence mechanism through excited-state intramolecular proton transfer (ESIPT with the keto form and the enol form. After photocleavage, PHBT released a ratiometric fluorophore HBT, which showed dual emission bands with more than 73-fold fluorescence enhancement at 512 nm in buffer and more than 69-fold enhancement at 452 nm in bovine serum. The probe displayed a high ratiometric imaging resolution and is believed to have a wide application in biological imaging.

  20. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  1. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  2. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro

    2017-06-13

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  3. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    Directory of Open Access Journals (Sweden)

    Cheng-Chun Wu

    2016-10-01

    Full Text Available An electronic nose (E-Nose is one of the applications for surface acoustic wave (SAW sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS readout application-specific integrated circuit (ASIC based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  4. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  5. Human MLPA Probe Design (H-MAPD: a probe design tool for both electrophoresis-based and bead-coupled human multiplex ligation-dependent probe amplification assays

    Directory of Open Access Journals (Sweden)

    Hatchwell Eli

    2008-09-01

    Full Text Available Abstract Background Multiplex ligation-dependent probe amplification (MLPA is an efficient and reliable technique for gene dosage analysis. Currently MLPA can be conducted on two platforms: traditional electrophoresis-based, and FlexMAP bead-coupled. Since its introduction in 2002, MLPA has been rapidly adopted in both clinical and research situations. However, MLPA probe design is a time consuming process requiring many steps that address multiple criteria. There exist only one or two commercial software packages for traditional electrophoresis-based MLPA probe design. To our knowledge, no software is yet available that performs bead-coupled MLPA probe design. Results We have developed H-MAPD, a web-based tool that automates the generation and selection of probes for human genomic MLPA. The software performs physical-chemical property tests using UNAFold software, and uniqueness tests using the UCSC genome browser. H-MAPD supports both traditional electrophoresis-based assays, as well as FlexMAP bead-coupled MLPA. Conclusion H-MAPD greatly reduces the efforts for human genomic MLPA probe design. The software is written in Perl-CGI, hosted on a Linux server, and is freely available to non-commercial users.

  6. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  7. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  8. Advanced Image Processing Package for FPGA-Based Re-Programmable Miniature Electronics

    National Research Council Canada - National Science Library

    Ovod, Vladimir I; Baxter, Christopher R; Massie, Mark A; McCarley, Paul L

    2005-01-01

    .... An advanced image-processing package has been designed at Nova Sensors to re-configure the FPGA-based co-processor board for numerous applications including motion detection, optical background...

  9. Using electron irradiation to probe iron-based superconductors

    Science.gov (United States)

    Cho, Kyuil; Kończykowski, M.; Teknowijoyo, S.; Tanatar, M. A.; Prozorov, R.

    2018-06-01

    High-energy electron irradiation at low temperatures is an efficient and controlled way to create vacancy–interstitial Frenkel pairs in a crystal lattice, thereby inducing nonmagnetic point-like scattering centers. In combination with London penetration depth and resistivity measurements, the electron irradiation was used as a phase-sensitive probe to study the superconducting order parameter in iron-based superconductors (FeSCs), lending strong support to sign-changing s ± pairing. Here, we review the key results of the effect of electron irradiation in FeSCs.

  10. Advances in Miniaturized Instruments for Genomics

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2014-01-01

    Full Text Available In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices.

  11. Screen Miniatures as Icons for Backward Navigation in Content-Based Software.

    Science.gov (United States)

    Boling, Elizabeth; Ma, Guoping; Tao, Chia-Wen; Askun, Cengiz; Green, Tim; Frick, Theodore; Schaumburg, Heike

    Users of content-based software programs, including hypertexts and instructional multimedia, rely on the navigation functions provided by the designers of those program. Typical navigation schemes use abstract symbols (arrows) to label basic navigational functions like moving forward or backward through screen displays. In a previous study, the…

  12. Estimation of miniature forest parameters, species, tree shape, and distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model

    International Nuclear Information System (INIS)

    Ding, Y.; Arai, K.

    2007-01-01

    A method for estimation of forest parameters, species, tree shape, distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model is proposed. The model is verified through experiments with the miniature model of forest, tree array of relatively small size of trees. Two types of miniature trees, ellipse-looking and cone-looking canopy are examined in the experiments. It is found that the proposed model and experimental results show a coincidence so that the proposed method is validated. It is also found that estimation of tree shape, trunk tree distance as well as distinction between deciduous or coniferous trees can be done with the proposed model. Furthermore, influences due to multiple reflections between trees and interaction between trees and under-laying grass are clarified with the proposed method

  13. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    Science.gov (United States)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  14. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    Science.gov (United States)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  15. Fabrication of applicator system of miniature X-ray tube based on carbon nanotubes for a skin cancer therapy

    International Nuclear Information System (INIS)

    Park, Han Beom; Kim, Hyun Jin; Lee, Ju Hyuk; Ha, Jun Mok; Cho, Sung Oh

    2016-01-01

    A miniature X-ray tube is a small X-ray generation device generally with a diameter of less than 10 mm. Because of the feasible installation in a spatially constrained area and the possibility of electrical on/off control, miniature X-ray tubes can be widely used for nondestructive X-ray radiography, hand held X-ray spectrometers, electric brachytherapy, and interstitial or intracavitary radiation therapy or imaging with the substitution of radioactive isotopes. Miniature X-ray tubes have been developed mostly using thermionic electron sources or secondary X-ray emission. The X-ray tube show excellent field emission properties and good X-ray spectrum. Also, the flattening filter was made to irradiate uniformly. The X-ray dose radial uniformities between installed flattening filter and non-installed flattening filter were measured. When flattening filter is equipped, X-ray uniformity was improved from higher than 20% to lower than 10%. As a result, the fabricated applicator system of the miniature X-ray tube using optimized flattening filter exhibited fairly excellent properties

  16. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    OpenAIRE

    Elson, DS; Jo, JA; Marcu, L

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  17. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring.

    Science.gov (United States)

    von Luhmann, Alexander; Wabnitz, Heidrun; Sander, Tilmann; Muller, Klaus-Robert

    2017-06-01

    For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our openNIRS technology. The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 μV pp , NIRS noise equivalent power NEP 750 nm = 5.92 pW pp , and NEP 850 nm = 4.77 pW pp ) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal modal biosignal acquisition architecture (M3BA), multimodal, near-infrared spectroscopy (NIRS), wireless body area network (WBAN), wireless body sensor network (WBSN).

  18. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

    Directory of Open Access Journals (Sweden)

    Chiao-Fang Hung

    2017-02-01

    Full Text Available In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss, the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g and z-axis vibration (sine-wave, 142 Hz, 3.8 g, the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  19. Wireless, low-cost, FPGA-based miniature gamma ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Becker, E.M., E-mail: beckere@engr.orst.edu; Farsoni, A.T.

    2014-10-11

    A compact, low-cost, wireless gamma-ray spectrometer is a tool sought by a number of different organizations in the field of radiation detection. Such a device has applications in emergency response, battlefield assessment, and personal dosimetry. A prototype device fitting this description has been constructed in the Advanced Radiation Instrumentation Laboratory at Oregon State University. The prototype uses a CsI(Tl) scintillator coupled to a solid-state photomultiplier and a 40 MHz, 12-bit, FPGA-based digital pulse processor to measure gamma radiation, and is able to be accessed wirelessly by mobile phone. The prototype device consumes roughly 420 mW, weighs about 28 g (not including battery), and measures 2.54×3.81 cm{sup 2}. The prototype device is able to achieve 5.9% FWHM energy resolution at 662 keV.

  20. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform

    Science.gov (United States)

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-07-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.

  1. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    Science.gov (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  2. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    International Nuclear Information System (INIS)

    Ferin, G; Bantignies, C; Khanh, H Le; Flesch, E; Nguyen-Dinh, A

    2015-01-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations. (paper)

  3. Graphene oxide based contacts as probes of biomedical signals

    Science.gov (United States)

    Hallfors, N. G.; Devarajan, A.; Farhat, I. A. H.; Abdurahman, A.; Liao, K.; Gater, D. L.; Elnaggar, M. I.; Isakovic, A. F.

    We have developed a series of graphene oxide (GOx) on polymer contacts and have demonstrated these to be useful for collection of standard biomedically relevant signals, such as electrocardiogram (ECG). The process is wet solution-based and allows for control and tuning of the basic physical parameters of GOx, such as electrical and optical properties, simply by choosing the number of GOx layers. Our GOx characterization measurements show spectral (FTIR, XPS, IR absorbance) features most relevant to such performance, and point towards the likely explanations about the mechanisms for controlling the physical properties relevant for the contact performance. Structural (X-ray topography) and surface characterization (AFM, SEM) indicates to what degree these contacts can be considered homogeneous and therefore provide information on yield and repeatability. We compare the ECG signals recorded by standard commercial probes (Ag/AgCl) and GOx probes, displaying minor differences the solution to which may lead to a whole new way we perform ECG data collection, including wearable electronics and IoT friendly ECG monitoring. We acknowledge support from Mubadala-SRC AC4ES and from SRC 2011-KJ-2190. We thank J. B. Warren and G. L. Carr (BNL) for assistance.

  4. Miniature Optical Isolator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for miniature optical isolators in atom interferometry applications, Physical Optics Corporation (POC) proposes to develop a miniature optical...

  5. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    International Nuclear Information System (INIS)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included

  6. Active Probing Feedback based Self Configurable Intelligent Distributed Antenna System

    DEFF Research Database (Denmark)

    Kumar, Ambuj

    collectively as Place Time Coverage & Capacity (PTC2). The dissertation proves through the concept of the PTC2 that the network performance can severely be degraded by the excessive and unrealistic site demands, the network management inefficiency, and the consequence of the accumulation of subscribers...... challenge through a viable solution that is based on injecting intelligence and services in parallel layers through a Distributed Antenna Systems (DAS) network. This approach would enable the remote sites to acquire intelligence and a resource pool at the same time, thereby managing the network dynamics...... promptly and aptly to absorb the PTC2 wobble. An Active Probing Management System (APMS) is proposed as a supporting architecture, to assist the intelligent system to keep a check on the variations at each and every site by either deploying the additional antenna or by utilising the service antenna...

  7. Miniature radioactive light source

    International Nuclear Information System (INIS)

    Caffarella, T.E.; Radda, G.J.; Dooley, H.H.

    1980-01-01

    A miniature radioactive light source for illuminating digital watches is described consisting of a glass tube with improved laser sealing and strength containing tritium gas and a transducer responsive to the gas. (U.K.)

  8. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  9. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology

    Science.gov (United States)

    Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.

    2016-01-01

    There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337

  10. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  11. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    Science.gov (United States)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  12. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  13. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-01-01

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y_4). A peptide whereby Y_4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH_2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY_4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  14. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Shinohara, Hiroki; Kadoya, Toshihiko [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y{sub 4}). A peptide whereby Y{sub 4}C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH{sub 2}) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY{sub 4}C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  15. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  16. Design of a Miniaturized X-Band Diplexer Based on Novel One-Third-Mode Substrate Integrated Resonator Filters

    Science.gov (United States)

    Zhang, Hao; Kang, Wei; Wu, Wen

    2017-12-01

    In this paper, a miniaturized diplexer designed with two novel one-third-mode substrate integrated resonator (OTMSIR) filters has been presented. The one-third triangular resonator cavity with two transmission zeros (TZs) and two transmission poles is investigated. TZs are implemented by taking cross couplings of lower order modes in this design. The diplexer is then obtained by integrating two different sizes of OTMSIR filters with a common T-junction structure. A X-band diplexer operating at 10 GHz and 11.5 GHz is designed on a substrate with a dielectric constant of 3.55 to verify the above design concept. This novel structure features more compact size, better transmission performance, higher out of band rejection and easier integration compared with other circuits. A good agreement is obtained between the simulations and the measured results.

  17. Probe based manipulation and assembly of nanowires into organized mesostructures

    Science.gov (United States)

    Reynolds, K.; Komulainen, J.; Kivijakola, J.; Lovera, P.; Iacopino, D.; Pudas, M.; Vähäkangas, J.; Röning, J.; Redmond, G.

    2008-12-01

    A convenient approach to patterning inorganic and organic nanowires using a novel probe manipulator is presented. The system utilizes an electrochemically etched tungsten wire probe mounted onto a 3D actuator that is directed by a 3D controller. When it is engaged by the user, the movement of the probe and the forces experienced by the tip are simultaneously reported in real time. Platinum nanowires are manipulated into organized mesostructures on silicon chip substrates. In particular, individual nanowires are systematically removed from aggregates, transferred to a chosen location, and manipulated into complex structures in which selected wires occupy specific positions with defined orientations. Rapid prototyping of complex mesostructures, by pushing, rotating and bending conjugated polymer, i.e., polyfluorene, nanowires into various configurations, is also achieved. By exploiting the strong internal axial alignment of polymer chains within the polyfluorene nanowires, mesostructures tailored to exhibit distinctly anisotropic optical properties, such as birefringence and photoluminescence dichroism, are successfully assembled on fused silica substrates.

  18. Probe based manipulation and assembly of nanowires into organized mesostructures

    International Nuclear Information System (INIS)

    Reynolds, K; Lovera, P; Iacopino, D; Redmond, G; Komulainen, J; Pudas, M; Vaehaekangas, J; Kivijakola, J; Roening, J

    2008-01-01

    A convenient approach to patterning inorganic and organic nanowires using a novel probe manipulator is presented. The system utilizes an electrochemically etched tungsten wire probe mounted onto a 3D actuator that is directed by a 3D controller. When it is engaged by the user, the movement of the probe and the forces experienced by the tip are simultaneously reported in real time. Platinum nanowires are manipulated into organized mesostructures on silicon chip substrates. In particular, individual nanowires are systematically removed from aggregates, transferred to a chosen location, and manipulated into complex structures in which selected wires occupy specific positions with defined orientations. Rapid prototyping of complex mesostructures, by pushing, rotating and bending conjugated polymer, i.e., polyfluorene, nanowires into various configurations, is also achieved. By exploiting the strong internal axial alignment of polymer chains within the polyfluorene nanowires, mesostructures tailored to exhibit distinctly anisotropic optical properties, such as birefringence and photoluminescence dichroism, are successfully assembled on fused silica substrates.

  19. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    Science.gov (United States)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  20. The design method for the electric field probe based on PSpice

    International Nuclear Information System (INIS)

    Wu Wei; Cheng Yinhui; Ma Liang; Zhou Hui

    2006-01-01

    The equivalent circuit for E-filed probe with or without cable, which connected the antenna to the load, was simulated by PSpice. The AC and transient analyses were performed on the equivalent circuit. As a result of AC sweep analysis, (a) the sensitivity and practice bandwidth of the probe without the cable are increased along with the capacitance of antenna as long as the capacitance under a certain value, (b) in the case of the probe with cable the sensitivity and practice bandwidth can't be improved by adjusting the capacitance of antenna simultaneously. A novel approach was proposed for increasing the practice bandwidth of the probe with short cable and was simulated. The PPD (Parallel Plate Dipole) E-Filed probe was designed. It is proved that the design method for the E-Field probe based on PSpice can be used in the measurement of EMP (Electromagnetic Pulse). (authors)

  1. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    Science.gov (United States)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  2. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  3. Neural Network Control for the Probe Landing Based on Proportional Integral Observer

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2015-01-01

    Full Text Available For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO is proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory meeting the constraints in advance on three axes is preplanned. Then the PIO designed by using LMI technique is employed in the control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate the effectiveness of the proposed control approach.

  4. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2′-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall......Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...

  5. A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells

    Science.gov (United States)

    Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian

    2018-06-01

    A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.

  6. Measurement Verification of Plane Wave Synthesis Technique Based on Multi-probe MIMO-OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum

    2012-01-01

    Standardization work for MIMO OTA testing methods is currently ongoing, where a multi-probe anechoic chamber based solution is an important candidate. In this paper, the probes located on an OTA ring are used to synthesize a plane wave field in the center of the OTA ring. This paper investigates...

  7. Verification of Emulated Channels in Multi-Probe Based MIMO OTA Testing Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum

    2013-01-01

    Standardization work for MIMO OTA testing methods is currently ongoing, where a multi-probe anechoic chamber based solution is an important candidate. In this paper, the probes located on an OTA ring are used to synthesize a plane wave field in the center of the OTA ring. This paper investigates...

  8. Miniature UAVs : An overview

    NARCIS (Netherlands)

    Weimar, P.W.L.; Kerkkamp, J.S.F.; Wiel, R.A.N.; Meiller, P.P.; Bos, J.G.H.

    2014-01-01

    With this book TNO provides an overview of topics related to Miniature Unmanned Aerial Vehicles (MUAVs). Both novices and experts may find this publication valuable. The Netherlands Organisation for Applied Scientific Research TNO conducts research on UAVs and MUAVs, see for example [1], on the

  9. A Miniature Recording Cardiotachometer

    DEFF Research Database (Denmark)

    Zsombor-Murray, Paul J; Vroomen, Louis J.; Hendriksen, Nils Thedin

    1981-01-01

    The design of a miniature, recording cardiotachometer is described. It is simple and can store digital data. Bench and field tests, using a hand-held display, are presented. Construction and principles of operation are discussed. Applications, with performing athlete subjects, are outlined....

  10. Miniature Centrifugal Compressor

    Science.gov (United States)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  11. Positioning Reduction of Deep Space Probes Based on VLBI Tracking

    Science.gov (United States)

    Qiao, S. B.

    2011-11-01

    In the background of the Chinese Lunar Exploration Project and the Yinghuo Project, through theoretical analysis, algorithm study, software development, data simulation, real data processing and so on, the positioning reductions of the European lunar satellite Smart-1 and Mars Express (MEX) satellite, as well as the Chinese Chang'e-1 (CE-1) and Chang'e-2 (CE-2) satellites are accomplished by using VLBI and USB tracking data in this dissertation. The progress is made in various aspects including the development of theoretical model, the construction of observation equation, the analysis of the condition of normal equation, the selection and determination of the constraint, the analysis of data simulation, the detection of outliers in observations, the maintenance of the stability of the solution of parameters, the development of the practical software system, the processing of the real tracking data and so on. The details of the research progress in this dissertation are written as follows: (1) The algorithm is analyzed concerning the positioning reduction of the deep spacecraft based on VLBI tracking data. Through data simulation, it is analyzed for the effects of the bias in predicted orbit, the white noises and systematic errors in VLBI delays, and USB ranges on the positioning reduction of spacecraft. Results show that it is preferable to suppress the dispersion of positioning data points by applying the constraint of geocentric distance of spacecraft when there are only VLBI tracking data. The positioning solution is a biased estimate via observations of three VLBI stations. For the case of four tracking stations, the uncertainty of the constraint should be in accordance with the bias in the predicted orbit. White noises in delays and ranges mainly result in dispersion of the sequence of positioning data points. If there is the systematic error of observations, the systematic offset of the positioning results is caused, and there are trend jumps in the shape of

  12. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    Science.gov (United States)

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Science.gov (United States)

    Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.

    2007-04-01

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  14. Hybridization-based biosensor containing hairpin probes and use thereof

    Science.gov (United States)

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  15. QD-Based FRET Probes at a Glance

    Directory of Open Access Journals (Sweden)

    Armen Shamirian

    2015-06-01

    Full Text Available The unique optoelectronic properties of quantum dots (QDs give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided.

  16. Hodoscope module with miniature photomultipliers

    International Nuclear Information System (INIS)

    Bel'zer, L.I.; Gribushin, A.M.; Zhil'tsov, L.Ya.; Matveeva, E.N.; Philipenko, T.D.; Sinev, N.B.

    1987-01-01

    The experimental Scintillation Magnetic Spectrometer (SMS) installation, whose main element is an extended hodoscope system, is being built for the accelerator of the High Energy Laboratory of the Joint Institute for Nuclear Research. The authors describe the scintillation hodoscope of the SMS installation and present the applicable amplitude and time characteristics of several types of miniature photomultipliers (FEU-58, FEU-60, FEU-114-1, FEU-147-1, and R-1635 (Hamamatsu, Japan)), which were obtained with a 106 Ru radioactive source and standard plastic scintillators of two types, based on oxazoles in polystyrene and in polymethylmethacrylate

  17. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  18. Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging

    Science.gov (United States)

    Zhang, Ming; Chakraborty, Subhasish K.; Sampath, Padma; Rojas, Juan J.; Hou, Weizhou; Saurabh, Saumya; Thorne, Steve H.; Bruchez, Marcel P.; Waggoner, Alan S.

    2015-01-01

    Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule–based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter–tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene. PMID:26348895

  19. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes.

    Science.gov (United States)

    Du, Mingde; Xu, Xianchen; Yang, Long; Guo, Yichuan; Guan, Shouliang; Shi, Jidong; Wang, Jinfen; Fang, Ying

    2018-05-15

    Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    International Nuclear Information System (INIS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-01-01

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. 2 to the anionic R-B - (CN) 3 form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range ∼15-84 μM 3 . In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH) 2 probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN - and OH - preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH

  1. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  2. Miniaturization in Biocatalysis

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research.

  3. Miniaturized nuclear battery

    International Nuclear Information System (INIS)

    Adler, K.; Ducommun, G.

    1976-01-01

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a β-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case

  4. Strange Animals and Creatures in Islamic Miniatures: Focusing on Miniatures of the Conference of the Birds

    Directory of Open Access Journals (Sweden)

    Neda Rohani

    2017-09-01

    Full Text Available Strange animals and creatures have always existed in every mythological culture. In Iran's pre-Islamic and post-Islamic miniatures and reliefs, there are many strange animals and creatures such as dragons and phoenix which were associated with the Iranian culture and civilization. Because of presence of these strange creatures, particularly human life, these creatures are first used in mythological life and then symbolically to express human ideas. However, these animals were present in both mythology and epics and, later in the Islamic era, in the mystical stories, educational stories and admonishing anecdotes like Sanai, Attar, and Rumi. This study tends to investigate genealogy of strange animals and creatures in ancient Iranian reliefs and their continued presence in miniatures of Islamic era as well as presence of these creatures in miniatures which are based on Attar’s Conference of the Birds. In fact, this study reviews elements and symbolic concepts of animals, allowing a deeper understanding of function of elements and symbolism in works of Iranian miniaturists. Contemplation of miniatures, icons and the relationship between literature and miniatures will lead to many results in recognition of mystical intellectual foundations. Therefore, this study tends to investigate mysterious and unknown aspects of Iranian miniatures and find their relationship with culture and stories.

  5. Miniaturizing RFID for magnamosis.

    Science.gov (United States)

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag.

  6. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  7. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  8. Analysis of conditional gene deletion using probe based Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Lyko Frank

    2010-12-01

    Full Text Available Abstract Following publication of this article 1 the authors noticed that an incorrect probe reference was cited on page 3, 4, 5 and 6 ("UP #69, Roche Applied Science". The correct probe that was used for the 1lox/2lox allele ratio analysis in the paper is as follows Probe for 1lox/2lox allele quantification: 5'-6-FAM-atAaCtTCgtatagCATaCattatac-BHQ-1 -3' (uppercase letters = LNA bases Manufacturer: EUROGENTEC, Seraing, Belgium All other information and reaction conditions in the paper are correct as stated.

  9. A Dansyl-Rhodamine Based Fluorescent Probe for Detection of Hg2+ and Cu2.

    Science.gov (United States)

    Yuan, Shizhuang; Su, Wei; Wang, Enju

    2017-09-01

    A novel fluorescent probe based on dansyl-appended rhodamine B was developed. The probe can selectively recognize and sense Hg2+ and Cu2+ from other common metal ions by showing unique fluorescence and absorption characteristics. In MeCN/HEPES buffer solution, the probe gives a ratiometric fluorescent response to Hg2+, which was ascribed to the fluorescence resonance energy transfer from dansyl moiety to the ring-opened rhodamine B moiety, while the presence of Cu2+ causes fluorescence quenching. Beside the fluorescence change, the presence of Cu2+ and Hg2+ can induce intensive absorption at about 555 nm, which resulted in a color change from colorless to pink.

  10. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions.

    Science.gov (United States)

    Yang, Min; Sun, Mingtai; Zhang, Zhongping; Wang, Suhua

    2013-02-15

    A novel dansyl-based fluorescent probe was synthesized and characterized. It exhibits high selectivity and sensitivity towards Fe(3+) ion. This fluorescent probe is photostable, water soluble and pH insensitive. The limit of detection is found to be 0.62 μM. These properties make it a good fluorescent probe for Fe(3+) ion detection in both chemical and biological systems. Spike recovery test confirms its practical application in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Micro sized implantable ball lens-based fiber optic probe design

    Science.gov (United States)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  12. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  13. Plans for miniature machining at LASL

    International Nuclear Information System (INIS)

    Rhorer, R.L.

    1979-01-01

    A special shop for making miniature or very small parts is being established within the LASL Shop Department, and one of the machine tools for this shop is a high precision lathe. The report describes a method based on scale modeling analysis which was used to define the specific requirements for this lathe

  14. Development of a nanowire based titanium needle probe sensor for glucose monitoring

    Science.gov (United States)

    Deshpande, Devesh C.

    The need for continuous monitoring of various physiological functions such as blood glucose levels, neural functions and cholesterol levels has fostered the research and development of various schemes of biosensors to sense and help control the respective function. The needs of patients for sensors with minimal discomfort, longer life and better performance have necessitated the development towards smaller and more efficient sensors. In addition, the need for higher functionality from smaller sensors has led to the development of sensors with multiple electrodes, each electrode capable of sensing a different body function. Such multi-electrode sensors need to be fabricated using micro-fabrication processes in order to achieve precise control over the size, shape and placement of the electrodes. Multielectrode sensors fabricated using silicon and polymers have been demonstrated. One physiological function that attracts widespread interest is continuous glucose monitoring in our blood, since Diabetes affects millions of people all over the world. Significant deviations of blood glucose levels from the normal levels of 4-8 mM can cause fainting, coma and damage to the eyes, kidneys, nerves and blood vessels. For chronic patients, continuous monitoring of glucose levels is essential for accurate and timely treatment. A few continuous monitoring sensors are available in the market, but they have problems and cannot replace the strip type one-time glucose monitoring systems as yet. To address this need, large scale research efforts have been targeted towards continuous monitoring. The demand for higher accuracy and sensitivity has motivated researchers to evaluate the use of nanostructures in sensing. The large surface area-to-volume ratio of such structures could enable further miniaturization and push the detection limits, potentially enabling even single molecule detection. This research involved the development of a biocompatible titanium needle probe sensor for

  15. A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging.

    Science.gov (United States)

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Varma, Sreejith Jayasree; Talukdar, Pinaki

    2012-03-11

    A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated. This journal is © The Royal Society of Chemistry 2012

  16. All-optical optoacoustic microscopy based on probe beam deflection technique

    OpenAIRE

    Maswadi, Saher M.; Ibey, Bennett L.; Roth, Caleb C.; Tsyboulski, Dmitri A.; Beier, Hope T.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2016-01-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separa...

  17. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  18. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    International Nuclear Information System (INIS)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao

    2013-01-01

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells

  19. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2013-10-24

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.

  20. Focal plane based wavefront sensing with random DM probes

    Science.gov (United States)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  1. A new Schiff base based on vanillin and naphthalimide as a fluorescent probe for Ag+ in aqueous solution

    Science.gov (United States)

    Zhou, Yanmei; Zhou, Hua; Ma, Tongsen; Zhang, Junli; Niu, Jingyang

    2012-03-01

    A new Schiff base based on vanillin and naphthalimide was designed and synthesized as fluorescent probe. The probe showed high selectivity for Ag+ over other metal ions such as Pb2+, Na+, K+, Cd2+, Ba2+, Cr3+, Zn2+, Cu2+, Ni2+, Ca2+, Al3+ and Mg2+ in aqueous solution. A new fluorescence emission was observed at 682 nm in the presence of Ag+ ion. The fluorescence intensity quenched with increasing the concentration of Ag+ at 682 nm. The method of job's plot confirmed the 1:2 complex between Ag+ and probe, and the mechanism was proposed.

  2. Miniaturized radiation chirper

    International Nuclear Information System (INIS)

    Umbarger, C.J.; Wolf, M.A.

    1980-01-01

    A miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts is described. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers

  3. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Directory of Open Access Journals (Sweden)

    Malik Kemiche

    2018-01-01

    Full Text Available We exploit slow light (high ng modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28, this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate of the pulsed laser signal.

  4. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Science.gov (United States)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  5. A highly sensitive fluorescent probe based on BODIPY for Hg2+ in aqueous solution

    Directory of Open Access Journals (Sweden)

    ZHAO Junwei

    2016-12-01

    Full Text Available A highly sensitive fluorescent probe based on BODIPY and hydrazine for Hg2+ was designed and synthesized.This probe could detect mercury ions in aqueous solutions within 5 min.With the increase of Hg2+ mole concentration,an obvious red shift of UV-Vis absorption wavelength was observed and the fluorescence intensity significantly enhanced.It was found that the fluorescence intensity of an aqueous solution containing 0.1 μmol/L Hg2+ is much stronger than that of blank solution,which indicats that the fluorescent probe has high sensitivity.In addition,other metal ions could not cause the change of fluorescent spectra,which means this probe has good selectivity,as well.

  6. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa

    2017-12-06

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  7. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian G.

    2017-01-01

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  8. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    Science.gov (United States)

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  10. A Pyridazine-Based Fluorescent Probe Targeting Aβ Plaques in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yong Dae Park

    2018-01-01

    Full Text Available Accumulation of β-amyloid (Aβ plaques comprising Aβ40 and Aβ42 in the brain is the most significant factor in the pathogenesis of Alzheimer’s disease (AD. Thus, the detection of Aβ plaques has increasingly attracted interest in the context of AD diagnosis. In the present study, a fluorescent pyridazine-based dye that can detect and image Aβ plaques was designed and synthesized, and its optical properties in the presence of Aβ aggregates were evaluated. An approximately 34-fold increase in emission intensity was exhibited by the fluorescent probe after binding with Aβ aggregates, for which it showed high affinity (KD = 0.35 µM. Moreover, the reasonable hydrophobic properties of the probe (log P = 2.94 allow it to penetrate the blood brain barrier (BBB. In addition, the pyridazine-based probe was used in the histological costaining of transgenic mouse (APP/PS1 brain sections to validate the selective binding of the probe to Aβ plaques. The results suggest that the pyridazine-based compound has the potential to serve as a fluorescent probe for the diagnosis of AD.

  11. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe.

    Science.gov (United States)

    Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi

    2018-04-26

    Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.

  12. Raman Probe Based on Optically-Poled Double-Core Fiber

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths.......A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths....

  13. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Miniaturized Airborne Imaging Central Server System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  15. Miniaturized Airborne Imaging Central Server System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  16. A Mistake Based Approach Probing Students' Understanding of PV ...

    Indian Academy of Sciences (India)

    There are several concepts in molecular thermodynamics whicheasily befuddle students. PV-type work done, presents onesuch example. Classifying the systematic mistakes made bystudents in response to a concept-based question on workdone in thermodynamics, and sharing them across a publicforum results in a ...

  17. Electrospun fibre colorimetric probe based on gold nanoparticles for ...

    African Journals Online (AJOL)

    2014-11-20

    Nov 20, 2014 ... pump operated at a flow rate of 0.300 mℓ/h and a high-voltage power supply with a ..... Y (2012) A simple colorimetric sensor based on anti-aggregation of ... inside polystyrene domains dispersed in an epoxy matrix. Eur.

  18. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A miniature turbocompressor system

    Energy Technology Data Exchange (ETDEWEB)

    Zwyssig, C.; Kraehenbuehl, D.; Kolar, J. W. [Swiss Federal Institute of Technology, Power Electronic Systems Laboratory, Zuerich (Switzerland); Weser, H. [High Speed Turbomaschinen GmbH, Wolfsburg (Germany)

    2008-07-01

    The trend in compressors for fuel cells, heat pumps, aerospace and automotive air pressurization, heating, ventilation and air conditioning systems, is towards ultra-compact size and high efficiency. This can be achieved by increasing the rotational speed and employing new electrical drive system technology and materials. This paper presents a miniature, electrically driven turbocompressor system running at a speed of 500,000 rpm. The design includes the thermodynamics, the electric motor, the inverter, the control and the system integration with rotor dynamics and thermal considerations. In the experimental setup, the specified pressure ratio of 1.6 is achieved at a speed of 550,000 rpm, which is slightly higher than the design speed. (author)

  20. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  1. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  2. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    OpenAIRE

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2013-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scan...

  3. Movable Thomson scattering system based on optical fiber (TS-probe)

    International Nuclear Information System (INIS)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  4. Fluorescent probe based on heteroatom containing styrylcyanine: pH-sensitive properties and bioimaging in vivo

    International Nuclear Information System (INIS)

    Yang, Xiaodong; Gao, Ya; Huang, Zhibing; Chen, Xiaohui; Ke, Zhiyong; Zhao, Peiliang; Yan, Yichen; Liu, Ruiyuan; Qu, Jinqing

    2015-01-01

    A novel fluorescent probe based on heteroatom containing styrylcyanine is synthesized. The fluorescence of probe is bright green in basic and neutral media but dark orange in strong acidic environments, which could be reversibly switched. Such behavior enables it to work as a fluorescent pH sensor in the solution state and a chemosensor for detecting acidic and basic volatile organic compounds. Analyses by NMR spectroscopy confirm that the protonation or deprotonation of pyridinyl moiety is responsible for the sensing process. In addition, the fluorescent microscopic images of probe in live cells and zebrafish are achieved successfully, suggesting that the probe has good cell membrane permeability and low cytotoxicity. - Graphical abstract: A novel styrylcyanine-based fluorescent pH probe was designed and synthesized, the fluorescence of which is bright green in basic and neutral media but dark orange in strong acidic environments. Such behavior enables it to work as a fluorescent pH sensor in solution states, and a chemosensor for detecting volatile organic compounds with high acidity and basicity in solid state. In addition, it can be used for fluorescent imaging in living cell and living organism. - Highlights: • Bright green fluorescence was observed in basic and neutral media. • Dark orange fluorescence was found in strong acidic environments. • Volatile organic compounds with high acidity and basicity could be detected. • Bioimaging in living cell and living organism was achieved successfully

  5. Battery-Free Love-Wave-Based Neural Probe and Its Wireless Characterizations

    Science.gov (United States)

    Jung, In Ki; Fu, Chen; Lee, Keekeun

    2013-06-01

    A wireless Love-wave-based neural probe that utilizes a one-port reflective delay line was developed for both reading and stimulating neurons in the brain. Poly(methyl methacrylate) (PMMA) as a waveguide layer and gold (Au) electrodes were structured on the top of a 41° YX LiNbO3 piezoelectric substrate, following the parameters extracted from coupling-of-mode (COM) modeling. For a one-port reflective delay line, single-phase unidirectional transducers (SPUDTs) and three shorted grating reflectors were employed, which made possible the implementation of a wireless and battery-free neural probe. The fabricated Love-wave-based neural probes were wirelessly measured using two antennas with a 440 MHz central frequency and a network analyzer. Sharp reflection peaks with a high signal-to-noise ratio were observed from the reflection peaks. The probe was immersed in 0.9% saline solution while applying input DC voltages. Good linearity, high sensitivity, and reproducibility were observed depending on DC applied voltage, in the range from 0 to 500 mV. The sensitivity obtained from the DC firings (artificial neural firings) was ˜0.04 µs/VDC, indicating that this prototype probe is very promising for the wireless reading and stimulation of neural firings in in vivo animal testing.

  6. Imaging of Homeostatic, Neoplastic, and Injured Tissues by HA-Based Probes

    Science.gov (United States)

    Veiseh, Mandana; Breadner, Daniel; Ma, Jenny; Akentieva, Natalia; Savani, Rashmin C; Harrison, Rene; Mikilus, David; Collis, Lisa; Gustafson, Stefan; Lee, Ting-Yim; Koropatnick, James; Luyt, Leonard G.; Bissell, Mina J.; Turley, Eva A.

    2013-01-01

    An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, 99mTc-HA, and iodine-HA, 125I-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver (99mTc-HA), breast cancer cells/xenografts (TR-HA, Gd-HA), and vascular injury (125I-HA, TR-HA). Targeting of HA probes to these sites appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues. PMID:22066590

  7. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  8. Miniature linear cooler development

    International Nuclear Information System (INIS)

    Pruitt, G.R.

    1993-01-01

    An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results

  9. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    Science.gov (United States)

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe

    International Nuclear Information System (INIS)

    Guan Huimin; Zhu Lihua; Zhou Hehui; Tang Heqing

    2008-01-01

    Self-cleaning materials are widely applied, but the available methods for determining their photocatalytic activity are time consuming. A simple analysis method was proposed to evaluate rapidly the photocatalytic activity of self-cleaning materials. This method is based on monitoring of a highly fluorescent product generated by the self-cleaning materials after illumination. Under UV irradiation, holes photo-induced on the surface of self-cleaning materials can oxidize water molecules (or hydroxide ions) adsorbed on the surface to produce hydroxyl radicals, which then quantitatively oxidize coumarin to highly fluorescent 7-hydroxycoumarin. It was observed that the fluorescence intensity of photo-generated 7-hydroxycoumarin at 456 nm (excited at 346 nm) linearly increased with irradiation time, and the fluorescence intensity at a given irradiation time was linearly proportional to the photocatalytic activity of self-cleaning materials. Consequently, the photocatalytic activity of self-cleaning materials was able to be probed simply by using this new method, which requires an analysis time of 40 min, being much less than 250 min required for a dye method

  11. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-10-08

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope's instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications.

  12. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2012-01-01

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope’s instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications. PMID:23188360

  13. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johannes Bernardus Charles; Khatib, M.G.; Koelmans, W.W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data

  14. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA.

    Science.gov (United States)

    Ganareal, Thenor Aristotile Charles S; Balbin, Michelle M; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2018-02-12

    Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. DNA-based stable isotope probing: a link between community structure and function

    Czech Academy of Sciences Publication Activity Database

    Uhlík, Ondřej; Ječná, K.; Leigh, M. B.; Macková, Martina; Macek, Tomáš

    2009-01-01

    Roč. 407, č. 12 (2009), s. 3611-3619 ISSN 0048-9697 Grant - others:GA MŠk(CZ) 2B08031 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA-based stable isotope probing * microbial diversity * bioremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.905, year: 2009

  16. Optimization of Comb-Drive Actuators [Nanopositioners for probe-based data storage and musical MEMS

    NARCIS (Netherlands)

    Engelen, Johannes Bernardus Charles

    2011-01-01

    The era of infinite storage seems near. To reach it, data storage capabilities need to grow, and new storage technologies must be developed.This thesis studies one aspect of one of the emergent storage technologies: optimizing electrostatic combdrive actuation for a parallel probe-based data storage

  17. Reproducible analysis of sequencing-based RNA structure probing data with user-friendly tools

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan; Sidiropoulos, Nikos; Vinther, Jeppe

    2015-01-01

    time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data. To facilitate reproducible and standardized analysis of this type of data...

  18. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Science.gov (United States)

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  19. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    International Nuclear Information System (INIS)

    Nara, Seema; Tripathi, Vinay; Singh, Harpal; Shrivastav, Tulsidas G.

    2010-01-01

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL -1 with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  20. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  1. Design of planar microcoil-based NMR probe ensuring high SNR

    Science.gov (United States)

    Ali, Zishan; Poenar, D. P.; Aditya, Sheel

    2017-09-01

    A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  2. Design of planar microcoil-based NMR probe ensuring high SNR

    Directory of Open Access Journals (Sweden)

    Zishan Ali

    2017-09-01

    Full Text Available A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  3. PRIMEGENSw3: a web-based tool for high-throughput primer and probe design.

    Science.gov (United States)

    Kushwaha, Garima; Srivastava, Gyan Prakash; Xu, Dong

    2015-01-01

    Highly specific and efficient primer and probe design has been a major hurdle in many high-throughput techniques. Successful implementation of any PCR or probe hybridization technique depends on the quality of primers and probes used in terms of their specificity and cross-hybridization. Here we describe PRIMEGENSw3, a set of web-based utilities for high-throughput primer and probe design. These utilities allow users to select genomic regions and to design primer/probe for selected regions in an interactive, user-friendly, and automatic fashion. The system runs the PRIMEGENS algorithm in the back-end on the high-performance server with the stored genomic database or user-provided custom database for cross-hybridization check. Cross-hybridization is checked not only using BLAST but also by checking mismatch positions and energy calculation of potential hybridization hits. The results can be visualized online and also can be downloaded. The average success rate of primer design using PRIMEGENSw3 is ~90 %. The web server also supports primer design for methylated sequences, which is used in epigenetic studies. Stand-alone version of the software is also available for download at the website.

  4. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  5. A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+

    International Nuclear Information System (INIS)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru; Chan, Wing Hong

    2016-01-01

    A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+ has been designed and investigated. The probe shows an immediate visual color change in response to Fe"3"+ and Cu"2"+, while only Fe"3"+ triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe"3"+. The association constant K_a_s_s of 4.64 × 10"8 M"-"2 (R"2 = 0.994) and 5.38 × 10"8 M"-"2 (R"2 = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe"3"+ complex, respectively

  6. An easily Prepared Fluorescent pH Probe Based on Dansyl.

    Science.gov (United States)

    Sha, Chunming; Chen, Yuhua; Chen, Yufen; Xu, Dongmei

    2016-09-01

    A novel fluorescent pH probe from dansyl chloride and thiosemicarbazide was easily prepared and fully characterized by (1)H NMR, (13)C NMR, LC-MS, Infrared spectra and elemental analysis. The probe exhibited high selectivity and sensitivity to H(+) with a pK a value of 4.98. The fluorescence intensity at 510 nm quenched 99.5 % when the pH dropped from 10.88 to 1.98. In addition, the dansyl-based probe could respond quickly and reversibly to the pH variation and various common metal ions showed negligible interference. The recognition could be ascribed to the intramolecular charge transfer caused by the protonation of the nitrogen in the dimethylamino group.

  7. Design and analysis of a BLPC vocoder-based adaptive feedback cancellation with probe noise

    DEFF Research Database (Denmark)

    Anand, Ankita; Kar, Asutosh; Swamy, M.N.S.

    2017-01-01

    a BLPC vocoderbased adaptive feedback canceller with probe noise with an objective of reducing the low-frequency bias in digital hearing-aids. A step-wise mathematical analysis of the proposed feedback canceller is presented employing the recursive least square and normalized least mean square adaptive......The band-limited linear predictive coding (BLPC) vocoder-based adaptive feedback cancellation (AFC) removes the high-frequency bias, while the low frequency bias persists between the desired input signal and the loudspeaker signal in the estimate of the feedback path. In this paper, we present...... algorithms. It is observed that the optimal solution of the feedback path is unbiased for an unshaped probe noise, but is biased for a shaped probe signal; the bias term does not consist of correlation between the desired input and the loudspeaker output. The identifiability conditions are analysed...

  8. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation); Mandrosov, V I [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  9. Estimates of dose to systematic organs and GI tract based on data from miniature swine orally intubated with a single dose of Am-241 citrate

    International Nuclear Information System (INIS)

    Bernard, S.R.; Nestor, C.W. Jr.; Eisele, G.R.; Eckerman, K.F.

    1982-01-01

    A model is presented for the internal radiation dose to the small intestine wall of miniature swine given Americium 241 citrate by oral intubation. The model incorporates the uptake of the Am-241 by the intestinal wall. About equal contributions of dose to the small intestine were observed from the intestinal contents and the wall itself

  10. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2014-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  11. SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Soldner, A; Liu, H; Kassaee, A; Zhu, T; Finlay, J [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depth dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.

  12. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    Science.gov (United States)

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-02-01

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  13. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    Science.gov (United States)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  14. Central Hypothyroidism in Miniature Schnauzers

    NARCIS (Netherlands)

    Voorbij, Annemarie M W Y; Leegwater, Peter A J; Buijtels, Jenny J C W M; Daminet, Sylvie; Kooistra, Hans S

    2016-01-01

    BACKGROUND: Primary hypothyroidism is a common endocrinopathy in dogs. In contrast, central hypothyroidism is rare in this species. OBJECTIVES: The objective of this article is to describe the occurrence and clinical presentation of central hypothyroidism in Miniature Schnauzers. Additionally, the

  15. Miniature Optical Isolator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for compact optical isolators, Physical Optics Corporation (POC) proposes to continue the development of a new Miniature Optical Isolator...

  16. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  17. Two miniature electronic dosemeters Yperwatch - Gamcard

    International Nuclear Information System (INIS)

    Clavel, B.; Jaillon, J.

    1993-01-01

    Yperwatch and Gamcard were miniature electronic gamma personal dose and dose rate monitors. The Yperwatch is mounted in a wristwatch and the Gamcard in a case of the size of a standard credit card. The technology provides users with all the performance of a standard professional electronic dosemeter (integrated dose, dose rate, audible alarms, time in use). Yperwatch and Gamcard are based on well-proven electronic dosimetry technology, but with a greater ease of use. (author)

  18. Miniature Raman spectrometer development

    Science.gov (United States)

    Bonvallet, Joseph; Auz, Bryan; Rodriguez, John; Olmstead, Ty

    2018-02-01

    The development of techniques to rapidly identify samples ranging from, molecule and particle imaging to detection of high explosive materials, has surged in recent years. Due to this growing want, Raman spectroscopy gives a molecular fingerprint, with no sample preparation, and can be done remotely. These systems can be small, compact, lightweight, and with a user interface that allows for easy use and sample identification. Ocean Optics Inc. has developed several systems that would meet all these end user requirements. This talk will describe the development of different Ocean Optics Inc miniature Raman spectrometers. The spectrometer on a phone (SOAP) system was designed using commercial off the shelf (COTS) components, in a rapid product development cycle. The footprint of the system measures 40x40x14 mm (LxWxH) and was coupled directly to the cell phone detector camera optics. However, it gets roughly only 40 cm-1 resolution. The Accuman system is the largest (290x220X100 mm) of the three, but uses our QEPro spectrometer and get 7-11 cm-1 resolution. Finally, the HRS-30 measuring 165x85x40 mm is a combination of the other two systems. This system uses a modified EMBED spectrometer and gets 7-12 cm-1 resolution. Each of these units uses a peak matching algorithm that then correlates the results to the pre-loaded and customizable spectral libraries.

  19. The road to miniaturization

    International Nuclear Information System (INIS)

    Iwai, Hiroshi; Hei Wong

    2006-01-01

    Silicon microelectronics has revolutionized the way we live, but how long can the relentless down sizing of devices continue? Hei Wong and Hiroshi Iwai describe the challenges facing the semiconductor industry today. For the last four decades the miniaturization of the microchip has been the driving force behind developments in all kinds of technology, from home entertainment to space exploration. At the heart of this revolution lies the metal-oxide-semiconductor (MOS) transistor, which has evolved in two ways. First, it has become smaller, with the latest devices measuring a thousandth of their original size. Second, the number of transistors that can be interconnected on a single chip has risen from a few tens to hundreds of millions. The density of microchips has followed an exponential trend that was famously identified by Gordon Moore of Intel in 1965. Moore predicted that the number of components that could be crammed into an integrated circuit would double every two years for the foreseeable future. In fact, he slightly underestimated the trend, because the average number has actually doubled every 18 months. The question keeping chip manufacturers awake in 2005 is how long this exponential growth can continue. (U.K.)

  20. The Whole new world of miniature technology

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-07-01

    In the past ten years, miniaturization of both electrical and mechanical parts has significantly increased. Documentation of the design and production capabilities of miniaturization in the electronics industry is well-defined. Literature on the subject of miniaturization of metal piece parts, however, is hard to find. Some of the current capabilities in the manufacture of miniature metal piece parts or miniature features in larger piece parts are discussed.

  1. Toward Exposing Timing-Based Probing Attacks in Web Applications †

    Science.gov (United States)

    Mao, Jian; Chen, Yue; Shi, Futian; Jia, Yaoqi; Liang, Zhenkai

    2017-01-01

    Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT) systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users’ browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach. PMID:28245610

  2. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    Science.gov (United States)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  3. A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection.

    Science.gov (United States)

    Zhang, Zhen; Zou, Yuan; Deng, Chengquan; Meng, Liesu

    2016-06-01

    Hypochlorous acid (HOCl) plays a crucial role in daily life and mediates a variety of physiological processes, however, abnormal levels of HOCl have been associated with numerous human diseases. It is therefore of significant interest to establish a simple, selective, rapid and sensitive fluorogenic method for the detection of HOCl in environmental and biological samples. A hydrazide-containing fluorescent probe based on a rhodamine scaffold was facilely developed that could selectively detect HOCl over other biologically relevant reactive oxygen species, reactive nitrogen species and most common metal ions in vitro. Via an irreversible oxidation-hydrolysis mechanism, and upon HOCl-triggered opening of the intramolecular spirocyclic ring during detection, the rhodamine hydrazide-based probe exhibited large fluorescence enhancement in the emission spectra with a fast response, low detection limit and comparatively wide pH detection range in aqueous media. The probe was further successfully applied to monitoring trace HOCl in tap water and imaging both exogenous and endogenous HOCl within living cells. It is anticipated that this simple and useful probe might be an efficient tool with which to facilitate more HOCl-related chemical and biological research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. A low molecular weight zinc{sup 2+}-dipicolylamine-based probe detects apoptosis during tumour treatment better than an annexin V-based probe

    Energy Technology Data Exchange (ETDEWEB)

    Palmowski, Karin [RWTH-Aachen University, Department of Experimental Molecular Imaging, Aachen (Germany); University of Heidelberg, Department of Pneumology, Thoraxklinik Heidelberg, Heidelberg (Germany); Rix, Anne; Lederle, Wiltrud; Kiessling, Fabian [RWTH-Aachen University, Department of Experimental Molecular Imaging, Aachen (Germany); Behrendt, Florian F. [RWTH-Aachen University, Department of Nuclear Medicine, Aachen (Germany); Mottaghy, Felix M. [RWTH-Aachen University, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Gray, Brian D. [Molecular Targeting Technologies, Inc., West Chester, PA (United States); Pak, Koon Y. [University Medical Center Heidelberg, Academic Radiology Baden-Baden, Diagnostic and Interventional Radiology, Heidelberg (Germany); Palmowski, Moritz [RWTH-Aachen University, Department of Experimental Molecular Imaging, Aachen (Germany); RWTH-Aachen University, Department of Nuclear Medicine, Aachen (Germany); University Medical Center Heidelberg, Academic Radiology Baden-Baden, Diagnostic and Interventional Radiology, Heidelberg (Germany)

    2014-02-15

    Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc{sup 2+}-dipicolylamine (Zn{sup 2+}-DPA) with the established but reasonably larger protein annexin V. Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn{sup 2+}-DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, μPET with {sup 18} F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P < 0.05) and 4 days (P < 0.01) of treatment. Concordantly, Zn{sup 2+}-DPA uptake increased significantly after 1 day (P < 0.05) and 4 days (P < 0.01). Surprisingly, annexin V failed to detect significant differences between control and treated animals. Contrary to the increasing uptake of Zn{sup 2+}-DPA, {sup 18} F-FDG tumour uptake decreased significantly at days 1 (P < 0.05) and 4 (P < 0.01). Increase in apoptosis during anti-angiogenic therapy was detected significantly better with the low molecular weight probe Zn{sup 2+}-DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn{sup 2+}-DPA as with measurements of the glucose metabolism using {sup 18} F-FDG. (orig.)

  5. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  6. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  7. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  8. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

    Science.gov (United States)

    Ward, Carl C; Kleinman, Jordan I; Nomura, Daniel K

    2017-06-16

    Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.

  9. A miniature electrical capacitance tomograph

    Science.gov (United States)

    York, T. A.; Phua, T. N.; Reichelt, L.; Pawlowski, A.; Kneer, R.

    2006-08-01

    The paper describes a miniature electrical capacitance tomography system. This is based on a custom CMOS silicon integrated circuit comprising eight channels of signal conditioning electronics to source drive signals and measure voltages. Electrodes are deposited around a hole that is fabricated, using ultrasonic drilling, through a ceramic substrate and has an average diameter of 0.75 mm. The custom chip is interfaced to a host computer via a bespoke data acquisition system based on a microcontroller, field programmable logic device and wide shift register. This provides fast capture of up to 750 frames of data prior to uploading to the host computer. Data capture rates of about 6000 frames per second have been achieved for the eight-electrode sensor. This rate could be increased but at the expense of signal to noise. Captured data are uploaded to a PC, via a RS232 interface, for off-line imaging. Initial tests are reported for the static case involving 200 µm diameter rods that are placed in the sensor and for the dynamic case using the dose from an inhaler.

  10. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  11. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  12. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  13. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  14. A low molecular weight zinc2+-dipicolylamine-based probe detects apoptosis during tumour treatment better than an annexin V-based probe

    International Nuclear Information System (INIS)

    Palmowski, Karin; Rix, Anne; Lederle, Wiltrud; Kiessling, Fabian; Behrendt, Florian F.; Mottaghy, Felix M.; Gray, Brian D.; Pak, Koon Y.; Palmowski, Moritz

    2014-01-01

    Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc 2+ -dipicolylamine (Zn 2+ -DPA) with the established but reasonably larger protein annexin V. Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn 2+ -DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, μPET with 18 F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P 2+ -DPA uptake increased significantly after 1 day (P 2+ -DPA, 18 F-FDG tumour uptake decreased significantly at days 1 (P 2+ -DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn 2+ -DPA as with measurements of the glucose metabolism using 18 F-FDG. (orig.)

  15. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    International Nuclear Information System (INIS)

    Yan, Xiu-Fang; Chen, Zeng-Ping; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-01-01

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM GRP ) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM GRP has been tested on the quantitative determination of free Ca 2+ in both simulated and real turbid media using a Ca 2+ sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM GRP could realize precise and accurate quantification of free Ca 2+ in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca 2+ bound Rhod-2. The average relative predictive error value of QFM GRP for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca 2+ bound Rhod-2 and eosin B. The recovery rates of QFM GRP for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength-ratiometric PEBBLEs. • The model realized accurate

  16. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xi [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Du, Zhi-Fang [Taishan College, Shandong University, Jinan 250100 (China); Wang, Li-Hong; Miao, Jun-Ying [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2016-05-30

    We have designed and synthesized a simple but effective fluorescent probe for sensing glutathione (GSH) by PET process based on coumarin and quinone, which worked as fluorophore and reaction site, respectively. The probe could discriminate GSH from cysteine and homocysteine within 1 min in PBS-buffered solution. The sensing mechanism was confirmed by density functional theory (DFT), viscosity test, fluorescence spectrum analysis and HRMS, respectively. The probe has a low limit of detection (0.1 μM) and finally been used in cell imaging successfully. - Highlights: • This probe can discriminate glutathione from sulfhydryl compound by PET process. • This probe can be used to determine glutathione in aqueous solution within 1 min. • This probe has been successfully applied in living cell image.

  17. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells

    International Nuclear Information System (INIS)

    Dai, Xi; Du, Zhi-Fang; Wang, Li-Hong; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    We have designed and synthesized a simple but effective fluorescent probe for sensing glutathione (GSH) by PET process based on coumarin and quinone, which worked as fluorophore and reaction site, respectively. The probe could discriminate GSH from cysteine and homocysteine within 1 min in PBS-buffered solution. The sensing mechanism was confirmed by density functional theory (DFT), viscosity test, fluorescence spectrum analysis and HRMS, respectively. The probe has a low limit of detection (0.1 μM) and finally been used in cell imaging successfully. - Highlights: • This probe can discriminate glutathione from sulfhydryl compound by PET process. • This probe can be used to determine glutathione in aqueous solution within 1 min. • This probe has been successfully applied in living cell image.

  18. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  19. An image fiber based fluorescent probe with associated signal processing scheme for biomedical diagnostics

    International Nuclear Information System (INIS)

    Vaishakh, M; Murukeshan, V M; Seah, L K

    2008-01-01

    A dual-modality image fiber based fluorescent probe that can be used for depth sensitive imaging and suppression of fluorescent emissions with nanosecond lifetime difference is proposed and illustrated in this paper. The system can give high optical sectioning and employs an algorithm for obtaining phase sensitive images. The system can find main application in in vivo biomedical diagnostics for detecting biochemical changes for distinguishing malignant tissue from healthy tissue

  20. Design and application of natural product derived probes for activity based protein profiling

    OpenAIRE

    Battenberg, Oliver Alexander

    2015-01-01

    The identification of new antibacterial protein targets by activity based protein profiling (ABPP) is an important approach to face the increasing emergence of resistant bacteria. The scope of this work focuses on three new strategies for the labeling of antibacterial protein-targets with natural product derived ABPP-probes: A.) Evaluation of the intrinsic photo-reactivity of α-pyrones and pyrimidones for use as photo-crosslinkers. B.) Synthesis of a benzophenone-tag that combines photo-cross...

  1. Electrospun nanofiber based colorimetric probe for rapid detection of Fe{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Ondigo, D.A. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Tshentu, Z.R. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031 (South Africa); Torto, N., E-mail: N.Torto@ru.ac.za [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa)

    2013-12-04

    Graphical abstract: -- Highlights: •Colorimetric probe for the detection of Fe{sup 2+} was developed. •Polymeric electrospun nanofibers were used as host for the signaling reagent. •The functionalized electrospun nanofibers exhibited a selective color change in the presence of Fe{sup 2+}. •The mechanism was based on spin crossover (SCO) from high spin Fe{sup 2+} to low spin Fe{sup 2+} upon interaction with the embedded ligand. -- Abstract: An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe{sup 2+} in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe{sup 2+} the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe{sup 2+} was 0.0988–3.5 μg mL{sup −1}. The ligand showed a high chromogenic selectivity for Fe{sup 2+} over other cations with a detection limit of 0.102 μg mL{sup −1} in solution (lower than the WHO drinking water guideline limit of 2 mg L{sup −1}), and 2 μg mL{sup −1} in the solid state. The concentration of Fe{sup 2+} in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L{sup −1}, which was comparable with the certified value of 2.44 ± 0.12 mg L{sup −1}. Application of the probe to real samples spiked with Fe{sup 2+} achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.

  2. A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization

    International Nuclear Information System (INIS)

    Wang, Qingxiang; Ding, Yingtao; Gao, Feng; Jiang, Shulian; Zhang, Bin; Ni, Jiancong; Gao, Fei

    2013-01-01

    Graphical abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction between probe DNA and the sulfonic dye of 1-amino-2-naphthol-4-sulfonic acid that electrodeposited on a glassy carbon electrode. -- Highlights: •A versatile sulfonic dye of ANS was electrodeposited on a GCE. •A DNA biosensor was fabricated based on a facile sulfamide coupling reaction. •High probe DNA density of 3.18 × 10 13 strands cm −2 was determined. •A wide linear range and a low detection limit were obtained. -- Abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO 3 − ) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO 3 − layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO 3 − -AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO 3 − . The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH 3 ) 6 3+ as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18 × 10 13 strands cm −2 and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen) 3 3+/2+ (phen = 1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen) 3 3+/2+ increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0 × 10 −13 M to 1.0 × 10 −8 M with

  3. Miniature digital radiacmeter

    International Nuclear Information System (INIS)

    Raymond, D.; Nirschl, J.

    1978-01-01

    A prototype instrument for monitoring radiation levels has been developed under contract to U.S. Army Electronics Research and Development Command, Fort Monmouth, N.J., for technical evaluation. This instrument measures gamma dose-rates from 10 mrad/h to 1000 rad/h using a small pressurized ion chamber, which contains a hybrid integrated circuit current-to-frequency converter. The autoranging digital readout uses a liquid crystal display. Audible and visual alarm are incorporated, to alert the operator when a preset level of dose-rate has been exceeded. A non-volatile total dose memory can be read on command. Control of the instrument is via a sealed front panel keyboard. Battery life exceeds 100 hours continuous operation between recharging. The instrument also includes provisions for a plug-in Geiger-Mueller probe that extends the sensitivity to .01 mrad/h for use as a frisking probe. Both detectors are designed to be sensitive to beta radiation as well as gamma. Data is presented on the evaluation to date of the performance of the prototype instrument over a wide range of temperature and dose-rate

  4. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Laura Becerra-Fajardo

    Full Text Available Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs that will be flexible, thread-like (diameters < 0.5 mm and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with

  5. A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe3+

    International Nuclear Information System (INIS)

    Wang, Lei; Yang, Xiaodong; Chen, Xiuli; Zhou, Yuping; Lu, Xiaodan; Yan, Chenggong; Xu, Yikai; Liu, Ruiyuan; Qu, Jinqing

    2017-01-01

    A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe 3+ and was able to detect Fe 3+ in aqueous solution with low detection limit of 0.511 μM. Job plot showed that the binding stoichiometry of 1 with Fe 3+ was 1:1. Further observations of 1 H NMR titration suggested that coordination interaction between Fe 3+ and nitrogen atom on C =N bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe 3+ in living cell and bioimaging. - Graphical abstract: Triphenylamine based fluorescence probe can detect pH and Fe 3+ simultaneously in aqueous solution and be applied for detecting Fe 3+ in living cell and bioimaging. - Highlights: • The fluorescence probe is sensitive to pH in strong acid conditions. • The fluorescence chemosensor can detect pH and Fe 3+ simultaneously. • The recognition is able to carry out in aqueous solution. • The probe can also be applied for detecting Fe 3+ in living cell and bioimaging. • The sensor is synthesized easily with one step.

  6. A miniaturized laser-Doppler-system in the ear canal

    Science.gov (United States)

    Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.

    2013-03-01

    Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a

  7. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    Science.gov (United States)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  8. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  9. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature.

  10. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Su

    2016-08-01

    Full Text Available Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM.

  11. LNA probe-based assay for the detection of Tomato black ring virus isolates.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Rymelska, Natalia; Borodynko, Natasza

    2015-02-01

    Tomato black ring virus (TBRV) infects a wide range of economically important plant species worldwide. In the present study we developed a locked nucleic acid (LNA) real-time RT-PCR assay for accurate detection of genetically diverse TBRV isolates collected from different hosts. The assay based on the LNA probe has a wide detection range, high sensitivity, stability and amplification efficiency. The assay amplified all tested TBRV isolates, but no signal was observed for the RNA from other nepoviruses and healthy plant species. Under optimum reaction conditions, the detection limit was estimated around 17 copies of the TBRV target region in total RNA. Real-time RT-PCR with the LNA probe described in this paper will serve as a valuable tool for robust, sensitive and reliable detection of TBRV isolates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mobile Device Passive Localization Based on IEEE 802.11 Probe Request Frames

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2017-01-01

    Full Text Available This paper presents a novel passive mobile device localization mode based on IEEE 802.11 Probe Request frames. In this approach, the listener can discover mobile devices by receiving the Probe Request frames and localize them on his walking path. The unique location of the mobile device is estimated on a geometric diagram and right-angled walking path. In model equations, site-related parameter, that is, path loss exponent, is eliminated to make the approach site-independent. To implement unique localization, the right-angled walking path is designed and the optimal location is estimated from the optional points. The performance of our method has been evaluated inside the room, outside the room, and in outdoor scenarios. Three kinds of walking paths, for example, horizontal, vertical, and slanted, are also tested.

  13. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.

    Science.gov (United States)

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Talukdar, Pinaki

    2013-02-13

    The design, synthesis and thiol sensing ability of chromenoquinoline-based fluorescent probes 4, 5 and 6 and are reported here. The relative position of the maleimide moiety was varied along the chromenoquinoline fluorophore to decrease the background fluorescence. Lower background fluorescence in probes 4 and 6 was rationalized by the smaller k(r)/k(nr) values compared to that of probe 5. An intramolecular charge transfer (ICT) mechanism was proposed for quenching and the extent was dependent on the position of the maleimide quencher. Fluorescent Off-On characteristics were evaluated by theoretical calculations. All probes were selective only towards thiol containing amino acids. Thiol sensing by probes 4 and 6 were much better compared to 5. Probe 4 displayed a better fluorescence response for less hindered thiol (185-, 223- and 156-fold for Hcy, Cys and GSH, respectively), while for probe 6, a higher enhancement in fluorescence was observed with more hindered thiols (180-, 205- and 245-fold for Hcy, Cys and GSH, respectively). The better response to bulkier thiol, GSH by probe 6 was attributed to the steric crowding at the C-4 position and bulkiness of the GSH group which force the succinimide unit to be in a nearly orthogonal conformation. This spatial arrangement was important in reducing the fluorescence quenching ability of the succinimide moiety. The application of probes 4, 5 and 6 was demonstrated by naked eye detection thiols using a 96-well plate system as well as by live-cell imaging.

  14. Improving the psychometric properties of dot-probe attention measures using response-based computation.

    Science.gov (United States)

    Evans, Travis C; Britton, Jennifer C

    2018-09-01

    Abnormal threat-related attention in anxiety disorders is most commonly assessed and modified using the dot-probe paradigm; however, poor psychometric properties of reaction-time measures may contribute to inconsistencies across studies. Typically, standard attention measures are derived using average reaction-times obtained in experimentally-defined conditions. However, current approaches based on experimentally-defined conditions are limited. In this study, the psychometric properties of a novel response-based computation approach to analyze dot-probe data are compared to standard measures of attention. 148 adults (19.19 ± 1.42 years, 84 women) completed a standardized dot-probe task including threatening and neutral faces. We generated both standard and response-based measures of attention bias, attentional orientation, and attentional disengagement. We compared overall internal consistency, number of trials necessary to reach internal consistency, test-retest reliability (n = 72), and criterion validity obtained using each approach. Compared to standard attention measures, response-based measures demonstrated uniformly high levels of internal consistency with relatively few trials and varying improvements in test-retest reliability. Additionally, response-based measures demonstrated specific evidence of anxiety-related associations above and beyond both standard attention measures and other confounds. Future studies are necessary to validate this approach in clinical samples. Response-based attention measures demonstrate superior psychometric properties compared to standard attention measures, which may improve the detection of anxiety-related associations and treatment-related changes in clinical samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber......Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...

  16. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    Science.gov (United States)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  17. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    El-Tayeb, H.; El-Gamal, H.

    2003-01-01

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x10 5 cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x10 13 cm -3 respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x10 7 cm -3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 10 4 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  18. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  19. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  20. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Science.gov (United States)

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.

  1. Development of an activity-based probe for acyl-protein thioesterases

    Science.gov (United States)

    Garland, Megan; Schulze, Christopher J.; Foe, Ian T.; van der Linden, Wouter A.; Child, Matthew A.

    2018-01-01

    Protein palmitoylation is a dynamic post-translational modification (PTM) important for cellular functions such as protein stability, trafficking, localization, and protein-protein interactions. S-palmitoylation occurs via the addition of palmitate to cysteine residues via a thioester linkage, catalyzed by palmitoyl acyl transferases (PATs), with removal of the palmitate catalyzed by acyl protein thioesterases (APTs) and palmitoyl-protein thioesterases (PPTs). Tools that target the regulators of palmitoylation–PATs, APTs and PPTs–will improve understanding of this essential PTM. Here, we describe the synthesis and application of a cell-permeable activity-based probe (ABP) that targets APTs in intact mammalian cells and the parasite Toxoplasma gondii. Using a focused library of substituted chloroisocoumarins, we identified a probe scaffold with nanomolar affinity for human APTs (HsAPT1 and HsAPT2) and synthesized a fluorescent ABP, JCP174-BODIPY TMR (JCP174-BT). We use JCP174-BT to profile HsAPT activity in situ in mammalian cells, to detect an APT in T. gondii (TgPPT1). We show discordance between HsAPT activity levels and total protein concentration in some cell lines, indicating that total protein levels may not be representative of APT activity in complex systems, highlighting the utility of this probe. PMID:29364904

  2. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  3. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  4. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  5. Multi-Probe Based Artificial DNA Encoding and Matching Classifier for Hyperspectral Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Ke Wu

    2016-08-01

    Full Text Available In recent years, a novel matching classification strategy inspired by the artificial deoxyribonucleic acid (DNA technology has been proposed for hyperspectral remote sensing imagery. Such a method can describe brightness and shape information of a spectrum by encoding the spectral curve into a DNA strand, providing a more comprehensive way for spectral similarity comparison. However, it suffers from two problems: data volume is amplified when all of the bands participate in the encoding procedure and full-band comparison degrades the importance of bands carrying key information. In this paper, a new multi-probe based artificial DNA encoding and matching (MADEM method is proposed. In this method, spectral signatures are first transformed into DNA code words with a spectral feature encoding operation. After that, multiple probes for interesting classes are extracted to represent the specific fragments of DNA strands. During the course of spectral matching, the different probes are compared to obtain the similarity of different types of land covers. By computing the absolute vector distance (AVD between different probes of an unclassified spectrum and the typical DNA code words from the database, the class property of each pixel is set as the minimum distance class. The main benefit of this strategy is that the risk of redundant bands can be deeply reduced and critical spectral discrepancies can be enlarged. Two hyperspectral image datasets were tested. Comparing with the other classification methods, the overall accuracy can be improved from 1.22% to 10.09% and 1.19% to 15.87%, respectively. Furthermore, the kappa coefficient can be improved from 2.05% to 15.29% and 1.35% to 19.59%, respectively. This demonstrated that the proposed algorithm outperformed other traditional classification methods.

  6. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  7. Visual thread quality for precision miniature mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1981-04-01

    Threaded features have eight visual appearance factors which can affect their function in precision miniature mechanisms. The Bendix practice in deburring, finishing, and accepting these conditions on miniature threads is described as is their impact in assemblies of precision miniature electromechanical assemblies.

  8. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  9. Preface Miniaturization and Mass Spectrometry

    NARCIS (Netherlands)

    Unknown, [Unknown; le Gac, Severine; le Gac, S.; van den Berg, Albert; van den Berg, A.

    2009-01-01

    Miniaturization and Mass Spectrometry illustrates this trend and focuses on one particular analysis technique, mass spectrometry whose popularity has "dramatically" increased in the last two decades with the explosion of the field of biological analysis and the development of two "soft" ionization

  10. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell

    Science.gov (United States)

    Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying

    We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.

  11. Miniature EVA Software Defined Radio

    Science.gov (United States)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  12. Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.

    Science.gov (United States)

    Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin

    2016-10-24

    Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.

  13. Zero voltage mass spectrometry probes and systems

    Science.gov (United States)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha; Li, Yafeng

    2017-10-10

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  14. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  15. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves

    CERN Document Server

    Bartolo, Nicola; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  16. Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine.

    Science.gov (United States)

    Zhang, Huimin; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong

    2016-07-11

    Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer-based functional probes in the fields of bioanalysis and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

    Science.gov (United States)

    Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal

    2018-02-01

    We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.

  18. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  19. Downlink Channel Estimation in Cellular Systems with Antenna Arrays at Base Stations Using Channel Probing with Feedback

    Directory of Open Access Journals (Sweden)

    Biguesh Mehrzad

    2004-01-01

    Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.

  20. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    Science.gov (United States)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  1. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid-liquid extraction for the determination of some organochlorinated pesticides in fish

    International Nuclear Information System (INIS)

    Rezaei, Farahnaz; Hosseini, Mohammad-Reza Milani

    2011-01-01

    Highlights: → Ultrasonic assisted miniaturized matrix solid-phase dispersion combined with HLLE was developed as a new method for the extraction of OCPs in fish. → The goal of this combination was to enhance the selectivity of HLLE procedure and to extend its application in biological samples. → This method proposed the advantages of good detection limits, lower consumption of reagents, and does not need any special instrumentation. - Abstract: In this study, ultrasonic assisted miniaturized matrix solid-phase dispersion (US-MMSPD) combined with homogeneous liquid-liquid extraction (HLLE) has been developed as a new method for the extraction of organochlorinated pesticides (OCPs) in fish prior to gas chromatography with electron capture detector (GC-ECD). In the proposed method, OCPs (heptachlor, aldrin, DDE, DDD, lindane and endrin) were first extracted from fish sample into acetonitrile by US-MMSPD procedure, and the extract was then used as consolute solvent in HLLE process. Optimal condition for US-MMSPD step was as follows: volume of acetonitrile, 1.5 mL; temperature of ultrasound, 40 deg. C; time of ultrasound, 10 min. For HLLE step, optimal results were obtained at the following conditions: volume of chloroform, 35 μL; volume of aqueous phase, 1.5 mL; volume of double distilled water, 0.5 mL; time of centrifuge, 10 min. Under the optimum conditions, the enrichment factors for the studied compounds were obtained in the range of 185-240, and the overall recoveries were ranged from 39.1% to 81.5%. The limits of detection were 0.4-1.2 ng g -1 and the relative standard deviations for 20 ng g -1 of the OCPs, varied from 3.2% to 8% (n = 4). Finally, the proposed method has been successfully applied to the analysis of the OCPs in real fish sample, and satisfactory results were obtained.

  2. New method based on combining ultrasonic assisted miniaturized matrix solid-phase dispersion and homogeneous liquid-liquid extraction for the determination of some organochlorinated pesticides in fish

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Farahnaz [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of); Hosseini, Mohammad-Reza Milani, E-mail: drmilani@iust.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of); Electroanalytical Chemistry Research Center, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of)

    2011-09-30

    Highlights: {yields} Ultrasonic assisted miniaturized matrix solid-phase dispersion combined with HLLE was developed as a new method for the extraction of OCPs in fish. {yields} The goal of this combination was to enhance the selectivity of HLLE procedure and to extend its application in biological samples. {yields} This method proposed the advantages of good detection limits, lower consumption of reagents, and does not need any special instrumentation. - Abstract: In this study, ultrasonic assisted miniaturized matrix solid-phase dispersion (US-MMSPD) combined with homogeneous liquid-liquid extraction (HLLE) has been developed as a new method for the extraction of organochlorinated pesticides (OCPs) in fish prior to gas chromatography with electron capture detector (GC-ECD). In the proposed method, OCPs (heptachlor, aldrin, DDE, DDD, lindane and endrin) were first extracted from fish sample into acetonitrile by US-MMSPD procedure, and the extract was then used as consolute solvent in HLLE process. Optimal condition for US-MMSPD step was as follows: volume of acetonitrile, 1.5 mL; temperature of ultrasound, 40 deg. C; time of ultrasound, 10 min. For HLLE step, optimal results were obtained at the following conditions: volume of chloroform, 35 {mu}L; volume of aqueous phase, 1.5 mL; volume of double distilled water, 0.5 mL; time of centrifuge, 10 min. Under the optimum conditions, the enrichment factors for the studied compounds were obtained in the range of 185-240, and the overall recoveries were ranged from 39.1% to 81.5%. The limits of detection were 0.4-1.2 ng g{sup -1} and the relative standard deviations for 20 ng g{sup -1} of the OCPs, varied from 3.2% to 8% (n = 4). Finally, the proposed method has been successfully applied to the analysis of the OCPs in real fish sample, and satisfactory results were obtained.

  3. Modular Rake of Pitot Probes

    Science.gov (United States)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  4. A luminescence-based probe for sensitive detection of hydrogen peroxide in seconds

    International Nuclear Information System (INIS)

    Zscharnack, Kristin; Kreisig, Thomas; Prasse, Agneta A.; Zuchner, Thole

    2014-01-01

    Highlights: • We describe a novel probe for the sensitive detection of H 2 O 2 . • H 2 O 2 quenches the luminescence of a complex consisting of phthalic acid and terbium ions. • A stable fluorescence signal is generated immediately after mixing probe and sample. • The PATb probe detects H 2 O 2 over four orders of magnitude. - Abstract: Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb 3+ ) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H 2 O 2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L −1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L −1 to 2.56 mmol L −1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H 2 O 2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H 2 O 2 with high sensitivity and precision

  5. Agent-Based Modeling of Taxi Behavior Simulation with Probe Vehicle Data

    Directory of Open Access Journals (Sweden)

    Saurav Ranjit

    2018-05-01

    Full Text Available Taxi behavior is a spatial–temporal dynamic process involving discrete time dependent events, such as customer pick-up, customer drop-off, cruising, and parking. Simulation models, which are a simplification of a real-world system, can help understand the effects of change of such dynamic behavior. In this paper, agent-based modeling and simulation is proposed, that describes the dynamic action of an agent, i.e., taxi, governed by behavior rules and properties, which emulate the taxi behavior. Taxi behavior simulations are fundamentally done for optimizing the service level for both taxi drivers as well as passengers. Moreover, simulation techniques, as such, could be applied to another field of application as well, where obtaining real raw data are somewhat difficult due to privacy issues, such as human mobility data or call detail record data. This paper describes the development of an agent-based simulation model which is based on multiple input parameters (taxi stay point cluster; trip information (origin and destination; taxi demand information; free taxi movement; and network travel time that were derived from taxi probe GPS data. As such, agent’s parameters were mapped into grid network, and the road network, for which the grid network was used as a base for query/search/retrieval of taxi agent’s parameters, while the actual movement of taxi agents was on the road network with routing and interpolation. The results obtained from the simulated taxi agent data and real taxi data showed a significant level of similarity of different taxi behavior, such as trip generation; trip time; trip distance as well as trip occupancy, based on its distribution. As for efficient data handling, a distributed computing platform for large-scale data was used for extracting taxi agent parameter from the probe data by utilizing both spatial and non-spatial indexing technique.

  6. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  7. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  8. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  9. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells

    International Nuclear Information System (INIS)

    Liu, Ying; Zhao, Zhi-Min; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    We have developed a ratiometric fluorescent probe BRT based on boron dipyrromethene (BODIPY) and rhodamine-thiohydrazide Förster resonance energy transfer (FRET) platform for sensing hypochlorous acid (HOCl) with high selectivity and sensitivity. The probe can detect HOCl in 15 s with the detection limit of 38 nM. Upon mixing with HOCl the fluorescence colour of probe BRT changed from green to orange. Moreover, probe BRT was applied to successfully monitor HOCl in living RAW 264.7 cells. - Highlights: • A probe based on BODIPY and rhodamine was developed for sensing HOCl. • The probe could sense HOCl in a ratiometric manner based on the FRET platform in PBS buffer solution. • The probe can detect HOCl in 15 s accompanied with a fluorescence colour change. • This probe was successfully used to monitor HOCl in living RAW 264.7 cells.

  10. Bend testing for miniature disks

    International Nuclear Information System (INIS)

    Huang, F.H.; Hamilton, M.L.; Wire, G.L.

    1982-01-01

    A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes

  11. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  12. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES

    Directory of Open Access Journals (Sweden)

    CUICUI LIU

    2013-07-01

    Full Text Available The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR dyes with emission wavelengths in the region of 650–900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der-02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 × 107 cells in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.

  13. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    Science.gov (United States)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  14. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  15. Miniature specimen technology for postirradiation fatigue crack growth testing

    International Nuclear Information System (INIS)

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  16. Investigation of RNA Structure by High-Throughput SHAPE-Based Probing Methods

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl

    of highthroughput SHAPE-based approaches to investigate RNA structure based on novel SHAPE reagents that permit selection of full-length cDNAs. The SHAPE Selection (SHAPES) method is applied to the foot-and-mouth disease virus (FMDV) plus strand RNA genome, and the data is used to construct a genome-wide structural...... that they are functional. The SHAPES method is further applied to the hepatitis C virus (HCV), where the data is used to refine known and predicted structures. Over the past years, the interest of studying RNA structure in their native environment has been increased, and to allow studying RNA structure inside living cells...... using the SHAPE Selection approach, I introduce a biotinylated probing reagent. This chemical can cross cell membranes and reacts with RNA inside the cells, allowing the structural conformations to be studied in the context of physiological relevant conditions in living cells. The methods and results...

  17. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  19. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  20. Miniature rectenna design

    NARCIS (Netherlands)

    Visser, Hubregt J.

    2017-01-01

    For powering small wireless IoT nodes, compact, efficient rectifying antennas have been realized. A first design for 868 and 915 MHz is described. Based on the lessons learned, a new design for 2.45 GHz is realized that is a factor 13 smaller in size.

  1. A bispecific peptide based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Ding, Li; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    The epidermal growth factor receptor EGFR and HER2 are members of recepeter tyrosine kinase family. Overexpression of EGFR and HER2 has been observed in a variety of human tumors, making these receptors promising targets for tumor diagnosis. An affibody targeting HER2 and a nanobody targeting EGFR were reported before. In this Manuscript, we described an bispecific peptide combined with an affibody and a nanonbody through a linker―(G4S)3 . And the bispecific peptide was labeled with near-infrared (NIR) fluorochrome ICG-Der-02 for in vivo tumor EGFR and HER2 targeting. Afterwards, the EGFR and HER2 specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 tumor targeting. The results indicated that the bispecific peptide had a high affinity to EGFR and HER2. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-( bispecific peptide) showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor EGFR and HER2 expression based upon the highly potent bispecific peptide probe.

  2. Attentional bias modification based on visual probe task: methodological issues, results and clinical relevance

    Directory of Open Access Journals (Sweden)

    Fernanda Machado Lopes

    2015-12-01

    Full Text Available Introduction: Attentional bias, the tendency that a person has to drive or maintain attention to a specific class of stimuli, may play an important role in the etiology and persistence of mental disorders. Attentional bias modification has been studied as a form of additional treatment related to automatic processing. Objectives: This systematic literature review compared and discussed methods, evidence of success and potential clinical applications of studies about attentional bias modification (ABM using a visual probe task. Methods: The Web of Knowledge, PubMed and PsycInfo were searched using the keywords attentional bias modification, attentional bias manipulation and attentional bias training. We selected empirical studies about ABM training using a visual probe task written in English and published between 2002 and 2014. Results: Fifty-seven studies met inclusion criteria. Most (78% succeeded in training attention in the predicted direction, and in 71% results were generalized to other measures correlated with the symptoms. Conclusions: ABM has potential clinical utility, but to standardize methods and maximize applicability, future studies should include clinical samples and be based on findings of studies about its effectiveness.

  3. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    Science.gov (United States)

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  4. A new digitized reverse correction method for hypoid gears based on a one-dimensional probe

    Science.gov (United States)

    Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo

    2017-12-01

    In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.

  5. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  6. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  7. All-optical optoacoustic microscopy based on probe beam deflection technique.

    Science.gov (United States)

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  8. Probe And Enhancement Of SBS Based Phonons In Infrared Fibers Using Waveguide Coupled External Radiation

    Science.gov (United States)

    Yu, Chung; Chong, Yat C.; Fong, Chee K.

    1989-06-01

    Interaction of GHz and MHz radiation with CO2 laser propagation in a silver halide fiber using sBs based phonon coupling is furthet investigated. The external signal serves to both probe and enhance laser generated sBs phonons in the fiber. Efficient coupling of microwave radiation into the fiber is accomplished by placing the fiber in a hollow metallic waveguide, designed and constructed to transmit the dominant mode in the 0.9-2.0 GHz band. MHz radiation is conveniently coupled into the fiber using the guided microwave radiation as carrier. Phonon emissions from the fiber under CO2 laser pumping are first established on a spectrum analyzer; low frequency generators ale then tuned to match these frequencies and their maximum interaction recorded. Such interactions are systematically studied by monitoring the amplitude and waveform of the reflected and transmitted laser pulse at various power levels and frequencies of the externally coupled radiation. A plot of reflected laser power versus incident laser power reveals a distinct sBs generated phonon threshold. Variouslaunch directions of the GHz and MHz radiation with respect to the direction of laser propagation are realized to verify theory governing sBs interactions. The MHz radiation and its associated phonons in the fiber are convenient tools for probing sBs related phenomenon in infrared fibers.

  9. OpenCV-Based Nanomanipulation Information Extraction and the Probe Operation in SEM

    Directory of Open Access Journals (Sweden)

    Dongjie Li

    2015-02-01

    Full Text Available Aimed at the established telenanomanipulation system, the method of extracting location information and the strategies of probe operation were studied in this paper. First, the machine learning algorithm of OpenCV was used to extract location information from SEM images. Thus nanowires and probe in SEM images can be automatically tracked and the region of interest (ROI can be marked quickly. Then the location of nanowire and probe can be extracted from the ROI. To study the probe operation strategy, the Van der Waals force between probe and a nanowire was computed; thus relevant operating parameters can be obtained. With these operating parameters, the nanowire in 3D virtual environment can be preoperated and an optimal path of the probe can be obtained. The actual probe runs automatically under the telenanomanipulation system's control. Finally, experiments were carried out to verify the above methods, and results show the designed methods have achieved the expected effect.

  10. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  11. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile Red.

    Science.gov (United States)

    Prifti, Efthymia; Reymond, Luc; Umebayashi, Miwa; Hovius, Ruud; Riezman, Howard; Johnsson, Kai

    2014-03-21

    A fluorogenic probe for plasma membrane proteins based on the dye Nile Red and SNAP-tag is introduced. It takes advantage of Nile Red, a solvatochromic molecule highly fluorescent in an apolar environment, such as cellular membranes, but almost dark in a polar aqueous environment. The probe possesses a tuned affinity for membranes allowing its Nile Red moiety to insert into the lipid bilayer of the plasma membrane, becoming fluorescent, only after its conjugation to a SNAP-tagged plasma membrane protein. The fluorogenic character of the probe was demonstrated for different SNAP-tag fusion proteins, including the human insulin receptor. This work introduces a new approach for generating a powerful turn-on probe for "no-wash" labeling of plasma membrane proteins with numerous applications in bioimaging.

  12. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.

    Science.gov (United States)

    Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan

    2016-01-01

    A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    Science.gov (United States)

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  14. Electronically tuned sulfonamide-based probes with ultra-sensitivity for Ga"3"+ or Al"3"+ detection in aqueous solution

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Chae, Pil Seok

    2017-01-01

    Three electronically tuned fluorescent probes (1–3) were synthesized by conjugating a fluorescent unit to N,N-bis-(hydroxyethyl)ethylenediamine. Probe 1 bearing an electron-deficient naphthalenedimide unit did not give a fluorescence response to the presence of various metal ions including monovalent metal ions (Na"+, K"+, and Ag"+), divalent metal ions (Ca"2"+, Cd"2"+, Co"2"+, Ni"2"+, Cu"2"+, Hg"2"+, Pb"2"+, and Zn"2"+) and trivalent metal ions (Al"3"+, Ga"3"+, Fe"3"+, and Cr"3"+) in an aqueous solution. By contrast, probes 2 and 3 possessing 1,8-naphthalimide and pyrene fluorophores, respectively, exhibited selective fluorescent “OFF-ON” behaviors as a result of Ga"3"+/Al"3"+ binding among the diverse metal ions, suggesting the importance of fluorophore electronic character with regard to metal ion sensing. The ethylenediamine analog of probe 3, corresponding to probe 4, was unable to yield a significant change in fluorescence intensity in the presence of any metal ions tested here, revealing the essential role of two hydroxyl groups for metal ion binding. A high association constant of K_a = 2.99 × 10"5 M"−"1 was obtained for probe 3 with Ga"3"+, with a limit of detection (LOD) of 10 nM. This LOD is the lowest value known for Ga"3"+ detection using chemical sensors. Along with an increase in aggregate sizes, PET suppression of probes upon metal ion binding was the primary contributor to the enhancement in fluorescence emission necessary for the sensitive detection of the target ions. The probe-metal ion complexes were fully characterized via TEM, FE-SEM, "1H NMR, fluorescence spectroscopy techniques and DFT calculations. - Highlights: • Three electronically tuned sulfonamide-based probes (probes 1, 2, and 3) were developed for metal ion-sensing. • Probes 2 and 3 exhibited AIE behavior with increasing water-content. • Probes 2 and 3 displayed a selective fluorescence “OFF-ON“ behavior for Ga"3"+ detection with the LOD of 10 nM. • PET

  15. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  16. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  17. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  18. Miniature Biometric Sensor Project

    Science.gov (United States)

    Falker, John; Terrier, Douglas; Clayton, Ronald; Hanson, Andrea; Cooper, Tommy; Downs, Meghan; Flint, Stephanie; Reyna, Baraquiel; Simon, Cory; Wilt, Grier

    2015-01-01

    Heart rate monitoring (HRM) is a critical need during exploration missions. Unlike the four separate systems used on ISS today, the single HRM system should perform as a diagnostic tool, perform well during exercise or high level activity, and be suitable for use during EVA. Currently available HRM technologies are dependent on uninterrupted contact with the skin and are prone to data drop-out and motion artifact when worn in the spacesuit or during exercise. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a single, high performance, robust biosensor with focused efforts on improved heart rate data quality collection during high intensity activity such as exercise or EVA.

  19. RT-based memory detection : Item saliency effects in the single-probe and the multiple-probe protocol

    NARCIS (Netherlands)

    Verschuere, B.; Kleinberg, B.; Theocharidou, K.

    RT-based memory detection may provide an efficient means to assess recognition of concealed information. There is, however, considerable heterogeneity in detection rates, and we explored two potential moderators: item saliency and test protocol. Participants tried to conceal low salient (e.g.,

  20. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  1. [A cell-based detection of ciguatoxin using sodium fluorescence probe].

    Science.gov (United States)

    Yuan, Jian-hui; Yang, Hui; Tang, Huan-wen; Huang, Wei; Xu, Xin-yun; Liu, Jian-jun; Ke, Yue-bin; Cheng, Jin-quan; Zhuang, Zhi-xiong

    2011-04-01

    To establish a cell-based detection method of ciguatoxin using fluorescence assay. Mouse neuroblastoma N-2A cells were exposed to ouabain and veratridine and different concentrations of standard ciguatoxin samples (P-CTX-1) to establish the curvilinear relationship between the toxin dosage and fluorescence intensity using the sodium fluorescence probe CoroNaTM Green. The toxicity curvilinear relationship was also generated between the toxin dosage and cell survival using CCK-8 method. Based on these standard curves, the presence of ciguatoxin was detected in 33 samples of deep-sea coral fish. A correlation was found between the detection results of cell-based fluorescence assay and cytotoxicity assay, whose detection limit reached 103 g/ml and 1012 g/ml, respectively. The cell-based fluorescent assay sensitivity showed a higher sensitivity than cytotoxicity assay with a 2-4 h reduction of the detection time. The cell-based fluorescent assay can quickly and sensitively detect ciguatoxin and may serve as a good option for preliminary screening of the toxin.

  2. Real time diagnosis of bladder cancer with probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Wu, Katherine; Adams, Winifred; Hsiao, Shelly T.; Mach, Kathleen E.; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2011-02-01

    Probe-based confocal laser endomicroscopy (pCLE) is an emerging technology for in vivo optical imaging of the urinary tract. Particularly for bladder cancer, real time optical biopsy of suspected lesions will likely lead to improved management of bladder cancer. With pCLE, micron scale resolution is achieved with sterilizable imaging probes (1.4 or 2.6 mm diameter), which are compatible with standard cystoscopes and resectoscopes. Based on our initial experience to date (n = 66 patients), we have demonstrated the safety profile of intravesical fluorescein administration and established objective diagnostic criteria to differentiate between normal, benign, and neoplastic urothelium. Confocal images of normal bladder showed organized layers of umbrella cells, intermediate cells, and lamina propria. Low grade bladder cancer is characterized by densely packed monomorphic cells with central fibrovascular cores, whereas high grade cancer consists of highly disorganized microarchitecture and pleomorphic cells with indistinct cell borders. Currently, we are conducting a diagnostic accuracy study of pCLE for bladder cancer diagnosis. Patients scheduled to undergo transurethral resection of bladder tumor are recruited. Patients undergo first white light cystocopy (WLC), followed by pCLE, and finally histologic confirmation of the resected tissues. The diagnostic accuracy is determined both in real time by the operative surgeon and offline after additional image processing. Using histology as the standard, the sensitivity, specificity, positive and negative predictive value of WLC and WLC + pCLE are calculated. With additional validation, pCLE may prove to be a valuable adjunct to WLC for real time diagnosis of bladder cancer.

  3. Dr.Johnson's Dictionary in Miniature

    OpenAIRE

    Imazato, Chiaki

    1988-01-01

    More than hundred 'Johnson's' dictionaries have so far been published not only in English but in other countries, and there are numerous books and articles on Johnson's Dictionary. But few have referred to Johnson's Dictionary in Miniature; nor were there any books or articles on it. Fortunately, however, I've got one copy of Johnson's Dictionary in Miniature, which was published in 1806. Johnson's Dictionary (1755) has 41,677 entries, whereas Johnson's Dictionary in Miniature 23,439 entr...

  4. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiang-Jian [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Chen, Li-Na [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhang, Xuan [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Liu, Jin-Ting [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Chen, Ming-Yu [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Wu, Qiu-Rong [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2016-05-12

    NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0–7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R{sup 2} = 0.996). The pK{sub a} of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. - Highlights: • An effective NBD-based fluorescent pH probe was developed. • The sensing mechanism was interpreted by theoretical calculation. • This probe was successfully used to monitor lysosoml pH changes in Hela cells.

  5. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells

    International Nuclear Information System (INIS)

    Cao, Xiang-Jian; Chen, Li-Na; Zhang, Xuan; Liu, Jin-Ting; Chen, Ming-Yu; Wu, Qiu-Rong; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0–7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R"2 = 0.996). The pK_a of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. - Highlights: • An effective NBD-based fluorescent pH probe was developed. • The sensing mechanism was interpreted by theoretical calculation. • This probe was successfully used to monitor lysosoml pH changes in Hela cells.

  6. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  7. Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates

    International Nuclear Information System (INIS)

    Jo, Ara; Jang, Geunseok; Namgung, Ho; Kim, Choongho; Kim, Daigeun; Kim, Yujun; Kim, Jongho; Lee, Taek Seung

    2015-01-01

    Highlights: • Modified alginate with azo-based probe (ABO) was synthesized by a reaction between sodium alginate and azo-based probe (BO2). • BO2 was found to be a good probe molecule for radioisotopes using colorimetric analysis. • Detection of Co 2+ and Sr 2+ was mainly carried out via interaction between BO2 and metal ions. • Simultaneous removal of radioisotopes was assessed by the ion-exchange of carboxylate groups in sodium alginate. • The alginate beads with dual functions of detection and removal of metal ions are successfully accomplished. - Abstract: We prepared alginate beads that were modified with an azo-based probe molecule to monitor simultaneously the removal (by alginate) and probing (by the azo-probe molecule) of radioisotopes such as cobalt, strontium, and cesium ions. As an azo-probe molecule, Basic Orange 2 (BO2) was immobilized to the alginate bead. The BO2 in aqueous solution exhibited a slight red shift in absorption with a change in color from orange to dark orange upon addition of cobalt and strontium ions. In contrast, the color of BO2 did not change upon exposure to cesium ions. Thus, the covalently embedded BO2 in alginate beads could adsorb cobalt and strontium ions resulting in recognizable color change of the beads, which was induced by the formation of a complex between BO2 and metal ions. The color changes of the beads in the presence of metal ions were determined quantitatively using RGB color coordinate values. In addition to effectively removing metal ions, the colorimetric coordinate method provides a convenient and simple sensing technique for naked-eye metal ion detection.

  8. Ion source plasma parameters measurement based on Langmuir probe with commercial frequency sweep

    International Nuclear Information System (INIS)

    Xie, Y.H.; Hu, C.D.; Liu, S.; Shong, S.H.; Jiang, C.C.; Liu, Z.M.

    2010-01-01

    Langmuir probe is one of the main diagnostic tools to measure the plasma parameters in the ion source. In this article, the commercial frequency power, which is sine wave of 50 Hz, was supplied on the Langmuir probe to measure the plasma parameters. The best feature of this probe sweep voltage is that it does not need extra design. The probe I-V characteristic curve can be got in less than 5 ms and the plasma parameters, the electron temperature and the electron density, varying with the time can be got in one plasma discharge of 400 ms.

  9. Miniature Ground Mapping LADAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — System & Processes Engineering Corporation (SPEC) proposes a miniature solid state surface imaging LADAR, for imaging the landing areas providing precision...

  10. Techniques for blade tip clearance measurements with capacitive probes

    Science.gov (United States)

    Steiner, Alexander

    2000-07-01

    This article presents a proven but advantageous concept for blade tip clearance evaluation in turbomachinery. The system is based on heavy duty probes and a high frequency (HF) and amplifying electronic unit followed by a signal processing unit. Measurements are taken under high temperature and other severe conditions such as ionization. Every single blade can be observed. The signals are digitally filtered and linearized in real time. The electronic set-up is highly integrated. Miniaturized versions of the electronic units exist. The small and robust units can be used in turbo engines in flight. With several probes at different angles in one radial plane further information is available. Shaft eccentricity or blade oscillations can be calculated.

  11. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J

    2014-01-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  12. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  13. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    Science.gov (United States)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  14. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-ying; Zhou, Lin-fu; Li, Yu-kun [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China); Chen, Shuo-bin [School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006 (China); Yan, Jin-wu, E-mail: yjw@scut.edu.cn [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China); Zhang, Lei, E-mail: lzhangce@scut.edu.cn [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China)

    2017-04-08

    A dicyanoisophorone-based probe with two-photon absorption and NIR emission was developed for the in vivo fluorescence imaging of amyloid-β plaques, which exhibited high selectivity toward Aβ aggregates over other intracellular proteins. The detection limit was calculated to be as low as 109 nM. In vivo imaging studies indicated that the probe could penetrate the blood–brain barrier and label Aβ plaques in the living transgenic mice, and its specific binding to cerebral Aβ plaques was further confirmed by one- and two-photon ex vivo fluorescence imaging. All these results featured its promising application prospects for amyloid-β sensing in basic research and biomedical research. - Highlights: • A two-photon probe (DCIP-1) with NIR emission based on dicyanoisophorone group, for the in vivo fluorescence imaging of amyloid-β plaques, was reported. • The probe showed turn-on fluorescence (13-fold) with a large Stokes shift upon inserting into the hydrophobic pockets of Aβ aggregates. • The in vivo imaging studies indicated that the probe can penetrate the blood–brain barrier efficiently and discriminate APP/PS1 transgenic mice from WT controls.

  15. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe

    International Nuclear Information System (INIS)

    Zhu, Jia-ying; Zhou, Lin-fu; Li, Yu-kun; Chen, Shuo-bin; Yan, Jin-wu; Zhang, Lei

    2017-01-01

    A dicyanoisophorone-based probe with two-photon absorption and NIR emission was developed for the in vivo fluorescence imaging of amyloid-β plaques, which exhibited high selectivity toward Aβ aggregates over other intracellular proteins. The detection limit was calculated to be as low as 109 nM. In vivo imaging studies indicated that the probe could penetrate the blood–brain barrier and label Aβ plaques in the living transgenic mice, and its specific binding to cerebral Aβ plaques was further confirmed by one- and two-photon ex vivo fluorescence imaging. All these results featured its promising application prospects for amyloid-β sensing in basic research and biomedical research. - Highlights: • A two-photon probe (DCIP-1) with NIR emission based on dicyanoisophorone group, for the in vivo fluorescence imaging of amyloid-β plaques, was reported. • The probe showed turn-on fluorescence (13-fold) with a large Stokes shift upon inserting into the hydrophobic pockets of Aβ aggregates. • The in vivo imaging studies indicated that the probe can penetrate the blood–brain barrier efficiently and discriminate APP/PS1 transgenic mice from WT controls.

  16. A benzothiazole-based fluorescent probe for distinguishing and bioimaging of Hg{sup 2+} and Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Biao; Huang, Liyan; Su, Wei; Duan, Xiaoli; Li, Haitao, E-mail: haitao-li@hunnu.edu.cn; Yao, Shouzhuo

    2017-02-15

    A new benzothiazole-based fluorescent probe 2-(benzo[d]thiazol-2-yl)-4-(1,3- dithian-2-yl)phenol (BT) with two different reaction sites, a thioacetal group (site 1 for Hg{sup 2+}), and O and N atoms of the benzothiazole dye (site 2 for Cu{sup 2+}), was designed and synthesized. The probe BT showed ratiometric fluorescent response to Hg{sup 2+} and fluorescence quenching behavior to Cu{sup 2+}, which induces naked-eye fluorescent color changes from green to blue and colorless, respectively. Moreover, it displayed highly sensitivity and selectivity toward Hg{sup 2+} and Cu{sup 2+} without interference from other metal ions. The sensing mechanisms were also confirmed by {sup 1}H NMR titration, mass spectrum and Job's plot analyses. Finally, probe BT was successfully used for fluorescent imaging of Hg{sup 2+} and Cu{sup 2+} in living cells, demonstrating its potential applications in biological science. - Highlights: • A benzothiazole-based probe for multiple metal ions has been firstly developed. • The differential sensing mechanisms of Hg{sup 2+} and Cu{sup 2+} relied on different reaction. • The probe could be used to monitor Hg{sup 2+} and Cu{sup 2+}in vitro and in vivo with distinct fluorescence changes.

  17. Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis.

    Directory of Open Access Journals (Sweden)

    Clemens D Cohen

    Full Text Available BACKGROUND: Diabetic nephropathy (DN is a complex and chronic metabolic disease that evolves into a progressive fibrosing renal disorder. Effective transcriptomic profiling of slowly evolving disease processes such as DN can be problematic. The changes that occur are often subtle and can escape detection by conventional oligonucleotide DNA array analyses. METHODOLOGY/PRINCIPAL FINDINGS: We examined microdissected human renal tissue with or without DN using Affymetrix oligonucleotide microarrays (HG-U133A by standard Robust Multi-array Analysis (RMA. Subsequent gene ontology analysis by Database for Annotation, Visualization and Integrated Discovery (DAVID showed limited detection of biological processes previously identified as central mechanisms in the development of DN (e.g. inflammation and angiogenesis. This apparent lack of sensitivity may be associated with the gene-oriented averaging of oligonucleotide probe signals, as this includes signals from cross-hybridizing probes and gene annotation that is based on out of date genomic data. We then examined the same CEL file data using a different methodology to determine how well it could correlate transcriptomic data with observed biology. ChipInspector (CI is based on single probe analysis and de novo gene annotation that bypasses probe set definitions. Both methods, RMA and CI, used at default settings yielded comparable numbers of differentially regulated genes. However, when verified by RT-PCR, the single probe based analysis demonstrated reduced background noise with enhanced sensitivity and fewer false positives. CONCLUSIONS/SIGNIFICANCE: Using a single probe based analysis approach with de novo gene annotation allowed an improved representation of the biological processes linked to the development and progression of DN. The improved analysis was exemplified by the detection of Wnt signaling pathway activation in DN, a process not previously reported to be involved in this disease.

  18. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  19. pH-Induced Modulation of One- and Two-Photon Absorption Properties in a Naphthalene-Based Molecular Probe.

    Science.gov (United States)

    Murugan, N Arul; Kongsted, Jacob; Ågren, Hans

    2013-08-13

    Presently, there is a great demand for small probe molecules that can be used for two-photon excitation microscopy (TPM)-based monitoring of intracellular and intraorganelle activity and pH. The candidate molecules should ideally possess a large two-photon absorption cross section with optical properties sensitive to pH changes. In the present work, we investigate the potential of a methoxy napthalene (MONAP) derivative for its suitability to serve as a pH sensor using TPM. Using an integrated approach rooted in hybrid quantum mechanics/molecular mechanics, the structures, dynamics, and the one- and two-photon properties of the probe in dimethylformamide solvent are studied. It is found that the protonated form is responsible for the optical property of MONAP at moderately low pH, for which the calculated pH-induced red shift is in good agreement with experiments. A 2-fold increase in the two-photon absorption cross section in the IR region of the spectrum is predicted for the moderately low pH form of the probe, suggesting that this can be a potential probe for pH monitoring of living cells. We also propose some design principles aimed at obtaining control of the absorption spectral range of the probe by structural tuning. Our work indicates that the integrated approach employed is capable of capturing the pH-induced changes in structure and optical properties of organic molecular probes and that such in silico tools can be used to draw structure-property relationships to design novel molecular probes suitable for a specific application.

  20. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  1. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  2. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides

    Science.gov (United States)

    Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.

    2018-01-01

    Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.

  3. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  4. Miniaturization of specimens for mechanical testing

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.

    1987-01-01

    The development of mechanical property tests based on bending of a 3 mm diameter by (typically) 0.25 mm thick disk is described. Slow strain rate testing of such a disk is used to obtain tensile properties. Finite element computer modelling is used to extract yield stress values with accuracies of at least +- 10% of uniaxial tensile test values for a variety of materials. Analytical estimates of ductility from disk bend test values are possible for low-ductility materials. Work directed toward finite element calculations for ductility and ultimate tensile strength is also discussed. Preliminary data indicating the feasibility of high strain rate testing for estimation of ductile-to-brittle transition temperatures, and an example of the successful application of miniature bend testing in obtaining relative fatigue information are also presented. (author)

  5. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  6. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    Science.gov (United States)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  7. Impact of Non-Idealities System on Spatial Correlation in a Multi-Probe Based MIMO OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Carreño, Xavier

    2013-01-01

    MIMO OTA testing methodologies are being intensively investigated by CTIA and 3GPP, where a multi-probe anechoic chamber based solution is an important candidate for future standardized testing. In this paper, the probes located on an OTA ring are used to reproduce the channel spatial information....... This paper investigates the extent to which we can emulate the channel spatial characteristics inside the test zone where the device under test is located. The focus is on performance deterioration introduced by system non-idealities on spatial correlation emulation in practical MIMO OTA test systems....

  8. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    Science.gov (United States)

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185

  9. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    Directory of Open Access Journals (Sweden)

    Ming La

    2016-01-01

    Full Text Available A water-soluble fluorescent probe (C-GGH was used for the highly sensitive and selective detection of cyanide (CN− in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His, the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L for CN− in drinking water set by the WHO (World Health Organization. The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO43-, N3-, NO3-, AcO−, SO42-, and CO32-.

  10. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    Science.gov (United States)

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  11. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe

    Directory of Open Access Journals (Sweden)

    Niall eMcAlinden

    2015-05-01

    Full Text Available Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illumination have a limitation on the achievable spatio-temporal resolution. Here we utilize a sapphire-based microscale gallium nitride light-emitting diode (µLED probe to activate neocortical neurons in vivo. The probes were designed to contain independently controllable multiple µLEDs, emitting at 450 nm wavelength with an irradiance of up to 2 W/mm2. Monte-Carlo stimulations predicted that optical stimulation using a µLED can modulate neural activity within a localized region. To validate this prediction, we tested this probe in the mouse neocortex that expressed channelrhodopsin-2 (ChR2 and compared the results with optical stimulation through a fiber at the cortical surface. We confirmed that both approaches reliably induced action potentials in cortical neurons and that the µLED probe evoked strong responses in deep neurons. Due to the possibility to integrate many optical stimulation sites onto a single shank, the µLED probe is thus a promising approach to control neurons locally in vivo.

  12. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols

    Science.gov (United States)

    Kang, Jin; Huo, Fangjun; Chao, Jianbin; Yin, Caixia

    2018-04-01

    Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.

  13. A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru [Dept. of Science and Technology for Inspection, Xiamen Huaxia University, Xiamen (China); Chan, Wing Hong [Dept. of of Chemistry, Hong Kong Bap tist University, Hong Kong (China)

    2016-11-15

    A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+} has been designed and investigated. The probe shows an immediate visual color change in response to Fe{sup 3+} and Cu{sup 2+}, while only Fe{sup 3+} triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe{sup 3+}. The association constant K{sub ass} of 4.64 × 10{sup 8} M{sup -2} (R{sup 2} = 0.994) and 5.38 × 10{sup 8} M{sup -2} (R{sup 2} = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe{sup 3+} complex, respectively.

  14. A new simple phthalimide-based fluorescent probe for highly selective cysteine and bioimaging for living cells

    Science.gov (United States)

    Shen, Youming; Zhang, Xiangyang; Zhang, Youyu; Zhang, Chunxiang; Jin, Junling; Li, Haitao

    2017-10-01

    A new turn-on phthalimide fluorescent probe has designed and synthesized for sensing cysteine (Cys) based on excited state intramolecular proton transfer (ESIPT) process. It is consisted of a 3-hydroxyphthalimide derivative moiety as the fluorophore and an acrylic ester group as a recognition receptor. The acrylic ester acts as an ESIPT blocking agent. Upon addition of cystein, intermolecular nucleophilic attack of cysteine on acrylic ester releases the fluorescent 3-hydroxyphthalimide derivative, thereby enabling the ESIPT process and leading to enhancement of fluorescence. The probe displays high sensitivity, excellent selectivity and with large Stokes shift toward cysteine. The linear interval range of the fluorescence titration ranged from 0 to 1.0 × 10- 5 M and detection limit is low (6 × 10- 8 M). In addition, the probe could be used for bio-imaging in living cells.

  15. A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells

    Science.gov (United States)

    Wang, Jiamin; Niu, Linqiang; Huang, Jing; Yan, Zhijie; Wang, Jianhong

    2018-03-01

    Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), are involved in a number of biological processes and play crucial roles in biological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a new turn-on fluorescent probe 1 based on 7-nitro-2,1,3-benzoxadiazole (NBD) with high selectivity and sensitivity for Cys/Hcy on account of nucleophilic substitution and Smiles rearrangement reaction. The probe could sense Cys/Hcy rapidly, the intensity of fluorescence increased immediately within 1 min. Furthermore, the probe is low toxic and has been successfully applied to detect intracellular Cys/Hcy by cell fluorescence imaging in living normal and cancer cells.

  16. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    Directory of Open Access Journals (Sweden)

    Nina P. L. Junager

    2016-07-01

    Full Text Available Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells.

  17. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes.

    Directory of Open Access Journals (Sweden)

    Hiroki Mutoh

    Full Text Available Genetically-encoded optical probes for membrane potential hold the promise of monitoring electrical signaling of electrically active cells such as specific neuronal populations in intact brain tissue. The most advanced class of these probes was generated by molecular fusion of the voltage sensing domain (VSD of Ci-VSP with a fluorescent protein (FP pair. We quantitatively compared the three most advanced versions of these probes (two previously reported and one new variant, each involving a spectrally distinct tandem of FPs. Despite these different FP tandems and dissimilarities within the amino acid sequence linking the VSD to the FPs, the amplitude and kinetics of voltage dependent fluorescence changes were surprisingly similar. However, each of these fluorescent probes has specific merits when considering different potential applications.

  18. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    International Nuclear Information System (INIS)

    Zhukov, Mikhail; Golubok, Alexander; Gulyaev, Nikolai

    2016-01-01

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  19. Performance measures to characterize directional corridor travel time delay based on probe vehicle data : final report.

    Science.gov (United States)

    2015-10-01

    Anonymous probe vehicle data are currently being collected on roadways throughout the United States. These data are being incorporated into local and statewide mobility reports to measure the performance of freeways and arterial systems. Predefined s...

  20. Miniature Bioprocess Array: A Platform for Quantitative Physiology and Bioprocess Optimization

    National Research Council Canada - National Science Library

    Keasling, Jay

    2002-01-01

    .... The miniature bioprocess array is based on an array of 150-microliters wells, each one of which incorporates MEMS for the closed-loop control of cell culture parameters such as temperature, pH, and dissolved oxygen...

  1. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid.

    KAUST Repository

    Tsai, Tsung-Han; Chien, Hsin-Tang; Chen, Ping-Hei

    2011-01-01

    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon

  2. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm proposes to design and develop a fully autonomous Lunar Navigator based on our MicroMak miniature star sensor and a gravity gradiometer similar to one on a...

  3. Probing flavor models with {sup 76}Ge-based experiments on neutrinoless double-β decay

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Merle, Alexander [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Munich (Germany); Zuber, Kai [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Dresden (Germany)

    2016-04-15

    The physics impact of a staged approach for double-β decay experiments based on {sup 76}Ge is studied. The scenario considered relies on realistic time schedules envisioned by the Gerda and the Majorana collaborations, which are jointly working towards the realization of a future larger scale {sup 76}Ge experiment. Intermediate stages of the experiments are conceived to perform quasi background-free measurements, and different data sets can be reliably combined to maximize the physics outcome. The sensitivity for such a global analysis is presented, with focus on how neutrino flavor models can be probed already with preliminary phases of the experiments. The synergy between theory and experiment yields strong benefits for both sides: the model predictions can be used to sensibly plan the experimental stages, and results from intermediate stages can be used to constrain whole groups of theoretical scenarios. This strategy clearly generates added value to the experimental efforts, while at the same time it allows to achieve valuable physics results as early as possible. (orig.)

  4. In situ visualization of glucocerebrosidase in human skin tissue: zymography versus activity-based probe labeling.

    Science.gov (United States)

    van Smeden, Jeroen; Dijkhoff, Irini M; Helder, Richard W J; Al-Khakany, Hanin; Boer, Daphne E C; Schreuder, Anne; Kallemeijn, Wouter W; Absalah, Samira; Overkleeft, Herman S; Aerts, Johannes M F G; Bouwstra, Joke A

    2017-12-01

    Epidermal β-glucocerebrosidase (GBA1), an acid β-glucosidase normally located in lysosomes, converts (glucosyl)ceramides into ceramides, which is crucial to generate an optimal barrier function of the outermost skin layer, the stratum corneum (SC). Here we report on two developed in situ methods to localize active GBA in human epidermis: i ) an optimized zymography method that is less labor intensive and visualizes enzymatic activity with higher resolution than currently reported methods using either substrate 4-methylumbelliferyl-β-D-glucopyranoside or resorufin-β-D-glucopyranoside; and ii ) a novel technique to visualize active GBA1 molecules by their specific labeling with a fluorescent activity-based probe (ABP), MDW941. The latter method pro-ved to be more robust and sensitive, provided higher resolution microscopic images, and was less prone to sample preparation effects. Moreover, in contrast to the zymography substrates that react with various β-glucosidases, MDW941 specifically labeled GBA1. We demonstrate that active GBA1 in the epidermis is primarily located in the extracellular lipid matrix at the interface of the viable epidermis and the lower layers of the SC. With ABP-labeling, we observed reduced GBA1 activity in 3D-cultured skin models when supplemented with the reversible inhibitor, isofagomine, irrespective of GBA expression. This inhibition affected the SC ceramide composition: MS analysis revealed an inhibitor-dependent increase in the glucosylceramide:ceramide ratio. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    Science.gov (United States)

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-06-11

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  6. A PC Based Level Indicating Controller Using a Hall Probe Sensor

    Directory of Open Access Journals (Sweden)

    S. C. Bera

    2007-10-01

    Full Text Available A PC-based measurement and control of liquid level is a very important part of the modern instrumentation system of a process plant in any process industry. In this measurement and control system, the liquid level is measured by using a suitable level transducer. Among the different types of level transducers for measurement and control of liquid level in storage tank the cheapest one is perhaps the float type sensor and the movement of the float with level is generally converted into the movement of a pointer or that of a flapper or that of a potentiometer. In all of these system float is connected with the output device through a mechanical linkage and thus the measurement is subjected to errors due to wear and tear, friction etc. at the mechanical linkage. Here a non-contact float & magnet type level transducer using hall probe has been described in the present paper. A control system has been designed by using thyristor driven pump as the final control element, the speed of which is controlled by the computer through an opto-isolator unit. Experiments have been performed to find the operational characteristics of the transducer and the control loop. The experimental reports are presented in the paper. A very good performance characteristic has been observed.

  7. [1,10]Phenanthroline based cyanine dyes as fluorescent probes for ribonucleic acids in live cells

    Science.gov (United States)

    Kovalska, Vladyslava; Kuperman, Marina; Varzatskii, Oleg; Kryvorotenko, Dmytro; Kinski, Elisa; Schikora, Margot; Janko, Christina; Alexiou, Christoph; Yarmoluk, Sergiy; Mokhir, Andriy

    2017-12-01

    A series of monomethine, trimethine- and styrylcyanine dyes based on a [1,10]phenanthroline moiety was synthesized, characterized and investigated as potential fluorescent probes for nucleic acids in cell free settings and in cells. The dyes were found to be weakly fluorescent in the unbound state, whereas upon the binding to dsDNA or RNA their emission intensity raised up to 50 times (for monomethine benzothiazole derivative FT1 complexed with RNA). The strongest fluorescence intensity in assemblies with dsDNA and RNA was observed for the trimethine benzothiazole derivative FT4. The quantum yield of FT4 fluorescence in its complex with dsDNA was found to be 1.5% and the binding constant (K b) was estimated to be 7.9 × 104 M-1 that is a typical value for intercalating molecules. The FT4 dye was found to be cell membrane permeable. It stains RNA rich components—the nucleoli and most probably the cytoplasmic RNA. FT4 bound to RNAs delivers a very strong fluorescence signal, which makes this easily accessible dye a potentially useful alternative to known RNA stains, e.g. expensive SYTO® 83. The advantage of FT4 is its easy synthetic access including no chromatographic purification steps, which will be reflected in its substantially lower price.

  8. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.

    Science.gov (United States)

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina

    2011-10-01

    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.

  9. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    Science.gov (United States)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  10. Field programmable gate array based reconfigurable scanning probe/optical microscope.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Dzegede, Zechariah K; Hiester, Justin C; Kim, Cliff; Sánchez, Erik J

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

  11. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    KAUST Repository

    Canepa, Edward S.

    2013-01-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.

  12. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming

    KAUST Repository

    Canepa, Edward S.

    2013-09-01

    Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.

  13. Probing of microscale phase-change phenomena based on Michelson interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sik [Pohang Univ. of Science and Techonology, Pohang (Korea, Republic of); Park, Hee K. [IBM, San Jose (United States); Grigoropoulos, Costas P. [Univ. of California at Berkeley, Berkeley (United States)

    2001-07-01

    Experimental schemes that enable characterization of phase-change phenomena in the microscale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse({lambda}=248nm, FWHM=24 ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1 {mu}m and 1 m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  14. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback

    Science.gov (United States)

    Bicen, Baris

    Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress

  15. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran.

    Science.gov (United States)

    Hu, Huawen; Xin, John H; Hu, Hong; Wang, Xiaowen; Lu, Xinkun

    2014-06-06

    In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD) was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB) into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  16. Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Huawen Hu

    2014-06-01

    Full Text Available In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  17. Activity-Based Probes for Isoenzyme- and Site-Specific Functional Characterization of Glutathione S -Transferases

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Ethan G. [Chemical Biology and Exposure; Killinger, Bryan J. [Chemical Biology and Exposure; Nair, Reji N. [Chemical Biology and Exposure; Sadler, Natalie C. [Chemical Biology and Exposure; Volk, Regan F. [Chemical Biology and Exposure; Purvine, Samuel O. [Chemical Biology and Exposure; Shukla, Anil K. [Chemical Biology and Exposure; Smith, Jordan N. [Chemical Biology and Exposure; Wright, Aaron T. [Chemical Biology and Exposure

    2017-11-01

    Glutathione S-transferases (GSTs) comprise a highly diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione to various endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured by colorimetric assays, measurement of the individual contribution from specific isoforms and their contribution to the detoxification of xenobiotics in complex biological samples has not been possible. For this reason, we have developed two activity-based probes that characterize active glutathione transferases in mammalian tissues. The GST active site is comprised of a glutathione binding “G site” and a distinct substrate binding “H site”. Therefore, we developed (1) a glutathione-based photoaffinity probe (GSH-ABP) to target the “G site”, and (2) a probe designed to mimic a substrate molecule and show “H site” activity (GST-ABP). The GSH-ABP features a photoreactive moiety for UV-induced covalent binding to GSTs and glutathione-binding enzymes. The GST-ABP is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and “G” and “H” site specificity was carried out using a series of competitors in liver homogenates. Herein, we present robust tools for the novel characterization of enzyme- and active site-specific GST activity in mammalian model systems.

  18. Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes.

    Science.gov (United States)

    Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen

    2015-01-01

    Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synthesis of a new benzanthrone probe for pH determination based on PET and ICT

    International Nuclear Information System (INIS)

    Miladinova, Polya M.

    2016-01-01

    The synthesis and sensor activity of a novel benzanthrone fluoropore is reported. The system is configured on the “fluoropore–receptor_1–spacer–receptor_2” model able to act as a pH-probe via PET and ICT fluorescence sensing mechanism. The novel probe shows “off-on-off” switching properties under the transition from alkaline to acid media. Keywords: benzanthrone derivative, photoinduced electron transfer (PET), Internal Charge Transfer (ICT), selective pH sensor.

  20. Miniature mechanical transfer optical coupler

    Science.gov (United States)

    Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  1. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    Science.gov (United States)

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  2. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery.

    Science.gov (United States)

    Love, Kerry Routenberg; Pandya, Renuka K; Spooner, Eric; Ploegh, Hidde L

    2009-04-17

    Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubl's and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling uses chemical probes that are active-site-directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein.

  3. Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

    International Nuclear Information System (INIS)

    Safigholi, Habib; Faghihi, Reza; Jashni, Somaye Karimi; Meigooni, Ali S.

    2012-01-01

    Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR 125 I, LDR 103 Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y (μm) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43 distribution

  4. Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, Habib; Faghihi, Reza; Jashni, Somaye Karimi; Meigooni, Ali S. [Faculty of Engineering, Science and Research Branch, Islamic Azad University, Fars, 73481-13111, Persepolis (Iran, Islamic Republic of); Department of Nuclear Engineering and Radiation Research Center, Shiraz University, 71936-16548, Shiraz (Iran, Islamic Republic of); Shiraz University of Medical Sciences, 71348-14336, Shiraz (Iran, Islamic Republic of); Department of Radiation therapy, Comprehensive Cancer Center of Nevada, 3730 South Eastern Avenue, Las Vegas, Nevada 89169 (United States)

    2012-04-15

    Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR {sup 125}I, LDR {sup 103}Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y ({mu}m) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43

  5. SU-G-JeP3-05: Geometry Based Transperineal Ultrasound Probe Positioning for Image Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Camps, S; With, P de [University of Technology Eindhoven, Eindhoven (Netherlands); Verhaegen, F [Maastro Clinic, Maastricht (Netherlands); Fontanarosa, D [Philips Research, Eindhoven (Netherlands)

    2016-06-15

    Purpose: The use of ultrasound (US) imaging in radiotherapy is not widespread, primarily due to the need for skilled operators performing the scans. Automation of probe positioning has the potential to remove this need and minimize operator dependence. We introduce an algorithm for obtaining a US probe position that allows good anatomical structure visualization based on clinical requirements. The first application is on 4D transperineal US images of prostate cancer patients. Methods: The algorithm calculates the probe position and orientation using anatomical information provided by a reference CT scan, always available in radiotherapy workflows. As initial test, we apply the algorithm on a CIRS pelvic US phantom to obtain a set of possible probe positions. Subsequently, five of these positions are randomly chosen and used to acquire actual US volumes of the phantom. Visual inspection of these volumes reveal if the whole prostate, and adjacent edges of bladder and rectum are fully visualized, as clinically required. In addition, structure positions on the acquired US volumes are compared to predictions of the algorithm. Results: All acquired volumes fulfill the clinical requirements as specified in the previous section. Preliminary quantitative evaluation was performed on thirty consecutive slices of two volumes, on which the structures are easily recognizable. The mean absolute distances (MAD) between actual anatomical structure positions and positions predicted by the algorithm were calculated. This resulted in MAD of 2.4±0.4 mm for prostate, 3.2±0.9 mm for bladder and 3.3±1.3 mm for rectum. Conclusion: Visual inspection and quantitative evaluation show that the algorithm is able to propose probe positions that fulfill all clinical requirements. The obtained MAD is on average 2.9 mm. However, during evaluation we assumed no errors in structure segmentation and probe positioning. In future steps, accurate estimation of these errors will allow for better

  6. An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging.

    Science.gov (United States)

    Matrone, Giulia; Ramalli, Alessandro; Savoia, Alessandro Stuart; Quaglia, Fabio; Castellazzi, Gloria; Morbini, Patrizia; Piastra, Marco

    2017-09-24

    The possibility to perform an early and repeatable assessment of imaging performance is fundamental in the design and development process of new ultrasound (US) probes. Particularly, a more realistic analysis with application-specific imaging targets can be extremely valuable to assess the expected performance of US probes in their potential clinical field of application. The experimental protocol presented in this work was purposely designed to provide an application-specific assessment procedure for newly-developed US probe prototypes based on Capacitive Micromachined Ultrasonic Transducer (CMUT) technology in relation to brain imaging. The protocol combines the use of a bovine brain fixed in formalin as the imaging target, which ensures both realism and repeatability of the described procedures, and of neuronavigation techniques borrowed from neurosurgery. The US probe is in fact connected to a motion tracking system which acquires position data and enables the superposition of US images to reference Magnetic Resonance (MR) images of the brain. This provides a means for human experts to perform a visual qualitative assessment of the US probe imaging performance and to compare acquisitions made with different probes. Moreover, the protocol relies on the use of a complete and open research and development system for US image acquisition, i.e. the Ultrasound Advanced Open Platform (ULA-OP) scanner. The manuscript describes in detail the instruments and procedures involved in the protocol, in particular for the calibration, image acquisition and registration of US and MR images. The obtained results prove the effectiveness of the overall protocol presented, which is entirely open (within the limits of the instrumentation involved), repeatable, and covers the entire set of acquisition and processing activities for US images.

  7. Actual situation analyses of rat-run traffic on community streets based on car probe data

    Science.gov (United States)

    Sakuragi, Yuki; Matsuo, Kojiro; Sugiki, Nao

    2017-10-01

    Lowering of so-called "rat-run" traffic on community streets has been one of significant challenges for improving the living environment of neighborhood. However, it has been difficult to quantitatively grasp the actual situation of rat-run traffic by the traditional surveys such as point observations. This study aims to develop a method for extracting rat-run traffic based on car probe data. In addition, based on the extracted rat-run traffic in Toyohashi city, Japan, we try to analyze the actual situation such as time and location distribution of the rat-run traffic. As a result, in Toyohashi city, the rate of using rat-run route increases in peak time period. Focusing on the location distribution of rat-run traffic, in addition, they pass through a variety of community streets. There is no great inter-district bias of the route frequently used as rat-run traffic. Next, we focused on some trips passing through a heavily used route as rat-run traffic. As a result, we found the possibility that they habitually use the route as rat-run because their trips had some commonalities. We also found that they tend to use the rat-run route due to shorter distance than using the alternative highway route, and that the travel speeds were faster than using the alternative highway route. In conclusions, we confirmed that the proposed method can quantitatively grasp the actual situation and the phenomenal tendencies of the rat-run traffic.

  8. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, L., E-mail: viskari@chalmers.se [Chalmers University of Technology, Gothenburg (Sweden); Stiller, K. [Chalmers University of Technology, Gothenburg (Sweden)

    2011-05-15

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening {gamma}' Ni{sub 3}(Al,Nb) precipitates on the obtained results is discussed. -- Research highlights: {yields} Laser pulsed APT is shown to be a good method for analysis of Ni-based superalloys. {yields} The evaporation field is shown to be different for different phases which affects reconstructions. {yields} B and P are shown to segregate to grain boundaries. {yields} Initial results of {delta}-phase analysed by APT are shown.

  9. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  11. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter.

    Science.gov (United States)

    Wong, Vincent Wai-Sun; Petta, Salvatore; Hiriart, Jean-Baptiste; Cammà, Calogero; Wong, Grace Lai-Hung; Marra, Fabio; Vergniol, Julien; Chan, Anthony Wing-Hung; Tuttolomondo, Antonino; Merrouche, Wassil; Chan, Henry Lik-Yuen; Le Bail, Brigitte; Arena, Umberto; Craxì, Antonio; de Lédinghen, Victor

    2017-09-01

    Controlled attenuation parameter (CAP) can be performed together with liver stiffness measurement (LSM) by transient elastography (TE) and is often used to diagnose fatty liver. We aimed to define the validity criteria of CAP. CAP was measured by the M probe prior to liver biopsy in 754 consecutive patients with different liver diseases at three centers in Europe and Hong Kong (derivation cohort, n=340; validation cohort, n=414; 101 chronic hepatitis B, 154 chronic hepatitis C, 349 non-alcoholic fatty liver disease, 37 autoimmune hepatitis, 49 cholestatic liver disease, 64 others; 277 F3-4; age 52±14; body mass index 27.2±5.3kg/m 2 ). The primary outcome was the diagnosis of fatty liver, defined as steatosis involving ≥5% of hepatocytes. The area under the receiver-operating characteristics curve (AUROC) for CAP diagnosis of fatty liver was 0.85 (95% CI 0.82-0.88). The interquartile range (IQR) of CAP had a negative correlation with CAP (r=-0.32, psteatosis was lower among patients with body mass index ≥30kg/m 2 and F3-4 fibrosis. The validity of CAP for the diagnosis of fatty liver is lower if the IQR of CAP is ≥40dB/m. Lay summary: Controlled attenuation parameter (CAP) is measured by transient elastography (TE) for the detection of fatty liver. In this large study, using liver biopsy as a reference, we show that the variability of CAP measurements based on its interquartile range can reflect the accuracy of fatty liver diagnosis. In contrast, other clinical factors such as adiposity and liver enzyme levels do not affect the performance of CAP. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Development of Ultrasonic Modulation Probe for Fluorescence Tomography Based on Acousto-Optic Effect

    Directory of Open Access Journals (Sweden)

    Trinh Quang Duc

    2011-01-01

    Full Text Available We have developed an ultrasonic probe for fluorescence modulation to image fluorescence within biological tissues. The probe consists of a focused ultrasonic transducer mounted on actuators for mechanical fan scanning, which can be used in contact with the measuring object aiming for clinical application. The mechanical fan scanning employed in the probe has a beneficial feature of portability. As a result, fluorescent beads, which were localized with the diameter of 2 mm at 20 mm depth in a pork meat tissue, were detected with resolution of 3 mm. The system performance denotes the feasibility of development towards the final goal of ultrasonic fluorescence modulation tomography for clinical applications.

  13. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Wei [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wang, Fang [School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wei, Yanli; Wang, Li; Liu, Qiaoling; Dong, Wenjuan [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Shuang, Shaomin, E-mail: smshuang@sxu.edu.cn [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mmfchoi@gmail.com [Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR (China)

    2015-01-26

    Highlights: • A turn-on phosphorescence quantum dots probe for histidine is fabricated. • High sensitivity, good selectivity and low interference are achieved. • Histidine in urine samples can be easily detected by the phosphorescence probe. - Abstract: We report a turn-on phosphorescence probe for detection of histidine based on Co{sup 2+}-adsorbed N-acetyl-L-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co{sup 2+} attributing to the adsorption of Co{sup 2+} onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co{sup 2+} with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.

  14. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    Science.gov (United States)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  15. A convenient colorimetric and ratiometric fluorescent probe for detection of cyanide based on BODIPY derivative in aqueous media

    Directory of Open Access Journals (Sweden)

    Yanhua Yu

    2017-06-01

    Full Text Available A convenient colorimetric and ratiometric fluorescent probe based on BODIPY derivative for cyanide detection has been synthesized, whose structural contains a dicyanovinyl group used as a sensing unit. Among the tested analytes, such as CN−, F−, Cl−, Br−, I−, ClO4−, AcO−, NO3−, H2PO4− HSO4−, S2− and N3−, only CN− could react with dicyanovinyl moiety by nucleophilic addition, which disrupted the π-conjugation of the probe and hindered the intramolecular charge transfer (ICT, leading a blue shift of absorption and fluorescence spectrum and a concomitant color change from yellow to light pink. The detection limit of this probe was calculated to be 0.98 μM, which is lower than the maximum concentration in drinking water (1.9 μM permitted by the World Health Organization (WHO. Moreover, the probe showed excellent selectivity and anti-interference ability towards CN− over other anions. The reaction mechanism was fully supported by 1H NMR and MS spectrum.

  16. A water-soluble and retrievable ruthenium-based probe for colorimetric recognition of Hg(II) and Cys.

    Science.gov (United States)

    Cui, Yali; Hao, Yuanqiang; Zhang, Yintang; Liu, Baoxia; Zhu, Xu; Qu, Peng; Li, Deliang; Xu, Maotian

    2016-08-05

    A new ruthenium-based complex 1 [(bis(4,4'-dimethylphosphonic-2,2'-bipyridine) dithiocyanato ruthenium (II))] was developed as a colorimetric probe for the detection of Hg(II) and Cys (Cysteine). The obtained compound 1 can give interconversional color changes upon the alternating addition of Hg(II) and Cys in 100% aqueous solution. The specific coordination between NCS groups with Hg(II) can lead to the formation of 1-Hg(2+) complex, which can induce a remarkable spectral changes of probe 1. Afterwards the formed 1-Hg(2+) complex can act as effective colorimetric sensor for Cys. Owing to the stronger binding affinity of sulfhydryl group to Hg(2+), Cys can extract Hg(2+) from 1-Hg(2+) complex resulting in the release of 1 and the revival of absorption profile of the probe 1. By introducing the hydrophilic phosphonic acid groups, the proposed probe exhibited excellent water solubility. The limits of detection (LODs) of the assay for Hg(2+) and Cys are calculated to be 15nM and 200nM, respectively. Copyright © 2016. Published by Elsevier B.V.

  17. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    Science.gov (United States)

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  18. Inheritance of congenital cataracts and microphthalmia in the Miniature Schnauzer.

    Science.gov (United States)

    Gelatt, K N; Samuelson, D A; Bauer, J E; Das, N D; Wolf, E D; Barrie, K P; Andresen, T L

    1983-06-01

    Congenital cataracts and microphthalmia in the Miniature Schnauzer were inherited as an autosomal recessive trait. Eighteen matings of affected X affected Miniature Schnauzers resulted in 87 offspring with congenital cataracts and microphthalmia (49 males/38 females). Two matings of congenital cataractous and microphthalmic Miniature Schnauzers (2 females) X a normal Miniature Schnauzer (1 male) yielded 11 clinically normal Miniature Schnauzers (7 males/4 females). Eighteen matings of congenital cataractous and microphthalmic Miniature Schnauzers (6 males) X carrier Miniature Schnauzers (9 females) produced 81 offspring; 39 exhibited congenital cataracts and microphthalmia (20 males/19 females) and 42 had clinically normal eyes (17 males/25 females).

  19. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Directory of Open Access Journals (Sweden)

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  20. Cyclodextrin-based miniaturized solid phase extraction for biopesticides analysis in water and vegetable juices samples analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Peng, Li-Qing; Ye, Li-Hong; Cao, Jun; Chang, Yan-Xu; Li, Qin; An, Mingrui; Tan, Zhijing; Xu, Jing-Jing

    2017-07-01

    A cyclodextrin-based miniaturized solid-phase extraction was developed to extract biopesticides from water and vegetable juices. The analytes were detected by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. In the solid-phase extraction (SPE) procedure, the liquid sample solution is passed through a packed column filled with 40mg of HP-β-CD, and then the target analytes are absorbed and finally eluted with methanol-acetic acid (90:10, v/v) into a collection tube. The limits of quantification ranged from 3.73 to 16.51ng/mL for a water matrix, from 2.62 to 13.23ng/mL for an orange juice matrix and from 1.76 to 10.35ng/mL for a tomato juice matrix, respectively. The average recovery values were in the range of 88.3-95.9% for the spiked samples. The established methodology was successfully applied to analyze sanguinarine, berberine, rotenone and osthole in water, orange juice and tomato juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  2. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  3. High Performance Miniature Bandpass Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for developing low impedance, miniature bandpass RF frequency filter via MEMS technique, in applications of SMAP, Aquarius follow-on,...

  4. Using Miniature Landforms in Teaching Geomorphology.

    Science.gov (United States)

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  5. Size Matters: Problems and Advantages Associated with Highly Miniaturized Sensors

    OpenAIRE

    Dahlin, Andreas B.

    2012-01-01

    There is no doubt that the recent advances in nanotechnology have made it possible to realize a great variety of new sensors with signal transduction mechanisms utilizing physical phenomena at the nanoscale. Some examples are conductivity measurements in nanowires, deflection of cantilevers and spectroscopy of plasmonic nanoparticles. The fact that these techniques are based on the special properties of nanostructural entities provides for extreme sensor miniaturization since a single structu...

  6. Miniaturized tools and devices for bioanalytical applications: an overview

    DEFF Research Database (Denmark)

    Chudy, M.; Grabowska, I.; Ciosek, P.

    2009-01-01

    This article presents an overview of various miniaturized devices and technologies developed by our group. Innovative, fast and cheap procedures for the fabrication of laboratory microsystems based on commercially available materials are reported and compared with well-established microfabricatio...... optic detectors, potentiometric sensors platforms, microreactors and capillary electrophoresis (CE) microchips as well as integrated microsystems e. g. double detection microanalytical systems, devices for studying enzymatic reactions and a microsystem for cell culture and lysis....

  7. Miniaturized and general purpose fiber optic ultrasonic sources

    International Nuclear Information System (INIS)

    Biagi, E.; Fontani, S.; Masotti, L.; Pieraccini, M.

    1997-01-01

    Innovative photoacoustic sources for ultrasonic NDE, smart structure, and clinical diagnosis are proposed. The working principle is based on thermal conversion of laser pulses into a metallic film evaporated directly onto the tip of a fiber optic. Unique features of the proposed transducers are very high miniaturization and potential easy embedding in smart structure. Additional advantages, high bedding in smart structure. Additional advantages, high ultrasonic frequency, large and flat bandwidth. All these characteristics make the proposed device an ideal ultrasonic source

  8. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    Science.gov (United States)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  9. Probe-based confocal laser endomicroscopy (pCLE) - a new imaging technique for in situ localization of spermatozoa.

    Science.gov (United States)

    Trottmann, Matthias; Stepp, Herbert; Sroka, Ronald; Heide, Michael; Liedl, Bernhard; Reese, Sven; Becker, Armin J; Stief, Christian G; Kölle, Sabine

    2015-05-01

    In azoospermic patients, spermatozoa are routinely obtained by testicular sperm extraction (TESE). However, success rates of this technique are moderate, because the site of excision of testicular tissue is determined arbitrarily. Therefore the aim of this study was to establish probe-based laser endomicroscopy (pCLE) a noval biomedical imaging technique, which provides the opportunity of non-invasive, real-time visualisation of tissue at histological resolution. Using pCLE we clearly visualized longitudinal and horizontal views of the tubuli seminiferi contorti and localized vital spermatozoa. Obtained images and real-time videos were subsequently compared with confocal laser scanning microscopy (CLSM) of spermatozoa and tissues, respectively. Comparative visualization of single native Confocal laser scanning microscopy (CLSM, left) and probe-based laser endomicroscopy (pCLE, right) using Pro Flex(TM) UltraMini O after staining with acriflavine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Goniometry and Limb Girth in Miniature Dachshunds

    OpenAIRE

    Thomovsky, Stephanie A.; Chen, Annie V.; Kiszonas, Alecia M.; Lutskas, Lori A.

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girt...

  11. Small-size automated probe on the base of UAV with vertical takeoff and landing for meteorological support of environmentally hazardous objects

    International Nuclear Information System (INIS)

    Sitnikov, N.M.; Azarov, A.S.; Chekulaev, I.I.; Akmulin, D.V.; Sitnikova, V.I.; Katyunin, A.D.; Ulanovskij, A.Eh.

    2016-01-01

    Mock-up specimen of meteorological probe on the base of rotocopter is developed and its laboratory and field testings are carried out. The weight of the probe with 200 g airlift is near 1 kg. The probe is started up from the land, the further flight and landing occur in automatic mode. It allows to measure vertical distributions of meteorological parameters (temperature, pressure, moisture, wind velocity and direction) up to 1500 m. The given probe with equipment for measuring pollutant concentrations can be used for meteorological and ecological monitoring of environmentally hazardous objects (NPPs, chemical plants etc.) [ru

  12. EGR distribution and fluctuation probe based on CO.sub.2 measurements

    Science.gov (United States)

    Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung

    2015-04-07

    A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.

  13. Selective Incorporation of Nitrile-Based Infrared Probes into Proteins via Cysteine Alkylation

    Science.gov (United States)

    Jo, Hyunil; Culik, Robert M.; Korendovych, Ivan V.; DeGrado, William F.; Gai, Feng

    2010-01-01

    The nitrile stretching vibration is increasingly used as a sensitive infrared probe of local protein environments. However, site-specific incorporation of a nitrile moiety into proteins is difficult. Here we show that various aromatic nitriles can be easily incorporated into peptides and proteins via either thiol alkylation or arylation reaction. PMID:21077670

  14. Selective Incorporation of Nitrile-Based Infrared Probes into Proteins via Cysteine Alkylation

    OpenAIRE

    Jo, Hyunil; Culik, Robert M.; Korendovych, Ivan V.; DeGrado, William F.; Gai, Feng

    2010-01-01

    The nitrile stretching vibration is increasingly used as a sensitive infrared probe of local protein environments. However, site-specific incorporation of a nitrile moiety into proteins is difficult. Here we show that various aromatic nitriles can be easily incorporated into peptides and proteins via either thiol alkylation or arylation reaction.

  15. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  16. Miniature Uncooled Infrared Sensitive Detectors for in Vivo Biomedical Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P. G.; Demos, S. G.; Rajic, S.

    1998-06-01

    Broadband infrared (OR) radiation detectors have been developed using miniature, inexpensive, mass produced microcantilevers capable of detecting temperature differences as small as lea(-6) K. Microcantilevers made out of semiconductor materials can be used either as uncurled photon or thermal detectors. Mounted on a probe mm in diameter a number of microcantilevers can be accommodated in the working channel of existing endoscopes for in vivo proximity focus measurements inside the human body.

  17. Pyrene-Containing ortho-Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence.

    Science.gov (United States)

    Reiné, Pablo; Justicia, Jose; Morcillo, Sara P; Abbate, Sergio; Vaz, Belen; Ribagorda, María; Orte, Ángel; Álvarez de Cienfuegos, Luis; Longhi, Giovanna; Campaña, Araceli G; Miguel, Delia; Cuerva, Juan M

    2018-04-20

    In this manuscript, we report the first synthesis of an organic monomolecular emitter, which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe. The enantiopure helical ortho-oligo(phenylene)ethynylene ( o-OPE) core has been prepared by a new and efficient macrocyclization reaction. The combination of such o-OPE helical skeleton and a pyrene couple leads to two different CPL emission features in a single structure whose ratio linearly responds to silver(I) concentration.

  18. Ultraselective electrochemiluminescence biosensor based on locked nucleic acid modified toehold-mediated strand displacement reaction and junction-probe.

    Science.gov (United States)

    Zhang, Xi; Zhang, Jing; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Chen, Mei; Zhao, Yanping; Li, Chunyan; Yang, Huanghao; Chen, Jinghua

    2014-12-07

    Locked nucleic acid (LNA) is applied in toehold-mediated strand displacement reaction (TMSDR) to develop a junction-probe electrochemiluminescence (ECL) biosensor for single-nucleotide polymorphism (SNP) detection in the BRCA1 gene related to breast cancer. More than 65-fold signal difference can be observed with perfectly matched target sequence to single-base mismatched sequence under the same conditions, indicating good selectivity of the ECL biosensor.

  19. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  20. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter

    Science.gov (United States)

    Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua

    2018-04-01

    Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.

  1. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    International Nuclear Information System (INIS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-01-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials. (paper)

  2. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    Science.gov (United States)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  3. Challenges in miniaturized automotive long-range lidar system design

    Science.gov (United States)

    Fersch, Thomas; Weigel, Robert; Koelpin, Alexander

    2017-05-01

    This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.

  4. Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes.

    Directory of Open Access Journals (Sweden)

    Wouter W Kallemeijn

    Full Text Available Deficiency of glucocerebrosidase (GBA causes Gaucher disease (GD. In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s. Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme, contains predominantly Man(3 glycans, and velaglucerase (Shire PLC Man(9 glycans. Activity-based probes (ABPs enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors

  5. Unified electronic unit for miniature radioactivity logging equipment

    International Nuclear Information System (INIS)

    Bragin, A.A.; Goldshtejn, L.M.; Fedorov, R.F.; Shikhman, A.S.

    1981-01-01

    Appropriateness and urgency of the unification of components of radioactivity logging equipment used for the investigation of wells at solid mineral deposits is substantiated. A two-channel electronic unit for miniature equipment for radioactivity logging is described and its basic specifications and performance are given. All functional assemblies of the unit are structurally made in the form of printed circuit boards placed in a pan-shaped chassis 28 mm in diameter. The unit's general design provides for the possibility to attach two probes with detection devices to the unit. The unit is used in the two-channel radioactivity logging instrument ''Kura-2'' and in the two-channel radiometer ''RUR-2''. The outer diameter of these instruments is 48 mm and they ensure the investigation of ore and coal wells with a combination radioactivity methods [ru

  6. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Zhang, Y. P.; Liu, Yi; Yuan, G. L.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R.; Luo, X. B.; Liu, Y. Q.; Hua, Y.; Isobe, M.

    2014-01-01

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team , Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported

  7. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. P., E-mail: zhangyp@swip.ac.cn; Liu, Yi; Yuan, G. L.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Luo, X. B.; Liu, Y. Q.; Hua, Y. [Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610041 (China); Isobe, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5259 (Japan)

    2014-05-15

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team , Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

  8. Development of the scintillator-based probe for fast-ion losses in the HL-2A tokamak

    Science.gov (United States)

    Zhang, Y. P.; Liu, Yi; Luo, X. B.; Isobe, M.; Yuan, G. L.; Liu, Y. Q.; Hua, Y.; Song, X. Y.; Yang, J. W.; Li, X.; Chen, W.; Li, Y.; Yan, L. W.; Song, X. M.; Yang, Q. W.; Duan, X. R.

    2014-05-01

    A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team, Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

  9. Miniature horizontal axis wind turbine system for multipurpose application

    International Nuclear Information System (INIS)

    Xu, F.J.; Yuan, F.G.; Hu, J.Z.; Qiu, Y.P.

    2014-01-01

    A MWT (miniature wind turbine) has received great attention recently for powering WISP (Wireless Intelligent Sensor Platform). In this study, two MHAWTs (miniature horizontal axis wind turbines) with and without gear transmission were designed and fabricated. A physics-based model was proposed and the optimal load resistances of the MHAWTs were predicted. The open circuit voltages, output powers and net efficiencies were measured under various ambient winds and load resistances. The experimental results showed the optimal load resistances matched well with the predicted results; the MHAWT without gear obtained higher output power at the wind speed of 2 m/s to 6 m/s, while the geared MHAWT exhibited better performance at the wind speed higher than 6 m/s. In addition, a DCM (discontinuous conduction mode) buck-boost converter was adopted as an interface circuit to maximize the charging power from MHAWTs to rechargeable batteries, exhibiting maximum efficiencies above 85%. The charging power reached about 8 mW and 36 mW at the wind speeds of 4 m/s and 6 m/s respectively, which indicated that the MHAWTs were capable for sufficient energy harvesting for powering low-power electronics continuously. - Highlights: • Performance of the miniature wind turbines with and without gears was compared. • The physics-based model was established and proved successfully. • The interface circuit with efficiency of more than 85% was designed

  10. A fully automated and scalable timing probe-based method for time alignment of the LabPET II scanners

    Science.gov (United States)

    Samson, Arnaud; Thibaudeau, Christian; Bouchard, Jonathan; Gaudin, Émilie; Paulin, Caroline; Lecomte, Roger; Fontaine, Réjean

    2018-05-01

    A fully automated time alignment method based on a positron timing probe was developed to correct the channel-to-channel coincidence time dispersion of the LabPET II avalanche photodiode-based positron emission tomography (PET) scanners. The timing probe was designed to directly detect positrons and generate an absolute time reference. The probe-to-channel coincidences are recorded and processed using firmware embedded in the scanner hardware to compute the time differences between detector channels. The time corrections are then applied in real-time to each event in every channel during PET data acquisition to align all coincidence time spectra, thus enhancing the scanner time resolution. When applied to the mouse version of the LabPET II scanner, the calibration of 6 144 channels was performed in less than 15 min and showed a 47% improvement on the overall time resolution of the scanner, decreasing from 7 ns to 3.7 ns full width at half maximum (FWHM).

  11. A real-time artifact reduction algorithm based on precise threshold during short-separation optical probe insertion in neurosurgery

    Directory of Open Access Journals (Sweden)

    Weitao Li

    2017-01-01

    Full Text Available During neurosurgery, an optical probe has been used to guide the micro-electrode, which is punctured into the globus pallidus (GP to create a lesion that can relieve the cardinal symptoms. Accurate target localization is the key factor to affect the treatment. However, considering the scattering nature of the tissue, the “look ahead distance (LAD” of optical probe makes the boundary between the different tissues blurred and difficult to be distinguished, which is defined as artifact. Thus, it is highly desirable to reduce the artifact caused by LAD. In this paper, a real-time algorithm based on precise threshold was proposed to eliminate the artifact. The value of the threshold was determined by the maximum error of the measurement system during the calibration procession automatically. Then, the measured data was processed sequentially only based on the threshold and the former data. Moreover, 100μm double-fiber probe and two-layer and multi-layer phantom models were utilized to validate the precision of the algorithm. The error of the algorithm is one puncture step, which was proved in the theory and experiment. It was concluded that the present method could reduce the artifact caused by LAD and make the real boundary sharper and less blurred in real-time. It might be potentially used for the neurosurgery navigation.

  12. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    Science.gov (United States)

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  13. Molecular Imaging of β-Amyloid Plaques with Near-Infrared Boron Dipyrromethane (BODIPY-Based Fluorescent Probes

    Directory of Open Access Journals (Sweden)

    Hiroyuki Watanabe

    2013-07-01

    Full Text Available The formation of β-amyloid (Aβ plaques is a critical neurodegenerative change in Alzheimer disease (AD. We designed and synthesized novel boron dipyrromethane (BODIPY-basedprobes (BAPs and evaluated their utility for near-infrared fluorescence imaging of Aβ plaques in the brain. In binding experiments in vitro, BAPs showed high affinity for synthetic Aβ aggregates (Kd = 18–149 nM. Furthermore, BAPs clearly stained Aβ plaques in sections of Tg2576 mice. In mouse brain tissue, BAPs showed sufficient uptake for optical imaging. In addition, ex vivo fluorescent staining of brain sections from Tg2576 mice after the injection of BAP-2 showed selective binding of Aβ plaques with little nonspecific binding. BAPs may be useful as a near-infrared fluorescent probe for imaging Aβ plaques.

  14. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  15. Research on Miniature Calibre Rail-Guns for the Mechanical Arm

    Directory of Open Access Journals (Sweden)

    Ronggang Cao

    2017-01-01

    Full Text Available Rail-gun should not only be used to military applications, but also can be developed as applications in the civilian aspects of the market. With the development of the electromagnetic launch technology, based on the similarity theory, using the existing rail-gun model to guide the construction of more economical miniature calibre rail-guns, and apply it in some machinery and equipment, this idea will open up a wider rail-gun application space. This article will focus on the feasibility of application of miniature calibre rail-guns in the mechanical arm. This paper designs the schematic diagram, then theoretical analyzes force conditions of the armature in the mechanical arm, calculates the possible range of the current amplitude and so on. The existing rail-gun model can be used to guides design the circuit diagram of the miniature calibre rail-gun. Based on the similarity theory and many simulation experiments, designed the experimental parameters of a miniature rail-gun and analyzed the current, Lorentz force, velocity, and location of the existing rail-gun and miniature rail-gun. The results show that the rail-gun launching technology applied to robot arms is feasibility. The application of miniature calibre rail-guns in the mechanical arm will benefit to the further development of rail-guns.

  16. Sensitive Phonon-Based Probe for Structure Identification of 1T' MoTe2.

    Science.gov (United States)

    Zhou, Lin; Huang, Shengxi; Tatsumi, Yuki; Wu, Lijun; Guo, Huaihong; Bie, Ya-Qing; Ueno, Keiji; Yang, Teng; Zhu, Yimei; Kong, Jing; Saito, Riichiro; Dresselhaus, Mildred

    2017-06-28

    In this work, by combining transmission electron microscopy and polarized Raman spectroscopy for the 1T' MoTe 2 flakes with different thicknesses, we found that the polarization dependence of Raman intensity is given as a function of excitation laser wavelength, phonon symmetry, and phonon frequency, but has weak dependence on the flake thickness from few-layer to multilayer. In addition, the frequency of Raman peaks and the relative Raman intensity are sensitive to flake thickness, which manifests Raman spectroscopy as an effective probe for thickness of 1T' MoTe 2 . Our work demonstrates that polarized Raman spectroscopy is a powerful and nondestructive method to quickly identify the crystal structure and thickness of 1T' MoTe 2 simultaneously, which opens up opportunities for the in situ probe of anisotropic properties and broad applications of this novel material.

  17. Observation of quantized vortices by cryocooler-based scanning Hall probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y.; Konishi, Y.; Tokunaga, M.; Tamegai, T

    2004-10-01

    We have developed a scanning Hall probe microscope (SHPM) system utilizing closed-cycle cryocooler. The Hall probe used in this system is fabricated from a GaAs/GaAlAs two-dimensional electron gas. A stepping-motor-driven XYZ translator is used with a resolution better than 0.1 {mu}m and maximum scan range of 20 x 20 mm{sup 2}. The spatial resolution of the system is about 5 {mu}m and magnetic resolution is about 100 mG. By using this system, we have successfully resolved the quantized vortices on the cleaved surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal.

  18. A PROBE-BASED METHOD FOR MEASURING THE TRANSPORT COEFFICIENT IN THE TOKAMAK EDGE REGION

    Czech Academy of Sciences Publication Activity Database

    Brotánková, Jana; Martines, E.; Adámek, Jiří; Popa, G.; Costin, C.; Schrittwieser, R.; Ionita, C.; Stöckel, Jan; Van Oost, G.; van de Peppel, L.

    2006-01-01

    Roč. 56, č. 12 (2006), s. 1321-1327 ISSN 0011-4626. [Workshop on the Electric Field, Structures, and Relaxation in Edge Plasma/9th./. Řím, 26.6.2006-27.6.2006] R&D Projects: GA AV ČR(CZ) KJB100430601 Institutional research plan: CEZ:AV0Z20430508 Keywords : probe measurements * plasma edge * diffusion Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  19. Fabrication of tuning-fork based AFM and STM tungsten probe

    KAUST Repository

    Al-Falih, Hisham

    2011-12-01

    We compare the sharpness of tungsten probe tips produced by the single-step and two-step dynamic electrochemical etching processes. A small radius of curvature (RoC) of 25 nm or less was routinely obtained when the two-step electrochemical etching (TEE) process was adopted, while the smallest achievable RoC was ∼10 nm, rendering it suitable for atomic force microscopy (AFM) or scanning tunneling microscopy (STM) applications. © 2011 IEEE.

  20. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kačenka, M.; Kaman, Ondřej; Kotek, J.; Falteisek, L.; Černý, J.; Jirák, D.; Herynek, V.; Zacharovová, K.; Berková, A.; Jendelová, Pavla; Kupčík, Jaroslav; Pollert, Emil; Veverka, Pavel; Lukeš, I.

    2011-01-01

    Roč. 21, č. 1 (2011), s. 157-164 ISSN 0959-9428 R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50390703; CEZ:AV0Z40720504 Keywords : cellular labelling * dual probe * magnetic nanoparticles * MRI * silica coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011

  1. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  2. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.

    Science.gov (United States)

    Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2014-11-11

    A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.

    Science.gov (United States)

    Schäferling, Michael

    2016-05-01

    Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  4. An Amidochlorin-Based Colorimetric Fluorescent Probe for Selective Cu2+ Detection

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-01-01

    Full Text Available The design and synthesis of selective and sensitive chemosensors for the quantification of environmentally and biologically important ionic species has attracted widespread attention. Amidochlorin p6 (ACP; an effective colorimetric and fluorescent probe for copper ions (Cu2+ in aqueous solution derived from methyl pheophorbide-a (MPa was designed and synthesized. A remarkable color change from pale yellow to blue was easily observed by the naked eye upon addition of Cu2+; and a fluorescence quenching was also determined. The research of fluorescent quenching of ACP-Cu2+ complexation showed the detection limit was 7.5 × 10−8 mol/L; which suggested that ACP can act as a high sensitive probe for Cu2+ and can be used to quantitatively detect low levels of Cu2+ in aqueous solution. In aqueous solution the probe exhibits excellent selectivity and sensitivity toward Cu2+ ions over other metal ions (M = Zn2+; Ni2+; Ba2+; Ag+; Co2+; Na+; K+; Mg2+; Cd2+; Pb2+; Mn2+; Fe3+; and Ca2+. The obvious change from pale yellow to blue upon the addition of Cu2+ could make it a suitable “naked eye” indicator for Cu2+.

  5. Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems

    Science.gov (United States)

    Hu, Hao

    Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and

  6. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  7. Hypodipsic hypernatraemia in a miniature schnauzer.

    Science.gov (United States)

    Van Heerden, J; Geel, J; Moore, D J

    1992-03-01

    Normovolaemic hypernatraemia as a result of a suspected congenital primary hypodipsia was diagnosed in a young male Miniature Schnauzer. Despite an elevated serum sodium concentration, the dog did not appear dehydrated on physical examination and the urine osmolality: plasma osmolality ratio was greater than 4; antidiuretic hormone deficiency was therefore not suspected. Basal serum cortisol and thyroxine concentrations were normal. Plasma aldosterone concentration and plasma renin activity (37 pmol l-1 and 1.55 ng dl-1 h-1 respectively) were within normal range. A defective central thirst regulation mechanism was suspected as the dog was totally disinterested in drinking water despite the chronically elevated serum sodium concentration. Excessive ingestion of water mixed with food, and milk resulted in hyponatraemia and associated cerebral oedema. On stabilisation of the dog's condition, a calculated fluid intake based on daily maintenance fluid requirements was prescribed to prevent recurrence of hypernatraemia and hyponatraemia, and associated signs of central nervous system disease. The dog was in apparent good health with controlled fluid intake when examined 230 d later.

  8. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  9. Development of ion diagnostic system based on electrostatic probe in the boundary plasma of the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Kawakami, Tomohide; Amemiya, Hiroshi; Hoethker, K.; Cosler, A.; Bieger, W.

    1995-06-01

    An ion diagnostic system using electrostatic probes for measurements in the JFT-2M tokamak boundary plasma has been developed under the collaboration program between KFA and JAERI. The rotating double probe system, on which the Hoethker double probe and Amemiya asymmetric probe can mounted, are manufactured at KFA workshop while the linear driver to support the rotating double probe, the ion toothbrush probe, the Katsumata probe and the cubic Mach probe are developed at JAERI. This report describes the hardware of this probe system for ion diagnostics in the boundary plasma and preliminary data obtained by means of this system. Furthermore, results on the transport are estimated on the basis of these probe data. (author)

  10. A novel fluorescent probe based on rhodamine hydrazone derivatives bearing a thiophene group for Al³⁺.

    Science.gov (United States)

    Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng

    2016-05-01

    In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6)  M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.

  11. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  12. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  13. Liquid storage of miniature boar semen.

    Science.gov (United States)

    Shimatsu, Yoshiki; Uchida, Masaki; Niki, Rikio; Imai, Hiroshi

    2002-04-01

    The effects of liquid storage at 15 degrees C on the fertilizing ability of miniature pig semen were investigated. Characterization of ejaculated semen from 3 miniature boars was carried out. Semen volume and pH were similar among these boars. In one of the boars, sperm motility was slightly low, and sperm concentration and total number of sperm were significantly lower than in the others (P semen was substituted with various extenders (Kiev, Androhep, BTS and Modena) by centrifugation and semen was stored for 7 days at 15 degrees C. Sperm motility was estimated daily at 37 degrees C. For complete substitution of seminal plasma, Modena was significantly more efficient than the other extenders (P Semen from each of the 3 miniature boars that had been stored for 5 to 7 days at 15 degrees C in Modena was used for artificial insemination of 15 miniature sows. The farrowing rates were 100, 100 and 60%, and litter sizes were 6.4 +/- 1.5, 5.8 +/- 0.8 and 5.0 +/- 1.0 for each boar semen, respectively. The boar that sired the smallest farrowing rate was the same one that showed lower seminal quality with respect to sperm motility, sperm concentration and total number of sperm. These results suggest that miniature boar semen can be stored for at least 5 days at 15 degrees C by the substitution of seminal plasma with Modena extender.

  14. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  15. Probing the energy barriers and magnetization reversal processes of nanoperforated membrane based percolated media

    International Nuclear Information System (INIS)

    Neu, V; Schultz, L; Schulze, C; Makarov, D; Albrecht, M; Faustini, M; Grosso, D; Lee, J; Kim, S-K; Suess, D

    2013-01-01

    Magnetization reversal processes in Co/Pt multilayers prepared on nanoperforated templates are probed by magnetization relaxation measurements. The signature of pinning controlled domain wall movement as expected for percolated media is identified. This contrasts with the nucleation-type reversal mechanism of a Co/Pt reference film prepared on a smooth substrate. A zero field energy barrier of 93k B T is determined by fluctuation field measurements and is elucidated by micromagnetic calculations using the nudged elastic band method. This value is sufficiently large to qualify the material as a promising percolated medium. (paper)

  16. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    Science.gov (United States)

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Goniometry and Limb Girth in Miniature Dachshunds.

    Science.gov (United States)

    Thomovsky, Stephanie A; Chen, Annie V; Kiszonas, Alecia M; Lutskas, Lori A

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic) (P > 0.05). When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  18. Goniometry and Limb Girth in Miniature Dachshunds

    Directory of Open Access Journals (Sweden)

    Stephanie A. Thomovsky

    2016-01-01

    Full Text Available Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic (P>0.05. When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement.

  19. Presynaptic miniature GABAergic currents in developing interneurons.

    Science.gov (United States)

    Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain

    2010-04-29

    Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts. Copyright 2010 Elsevier Inc. All rights reserved.

  20. FY 2006 Miniature Spherical Retroreflectors Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  1. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    Science.gov (United States)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  2. Transitional behavior of different energy protons based on Van Allen Probes observations

    International Nuclear Information System (INIS)

    Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli

    2016-01-01

    Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H + ) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.

  3. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    International Nuclear Information System (INIS)

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  4. An Internalin A Probe-Based Genosensor for Listeria monocytogenes Detection and Differentiation

    Directory of Open Access Journals (Sweden)

    Laura Bifulco

    2013-01-01

    Full Text Available Internalin A (InlA, a protein required for Listeria monocytogenes virulence, is encoded by the inlA gene, which is only found in pathogenic strains of this genus. One of the best ways to detect and confirm the pathogenicity of the strain is the detection of one of the virulence factors produced by the microorganism. This paper focuses on the design of an electrochemical genosensor used to detect the inlA gene in Listeria strains without labelling the target DNA. The electrochemical sensor was obtained by immobilising an inlA gene probe (single-stranded oligonucleotide on the surfaces of screen-printed gold electrodes (Au-SPEs by means of a mercaptan-activated self-assembled monolayer (SAM. The hybridisation reaction occurring on the electrode surface was electrochemically transduced by differential pulse voltammetry (DPV using methylene blue (MB as an indicator. The covalently immobilised single-stranded DNA was able to selectively hybridise to its complementary DNA sequences in solution to form double-stranded DNA on the gold surface. A significant decrease of the peak current of the voltammogram (DPV upon hybridisation of immobilised ssDNA was recorded. Whole DNA samples of L. monocytogenes strains could be discriminated from other nonpathogenic Listeria species DNA with the inlA gene DNA probe genosensor.

  5. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  6. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    Science.gov (United States)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  7. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    Science.gov (United States)

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples. Copyright © 2014. Published by Elsevier B.V.

  8. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  9. Seven novel probe systems for real-time PCR provide absolute single-base discrimination, higher signaling, and generic components.

    Science.gov (United States)

    Murray, James L; Hu, Peixu; Shafer, David A

    2014-11-01

    We have developed novel probe systems for real-time PCR that provide higher specificity, greater sensitivity, and lower cost relative to dual-labeled probes. The seven DNA Detection Switch (DDS)-probe systems reported here employ two interacting polynucleotide components: a fluorescently labeled probe and a quencher antiprobe. High-fidelity detection is achieved with three DDS designs: two internal probes (internal DDS and Flip probes) and a primer probe (ZIPR probe), wherein each probe is combined with a carefully engineered, slightly mismatched, error-checking antiprobe. The antiprobe blocks off-target detection over a wide range of temperatures and facilitates multiplexing. Other designs (Universal probe, Half-Universal probe, and MacMan probe) use generic components that enable low-cost detection. Finally, single-molecule G-Force probes employ guanine-mediated fluorescent quenching by forming a hairpin between adjacent C-rich and G-rich sequences. Examples provided show how these probe technologies discriminate drug-resistant Mycobacterium tuberculosis mutants, Escherichia coli O157:H7, oncogenic EGFR deletion mutations, hepatitis B virus, influenza A/B strains, and single-nucleotide polymorphisms in the human VKORC1 gene. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    Science.gov (United States)

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  12. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    Science.gov (United States)

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  13. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  14. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  15. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1.

    Science.gov (United States)

    Best, Quinn A; Johnson, Amanda E; Prasai, Bijeta; Rouillere, Alexandra; McCarley, Robin L

    2016-01-15

    We successfully synthesized a fluorescent probe capable of detecting the cancer-associated quinoneoxidoreductase isozyme-1 within human cells, based on results from an investigation of the stability of various rhodamines and seminaphthorhodamines toward the biological reductant NADH, present at ∼100-200 μM within cells. While rhodamines are generally known for their chemical stability, we observe that NADH causes significant and sometimes rapid modification of numerous rhodamine analogues, including those oftentimes used in imaging applications. Results from mechanistic studies lead us to rule out a radical-based reduction pathway, suggesting rhodamine reduction by NADH proceeds by a hydride transfer process to yield the reduced leuco form of the rhodamine and oxidized NAD(+). A relationship between the structural features of the rhodamines and their reactivity with NADH is observed. Rhodamines with increased alkylation on the N3- and N6-nitrogens, as well as the xanthene core, react the least with NADH; whereas, nonalkylated variants or analogues with electron-withdrawing substituents have the fastest rates of reaction. These outcomes allowed us to judiciously construct a seminaphthorhodamine-based, turn-on fluorescent probe that is capable of selectively detecting the cancer-associated, NADH-dependent enzyme quinoneoxidoreductase isozyme-1 in human cancer cells, without the issue of NADH-induced deactivation of the seminaphthorhodamine reporter.

  16. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  17. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  18. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, B. R.; Kaushik, S.; Hadley, G. R.; Fritz, I. J.; Howard, A. J.; Vawter, G. A.; Wendt, J. R.; Corless, R

    1996-02-01

    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way to construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.

  19. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    Science.gov (United States)

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2017-04-01

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O 2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H 2 O 2 ) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this

  20. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the