WorldWideScience

Sample records for mineralize complex organic

  1. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords......, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also...

  2. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  3. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    Gu, B.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO 4 ) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO 4 - and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO 4 - from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study

  4. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  5. Sorption behavior of bensulfuron-methyl on andisols and ultisols volcanic ash-derived soils: Contribution of humic fractions and mineral-organic complexes

    Espinoza, Jeannette; Fuentes, Edwar [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile); Baez, Maria E., E-mail: mbaez@ciq.uchile.c [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile)

    2009-12-15

    Bensulfuron-methyl sorption was studied in Andisol and Ultisol soils in view of their characteristic physical and chemical properties, presenting acidic pH and variable charge. Humic and fulvic acids (HA and FA) and humin (HUM) contributions were established. Sorption was studied by using two synthetic sorbents, an aluminum-silicate with iron oxide coverage and the same sorbent coated with humic acid. Freundlich model described Bensulfuron-methyl behavior in all sorbents (R{sup 2} 0.969-0.998). K{sub f} for soils (8.3-20.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}) were higher than those reported in the literature. Organic matter, halloysite or kaolinite, and specific surface area contributed to the global process. The highest K{sub f} for HA, FA and HUM were 539.5, 82.9, and 98.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}. Model sorbents described the participation of variable charge materials with high adsorption capacity. The constant capacitance model was used to assess effects of Bensulfuron-methyl adsorption on the distribution of SOH, SOH{sub 2}{sup +} and SO{sup -} sites of sorbents. - Organic matter, phyllosilicates, variable charge minerals and organo-mineral complexes contribute to bensulfuron-methyl sorption on volcanic ash-derived soils.

  6. Hydrometalurgical processes for mineral complexes

    Barskij, L.A.; Danil'chenko, L.M.

    1977-01-01

    Requirements for the technology of the processing of ores including uranium ores and principal stages of the working out of technological schemes are described in brief. There are reference data on commercial minerals and ores including uranium-thorium ores, their classification with due regard for physical, chemical and superficial properties which form the basis for ore-concentrating processes. There are also presented the classification of minerals including uranium minerals by their flotation ability, flotation regimes of minerals, structural-textural characteristics of ores, genetic types of ore formations and their concentrating ability, algorithmization of the apriori evaluation of the concentration and technological diagnostics of the processing of ores. The classification of ore concentration technique is suggested

  7. On Mineral Retrosynthesis of a Complex Biogenic Scaffold

    Ashit Rao

    2017-03-01

    Full Text Available Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a heterogeneous organic scaffold in egg shell mineralization, the present study explores the regulation over mineralization attained by applying synthetic polymeric counterparts (polyethylene glycol, poly(acrylic acid, poly(aspartic acid and poly(4-styrenesulfonic acid-co-maleic acid as additives during remineralization of decalcified eggshell membranes. By applying Mg2+ ions as a co-additive species, mineral retrosynthesis is achieved in a manner that modulates the polymorph and structure of mineral products. Notable features of the mineralization process include distinct local wettability of the biogenic organic scaffold by mineral precursors and mineralization-induced membrane actuation. Overall, the form, structure and polymorph of the mineralization products are synergistically affected by the additive and the content of Mg2+ ions. We also revisit the physicochemical nature of the biomineral scaffold and demonstrate the distinct spatial distribution of anionic biomolecules associated with the scaffold-mineral interface, as well as highlight the hydrogel-like properties of mammillae-associated macromolecules.

  8. Organic Minerals in the Origin of Life

    Benner, S.; Biondi, E.; Kim, H. J.

    2017-12-01

    Models for the origin of life are plagued by fundamental problems that, due to their difficulty, are called "paradoxes". One of these, known to anyone who has ever worked in a kitchen, is that organics, when given energy and left to itself, does not generate life. Rather, organics devolve to give tarry mixtures that become increasingly complex and increasingly less likely to support life (like asphalt). However, even if those mixtures escape devolution to create something useful for Darwinism, like building blocks for RNA, the water in which they must work is corrosive, leading to their destruction. Even if RNA is created, it is itself easily degraded. One current trend to manage those paradoxes turns to minerals in environments on early Earth. Inorganic minerals containing borate have now been shown to prevent the destruction of ribose (the R in RNA) and other carbohydrates essential for early Earth. Evaporite desert basins supplied with aqueous runoff from tourmaline-containing basalts are ideal environments for forming borate minerals, especially if they are made alkaline by serpentinizing peridotite. In the evaporite environments, drying cycles mitigate the destructive capability of water. Further, we have shown that phosphate is segregated from calcium (avoiding formation of relatively unreacted apatites) if magnesium and borate are present. Further, a common magnesium borophosphate (luneburgite) not only makes phosphate available for prebiotic synthesis, but selectively phosphorylates RNA building blocks as it releases borate to stabilize them against further degradation. Finally, a variety of minerals bind and stabilize RNA itself. Research in this area has also discovered organic minerals that might have been relevant to the origins of life on Earth. Such minerals are scarce on Earth today, since they are easily consumed by microbial communities. However, on a prebiotic Earth, organic minerals could have stored organic species as intermediates towards our

  9. -Heterocyclic Carbene Complexes of Mineral Acids

    Brill, Marcel; Nahra, Fady; Gó mez-Herrera, Alberto; Zinser, Caroline; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.

    2016-01-01

    We have synthesized and characterized new gold-N-heterocyclic carbene (NHC) complexes derived from the deprotonation of mineral acids. The use of sulfuric acid was a particularly interesting case. These complexes were tested in known gold-catalyzed reactions, such as the hydration of alkynes and the Meyer–Schuster rearrangement. They proved to be highly efficient in both reactions.

  10. -Heterocyclic Carbene Complexes of Mineral Acids

    Brill, Marcel

    2016-11-08

    We have synthesized and characterized new gold-N-heterocyclic carbene (NHC) complexes derived from the deprotonation of mineral acids. The use of sulfuric acid was a particularly interesting case. These complexes were tested in known gold-catalyzed reactions, such as the hydration of alkynes and the Meyer–Schuster rearrangement. They proved to be highly efficient in both reactions.

  11. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  12. Minerals with metal-organic framework structures.

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  13. Deposition and benthic mineralization of organic carbon

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  14. [Levels of bone mineral matrix organization and the mechanisms determining parameters of its formation].

    Avrunin, A S; Tikhilov, R M; Abolin, A B; Shcherbak, I G

    2005-01-01

    Authors suggest to regard bone mineral matrix as the four-level structure. The first level is represented by an internal structure of a mineral, the second--by mineral morphological structure, the third--by coplanar association of minerals, and the fourth--by macroassociation of minerals in a single complex inside each bone. The most probable mechanisms determining stability of reproduction of mineral matrix parameters on each of these levels are shown. As a result of their functioning, the variants of bone mineral matrix structures are formed that are the programmed reflection of specificity of the given site of organic structures.

  15. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  16. Mineral composition of organically grown tomato

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  17. Inorganic and organic trace mineral supplementation in weanling pig diets

    MARIA C. THOMAZ

    2015-06-01

    Full Text Available A study was conducted to evaluate the effects of dietary inorganic and organic trace minerals in two levels of supplementation regarding performance, diarrhea occurrence, hematological parameters, fecal mineral excretion and mineral retention in metacarpals and liver of weanling pigs. Seventy piglets weaned at 21 days of age with an average initial body weight of 6.70 ± 0.38 kg were allotted in five treatments: control diet (no added trace mineral premix; 50% ITMP (control diet with inorganic trace mineral premix supplying only 50% of trace mineral requirements; 50% OTMP (control diet with organic trace mineral premix supplying only 50% of trace mineral requirements; 100% ITMP (control diet with inorganic trace mineral premix supplying 100% of trace mineral requirements; and 100% OTMP (control diet with organic trace mineral premix supplying 100% of trace mineral requirements. Feed intake and daily weight gain were not affected by treatments, however, piglets supplemented by trace minerals presented better gain:feed ratio. No differences were observed at calcium, phosphorus, potassium, magnesium, sodium and sulfur excreted in feces per kilogram of feed intake. Treatments did not affect calcium, phosphorus, magnesium, sulfur and iron content in metacarpals. Trace mineral supplementation, regardless of level and source, improved the performance of piglets.

  18. Control in Complex Organizations

    Rennstam, Jens; Kärreman, Dan

    The extant research on organizational control builds on the assumption of vertical control – managers are thought to develop orders, rules and norms to control the operating core. Yet it is claimed that work becomes increasingly “knowledge intensive” and that organizations rely heavily for their ......The extant research on organizational control builds on the assumption of vertical control – managers are thought to develop orders, rules and norms to control the operating core. Yet it is claimed that work becomes increasingly “knowledge intensive” and that organizations rely heavily...... for their productivity on the knowledge and creativity of their work force. In this type of “knowledge work,” the strong focus on vertical control is insufficient as it fails to account for the important operative and horizontal interactions upon which many contemporary organizations depend. Drawing on practice theory...... and an ethnographic study of engineering work, this paper theorizes control as a form of work that does not only belong to formal management, but is dispersed among various work activities, including horizontal ones. The article introduces the idea of control work as a key practice in contemporary organizations...

  19. Organization of complex networks

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how

  20. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  1. Possibility of organic mineral water 'Naftusia Zbrutschanska' helps in correction of immune system with of

    Raksha-Slyusareva, E.A.; Slyusarev, A.A.; Malygina, V.D.

    2005-01-01

    Changing of hemato-immunological state of Chernobyl clean uppers, and conventional heals population, living in Donbass eco crisis region under influence of organic mineral water 'Naftusia Zbrutschanska' was detected. It was registries that including of organic mineral water 'Naftusia Zbrutschanska' in to the complex treatment of Chernobyl clean uppers or for immune correction of conventional heals population corrected not only red and white blood, but immunological state too. Especial after course of the organic mineral water 'Naftusia Zbrutschanska' the considers of lymphocyte populations, restarted to normal date or with tendency to norm

  2. [Cancer-vitamins-minerals: Complex relation].

    Adrianza de Baptista, Gertrudis; Murillo Melo, Carolain

    2014-12-01

    Since nutrition can influence the process of carcinogenesis, this study's objectives are to review the relationship between nutrition and cancer from the point of view of the role of micronutrients in the treatment of cancer patients, and to get to know the deficit relationship and the excess of micronutrients, with the etiology and cancer treatment. At the same time the patient's weight loss relates, among other things, to the type of cancerous tumor, its location, stage thereof, reason for which it may be associated with the deficiency of macro and micronutrients as from psychogenic, anorectics and mal-absorption effects or with mechanical effects as obstruction, among other toxic effects that are common in the treatment of cancer. Hence, the importance that the nutrition expert must have in making an adequate overall nutritional evaluation that allows the nutritional diagnosis, in studying the dietary patterns, to determine the toxic effects of the antineoplastic treatment in order to handle the treatment's timing excellence, symptoms and signs, and thus act effectively optiimizing the patient's life quality, and therewith his/her survival. There are controversies as to which specific dietary factors are related to cancer etiology and the results of studies on metabolic factors, and therefore, the relationship Cancer-Nutrition is quiet complex.

  3. Self-Ordering and Complexity in Epizonal Mineral Deposits

    Henley, Richard W.; Berger, Byron R.

    Epizonal base and precious metal deposits makeup a range of familiar deposit styles including porphyry copper-gold, epithermal veins and stockworks, carbonate-replacement deposits, and polymetallic volcanic rock-hosted (VHMS) deposits. They occur along convergent plate margins and are invariably associated directly with active faults and volcanism. They are complex in form, variable in their characteristics at all scales, and highly localized in the earth's crust. More than a century of detailed research has provided an extensive base of observational data characterizing these deposits, from their regional setting to the fluid and isotope chemistry of mineral deposition. This has led to a broad understanding of the large-scale hydrothermal systems within which they form. Low salinity vapor, released by magma crystallization and dispersed into vigorously convecting groundwater systems, is recognized as a principal source of metals and the gases that control redox conditions within systems. The temperature and pressure of the ambient fluid anywhere within these systems is close to its vapor-liquid phase boundary, and mineral deposition is a consequence of short timescale perturbations generated by localized release of crustal stress. However, a review of occurrence data raises questions about ore formation that are not addressed by traditional genetic models. For example, what are the origins of banding in epithermal veins, and what controls the frequency of oscillatory lamination? What controls where the phenomenon of mineralization occurs, and why are some porphyry deposits, for example, so much larger than others? The distinctive, self-organized characteristics of epizonal deposits are shown to be the result of repetitive coupling of fracture dilation consequent on brittle failure, phase separation ("boiling"), and heat transfer between fluid and host rock. Process coupling substantially increases solute concentrations and triggers fast, far

  4. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  5. Ternary complex formation at mineral/solution interfaces

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  6. Uranium mineralization in the ring complex of Taperuaba, CE, Brazil

    Haddad, R.C.

    1981-01-01

    The study of the uraniferous deposit in the Northeast has been increased in last year, because of the discovery of many anomalies containing phosphate uraniferous mineralization. The anomalies in vila de Taperuaba at Ceara were examined. The petrografic, structural and geochemical study of the Taperuaba Ring complex, is made, in an attempt to estabilish the ore genesis and its probable controls. (L.H.L.L.) [pt

  7. Organic matter dynamics and N mineralization in grassland soils

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  8. Probing the rhizosphere to define mineral organic relationships

    Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.

    2016-12-01

    Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.

  9. Laboratory of minerals purification

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  10. Can Biochar Protect Labile Organic Matter Against Mineralization in Soil?

    Giovanna B.MELAS; Oriol ORTIZ; Josep M.ALACA(N)IZ

    2017-01-01

    Biochar could help to stabilize soil organic (SOM) matter,thus sequestering carbon (C) into the soil.The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter (SOM)mineralization in an artificial soil,proposed by the Organization for Economic Co-operation and Development (OECD),amended with glucose and ii) to measure the amount of labile organic matter (glucose) that can be sorbed and thus be partially protected in the same soil,amended or not amended with biochar.A factorial experiment was designed to check the effects of three single factors (biochar,nutrients,and glucose) and their interactions on whole SOM mineralization.Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass,and then they were incubated in the dark at 21 ℃ for 619 d.Periodical measurements of C mineralized to carbon dioxide (CO2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools.The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract.Two different models,the Freundlich and Langmuir models,were selected to assess the equilibrium isotherms of glucose sorption.The CO2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil.The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately.Furthermore,a significant amount of glucose can be sorbed on the biochar-amended soil,suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.

  11. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  12. Biochar effect on the mineralization of soil organic matter

    Sander Bruun

    2012-05-01

    Full Text Available The objective of this work was to verify whether the addition of biochar to the soil affects the degradation of litter and of soil organic matter (SOM. In order to investigate the effect of biochar on the mineralization of barley straw, soil was incubated with 14C-labelled barley straw with or without unlabelled biochar. To investigate the effect of straw on the mineralization of biochar, soil was incubated with 14C-labelled biochar with or without straw. In addition, to investigate the effect of biochar on old SOM, a soil labelled by applying labelled straw 40 years ago was incubated with different levels of biochar. All experiments had a control treatment, without any soil amendment. The effect of biochar on the straw mineralization was small and nonsignificant. Without biochar, 48±0.2% of the straw carbon was mineralized within the 451 days of the experiment. In comparison, 45±1.6% of C was mineralized after biochar addition of 1.5 g kg-1. In the SOM-labelled soil, the organic matter mineralized more slowly with the increasing doses of biochar. Biochar addition at 7.7 g kg-1 reduced SOM mineralization from 6.6 to 6.3%, during the experimental period. The addition of 15.5 g kg-1 of biochar reduced the mineralized SOM to 5.7%. There is no evidence of increased degradation of either litter or SOM due to biochar addition; consequently, there is no evidence of decreased stability of SOM.

  13. Organic matter dynamics and N mineralization in grassland soils

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly and can be used in soil organic matter models, iii) to develop a model that predicts the long-term dynamics of soil organic matter, iv) to develop a simple model that can be used by farmers and advi...

  14. Complexant stability investigation. Task 2. Organic complexants

    Martin, E.C.

    1985-06-01

    The safety of high-level defense waste operations has always been given highest priority at the Hanford site. This document is part of the continued effort to appraise and reevaluate the safety of the waste stored in underground tanks on the Hanford Reservation. Hanford high-level defense waste consists mainly of moist, inorganic salts, NaNO 3 , NaAl(OH) 4 , Na 2 CO 3 , and other sodium salts. However, in addition to these salts, quantities of organic compounds constitute a significant portion of the waste. The potential reaction of the organic compounds with inorganic salts to form explosive substances is examined and found to be nonexistent or negligible. The concept that the waste mixture might react exothermically is found to be untenable under the present storage conditions. The phenomenon of slurry growth in double-shell waste storage tanks is expected to cause no increase in exothermic reaction potential within the waste. The results of this study indicate that the presence of organic material in the high-level defense waste does not constitute undue hazard under the present storage conditions

  15. Complexant stability investigation. Task 2. Organic complexants

    Martin, E.C.

    1985-06-01

    The safety of high-level defense waste operations has always been given highest priority at the Hanford site. This document is part of the continued effort to appraise and reevaluate the safety of the waste stored in underground tanks on the Hanford Reservation. Hanford high-level defense waste consists mainly of moist, inorganic salts, NaNO/sub 3/, NaAl(OH)/sub 4/, Na/sub 2/CO/sub 3/, and other sodium salts. However, in addition to these salts, quantities of organic compounds constitute a significant portion of the waste. The potential reaction of the organic compounds with inorganic salts to form explosive substances is examined and found to be nonexistent or negligible. The concept that the waste mixture might react exothermically is found to be untenable under the present storage conditions. The phenomenon of slurry growth in double-shell waste storage tanks is expected to cause no increase in exothermic reaction potential within the waste. The results of this study indicate that the presence of organic material in the high-level defense waste does not constitute undue hazard under the present storage conditions.

  16. Organic-mineral binder for molybdenum concentrate granulation

    Guro, Vitaliy P.; Ibragimova, Matluba A.; Safarov, Edgorjon T.

    2016-01-01

    Process of pyrite cinders production from Mo middlings consists of molybdenite concentrate granulation, firing to oxidize sulfide minerals and to recover Re-oxide. If kaolin binder is used a pyrite cinders dilution with Mo takes place. So, the development of organic binding agents, alternative to kaolin, is an actual issue. The approach is based on the comparison of the hydrophilic, strength and technological features of the hydrometallurgical processing of pellets. The new batch is developed. It differs from the traditional mixture by polymer burning and minimizing Mo dilution, thus aiming to maximize Re, Au, Ag recovery. The composition of the new organic-mineral batch is as follows: 97.3 % of molybdenite concentrate, 2 % of kaolin and 0.7 % of SK polymer. Keywords: molybdenum middlings, binder, organic additive, batch, granulation.

  17. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  18. Complex conductivity of organic-rich shales

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.

    2013-12-01

    We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The

  19. Increase of Organization in Complex Systems

    Georgiev, Georgi Yordanov; Daly, Michael; Gombos, Erin; Vinod, Amrit; Hoonjan, Gajinder

    2013-01-01

    Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system -...

  20. Influence of natural organic matter and mineral surfaces upon the radionuclide speciation in an environmental context

    Janot, N.

    2011-01-01

    This study deals with interactions occurring in a ternary europium(III)/humic acid(HA)/α-Al 2 O 3 system, depending on solution conditions (pH, ionic strength, organic concentration). These interactions were studied at a macroscopic scale - quantifying Eu(III) and/or HA adsorption onto the mineral surface - and using time-resolved luminescence spectroscopy. The presence of HA modifies Eu(III) behavior toward the mineral surface. Analysis showed a Eu(III)-HA complexation in the ternary system, in all the conditions studied. However, Eu(III) complexation with the mineral surface is occurring at high pH and ionic strength only. Spectrophotometric titrations were validated as a method to study HA reactivity at environmental relevant concentrations. They have been used to determine modifications of HA reactivity after adsorption onto the alumina surface depending on initial HA concentration. These results have then be used to model Eu(III) speciation in the ternary system, using the CD-MUSIC and NICA-Donnan models for mineral and organic complexation, respectively. (author) [fr

  1. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    supports approximately 40 USGS research specialists who utilize cooperative agreements with universities, industry, and other governmental agencies to support their collaborative research and information exchange. Scientists of the WMERSC study how and where non-fuel mineral resources form and are concentrated in the earth's crust, where mineral resources might be found in the future, and how mineral materials interact with the environment to affect human and ecosystem health. Natural systems (ecosystems) are complex - our understanding of how ecosystems operate requires collecting and synthesizing large amounts of geologic, geochemical, biologic, hydrologic, and meteorological information. Scientists in the Center strive to understand the interplay of various processes and how they affect the structure, composition, and health of ecosystems. Such understanding, which is then summarized in publicly available reports, is used to address and solve a wide variety of issues that are important to society and the economy. WMERSC scientists have extensive national and international experience in these scientific specialties and capabilities - they have collaborated with many Federal, State, and local agencies; with various private sector organizations; as well as with foreign countries and organizations. Nearly every scientific and societal challenge requires a different combination of scientific skills and capabilities. With their breadth of scientific specialties and capabilities, the scientists of the WMERSC can provide scientifically sound approaches to a wide range of societal challenges and issues. The following sections describe examples of important issues that have been addressed by scientists in the Center, the methods employed, and the relevant conclusions. New directions are inevitable as societal needs change over time. Scientists of the WMERSC have a diverse set of skills and capabilities and are proficient in the collection and integration of

  2. POTENTIAL USE OF ORGANIC MINERAL AS MINERAL SOURCE FOR DIET OF JUVENILE VANNAMEI SHRIMP, Penaeus vannamei

    Asda Laining

    2015-06-01

    Full Text Available The use of organic mineral (OM has been recently introduced in aquaculture both as feed supplement and water quality improvement. A feeding experiment was conducted to evaluate a response dose of OM on growth, survival, and mineral content in whole the body and carapace of vannamei shrimp (Penaeus vannamei. Three diets were supplemented with different levels of organic mineral at 1 (OM1, 2 (OM2 and 4 (OM4 g/100 g diet. Positive control was a diet without OM inclusion but supplemented with commercial mineral mixture at level of 4 g/100 g diet. Juvenile vannamei shrimp with average initial body weight of 3.5±0.1 g were stocked into 12 tanks with a capacity of 200 L. After 75 days feeding trial, highly significant weight gains was observed in shrimp fed OM at all levels compared to the positive control. However, no significant differences were found among dietary OM groups. The growth response was clearly shown by the same values of SGRs in the three OM supplemented groups (1.1%/d and only differed significantly from positive control. Increasing of dietary OM significantly improved survival rate of shrimp where the highest was observed in group fed OM1 and the lowest was in control diet. Effect of dietary OM on whole body Ca and P were quite similar while whole body Ca and P content of OM1 group was slightly high and tended to decrease in two groups with higher level dietary OM. However, no significant differences among the treatment groups. A clear response of supplementing OM in diet was detected on whole body Zn content. Increase of dietary OM resulted in an increase of Zn content in whole body. The effect was clearly shown when diet contained 2% and 4% OM. Carapace Ca content was highly significant when diet contained 2% OM. Similar to whole body Zn content, there was also a linear trend of response dose of dietary OM on carapace Zn content which the highest was found in dietary OM4. Based on growth, survival rate, and Zn

  3. Mineral surface–organic matter interactions: basics and applications

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted–Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  4. Microbial mineralization of organic nitrogen forms in poultry litters.

    Rothrock, Michael J; Cook, Kimberly L; Warren, Jason G; Eiteman, Mark A; Sistani, Karamat

    2010-01-01

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.

  5. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees.

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.

  6. Leadership Learning for Complex Organizations

    Ng, F. S. David

    2015-01-01

    Many school leadership programs are set and delivered in specific modules or workshops in order to achieve a pre-determined set of competencies, knowledge, and skills. In addition, these programs are driven by the faculty member and the prescribed content. As Singapore schools become more complex in the roles and responsibilities to educate the…

  7. Minerals

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  8. Determination of total organic phosphorus in samples of mineral soils

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  9. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  10. The influence of organic substances type on the properties of mineral-organic fertilizers

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites

  11. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  12. Sugars, organic acids, minerals and lipids in jabuticaba

    Annete de Jesus Boari Lima

    2011-06-01

    Full Text Available The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed of the Paulista (Plinia cauliflora and Sabará (Plinia jaboticaba jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.

  13. Methylene blue adsorption in clay mineral dealt with organic cation

    Silva, T.L.; Lemos, V.P.

    2011-01-01

    The interaction among organic cations, as the methylene blue (AM) and benzyltrimethylammonium (BTMA), and clay minerals of the group of the smectite they result in the formation of applied materials in the adsorption of organic pollutant presents in waters, soils and you cultivate. In this work they were prepared the adsorbents (organic-clays) smectite - AM and smectite-BTMA. The precursory sample of smectite was collected in Rio Branco-Acre. We were also used an smectite sample collected in Sena Madureira (SM)-Acre already characterized in previous work and a sample of standard smectite Swy-2-Na-Montmorillonite (SWy-2) of Wymong - USA. The organic agents selected for this study they were: Blue of Methylene, denominated AM and Benzyltrimethylammonium, denominated BTMA. They were appraised the capacities adsorptive of the treated samples with BTMA being used AM as adsorbate. The results of these evaluations detected that ran total adsorption of AM (concentrations varying from 1 to 10 ppm) for the treated samples with BTMA. The organic cation, BTMA, interacting with the surfaces of the natural clay was more efficient in the adsorption of AM than the clay without the previous treatment with this salt. (author)

  14. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  15. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  16. Spectroscopy of plutonium-organic complexes

    Richmann, M.K.; Reed, D.T.

    1995-01-01

    Information on the spectroscopy of plutonium-organic complexes is needed to help establish the speciation of these complexes under environmentally relevant conditions. Laser photoacoustic spectroscopy (LPAS) and absorption spectrometry were used to characterize the Pu(IV)-citrate and Pu(IV)-nitrilotriacetic acid (NTA) complexes at concentrations of 10 -3 --10 -7 M in aqueous solution. Good agreement was observed between the band shape of the LPAS and absorption spectra for the Pu(IV)-NTA complex. Agreement for the Pu(IV)-citrate complex was not quite as good. In both cases, a linear dependence of the LPAS signal on laser power and total concentration of the complexes was noted. This work is part of an ongoing research effort to study key subsurface interactions of plutonium-organic complexes

  17. A Lesson in Complexity: Seabed Minerals and Easter Island.

    Druker, Kristen

    1984-01-01

    This high school-level classroom activity presents a hypothetical situation based on scientific fact concerning the likelihood that seabed mineral deposits lie off Easter Island. Activity goals, instructional strategies, and instructions for students are included. (JN)

  18. Organic carbon production, mineralization and preservation on the Peruvian margin

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  19. Our Galactic Neighbor Hosts Complex Organic Molecules

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected

  20. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  1. Organic nitrogen storage in mineral soil: Implications for policy and management

    Bingham, Andrew H., E-mail: drew_bingham@nps.gov [Air Resources Division, National Park Service, P.O. Box 25287, Denver, CO 80225 (United States); Cotrufo, M. Francesca [Department of Soil and Crop Sciences and Natural Resources Ecology Laboratory, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 (United States)

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. - Highlights: • We review the current framework for long-term nitrogen stabilization in soils. • We highlight the most important factors according to this framework. • We discuss how these factors may influence management and policy decisions.

  2. Luminescent Oxygen Gas Sensors Based on Nanometer-Thick Hybrid Films of Iridium Complexes and Clay Minerals

    Hisako Sato

    2014-01-01

    Full Text Available The use of Ir(III complexes in photo-responsive molecular devices for oxygen gas sensing is reviewed. Attention is focused on the immobilization of Ir(III complexes in organic or inorganic host materials such as polymers, silica and clays in order to enhance robustness and reliability. Our recent works on constructing nanometer-thick films comprised of cyclometalated cationic Ir(III complexes and clay minerals are described. The achievement of multi-emitting properties in response to oxygen pressure is demonstrated.

  3. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  4. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana

    2017-04-01

    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop

  5. Stabilization of organic matter in soils: role of amorphous mineral phases

    Zewde Tamrat, Wuhib; Rose, Jérôme; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2016-04-01

    Soil organic matter (SOM) globally contributes the largest portion of continental carbon stock. One major issue concerning this large C pool includes its instability by mineralization and erosion due to land use. The main hypothesis of this work is that physicochemical stabilization of SOM is mainly driven by interactions of organic compounds, not with mineral surfaces as classically considered, but with amorphous polymers continuously formed by the alteration of soil minerals(1-3). Our objective is to understand how nano-organomineral complexes (nCOMx) are structured at the nanoscale, assess mechanisms of their formation, and quantify the effects of their occurrence on SOM turnovers. Due to inherent high complexity of natural samples, our methodology is based on the formation of nCOMx from both synthetic systems and natural mineral-weathered components. For the mineral component, biotite (from Bancroft, Canada) was selected. For the organic component, 3,4-Dihydroxy-L-phenylalanine, an amino acid with hydroxyl (pKa=9.95), carboxyl (pKa=2,58), amino (pKa=9,24) and an aromatic functions was chosen. The methodology aimed at developing conditions that generate biotite dissolution and nCOMx precipitation. The second step of the experiment consisted of the precipitation of nCOMx by slowly increasing pH over 3 to 12 hours of hydrolysis. Three final pH conditions were tested (4.2, 5 and 7) with Metal/Carbon ratios of 0.01, 0.1, 1, 10 and 'No Carbon'. The first results of dissolution rates and congruency, AFM imaging, ICPMS, HR-TEM and XRD as well as XAS characterizations (transmission and florescence mode at the Fe K-edge) of nCOMx will be presented. Experiments and analysis techniques were designed to study these synthetic phases with regard to Si, Al, Fe and OM proportions to increase the OM proportion (as in natural soil phases) and also increase the stability of the OM phase (as in increased residence time of OM in the soil). We will focus particularly on the Fe state

  6. New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals

    Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie

    2017-11-01

    Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.

  7. Chromate Adsorption on Selected Soil Minerals: Surface Complexation Modeling Coupled with Spectroscopic Investigation.

    Veselská, V.; Fajgar, Radek; Číhalová, S.; Bolanz, R.M.; Göttlicher, J.; Steininger, R.; Siddique, J.A.; Komárek, M.

    2016-01-01

    Roč. 318, NOV 15 (2016), s. 433-442 ISSN 0304-3894 Institutional support: RVO:67985858 Keywords : surface complexation modeling * chromate * soil minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  8. Self-organization in metal complexes

    Radecka-Paryzek, W.

    1999-01-01

    Inorganic self-organization involves the spontaneous generation of well-defined supramolecular architectures from metal ions and organic ligands. The basic concept of supramolecular chemistry is a molecular recognition. When the substrate are metal ions, recognition is expressed in the stability and selectivity of metal ion complexation by organic ligands and depends on the geometry of the ligand and on their binding sites that it contains. The combination of the geometric features of the ligand units and the coordination geometries of the metal ions provides very efficient tool for the synthesis of novel, intriguing and highly sophisticated species such as catenanes, box structures, double and triple helicates with a variety of interesting properties. The article will focus on the examples of inorganic self-organization involving the templating as a first step for the assembly of supramolecular structures of high complexity. (author)

  9. Complex Systems and Self-organization Modelling

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  10. Geology and geochemistry of Massangana Granitoid Complex, Brazil, and its relation with tin mineralization

    Romanini, S.J.

    1982-01-01

    The geochemical and petroLogical characteristics of the Massangana Granitoid Complex, situated in the Rondonia Federal Territory, Brazil, aiming to discriminate the tin mineralized granitic rocks from the no mineralized ones. The collected samples consists of examples in tin mineralized and sterile phases. The elements traces were determined by x-ray fluorescence analysis, emission spectrography, molecular absorption spectrophotometry and atomic absorption spectrophotometry. The complex edifying evolved in four sucessive episodes called Massangana Phase, Bom Jardim Phase, Sao domingos Phase and Taboca Phase ordered stratigraphycally in this sequence. (author/M.C.K.) [pt

  11. Thermally unstable complexants/phosphate mineralization of actinides

    Nash, K.

    1996-01-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn't be worse than the disease) and verification of system performance

  12. SELECTED BIBLIOGRAPHY ON SUCCESSION IN COMPLEX ORGANIZATIONS.

    THIEMANN, FRANCIS C.

    THIS DOCUMENT LISTS 56 JOURNAL ARTICLES, 18 BOOKS, 10 DOCTORAL DISSERTATIONS, AND TWO UNPUBLISHED PAPERS ON SUCCESSION IN COMPLEX ORGANIZATIONS PUBLISHED BETWEEN 1948 AND 1966. SOCIOLOGY CONTRIBUTED 40 OF THE BIBLIOGRAPHICAL ENTRIES, HISTORY AND POLITICAL SCIENCE 19, EDUCATION 16, PSYCHOLOGY SEVEN, AND BUSINESS FOUR. (HM)

  13. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  14. Nitrogen mineralization in a simulated rhizosphere as influenced by low molecular weight organic substances

    Begum, Shamim Ara; Kader, MD Abdul; Sleutel, Steven; De Neve, Stefaan

    2012-01-01

    Rhizodeposits consist of over 200 organic compounds, mainly low-molecular-weight organic substances (LMWOS) such as amino acids (AA), carbohydrates (CH) and carboxylic acids (CA), lipids and phenols. Those LMWOS influence nutrient turnover, particularly N turnover. However, the exact influence of these organic substances on nitrogen mineralization is yet unknown. Therefore, the stimulatory effects of low molecular weight organic substances on nitrogen mineralization in the rhizosphere of a si...

  15. Relationship between Mineral and Organic Matter in Shales: The Case of Shahejie Formation, Dongying Sag, China

    Xiang Zeng

    2018-05-01

    Full Text Available Types of organic matter and mineral associations and microstructures of shales can reflect the depositional mechanism and sedimentary environment. Therefore, analysis of organic matter and mineral associations is a prerequisite for research on fine-grained sedimentary rocks. Shales from the Eocene Shahejie Formation in the Dongying Sag of China were selected to classify their lithofacies and to investigate the characteristics of their organic matter and mineral associations. This analysis identified six lithofacies (e.g., laminated shales and massive mudstones; in all the lithofacies, clay minerals exhibit a positive correlation with detrital minerals, thus indicating that they were derived from the same source. The comprehensive analysis of mineral and organic matter associations reveals that detrital minerals were deposited with low-hydrogen index (HI OM. The deposition of detrital minerals was mainly a physical process. Clay minerals can undergo deposition in one of two ways due to their surface charge: they can either aggregate with high-HI OM via chemical deposition, thus forming organic-rich laminae, or they can be deposited together with low-HI OM via physical deposition, thus forming clay-rich laminae or a massive matrix. Carbonate minerals, which often coexist with high-HI OM, are biological sediments. The analysis of the sedimentary characteristics of these organic matter and mineral associations indicates that the sedimentary processes differ between various lithofacies: e.g., the discontinuous laminated shale represents the product of biophysical processes. Differences in depositional mechanisms are also present in each sub-member. Therefore, it is important to analyze the properties of minerals and organic matter, as well as their associations, to more deeply understand the classification of lithofacies and the depositional processes of shales and mudstones.

  16. Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil

    Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.

    2017-12-01

    Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering

  17. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    Mikutta, Christian; Langner, Peggy; Bargar, John R.

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work...... of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents...... the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI)....

  18. Minerals

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  19. Metal Complexes for Organic Optoelectronic Applications

    Huang, Liang

    Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i

  20. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. DETERMINATION OF MINERAL CONTAIN AND BACTERIA CONTAMINANT ON ORGANIC AND NONORGANIC FRESH VEGETABLES

    Harsojo Harsojo

    2010-06-01

    Full Text Available The determination of mineral content and bacteria contaminant on fresh vegetable of long bean (Vegan ungulate Wall., white cabbage (Basic tolerance L., and lettuce (Lectuca sativa L. that cultivated by organic and nonorganic system have been done. The mineral content has been analyzed using neutron activation analysis and atomic absorption spectroscopy method, while bacteria contaminant by total plate count number using Nutrient Agar, Mac Conkey Agar, Baird Parker medium, and Salmonella using selective medium. The results showed that there are some essential mineral such as Fe, Zn, Ca, Co, and nonessential mineral Cd. There is tendency that fresh vegetable that cultivated by organic system contained Fe, Zn, Ca, Co and Cd mineral less than nonorganic. The Zn mineral content in nonorganic of fresh vegetable were higher than the limit of threshold number from Health Department, Republic of Indonesia (2004, while Cd mineral in organic or nonorganic of fresh vegetable were greater then threshold number from Codex Alimentarius Commision. The measurement of bacteria contaminant on organic and nonorganic of fresh vegetables contained aerob, coli, and Staphylococcus bacteria in organic of fresh vegetables were less compared to nonorganic of fresh vegetables.   Keywords: mineral, bacteria aerob, coli, Staphylococcus, Salmonella, organic, and nonorganic vegetable, neutron activation

  2. Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758

    David Domínguez

    2017-10-01

    Full Text Available Substituting fishmeal (FM with vegetable meal (VM can markedly affect the mineral composition of feeds, and may require additional mineral supplementation. Their bioavailability and optimal supplementation levels depend also on the form of delivery of minerals. The aim of the study was to determine the effect of different delivery forms of three major trace elements (Zn, Mn and Se in a marine teleost. Gilthead sea bream juveniles of 22.5 g were fed a VM-based diet for 12 weeks that was either not supplemented with these minerals or supplemented with inorganic, organic, or encapsulated inorganic forms of minerals in triplicate and compared to a FM-based diet. Our results showed that mineral delivery form significantly affected the biochemical composition and morphology of posterior vertebrae. Supplementation of VM-based diets with inorganic forms of the target minerals significantly promoted growth, increased the vertebral weight and content of ash and Zn, enhanced bone mineralization and affected the vertebral shape. Conversely, encapsulation of inorganic minerals reduced fish growth and vertebral mineral content, whereas supplementation of organic minerals, enhanced bone osteogenesis by upregulating bone morphogenetic protein 2 (bmp2 gene and produced vertebrae with a larger length in relation to height. Furthermore, organic mineral forms of delivery downregulated the expression of oxidative stress related genes, such as Cu/Zn superoxide dismutase (Cu/Zn sod and glutathione peroxidase 1 (gpx-1, suggesting thus that dietary minerals supplemented in the organic form could be reasonably considered more effective than the inorganic and encapsulated forms of supply.

  3. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  4. Catalytic Organic Transformations Mediated by Actinide Complexes

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  5. Possibilities for a geothermal energy and mineral industrial complex in the Salton Sea area

    Hornburg, C.D.; Meriwether, J.

    1977-11-16

    The overall development of the Salton Sea KGRA by developing industrial complexes is discussed. These would make maximum utiliztion of the total resource by on-site utilization of extracted energy and minerals; and upgrading these minerals via industrial processes to higher value products. A typical analysis of Salton Sea brine and an estimation of amounts and values of some materials that may be extracted from Salton Sea brines are presented. (MHR)

  6. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles.

    Campi, G; Cristofaro, F; Pani, G; Fratini, M; Pascucci, B; Corsetto, P A; Weinhausen, B; Cedola, A; Rizzo, A M; Visai, L; Rea, G

    2017-11-16

    The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At the molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using scanning micro X-ray diffraction and scanning micro X-ray fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit heterogeneous and self-organizing dynamics. At the same time the possibility of controlling the differentiation kinetics, through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine.

  7. Removal of arsenopyrite from complex sulfide minerals by froth flotation

    Choi, Jin-young; Kim, Yang-soo; Kim, Dong-gyu; Han, Oh-hyung; Park, Chul-hyun

    2016-04-01

    Arsenic (As) is one of hazardous materials and a penalty element in metal concentrates and so metal concentrates containing arsenic of over 0.5% has been currently restricted in import and export trade. It also corrodes a smelting furnace as well as shortens its life cycle. In korea, Janggun mine that produces galena (PbS) /sphalerite (ZnS) concentrate containing arsenic of 1.78% charges a penalty of US 2/ton to LS-Nikko smelter. Hence in this work, flotation tests for removal of arsenopyrite (FeAsS) from sulfide mineral concentrates were carried out using lab scale flotation cell, which maintain grade and recovery of PbS and ZnS in comparison to flotation plant. Particularly, this study was focused on investigating the combination of several chemical reagents (depressant, collector, activator and etc.) that affect flotation performance. In the straight differential flotation for PbS, a PbS grade of 75.80% and a recovery of 90.12% could be obtained with FeAsS removal of 84.1% (0.2% As) under the conditions of 20% feed solids concentration, pH 8.5, 50g/t frother (AF65), 40g/t collector (AP242) and 800g/t As depressant (NaHSO3) and 600g/t Zn depressant (ZnSO4). In the ZnS flotation, the maximum separation achievable for ZnS using froth flotation has been shown to be a grade of 72.57% and a recovery of 95.43%. At this time, FeAsS removal of 87.8% (0.16% As) could be successfully accomplished under pH 11, and 800g/t Zn activator (CuSO4), 75g/t frother (AF65), 60g/t collector (AP211) and 600g/t As depressant (NaHSO3). Acknowledgments This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  8. Emergence of complex chemistry on an organic monolayer.

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system

  9. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  10. Effect of combined application of organic and mineral nitrogen and ...

    The problem is more severe in the Zone due to soil erosion and nutrient ... 46 kg P2O5 ha-1) and no fertilizer application (control) in randomized complete block ... of food barley over the application of 100% mineral NP alone and the control.

  11. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  12. Organic complexant topical report. Revision 1

    Meacham, J.E.; and others

    1997-06-26

    This document reviews the current understanding of hazards associated with the storage of organic complexant salts in Hanford Site high-level waste tanks. Two distinct hazards were evaluated: spontaneous self- accelerating decomposition reactions in the bulk material (bulk runaway) and ignition followed by condensed phase propagation (point source ignition). Results from the bulk runaway assessment showed that bulk runaway is not credible for all tanks except C-106. However, speciation of the organic in C-106 shows that it is almost all in the form of low energy oxalate, and there is little potential for a bulk runaway. Additional testing and evaluation would be necessary to definitely conclude that there is no potential for bulk runaway; therefore, controls are currently required for his tank. Temperature monitoring and controls (water addition and active ventilation) are adequate to prevent bulk runaway in C-106.

  13. Organic complexant topical report. Revision 1

    Meacham, J.E.

    1997-01-01

    This document reviews the current understanding of hazards associated with the storage of organic complexant salts in Hanford Site high-level waste tanks. Two distinct hazards were evaluated: spontaneous self- accelerating decomposition reactions in the bulk material (bulk runaway) and ignition followed by condensed phase propagation (point source ignition). Results from the bulk runaway assessment showed that bulk runaway is not credible for all tanks except C-106. However, speciation of the organic in C-106 shows that it is almost all in the form of low energy oxalate, and there is little potential for a bulk runaway. Additional testing and evaluation would be necessary to definitely conclude that there is no potential for bulk runaway; therefore, controls are currently required for his tank. Temperature monitoring and controls (water addition and active ventilation) are adequate to prevent bulk runaway in C-106

  14. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  15. Minerals

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  16. Power efficiency of mineral and organic fertilizers application in crop rotations

    BOSAK V.M.

    2009-01-01

    In researches on sod podzolic light loamy soil the application of mineral and organic fertilizers has provided high indicators of agronomic and power efficiency. Entering of mineral fertilizers has raised efficiency of field crop rotations on 19,9-30,3 tha -1 of f.u., as well as entering of organic fertilizers on 5,2-10,8 tha -1 of f.u. at a recoupment of 1 ton of manure of 65,0-131,3 f.u. and 1 kg of NPK of 8,1-9,7 f.u. Power return of application of mineral fertilizers in crop rotations has...

  17. Complexity of clay mineral formation during 120,000 years of soil development along the Franz Josef chronosequence, New Zealand

    Dietel, J.; Dohrmann, R.; Guggenberger, G.; Meyer-Stueve, S.; Turner, S.; Schippers, A.; Kaufhold, S.; Butz-Braun, R.; Condron, L.M.; Mikutta, R.

    2017-01-01

    Weathering of primary silicates to secondary clay minerals over time affects multiple soil functions such as the accumulation of organic matter and nutrient cations. However, the extent of clay mineral (trans)formation as a function of soil development is poorly understood. In this study, the degree of weathering of sediments along a 120 kyr soil formation gradient was investigated using X-ray diffraction, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy. Irrespective of site age, mica and chlorite were the dominant clay minerals. During weathering, a remarkable suite of transitional phases such as vermiculite and several interstratifications with vermiculitic, smectitic, chloritic and micaceous layers developed. The degree of weathering was correlated with soil pH and depletion of K, Ca, Na, Fe and Al, regarding both soil depth and site age. Kaolinite occurred especially at the 120 kyr site, indicating slow formation via transitional phases. The findings of this study revealed that long-term soil development caused complex clay mineral assemblages, both temporally and spatially, and linking this variability to soil functioning warrants further research. (author).

  18. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  19. A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality and plant properties

    JUN eYE

    2016-04-01

    Full Text Available Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e. a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  20. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  1. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast.

    Rekha, C R; Vijayalakshmi, G

    2010-10-01

    To study the role of β-glucosidase producing probiotic bacteria and yeast in the biotransformation of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk. Five isolates of probiotic lactic acid bacteria (LAB), Lactobacillus acidophilus B4496, Lactobacillus bulgaricus CFR2028, Lactobacillus casei B1922, Lactobacillus plantarum B4495 and Lactobacillus fermentum B4655 with yeast Saccharomyces boulardii were used to ferment soymilk to obtain the bioactive isoflavones, genistein and daidzein. High-performance liquid chromatography was used to analyse the concentration of isoflavones. Bioactive aglycones genistein and daidzein after 24 and 48 h of fermentation ranged from 97.49 to 98.49% and 62.71 to 92.31% respectively with different combinations of LAB with yeast. Increase in bioavailability of minerals and vitamin B complex were also observed in fermented soymilk. LAB in combination with yeast S. boulardii has great potential for the enrichment of bioactive isoflavones, enhancing the viability of LAB strains, decreasing the antinutrient phytic acid and increasing the mineral bioavailability in soymilk fermentation. Fermentation of soymilk with probiotic organisms improves the bioavailability of isoflavones, assists in digestion of protein, provides more soluble calcium, enhances intestinal health and supports immune system. Increased isoflavone aglycone content in fermented soymilk improves the biological functionality of soymilk. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  2. A retail market study of organic and conventional potatoes (Solanum tuberosum): mineral content and nutritional implications.

    Griffiths, Andrea M; Cook, David M; Eggett, Dennis L; Christensen, Merrill J

    2012-06-01

    Whether or not all foods marketed to consumers as organic meet specified standards for use of that descriptor, or are nutritionally different from conventional foods, is uncertain. In a retail market study in a Western US metropolitan area, differences in mineral composition between conventional potatoes and those marketed as organic were analysed. Potatoes marketed as organic had more copper and magnesium (p potatoes. Comparison of individual mineral concentrations between foodstuffs sold as organic or conventional is unlikely to establish a chemical fingerprint to objectively distinguish between organic and conventional produce, but more sophisticated chemometric analysis of multi-element fingerprints holds promise of doing so. Although statistically significant, these differences would only minimally affect total dietary intake of these minerals and be unlikely to result in measurable health benefits.

  3. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  4. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  5. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  6. Nutrition and growth of potted gerbera according to mineral and organic fertilizer

    Francielly Torres Santos

    2015-08-01

    Full Text Available In order to meet the growing market of gerbera, it is necessary to develop studies that maximize its production, especially using organic fertilizer. In order to assess the nutrition and growth of potted gerbera conducted with mineral and organic fertilization, an experiment in a greenhouse was done, located at Western Paraná State University, Brazil. The experimental design was made in randomized blocks, with four replications and five treatments. The treatments were defined according to the source of fertilization, mineral (NPK or organic. The organic fertilization were obtained by diluting in water four organic compost of poultry slaughter waste, obtained from in the composting process, in order to adjust electrical conductivity. The solution of the compost was used as organic fertigation, making the organic treatments. The liquid organic fertilizer, as well as irrigation of mineral treatment, was performed manually once a day. At the end of vegetative and reproductive periods, the levels of N, P, K, Ca, Mg and Fe were quantified in the plant tissue. At the same time, biometric parameters were assessed (number of leaves, plant diameter, leaf area, dry matter of aerial parts, number of heads, inflorescence dry matter, stem height, head diameter and diameter stem. The liquid organic fertilizers, obtained by composting procession of poultry slaughter waste, can be used as alternative source for potted gerbera nutrition, since they provide better or higher culture growth than the mineral fertilizer.

  7. Investigation of Ageing Effects on Organic Binders used for Mineral Wool Products

    Zafar, Ashar

    mainly due to hydrolyzation of urea containing groups. On the other hand, XPS and ToF-SIMS characterization of alkanol amine-acid anhydride binder coated mineral fibres consistently showed that the surface chemical composition of the organic components of these samples did not change appreciably during......Phenol-Urea-Formaldehyde (PUF) binder based mineral wool products’ mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while mineral wool products based on a newly developed alkanol amine-acid anhydride binder exhibited better ageing properties...... for the same duration of ageing. The main purpose of the present work is to examine the chemical changes occurring in the phenol-urea-formaldehyde binder based mineral fibres due to ageing, which cause deterioration of the mechanical properties of mineral wool products. This has been done using surface...

  8. Aerobic mineralization of selected organic nutrient sources for soil ...

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  9. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (ppotassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs

    Nørgaard, Jan Værum; Højberg, Ole; Sørensen, Kristina Ulrich

    2014-01-01

    Acidification of slurry through dietary manipulation of urinary pH is a means of mitigating nitrogen emission from pig production, but long-term effects of diet acidification on bone mineralization and mineral balance is less investigated. The objective was therefore to study the long-term effects...... of feeding benzoic acid (BA) and calcium chloride (CaCl2) on the mineral balance and microbial activity in the gastrointestinal tract of pigs. Four diets containing the combinations of 0 or 10 g/kg BA and 0 or 20 g/kg CaCl2 were fed to 24 pigs in a factorial design. For the diets without CaCl2, calcium...... carbonate (CaCO3) was added to provide equimolar levels of Ca. The pigs were fed the diets from 36 kg until slaughter at 113 kg BW, and they were housed in balance cages for 12 d from 60 to 66 kg BW. Supplementation of BA and/or CaCl2 had only minor effect on accumulation of digesta organic acids (acetate...

  11. Modeling of Possible Conditions for Origin of First Organic Forms in hot Mineral Water

    Ignat Ignatov; Oleg Mosin

    2014-01-01

    The composition of water, its temperature and pH value was analyzed in experiments with modelling of primary hydrosphere and possible conditions for origin of first organic forms in hot mineral water. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria by IR-spectrometry (DNES-method). As model systems were used cactus juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza tuberculata. It was considered the reactions of condensation and deh...

  12. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Mohammad Ali Rajabzadeh

    2015-10-01

    Full Text Available Introduction Worldwide, Ni-Cu and PGE magmatic sulfide deposits are confined to the lower parts of stratiform mafic and ultramafic complexes. However, ophiolite mafic and ultramafic complexes have been rarely explored for sulfide deposits despite the fact that they have been extensively explored and exploited for chromite. Sulfide saturation during magmatic evolution is necessary for sulfide mineralization, in which sulfide melts scavenge chalcophile metals from the parent magma and concentrate them in specific lithological zones. The lack of exploration for sulfides in this environment suggests that sulfide saturation is rarely attained in ophiolite-related magmas. Some ophiolites, however, contain sulfide deposits, such as at Acoje in Philippines, and Cliffs in Shetland, U.K. (Evans, 2000; Naldrett, 2004. The Faryab ophiolite complex in southern Kerman Province, the most important mining area for chromite deposits in Iran, is located in the southwest part of the Makran Zone. Evidence of sulfide mineralization has been reported there by some authors (e.g. Rajabzadeh and Moosavinasab, 2013. This paper discusses the genesis of sulfides in the Faryab ophiolite using mineral chemistry of the major mineral phases in different rocks of the ophiolite column in order to determine the possible lithological location of sulfide deposits. Materials and methods Seventy three rock samples from cumulate units were collected from surficial occurrences and drill core. The samples were studied using conventional microscopic methods and the mineralogy confirmed by x-ray diffraction. Electron microprobe analysis was carried out on different mineral phases in order to determine the chemistry of the minerals used in the interpretation of magma evolution in the Faryab ophiolite. Lithologically, the Faryab ophiolite complex is divided into two major parts: the northern part includes magmatic rocks and the southern part is comprised of rocks residual after partial

  13. Organization structures for dealing with complexity

    Meijer, B.R.

    2006-01-01

    "Complexity is in the eye of the beholder" is a well known quote in the research field of complexity. In the world of managers the word complex is often a synonym for difficult, complicated, involving many factors and highly uncertain. A complex business decision requires careful preparation and

  14. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  15. Fluorometric determination of samarium and europium in rare earth minerals with. beta. -diketoneternary complex

    Huang, H; Hiraki, K; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1981-07-01

    This communication reported the optimum conditions for the fluorometric determination of these ions, and the method was adopted in the simultaneous determination of samarium and europium in xenotime and monazite minerals. From the experimental results on the effect of diverse ions and the extraction pH of the aqueous phase, it became clear that TTA-TOPO hexane method was the best system for the determination of samarium and europium because of the highest fluorescence sensitivity of the ternary complex, and also because the lower extraction pH eliminated the effect of diverse ions. Moreover, the very high detection limit (2 ppb) of Sm was achieved by the use of a red sensitive photomultiplier. Which was used at 644 nm, and that of Eu (0.02 ppb) at 614 nm. The procedure was established as follows: The rare earth minerals (xenotime, monazite) sample was treated with hot conc. H/sub 2/SO/sub 4/ and twice precipitated with 0.5 mol dm/sup -3/ oxalic acid (pH was adjusted to 2.0 -- 2.2). Then the precipitate was filtered and ignited to give the rare earth oxide. Fifty milligrams of the oxide was dissolved in HCl and diluted with water in order to obtain the solution containing 5 ..mu..g cm/sup -3/ rare earth oxide. An aliquot of the solution ((1.0 -- 3.0) cm/sup 3/) was adjusted to pH 5.5 with sodium acetate and shaken with 1 x 10/sup -4/ mol dm/sup -3/ TTA- 2 x 10/sup -2/ mol dm/sup -3/ TOPO hexane solution. Then the fluorescence intensity of the organic layer was measured at 644 nm for Sm and 614 nm for Eu. In this procedure, the recovery of Sm and Eu was found to be about 96%. Xenotime contained 0.70% of Sm and 0.004% of Eu, and monazite contained 1.84% of Sm and 0.003% of Eu.

  16. Effect of Combined Application of Organic and Mineral Nitrogen and ...

    mite

    fertilizers is not sufficient to maintain the present levels of crop productivity of ...... Proceedings of the First Barley Review work shop, 16- 19 October 1993. ... Life. Science Journal, 4 (2): 82-87. Iyamuremye, F & Dick, R.P. 1996. Organic .... inorganic fertilizer application on soil physico-chemical properties and nutrient balance.

  17. The effects of mineral and liquid organic fertilizers on some ...

    süreyya

    2012-03-22

    Mar 22, 2012 ... Full Length Research Paper. The effects ... The economical effect of liquid organic fertilizer on agriculture may be a factor in the extension of its .... trays (200 ml each cell) at the cotyledonary leaf stage; soil ... electrical conductivity (EC) was 0.088%. ... Number of main stem-shoot on each plant was limited to.

  18. System dynamics in complex psychiatric treatment organizations.

    Rosenheck, R

    1988-05-01

    One of the major challenges facing contemporary psychiatry is the coordination of diverse services through organizational integration. With increasing frequency, psychiatric treatment takes place in complex treatment systems composed of multiple inpatient and outpatient programs. Particularly in public health care systems serving the chronically ill, contemporary practice demands a broad spectrum of programs, often geographically dispersed, that include crisis intervention teams, day treatment programs, substance abuse units, social rehabilitation programs and halfway houses (Bachrach 1983; Turner and TenHoor 1978). Individualized treatment planning often requires that a particular patient participate in two or more specialized programs either simultaneously or in a specified sequence. As a consequence of this specialization, treatment fragmentation has emerged as a significant clinical problem, and continuity of care has been highlighted as a valuable but elusive ingredient of optimal treatment. This paper will describe the dynamic interactions that result when several such programs are united under a common organizational roof. Using a large VA Psychiatry Service as an example, I will outline the hierarchical structure characteristic of such an organization, as well as the persistent pulls toward both integration and fragmentation that influence its operation.

  19. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  20. Complexity-management in SME : organization of complex relationships

    Gregus, M.; Mandorf, S.

    2009-01-01

    The complexity of companies' environment IS growmg. Complexity management and restructuring of small and medium-sized enterprises (SME) become big challenges of business studies in the next future. A chance could be seen in the use of e-business strategies and the implementation of information

  1. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars.

    Gainey, Seth R; Hausrath, Elisabeth M; Adcock, Christopher T; Tschauner, Oliver; Hurowitz, Joel A; Ehlmann, Bethany L; Xiao, Yuming; Bartlett, Courtney L

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe 3+ with small amounts of aqueous Mg 2+ . Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  2. Maghemite Formation via Organics and the Prospect for Maghemite as a Biomarker Mineral on Mars

    Bishop, Janice; Mancinelli, R. L.; Madsen, M. B.; Zent, A. P.

    2000-01-01

    One of the major questions on Mars is the origin of the magnetic component in the surface material. Our work on maghemite formation suggests that alteration of femhydrite in the presence of organics would provide a plausible formation scenario for this magnetic soil component and further suggests that maghemite might be an important biomarker mineral on Mars. Identification of biomarker minerals is an important aspect of Astrobiology . The iron oxide mineral maghemite is thought to be one of the magnetic components in the Martian surface material; however, it is a rare mineral on the Earth and requires a reducing agent for synthesis. Organic material serves as a reductant in maghemite formation during forest fires on Earth and may play an important role in maghemite formation on Mars through low-temperature heating (e.g., volcanism, impacts). This study involves analysis of magnetite, maghemite and hematite formation under Martian environmental conditions from femhydrite in the presence and absence of organics. A dehydrated version of the mineral femhydrite is thought to be present in Martian soil/dust grains and could have formed at an earlier time on Mars when water was present. Our work indicates that low-temperature alteration of femhydrite in the presence of organic material could be an important mechanism on Mars.

  3. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Gainey, Seth R.; Hausrath, Elisabeth M.; Adcock, Christopher T.; Tschauner, Oliver; Hurowitz, Joel A.; Ehlmann, Bethany L.; Xiao, Yuming; Bartlett, Courtney L. (CIW); (UNLV); (CIT); (SBU)

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  4. Sulfate minerals: a problem for the detection of organic compounds on Mars?

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A

    2015-03-01

    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  5. Quantum interference experiments with complex organic molecules

    Eibenberger, S. I.

    2015-01-01

    Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to

  6. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  7. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.

    Keith, Alexandra; Singh, Balwant; Singh, Bhupinder Pal

    2011-11-15

    Biochar is considered as an attractive tool for long-term carbon (C) storage in soil. However, there is limited knowledge about the effect of labile organic matter (LOM) on biochar-C mineralization in soil or the vice versa. An incubation experiment (20 °C) was conducted for 120 days to quantify the interactive priming effects of biochar-C and LOM-C mineralization in a smectitic clayey soil. Sugar cane residue (source of LOM) at a rate of 0, 1, 2, and 4% (w/w) in combination with two wood biochars (450 and 550 °C) at a rate of 2% (w/w) were applied to the soil. The use of biochars (~ -36‰) and LOM (-12.7‰) or soil (-14.3‰) with isotopically distinct δ(13)C values allowed the quantification of C mineralized from biochar and LOM/soil. A small fraction (0.4-1.1%) of the applied biochar-C was mineralized, and the mineralization of biochar-C increased significantly with increasing application rates of LOM, especially during the early stages of incubation. Concurrently, biochar application reduced the mineralization of LOM-C, and the magnitude of this effect increased with increasing rate of LOM addition. Over time, the interactive priming of biochar-C and LOM-C mineralization was stabilized. Biochar application possesses a considerable merit for long-term soil C-sequestration, and it has a stabilizing effect on LOM in soil.

  8. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    Whitfield, Pamela S [ORNL

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  9. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  10. Complex mineralization at large ore deposits in the Russian Far East

    Schneider, A. A.; Malyshev, Yu. F.; Goroshko, M. V.; Romanovsky, N. P.

    2011-04-01

    Genetic and mineralogical features of large deposits with complex Sn, W, and Mo mineralization in the Sikhote-Alin and Amur-Khingan metallogenic provinces are considered, as well as those of raremetal, rare earth, and uranium deposits in the Aldan-Stanovoi province. The spatiotemporal, geological, and mineralogical attributes of large deposits are set forth, and their geodynamic settings are determined. These attributes are exemplified in the large Tigriny Sn-W greisen-type deposit. The variation of regional tectonic settings and their spatial superposition are the main factor controlling formation of large deposits. Such a variation gives rise to multiple reactivation of the ore-magmatic system and long-term, multistage formation of deposits. Pulsatory mineralogical zoning with telescoped mineral assemblages related to different stages results in the formation of complex ores. The highest-grade zones of mass discharge of hydrothermal solutions are formed at the deposits. The promising greisen-type mineralization with complex Sn-W-Mo ore is suggested to be an additional source of tungsten and molybdenum. The Tigriny, Pravourminsky, and Arsen'evsky deposits, as well as deposits of the Komsomol'sk and Khingan-Olonoi ore districts are examples. Large and superlarge U, Ta, Nb, Be, and REE deposits are localized in the southeastern Aldan-Stanovoi Shield. The Ulkan and Arbarastakh ore districts attract special attention. The confirmed prospects of new large deposits with Sn, W, Mo, Ta, Nb, Be, REE, and U mineralization in the south of the Russian Far East assure expediency of further geological exploration in this territory.

  11. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  12. Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase

    Elena Kuznetsova

    2016-01-01

    Full Text Available Biogenic minerals play an important role in the whole human nutrition, but they are included in the grain of the phytates that reduces their bioavailability. Whole wheat bread is generally considered a healthy food, but the presence of mineral elements in it is insignificant, because of weak phytate degradation. From all sources of exogenous phytase the most productive are microscopic fungi. To accelerate the process of transition hard mineral elements are mobilized to implement integrated cellulolytic enzyme preparation based on the actions of phytase (producer is Penicillium canescens. Phytase activity was assessed indirectly by the rate of release of phosphate from the substrate. It has been established that the release rate of the phosphoric acid substrate is dependent on the composition of the drug and the enzyme complex is determined by the presence of xylanase. The presented experimental data shows that a cellulase treatment of the grain in conjunction with the β-glucanase or xylanase leading to an increase in phytase activity could be 1.4 - 2.3 times as compared with the individual enzymes. As a result of concerted action of enzymes complex preparation varies topography grain, increase the pore sizes in seed and fruit shells that facilitate the penetration of the enzyme phytase in the aleurone layer to the site of phytin hydrolysis and leads to an increase in phytase activity. In terms of rational parameters of enzymatic hydrolysis, the distribution of mineral elements in the anatomical parts of the grain after processing complex enzyme preparation with the help of X-ray detector EMF miniCup system in a scanning electron microscope JEOL JSM 6390 were investigated. When processing enzyme preparation wheat trend in the distribution of mineral elements, characteristic of grain - the proportion of these elements in the aleurone layer decreases, and in the endosperm increases. Because dietary fiber and phytate found together in the

  13. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  14. Flotation separation of arsenopyrite from several sulphide minerals with organic depressants

    Wang Fuliang; Wang Ligang; Sun Chuanyao

    2008-01-01

    In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic)was discussed,and the functioning mechanism of those organic depressants was dis-cussed.The experimental results of monomineral flotation indicated that both guergum and sodium humic have depress-ing effect on arsenopyrite in the presence of ethyl xanthate.Guergum and sodium humic showed different depressing a-bility to pyrite,chalcopyrite and galena,and the higher the pH value in pulp,the stronger the depressing ability.Ultra-violet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been de-sorbed by the two organic depressants,and the selective desorption of the collector layer was found from different miner-als.The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough.For artificially-mixed minerals,the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants.And sodium humic had been used successfully to decrease arsenic content in sulphide concentr ates in a commercial Lead-Zinc concentrator.

  15. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  16. A divergent heritage for complex organics in Isheyevo lithic clasts

    van Kooten, Elishevah M. M. E.; Nagashima, Kazuhide; Kasama, Takeshi; Wampfler, Susanne F.; Ramsey, Jon P.; Frimann, Søren; Balogh, Zoltan I.; Schiller, Martin; Wielandt, Daniel P.; Franchi, Ian A.; Jørgensen, Jes K.; Krot, Alexander N.; Bizzarro, Martin

    2017-05-01

    Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200-650‰) relative to H-clasts (δ15N = 50-180‰) and contain extremely 15N-rich domains with δ15N < 5000‰. The D/H ratios of the clasts are correlated with the degree of clast hydration and define two distinct populations, which we interpret as reflecting mixing between D-poor fluid(s) and distinct organic endmember components that are variably D-rich. High-resolution N isotope data of 15N

  17. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  18. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  19. Implications of silica on biorefineries – interactions with organic material and mineral elements in grasses

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole

    2015-01-01

    their problems with silica in different ways. High pH and co-precipitation with mineral elements are some common ways of alleviating silica problems. Reviewing the literature for the fundamentals of silica revealed a complex chemistry that is not yet fully understood. Much is still to be learned about...

  20. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  1. Peat-based organic growbags as a solution to the mineral wool waste problem

    O. Grunert

    2008-09-01

    Full Text Available The vast amount of solid waste produced each year is one of the greatest problems associated with greenhouse horticulture in some European countries. In particular, the disposal of used growing media arising from the soil-less cultivation of vegetables in mineral wool creates serious difficulties. The non-biodegradability of these mainly inorganic substrates causes environmental concern and has prompted the search for alternative growing media such as cocos derivatives, perlite and resin foam (Fytocell®. Organic substrates in combination with biodegradable material such as plastic, rope and clippings have the advantage that re-use or recycling of the waste is easier, cheaper and more environmentally friendly than for mineral wool. However, the differing physical and chemical characteristics of the alternative substrates may affect yield significantly. Substrates based respectively on peat and peat with cocos derivatives were tested against a mineral wool control for the production of tomato in three consecutive years. Both organic substrates were placed in biodegradable plastic bags. Greenhouse experiments demonstrated that plants grown in the pure peat substrate rooted more easily than plants grown in the peat-cocos substrate or mineral wool, and that they developed less blossom-end rot in both peat substrates than in mineral wool. Due to the buffering capacity of the organic substrates, the electrical conductivity of the draining water appeared to be more stable during cultivation. The total yield of tomato fruits was similar for all substrates, and no differences between substrates could be observed in the quality of the fruits produced. On the other hand, flavour tests demonstrated that plants grown on peat substrate produced more tasty fruits under certain conditions. The results of this study show that organic growbags are promising and competitive alternatives to mineral wool.

  2. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-06-01

    Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.

  3. Maintaining Situational Awareness in Large, Complex Organizations

    Carreno, Jose; Galdorisi, George; Goshorn, Rebekah

    2006-01-01

    .... Another solution, gaining popularity in the business sector, is environmental scanning. Environmental scanning identifies, collects, translates and applies information about external events that influence an organization's strategic landscape...

  4. Dyrnaesite-(La) a new hyperagpaitic mineral from the Ilímaussaq alkaline complex, South Greenland

    Rønsbo, Jørn G.; Balic Zunic, Tonci; Petersen, Ole V.

    2017-01-01

    The new mineral, dyrnaesite-(La), is found in the Ilímaussaq alkaline complex, South Greenland. The holotype material originates from an arfvedsonite lujavrite sheet as an accessory mineral. Dyrnaesite-(La) is pale yellowish green, with no cleavage and an irregular fracture. Density is 3.68(2)/3....

  5. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  6. Organic and mineral fertilization of squash plant with application of 1'5N staple isotope

    El-Sherbiny, A.E.; Dahdouh, S.M.; Galal, Y.G.M.; Habib, A.A.M.

    2012-01-01

    A field experiment was conducted on virgin sand soil under drip irrigation system using squash fertilized with ammonium sulfate fertilizer, commercial compost locally manufactured in Egypt and artificial compost prepared fertilizer were applied either completely (100%) of mineral or of organic; or 50%: 50% (mineral: organic) by the authors at the Atomic Energy Authority of Egypt. All fertilization treatments were either inoculated or not inoculated with Azospirillum. Inoculation increased roots fresh weight. This was more pronounced with application of 50% mineral fertilizer plus 50% commercial compost, 100% artificial compost and 100% commercial compost. Similar trends, but to high extent were noticed with shoot fresh weight as affected by microbial inoculation and different organic composts. The 50%: 50% treatments as well as 100% artificial compost treatment gave high root and shoot dry weights. Inoculation and 50%: 50% fertilization treatments were more effective on N uptake. Higher N uptake was by shoots than roots. Portion and absolute value of N derived by roots from mineral fertilizer were significantly affected by combined fertilization treatments. Nitrogen derived from air (Ndfa) was positively affected by addition of organic compost and bacterial inoculation. Reversible trend was noticed with N derived from soil (Ndfa) which decreased when treated with compost and bacterial inoculation. All measurements were high in shoots than roots

  7. Chromosome organizaton in simple and complex unicellular organisms.

    O'Sullivan, Justin M

    2011-01-01

    The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.

  8. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  9. A Brief Review on Electro-generated Hydroxyl Radical for Organic Wastewater Mineralization

    Ervin Nurhayati

    2016-05-01

    Full Text Available Hydroxyl radical is a highly reactive oxidizing agent that can be electrochemically generated on the surface of Boron doped diamond (BDD anode. Once generated, this radical will non-selectively mineralize organic pollutants to carbon dioxide, water and organic anions as the oxidation products. Its application in Advanced Oxidation Process (AOP to degrade nonbiodegradable even the recalcitrant pollutants in wastewater has been increasingly studied and even applied.

  10. Risk management integration into complex project organizations

    Fisher, K.; Greanias, G.; Rose, J.; Dumas, R.

    2002-01-01

    This paper describes the approach used in designing and adapting the SIRTF prototype, discusses some of the lessons learned in developing the SIRTF prototype, and explains the adaptability of the risk management database to varying levels project complexity.

  11. [Effects of different types of litters on soil organic carbon mineralization].

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  12. A computational investigation of adsorption of organics on mineral surfaces: Implications for organics delivery in the early solar system

    Asaduzzaman, A. M.; Zega, T. J.; Laref, Slimane; Runge, K.; Deymier, P. A.; Muralidharan, Krishna

    2014-12-01

    The adsorption of simple organic compounds onto minerals that are known to occur in the early solar nebula such as olivine, spinel and water-ice, is examined using first-principles density functional theory. The calculations show that electron-rich organics and organics containing cyanide, amine and carboxylic functional groups can strongly bind to low-index surfaces of olivine and spinel. Based on the surface coverage as obtained from these calculations, it can be inferred that an estimated amount of 1013 kg of organics could have been delivered to early Earth via direct adsorption mechanisms, thereby providing an endogenous source of planetary organics. In addition, adsorption of organic compounds on magnesite, a carbonate phase believed to have formed via aqueous processes on asteroidal bodies, is also studied. The adsorption behavior of the organics is observed to be similar in both cases, i.e., for minerals that formed during the earliest stages of nebular evolution through condensation (spinel and olivine) or other processes and for those that formed via hydration processes on asteroidal bodies (magnesite). These results suggest that direct incorporation via adsorption is an important delivery mechanism of organics to both asteroidal bodies and terrestrial planets.

  13. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at MineralOrganic Interfaces

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  14. Adubação orgânica e mineral em melissa Organic and mineral fertilization in lemon balm

    Ana Carolina B Sodré

    2013-03-01

    Full Text Available A melissa (Melissa officinalis é uma planta medicinal comumente usada como calmante e ingerida na forma de chá. Para otimizar sua produção, este trabalho objetivou avaliar o efeito de diferentes doses de esterco bovino, com relação ao fertilizante mineral na produção de biomassa foliar e teor de óleo essencial. O experimento foi conduzido na Universidade Federal de Uberlândia e no Instituto Agronômico de Campinas. O delineamento estatístico foi de blocos casualisados com seis tratamentos (0, 1, 2, 4, 8 kg m-2 de esterco bovino e 30 g m-2 de NPK 4-14-8, em quatro repetições. O óleo essencial foi extraído por hidrodestilação em equipamento tipo Clevenger modificado. As doses de esterco bovino influenciaram a altura de plantas, massa fresca total e massa seca foliar por planta e por hectare. As duas formas de adubação foram superiores à testemunha para praticamente todas as variáveis, exceto em relação ao comprimento e largura foliar, teor de óleo na matéria seca e fresca foliar. Conclui-se que a melissa responde à adubação orgânica com esterco bovino e adubação mineral para produção de biomassa.Lemon balm (Melissa officinalis is a medicinal plant commonly used as a sedative and ingested as a tea. Studies on agricultural practices are required to optimize its yield. To optimize its production, this study evaluated the effect of different doses of organic fertilizer (cow manure in comparison to mineral fertilizer on biomass production and essential oil yield. The experiment was carried out at the Federal University of Uberlândia, Minas Gerais state, Brazil, and at the Agronomic Institute of Campinas, São Paulo state, Brazil. The experimental design was randomized blocks with six treatments (0, 1, 2, 4, 8 kg m-2 of manure and 30 g m-2 of NPK 4-14-8, and four replications. Hydro-distillation was done with a modified Clevenger distiller for essential oil extraction. Cattle manure influenced plant height, total fresh

  15. Mineral capacity of peat soils organic matter and entry of Cs137 into perennial grasses

    Tsybulko, N.N.; Shapsheeva, T.P.; Arastovich, T.V.; Zajtsev, A.A.

    2010-01-01

    The results of the study of peat soils organic substance structure with various peat ash content are given. Contents of active organic substance and carbon of microbial biomass in peat and boggy soil with 20% peat ash content is 3.0-3.5 and 1.6-1.8 times higher correspondingly, than thus in peaty-gley soil with 70% peat ash content. At peat and boggy soil with low peat ash content Cs137 transition into hay is minimal. 14 times higher than at peaty-gley soil with 70% peat ash content. Application of fertilizers at peat and boggy soil reduces Cs137 transition factor 4.7-6.4 times if compared to peaty-gley soil (2.1-4.7 times). Close positive interconnection between Cs137 transition factors from soil into the plants and organic carbon soil contents, absolute contents of potentially mineralized carbon and mineralization degree

  16. Discourse, complexity and sustainability ambiental in organizations

    Clóvis Ricardo Montenegro de Lima

    2015-08-01

    Full Text Available In this article we seek to conduct an investigation into the dynamics of internalization of environmental sustainability in a productive organization of the sugarcane industry. The theoretical discussion is developed from the criticism of Jurgen Habermas to systemic functionalism of Niklas Luhmann. Also, we discuss the theme environmental public sphere and administration of environmental sustainability as a way of adapting organizations to new quality standards required and demanded by the State, Market and Society. The methodological procedures used were: interviews, document analysis and closed questionnaire application. The questionnaire used with 12 representatives of the plant has thirty (30 assertive, accompanied each of two extreme scenarios. The results show that the organization started to internalize environmental sustainability in their organizational system from a Conduct Adjustment Term, prepared by the Public Ministry State. As well as to internalize sustainable practices were adapted in different areas such as: organizational management, procurement, production management, people management and marketing management.

  17. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    M. A. Tolbert

    2007-08-01

    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  18. Effect of organic and conventional rearing system on the mineral content of pork.

    Zhao, Yan; Wang, Donghua; Yang, Shuming

    2016-08-01

    Dietary composition and rearing regime largely determine the trace elemental composition of pigs, and consequently their concentration in animal products. The present study evaluates thirteen macro- and trace element concentrations in pork from organic and conventional farms. Conventional pigs were given a commercial feed with added minerals; organic pigs were given a feed based on organic feedstuffs. The content of macro-elements (Na, K, Mg and Ca) and some trace elements (Ni, Fe, Zn and Sr) in organic and conventional meat samples showed no significant differences (P>0.05). Several trace element concentrations in organic pork were significantly higher (Ppork: Cr (808 and 500μg/kg in organic and conventional pork, respectively), Mn (695 and 473μg/kg) and Cu (1.80 and 1.49mg/kg). The results showed considerable differences in mineral content between samples from pigs reared in organic and conventional systems. Our results also indicate that authentication of organic pork can be realized by applying multivariate chemometric methods such as discriminant analysis to this multi-element data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nitrosonium complexes of organic compounds. Structure and reactivity

    Borodkin, Gennady I; Shubin, Vyacheslav G

    2001-01-01

    Data on the structures and reactivities of nitrosonium complexes of organic compounds are systematised and generalised. The characteristic features of the electronic structure of the NO + cation are responsible for a wide structural variety of nitrosonium complexes. Reactions of nitrosonium complexes are described. The bibliography includes 172 references.

  20. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  1. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  2. Functional self-organization in complex systems

    Fontana, W. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA))

    1990-01-01

    A novel approach to functional self-organization is presented. It consists of a universe generated by a formal language that defines objects (=programs), their meaning (=functions), and their interactions (=composition). Results obtained so far are briefly discussed. 17 refs., 5 figs.

  3. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  4. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  5. Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    Elena Blume

    2014-06-01

    Full Text Available The expansion of area under maize (Zea mays L. and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment were applied to the plots and the seeds treatment (with and without Trichoderma spp. in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot.

  6. Deposition and benthic mineralization of organic carbon: A seasonal study from Faroe Islands

    á Norði, Gunnvør; Glud, Ronnie N.; Simonsen, Knud; Gaard, Eilif

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for rates were associated to the spring bloom. The dynamics in the benthic solute exchange were governed by stratification that isolated the bottom water during summer and intensified sediment resuspension during winter. The POC export from the euphotic zone could not sustain the benthic mineralization rate (10.8 mol C m- 2 yr- 1) and the calculated burial rate (9.8 mol C m- 2 yr- 1) of organic material in the central basin. This indicated considerable focusing of material in the central part of the fjord. This was supported by the fact that the measured benthic mineralization rate - in contrast to most investigations - actually increased with increasing water depth. In August, when mineralization was at its maximum, the dissolved inorganic carbon (DIC) release from the sediment increased by 2.2 mmol m- 2 d- 1 for every m increase in water depth at 30-60 m depth. Due to sediment focusing, the OC burial in the deepest part of the fjord was 9.8 mol C m- 2 yr- 1. This was 2.4 times higher than the average OC burial in the fjord, estimated from the total sedimentation, and benthic mineralization accounting for the water depth related changes in activity. The study in Kaldbaksfjørður underscore that fjords are important sites for long time OC burial, but emphasize the need for accounting for spatial variations when extrapolating results from a single or few stations to the scale of the entire fjord.

  7. Lability of soil organic carbon in tropical soils with different clay minerals

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  8. Mechanochemical transformation of an organic ligand on mineral surfaces: The efficiency of birnessite in catechol degradation

    Di Leo, Paola, E-mail: pdileo@imaa.cnr.it [Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l' Analisi Ambientale, C.da S. Loja, Zona Industriale, 85050 Tito Scalo (PZ) (Italy); Pizzigallo, Maria Donata Rosa [Dipartimento di Biologia e Chimica Agroforestale e Ambientale, Universita di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari (Italy); Ancona, Valeria [Consiglio Nazionale delle Ricerche - Istituto di Ricerca sulle Acque, Via F. De Blasio 5, 70132 Bari (Italy); Di Benedetto, Francesco [Dipartimento di Chimica, Universita di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Mesto, Ernesto; Schingaro, Emanuela; Ventruti, Gennaro [Dipartimento di Scienze della Terra e Geoambientali, Universita di Bari Aldo Moro, Via Orabona, 4, 70125 Bari (Italy)

    2012-01-30

    grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO{sub 6} layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn{sup 2+} ions production.

  9. Effect of organic sources of minerals on fat-corrected milk yield of dairy cows in confinement

    Tiago Antonio Del Valle

    2015-03-01

    Full Text Available This study evaluated the effects of organic and inorganic sources of minerals in diets for mid-lactation dairy cows on milk yield and composition, intake and total apparent digestibility of dry matter and nutrients, blood parameters, microbial protein synthesis, and energy and protein balances. Twenty Holstein cows averaging 146.83±67.34 days in milk and weighing 625.30±80.37 kg were used. The experimental design was a crossover. Diets were composed of corn silage (50%, ground grain corn, and soybean meal, differing with regard to the sources of trace minerals, plus an organic and inorganic mix. The organic mineral source increased milk fat and fat-corrected milk yield without changing milk yield, intake, or total apparent digestibility. Blood parameters, microbial protein synthesis, and energy and protein balances were not affected by the sources of minerals. Organic sources of minerals improve milk fat yield without affecting other parameters.

  10. Resolution of Hanford tanks organic complexant safety issue

    Kirch, N.W.

    1998-01-01

    The Hanford Site tanks have been assessed for organic complexant reaction hazards. The results have shown that most tanks contain insufficient concentrations of TOC to support a propagating reaction. It has also been shown that those tanks where the TOC concentration approaches levels of concern, degradation of the organic complexants to less energetic compounds has occurred. The results of the investigations have been documented. The residual organic complexants in the Hanford Site waste tanks do not present a safety concern for long-term storage

  11. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  12. Petrologic and geochemical characterization and mineralization of the metavolcanic rocks of the Heib Formation, Kid Metamorphic Complex, Sinai, Egypt

    Ibrahim H. Khalifa

    2011-07-01

    Full Text Available Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored porphyritic lavas of rhyolite-to-andesite composition, and their equivalent pyroclastics. Geochemically, these metavolcanics are classified as high-K calc-alkaline, metaluminous andesites, trachyandesites, dacites, and rhyolites. The geochemical characteristics of these metavolcanics strongly point to their derivation from continental crust in an active continental margin. The sulphide mineralization in these metavolcanics occurs in two major ore zones, and is represented by four distinct styles of mineralization. The mineralization occurs either as low-grade disseminations or as small massive pockets. The associated hydrothermal alterations include carbonatization, silicification, sericitization and argillic alterations. The base metal sulphide mineralization is epigenetic and was formed by hydrothermal solutions associated with subduction-related volcanic activity.

  13. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  14. Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption.

    Zimmerman, Andrew R; Kang, Dong-Hee; Ahn, Mi-Youn; Hyun, Seunghun; Banks, M Katherine

    2008-01-01

    Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a phenoloxidase enzyme derived from the fungi Trametes versicolor, was found to exert a large influence on iron-cyanide speciation and mobility. In the presence of laccase, up to 93% of ferrocyanide (36-362ppm) was oxidized to ferricyanide within 4h. No significant effect of pH (3.6 and 6.2) or initial ferrocyanide concentration on the extent or rate of oxidation was found and ferrocyanide oxidation did not occur in the absence of laccase. Relative to iron-cyanide-mineral systems without laccase, ferrocyanide adsorption to aluminum hydroxide and montmorillonite decreased in the presence of laccase and was similar to or somewhat greater than that of ferricyanide without laccase. Laccase-catalyzed conversion of ferrocyanide to ferricyanide was extensive though up to 33% of the enzyme was mineral-bound. These results demonstrate that soil enzymes can play a major role in ferrocyanide speciation and mobility. Biotic soil components must be considered as highly effective oxidation catalysts that may alter the mobility of metals and metal complexes in soil. Immobilized enzymes should also be considered for use in soil metal remediation efforts.

  15. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  16. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  17. Efficacy Study of Metho-Chelated Organic Minerals preparation Feeding on Milk Production and Fat Percentage in dairy cows

    Somkuwar A.P.1

    2011-02-01

    Full Text Available The objective of the study was to compare the effect of feeding different mineral based formulation on dairy cow production performance, namely milk yield and fat percentage. The trial was conducted with dairy cows across various stages of lactation (Early, Mid and Late stage with 30 cows per stage. The experimental treatments included: Bestmin Gold (Metho-chelated organic minerals, given 30 gms per day, Inorganic mineral preparation (Inorg. Mineral, @ 50 gms/day/ cow and control. The study lasted from 0 to 40 days. Milk yield and fat percentage of cows were measured individually on Days 0, 5, 10, 15, 20, 25, 30 and 40. The Bestmin Gold treated group (Metho-chelated organic minerals improved the milk yield, net gain in milk and the milk fat percentage of animals across the various stages of lactation as compared to in control and inorganic mineral treated group of animals. [Veterinary World 2011; 4(1.000: 19-21

  18. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  19. The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.

    Jilling, A.; Grandy, S.; Keiluweit, M.

    2017-12-01

    Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids

  20. The roles of organic anion permeases in aluminium resistance and mineral nutrition.

    Delhaize, Emmanuel; Gruber, Benjamin D; Ryan, Peter R

    2007-05-25

    Soluble aluminium (Al(3+)) is the major constraint to plant growth on acid soils. Plants have evolved mechanisms to tolerate Al(3+) and one type of mechanism relies on the efflux of organic anions that protect roots by chelating the Al(3+). Al(3+) resistance genes of several species have now been isolated and found to encode membrane proteins that facilitate organic anion efflux from roots. These proteins belong to the Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE) families. We review the roles of these proteins in Al(3+) resistance as well as their roles in other aspects of mineral nutrition.

  1. Mitofilin complexes : conserved organizers of mitochondrial membrane architecture

    Zerbes, Ralf M.; van der Klei, Ida J.; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-01-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner

  2. Modelling the self-organization and collapse of complex networks

    Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.

  3. Competitive platinum-group-metal (PGM) supply from the Eastern Limb, Bushveld Complex: Geological, mining and mineral economic aspects

    McGill, JE

    2011-08-01

    Full Text Available -GROUP-METAL (PGM) SUPPLY FROM THE EASTERN LIMB, BUSHVELD COMPLEX: GEOLOGICAL, MINING, AND MINERAL ECONOMIC ASPECTS Dr. Jeannette E. McGill & Prof. Murray W. Hitzman ACKNOWLEDGEMENTS ? COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH (CSIR) ? Centre for Mining... Innovation ? Office of Graduate Studies, Fogarty Endowment ? Mr. VISHNU PILLAY (EXECUTIVE HEAD: JV?S ? Anglo Platinum) ? ACADEMIC ADVISORS Prof. Murray Hitzman (Economic Geology); Dr. Hugh Miller (Mining Engineering); Prof. Rodderick Eggert (Mineral...

  4. Interaction of Natural Organic Matter with Layered Minerals: Recent Developments in Computational Methods at the Nanoscale

    Jeffery A. Greathouse

    2014-06-01

    Full Text Available The role of mineral surfaces in the adsorption, transport, formation, and degradation of natural organic matter (NOM in the biosphere remains an active research area owing to the difficulties in identifying proper working models of both NOM and mineral phases present in the environment. The variety of aqueous chemistries encountered in the subsurface (e.g., oxic vs. anoxic, variable pH further complicate this field of study. Recently, the advent of nanoscale probes such as X-ray adsorption spectroscopy and surface vibrational spectroscopy applied to study such complicated interfacial systems have enabled new insight into NOM-mineral interfaces. Additionally, due to increasing capabilities in computational chemistry, it is now possible to simulate molecular processes of NOM at multiple scales, from quantum methods for electron transfer to classical methods for folding and adsorption of macroparticles. In this review, we present recent developments in interfacial properties of NOM adsorbed on mineral surfaces from a computational point of view that is informed by recent experiments.

  5. Diffusion, sorption and stability of radionuclide-organic complexes in clays and clay-organic complexes

    Staunton, S.; Rees, L.V.C.

    1991-01-01

    The dependence on various parameters of the diffusion coefficient of neptunium (V) in clay systems has been studied. The effect of the clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands have been investigated. The diffusion coefficients were compared to those predicted if diffusion occurred only in the liquid phase and adsorption was reversible; agreement was fairly good. An approximation to the diffusion coefficient can thus be obtained from readily measured experimental parameters. There is no evidence of surface phase diffusion. The most significant factor in determining the diffusion coefficient is the magnitude of the distribution ratio, itself highly dependent on the nature of the clay. Neither EDTA nor citrate modified the diffusion coefficient. Although the presence of 1 or 100 mg dm -3 of Aldrich humic acid had little effect on the distribution ratio of neptunium, it caused a lowering of the measured diffusion coefficient. This is interpreted in terms of the limiting liquid phase diffusion coefficient and the true liquid phase impedance factor of neptunium-humic acid complexes. 21 figs; 3 tabs; 20 refs

  6. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  7. Proterozoic microbial reef complexes and associated hydrothermal mineralizations in the Banfora Cliffs, Burkina Faso

    Álvaro, J. Javier; Vizcaïno, Daniel

    2012-07-01

    The Proterozoic Guena-Souroukoundinga Formation of the Mopti arm (Gourma Aulacogen, southerm Taoudeni Basin) consists of a shale-dominated succession, up to 200 m thick, with scattered microbial reef complexes. Quarry exposures of the Tiara reef complex allow reconstruction of a transect across back-reef peritidal laminites, reef margin and peri-reef ooidal shoals, and fore-reef slope strata. Microbial carbonate productivity nucleated on isolated palaeohighs during transgression, whereas its end was controlled by two tectonically induced drowning pulses that led to the successive record of onlapping kerogenous limestones and pelagic shales. Reef carbonates are crosscut by fractures and fissures occluded by hydrothermal mineralizations, which are related to the rifting activity of the Gourma Aulacogen. The Tiara reef complex is similar to other Proterozoic reefs in being composed nearly entirely of stromatolites, although calcimicrobial (filamentous) and thromboid textures are locally abundant, which contrast with their scarcity or absence in coeval stable-platform microbial reefs of the northern Taoudeni Basin.

  8. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  9. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang

    2016-04-01

    Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.

  10. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  11. Application of Microwave Irradiation to Rapid Organic Inclusion Complex

    2001-01-01

    @@ Microwave irradiation has been used in chemical laboratories for moisture analysis and wet asking procedures of biological and geological materials for a number of years [1]. More recently the microwave irradiation also widely used for rapid organic synthesis [2]. However, there have not yet been any reports concerning the ultilisatioin of microwave ovens in the routine organic inclusion complex regularly in chemical research.

  12. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  13. Organic cattle products: Authenticating production origin by analysis of serum mineral content.

    Rodríguez-Bermúdez, Ruth; Herrero-Latorre, Carlos; López-Alonso, Marta; Losada, David E; Iglesias, Roberto; Miranda, Marta

    2018-10-30

    An authentication procedure for differentiating between organic and non-organic cattle production on the basis of analysis of serum samples has been developed. For this purpose, the concentrations of fourteen mineral elements (As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se and Zn) in 522 serum samples from cows (341 from organic farms and 181 from non-organic farms), determined by inductively coupled plasma spectrometry, were used. The chemical information provided by serum analysis was employed to construct different pattern recognition classification models that predict the origin of each sample: organic or non-organic class. Among all classification procedures considered, the best results were obtained with the decision tree C5.0, Random Forest and AdaBoost neural networks, with hit levels close to 90% for both production types. The proposed method, involving analysis of serum samples, provided rapid, accurate in vivo classification of cattle according to organic and non-organic production type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Physiochemical Influence of Soil Minerals on the Organic Reduction of Soil Chromium

    Njoku, P.C.; Nweze, C.A.

    2009-01-01

    The physiochemical influence of soil minerals (Bentonite, Kaolinite, Diatomite,Rutile and Ferrihydrite) on the organic reduction ofchromium (VI) has been investigated with Oxalic acid as the organic reductant. The effect of pH and particle sizes of the soil minerals were also investigated. Results showed that with 0.1mol/dm3 concentration of Oxalic acid, the concentration of chromium(VI) remaining was 0.28, 0.34,0.38, 0.46 and 0.52mg/kgfor Bentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite respectively whereas at 0.5mol/dm3of oxalic acid, the concentration of chromium reduced to 0.20,0.26, 0.30, 0.38, and0.44mg/kg for Bentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite. Increasedconcentration of oxalic acid increased the reduction of chromium(VI) to chromium(III). At pH 5.0, the concentration of chromium(VI)left was 0.28, 0.34, 0.38,0.46 and 0.52mg/kg forBentonite, Rutile, Diatomite, Kaolinite and Ferrihydrite while at pH 2.5, concentration was0.16, 0.22, 0.26, 0.34 and 0.43mg/kg respectively. At particle size of 47-42 microns, concentration of chromium(VI) was 0.28, 0.34,0.38, 0.46, 0.52mg/kg for the same order ofthe soil minerals. At micron sizes of33-29 and 28-25 ranges the concentration ofchromium(VI) left was 0.23, 0.29, 0.33,0.41 and 0.47mg/kg for both micron sizes and corresponding minerals as well. These results showed that above 33-29 micron sizes, the influence of particle size was negligible. (author)

  15. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies

    Davide Francioli

    2016-09-01

    Full Text Available Soil management is fundamental to all agricultural systems and fertilization practices have contributed substantially to the impressive increases in food production. Despite the pivotal role of soil microorganisms in agro-ecosystems, we still have a limited understanding of the complex response of the soil microbiota to organic and mineral fertilization in the very long-term. Here we report the effects of different fertilization regimes (mineral, organic and combined mineral and organic fertilization, carried out for more than a century, on the structure and activity of the soil microbiome. Organic matter content, nutrient concentrations and microbial biomass carbon were significantly increased by mineral, and even more strongly by organic fertilization. Pyrosequencing revealed significant differences between the structures of bacterial and fungal soil communities associated to each fertilization regime. Organic fertilization increased bacterial diversity, and stimulated microbial groups (Firmicutes, Proteobacteria and Zygomycota that are known to prefer nutrient-rich environments, and that are involved in the degradation of complex organic compounds. In contrast, soils not receiving manure harbored distinct microbial communities enriched in oligotrophic organisms adapted to nutrient-limited environments, as Acidobacteria. The fertilization regime also affected the relative abundances of plant beneficial and detrimental microbial taxa, which may influence productivity and stability of the agroecosystem. As expected, the activity of microbial exoenzymes involved in carbon, nitrogen and phosphorous mineralization were enhanced by both types of fertilization. However, in contrast to comparable studies, the highest chitinase and phosphatase activities were observed in the solely mineral fertilized soil. Interestingly, these two enzymes showed also a particular high biomass-specific activities and a strong negative relation with soil pH. As many soil

  16. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the

  17. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  18. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  19. Mineral composition of pulp and production of the yellow passion fruit with organic and conventional fertilizers.

    Pacheco, Anália Lúcia Vieira; Pagliarini, Mateus Francisco; de Freitas, Gilberto Bernardo; Santos, Ricardo Henrique Silva; Serrão, José Eduardo; Zanuncio, José Cola

    2017-02-15

    The use of organic foods has been increased in the world. Organic fertilizers, like cattle manure, have emerged as an important component of the organic system production. The production, mass, size, and mineral composition of passion fruit pulp were evaluated when treated with a mineral fertilizer (control) (MIN) or cattle manure at a single dose equivalent to potassium fertilizer (ORG) or double dose (2×ORG). The production and the numbers of fruits of plants treated with MIN and 2×ORG was higher than with ORG. The level of nitrogen (N), phosphorus (P), zinc (Zn), iron (Fe), and copper (Cu) in the fruit pulp was similar with all three fertilizers, but the calcium (Ca) and magnesium (Mg) was higher with ORG and 2×ORG. The number and weight of the fruits of passion fruit treated with 2×ORG were similar to those with MIN fertilizer, but they contained more Ca and Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds.

    Khan, Eakalak; Wirojanagud, Wanpen; Sermsai, Nawarat

    2009-01-30

    The mineralization and biodegradability increase and their combination of two traditional and two relatively new organic contaminants by Fenton reagents with three different types of iron, Fe(2+), Fe(3+), and Fe(0) were investigated. The traditional contaminants examined were trichloroethene (TCE) and 2,4-dichlorophenol (2,4-DCP) while 1,4-dioxane (1,4-D) and 1,2,3-trichloropropane (TCP) were studied for the relatively new contaminants. The mineralization and biodegradability were represented by dissolved organic carbon (DOC) reduction and the ratio of biodegradable dissolved organic carbon and DOC, respectively. For all four contaminants, Fenton reagent using Fe(2+) was more effective in the DOC reduction than Fenton reagents using Fe(3+) and Fe(0) in most cases. The types of Fe that provided maximum biodegradability increase were not the same for all four compounds, Fe(3+) for TCE, Fe(0) for 2,4-DCP, Fe(2+) for 1,4-D, and Fe(3+) for TCP. When the combination of DOC elimination and biodegradability increase (least refractory fraction) was considered, Fe(2+) was the best choice except for 2,4-DCP which was susceptible to Fe(0) catalyzed Fenton reagent the most. The least refractory fractions remaining after 120 min of reaction were 20-25% for TCE, 2,4-DCP, and TCP and 30-40% for 1,4-D. The iron type in Fenton reaction also affected the type of mineralization kinetics of TCE, 2,4-DCP, and TCP as well as the types of degradation by-products of these contaminants. Some of the by-products found, such as isopropanol and propionic aldehyde, which were produced from Fe(0) catalyzed Fenton degradation of TCP, have not been previously reported.

  1. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R [Forschungszentrum Karlsruhe, Institute for Meteorology and Climate Research, 76021 Karlsruhe (Germany); Schneider, J; Walter, S [Max Planck Institute for Chemistry, 55128 Mainz (Germany); Ebert, V; Wagner, S [University of Heidelberg, Institute for Physical Chemistry, 69120 Heidelberg (Germany)], E-mail: Ottmar.Moehler@imk.fzk.de

    2008-04-15

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m{sup 3} aerosol vessel and either directly transferred into the 84 m{sup 3} cloud simulation chamber or coated before with the semi-volatile products from the reaction of {alpha}-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 {mu}m acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics.

  2. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols

    Moehler, O; Benz, S; Saathoff, H; Schnaiter, M; Wagner, R; Schneider, J; Walter, S; Ebert, V; Wagner, S

    2008-01-01

    The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m 3 aerosol vessel and either directly transferred into the 84 m 3 cloud simulation chamber or coated before with the semi-volatile products from the reaction of α-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 μm acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics

  3. Influence of organic surface coatings on the sorption of anticonvulsants on mineral surfaces.

    Qu, Shen; Cwiertny, David M

    2013-10-01

    Here, we explore the role that sorption to mineral surfaces plays in the fate of two commonly encountered effluent-derived pharmaceuticals, the anticonvulsants phenytoin and carbamazepine. Adsorption isotherms and pH-edge experiments are consistent with electrostatics governing anticonvulsant uptake on metal oxides typically found in soil and aquifer material (e.g., Si, Al, Fe, Mn, and Ti). Appreciable, albeit limited, adsorption was observed only for phenytoin, which is anionic above pH 8.3, on the iron oxides hematite and ferrihydrite. Adsorption increased substantially in the presence of cationic and anionic surfactants, species also commonly encountered in wastewater effluent. For carbamazepine, we propose the enhanced uptake results entirely from hydrophobic interactions with apolar tails of surfactant surface coatings. For phenytoin, adsorption also arises from the ability of surfactants to alter the net charge of the mineral surface and thereby further enhance favorable electrostatic interactions with its anionic form. Collectively, our results demonstrate that although pristine mineral surfaces are likely not major sinks for phenytoin and carbamazepine in the environment, their alteration with organic matter, particularly surfactants, can considerably increase their ability to retain these emerging pollutants in subsurface systems.

  4. Complexation of lead by organic matter in Luanda Bay, Angola.

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  5. Differential chemical fractionation of dissolved organic matter during sorption by Fe mineral phases in a tropical soil from the Luquillo Critical Zone Observatory

    Plante, A. F.; Coward, E.; Ohno, T.; Thompson, A.

    2017-12-01

    Fe-bearing mineral phases contribute substantially to adsorption and stabilization of soil organic matter (SOM), due largely to their high specific surface area (SSA) and reactivity. While the importance of adsorption onto mineral surfaces has been well-elucidated, selectivity of various mineral and organic phases remains poorly understood. The goals of this work were to: 1) quantify the contributions of Fe-minerals of varying crystallinity to dissolved organic matter (DOM) sorption, and 2) characterize the molecular fractionation of DOM induced by reactions at the mineral interface, using a highly-weathered Oxisol from the Luquillo Critical Zone Observatory (LCZO). Three selective dissolution experiments targeting Fe-mineral phases were followed by specific surface area (SSA) analysis of the residues and characterization of extracted DOM by high resolution mass spectrometry (FT-ICR-MS). Fe-depleted extraction residue samples, untreated control soil samples, and Fe-enriched ferrihydrite-coated soil samples were then subjected to a batch sorption experiment with litter-derived DOM. Results of selective dissolution experiments indicated that a substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures. Sorbed C concentrations were well correlated with Fe contents induced by treatments, and thus SSA. Molecular characterization of the DOM post-sorption indicated that poorly crystalline Fe phases preferentially adsorbed highly unsaturated aromatic compounds, and higher-crystallinity Fe phases were associated with more aliphatic compounds. These findings suggests that molecular fractionation via organomineral complexation may act as a physicochemical filter of DOM released to the critical zone.

  6. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  7. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  8. Genome complexity, robustness and genetic interactions in digital organisms

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  9. Self-Organization during Friction in Complex Surface Engineered Tribosystems

    Ben D. Beake

    2010-02-01

    Full Text Available Self-organization during friction in complex surface engineered tribosystems is investigated. The probability of self-organization in these complex tribosystems is studied on the basis of the theoretical concepts of irreversible thermodynamics. It is shown that a higher number of interrelated processes within the system result in an increased probability of self-organization. The results of this thermodynamic model are confirmed by the investigation of the wear performance of a novel Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N (PVD coating with complex nano-multilayered structure under extreme tribological conditions of dry high-speed end milling of hardened H13 tool steel.

  10. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  11. The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle.

    Rey-Crespo, F; López-Alonso, M; Miranda, M

    2014-04-01

    This study was designed to assess the value of seaweeds from the Galician coast as a source of minerals (especially iodine (I) but also other micro-minerals) in organic dairy cattle. It was conducted in an organic dairy farm in the Lugo province that typically represents the organic milk production in NW Spain. The animal's diet consisted mainly of local forage (at pasture or as hay and silage in the winter) and 5 kg of purchased concentrate/day per animal (representing 23.5% of feed intake). Based on the mineral composition of the diet, the physiological requirements and the EU maximum authorised levels in feed, a supplement composed by Sea Lettuce (Ulva rigida) (as flakes, 80%), Japanese Wireweed (Sargasum muticum) (flakes, 17.5%) and Furbelows (Saccorhiza polyschides) (powder, 2.5%) was formulated to give 100 g/animal per day. Sixteen Holstein Friesian lactating cows were randomly selected and assigned to the control (n=8) and algae-supplemented groups (n=8). Both groups had exactly the same feeding and management with the exception of the algae supplement, which was mixed with the concentrate feed and given to the animals at their morning milking for 10 weeks. Heparinised blood (for plasma analysis) and milk samples were collected at 2-week intervals and analysed for toxic and trace element concentrations by inductively coupled plasma-mass spectrometry or inductively coupled plasma-optical emission spectrometry. The algae supplement significantly improved the animals' mineral status, particularly I and selenium that were low on the farm. However, the effect of the algae supplement on the molybdenum status in cattle needs further investigation because of its great relevance on copper metabolism in ruminants. The I supply deserves special attention, since this element is at a very high concentration in brown-algae species and it is excreted in the milk proportionally to its concentration in plasma concentrations (mean ± s.e. in the algae-supplemented and control

  12. Organic complexing agents in low and medium level radioactive waste

    Allard, B.; Persson, G.

    1985-11-01

    Low and medium level radioactive wastes will contain various organic agents, such as ion exchange resins (mainly in the operational wastes), plastics and cellulose (mainly in the reprocessing wastes and in the decommissioning wastes) and bitumen (mainly in the reprocessing wastes). The degradation of these organics will lead to the formation of complexing agents that possibly could affect the release of radionuclides from an underground repository and the subsequent transport of these nuclides. The solution chemistry of the actinides may be totally dominated by the presence of such organic degradation products within the repository. However, hydrolysis and formation of carbonates (and possibly humates) will most likely dominate solubility and speciation outside the immediate vicinity of the repository. The minor quantities of strong complexing agents (in the reprocessing waste), notably aminopolycarboxylic acids (EDTA, DTPA) and possibly organic phosphates (DBP) could significantly affect speciation and sorption behaviour of primarily the trivalent actinides even outside the repository. (author)

  13. Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization.

    Gladish, James C; Duncan, Donald D

    2017-01-20

    Herein, we discuss the remote assessment of the subwavelength organizational structure of a medium. Specifically, we use spectral imaging polarimetry, as the vector nature of polarized light enables it to interact with optical anisotropies within a medium, while the spectral aspect of polarization is sensitive to small-scale structure. The ability to image these effects allows for inference of spatial structural organization parameters. This work describes a methodology for revealing structural organization by exploiting the Stokes/Mueller formalism and by utilizing measurements from a spectral imaging polarimeter constructed from liquid crystal variable retarders and a liquid crystal tunable filter. We provide results to validate the system and then show results from measurements on a mineral sample.

  14. Neutron activation determination of rhenium in mineral raw materials of complex composition

    Shiryaeva, M.B.; Lyubimova, L.N.; Salmin, Yu.P.; Ryumina, K.N.; Tatarkin, M.A.

    1984-01-01

    The method of neutron-activation rhenium determination in mineral raw material of complex composition is developed, according to which easily hydrolized elements: scandium, iron, lanthanum, ytterbium, protactinium, hafnium and partially ruthenium and osmium are isolated in the form of hydroxides after smelting of a sample, which has been previously irradiated in nuclear reactor (thermal neutron flux 1.2x10 13 n/cm 2 xs for 22 hr) with sodium peroxide and leaching of the melt by water. To separate Re from other interfering elements extraction of perrhenate-ion by methylethylketone from alkali solution is used. Interfering effect of gold is eliminated by its extraction with TBP 30% solution in toluence or benzene from 1 M HNO 3 . Activity of rhenium preparations, singled out from samples of comparison, is measured, using multichannel γ-spectrometer with Ge(Li)-coaxial detector of high resolution (approximately 2.0-2.2 keV over the line 122 keV 5+ Co). Relative standard deviation in Re content range 5x10 -7 -5x10 -2 % does not exceed 0.3

  15. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China

    Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our

  16. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-04-01

    The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis

  17. Metal–organic complexation in the marine environment

    Witter Amy

    2001-09-01

    Full Text Available We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE. These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample.

  18. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  19. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization

    Gatiboni, Luciano Colpo; Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz; Pandolfo, Carla Maria; Veiga, Milton

    2013-01-01

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha -1 year -1 of moist poultry litter; 4) 60 m 3 ha -1 year -1 of liquid cattle manure and 5) 40 m 3 ha -1 year -1 of liquid swine manure. The 31 P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  20. Potential Trace Metal–Organic Complexation in the Atmosphere

    Hiroshi Okochi

    2002-01-01

    Full Text Available It is possible that metal–organic complexation enhances the uptake of gaseous organic compounds and the solubility of metals in aerosols and atmospheric water. We investigated potential atmospheric organic ligands and the enhanced uptake of hydroxy-, oxo-, and dicarboxylic acids as well as dicarbonyls into atmospheric aqueous aerosol. We examined complexation with transition metals (iron, manganese, nickel, copper, zinc and lead on the basis of available references and our experimental data. Humic-like substances are most likely ligands in the atmosphere, although this is a poorly characterized material. A number of polycarboxylic acids and hydroxy forms (e.g., citric and tartronic acids effectively complex metals such as copper in atmospheric aerosols. The simple equilibrium model calculations show that the effect of the complexation on the gas–aqueous phase partition of gaseous atmospheric ligands is quite small for the ligands with the high physical Henry’s law constants, e.g., dicarboxylic acids represented by oxalic acid, even if they have high affinity with metal ions. The lower Henry’s law constants of the α-dicarbonyls, such as glyoxal and methylglyoxal, mean that the complexation could lead to profound increases in their partition into the aqueous phase. Despite quantum mechanical arguments for copper–glyoxal complexes, experiments showed no evidence of complexation between either hydrated or unhydrated α-dicarbonyls and the cupric ion. By contrast the β-dicarbonyl, malondialdehyde, has properties that would allow it to partition into atmospheric water via the complexation with metal ions under some conditions.

  1. Communication Network Integration and Group Uniformity in a Complex Organization.

    Danowski, James A.; Farace, Richard V.

    This paper contains a discussion of the limitations of research on group processes in complex organizations and the manner in which a procedure for network analysis in on-going systems can reduce problems. The research literature on group uniformity processes and on theoretical models of these processes from an information processing perspective…

  2. Complexity: the organizing principle at the interface of biological (dis ...

    RAMRAY BHAT

    2017-07-05

    Jul 5, 2017 ... opment of complexity theory in the context of biological systems. ... (DST), a mathematical enterprise that deals with the behaviour of ... and application of programming to trace the dynamical .... with the resultant organization being regulated by the ... more regular the pattern, the smaller the program needed.

  3. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes

    Satish C. B. Myneni

    2005-01-01

    Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe 3+ . While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist in the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the

  4. Structural complexities in the active layers of organic electronics.

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  5. Complex organic molecules in organic-poor massive young stellar objects

    Fayolle, Edith C.; Öberg, Karin I.; Garrod, Robin T.

    2015-01-01

    to search for complex organic molecules over 8-16 GHz in the 1 mm atmospheric window toward three MYSOs with known ice abundances, but without luminous molecular hot cores. Results. Complex molecules are detected toward all three sources at comparable abundances with respect to CH3OH to classical hot core......Context. Massive young stellar objects (MYSOs) with hot cores are classic sources of complex organic molecules. The origins of these molecules in such sources, as well as the small-and large-scale differentiation between nitrogen-and oxygen-bearing complex species, are poorly understood. Aims. We...... aim to use complex molecule abundances toward a chemically less explored class of MYSOs with weak hot organic emission lines to constrain the impact of hot molecular cores and initial ice conditions on the chemical composition toward MYSOs. Methods. We use the IRAM 30 m and the Submillimeter Array...

  6. Mitofilin complexes: conserved organizers of mitochondrial membrane architecture.

    Zerbes, Ralf M; van der Klei, Ida J; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-11-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochondrial inner membrane organizing system (MINOS). MINOS integrity is required for the maintenance of the characteristic morphology of the inner mitochondrial membrane, with an inner boundary region closely apposed to the outer membrane and cristae membranes, which form large tubular invaginations that protrude into the mitochondrial matrix and harbor the enzyme complexes of the oxidative phosphorylation machinery. MINOS deficiency comes along with a loss of crista junction structures and the detachment of cristae from the inner boundary membrane. MINOS has been conserved in evolution from unicellular eukaryotes to humans, where alterations of MINOS subunits are associated with multiple pathological conditions.

  7. An Ontology for Modeling Complex Inter-relational Organizations

    Wautelet, Yves; Neysen, Nicolas; Kolp, Manuel

    This paper presents an ontology for organizational modeling through multiple complementary aspects. The primary goal of the ontology is to dispose of an adequate set of related concepts for studying complex organizations involved in a lot of relationships at the same time. In this paper, we define complex organizations as networked organizations involved in a market eco-system that are playing several roles simultaneously. In such a context, traditional approaches focus on the macro analytic level of transactions; this is supplemented here with a micro analytic study of the actors' rationale. At first, the paper overviews enterprise ontologies literature to position our proposal and exposes its contributions and limitations. The ontology is then brought to an advanced level of formalization: a meta-model in the form of a UML class diagram allows to overview the ontology concepts and their relationships which are formally defined. Finally, the paper presents the case study on which the ontology has been validated.

  8. Measuring the Complexity of Self-Organizing Traffic Lights

    Darío Zubillaga

    2014-04-01

    Full Text Available We apply measures of complexity, emergence, and self-organization to an urban traffic model for comparing a traditional traffic-light coordination method with a self-organizing method in two scenarios: cyclic boundaries and non-orientable boundaries. We show that the measures are useful to identify and characterize different dynamical phases. It becomes clear that different operation regimes are required for different traffic demands. Thus, not only is traffic a non-stationary problem, requiring controllers to adapt constantly; controllers must also change drastically the complexity of their behavior depending on the demand. Based on our measures and extending Ashby’s law of requisite variety, we can say that the self-organizing method achieves an adaptability level comparable to that of a living system.

  9. Ferrihydrite-associated organic matter (OM stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    R. E. Cooper

    2017-11-01

    Full Text Available The formation of Fe(III oxides in natural environments occurs in the presence of natural organic matter (OM, resulting in the formation of OM–mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III reduction in natural environments most often occurs in the presence of OM–mineral complexes rather than pure Fe(III minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III reduction by Shewanella oneidensis MR-1, a model Fe(III-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite–OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose mimics S. oneidensis under the same experimental Fe(III-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM–ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria during pure ferrihydrite incubations which are known to use Fe(III as an electron sink. Instead, OM–mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and

  10. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron

  11. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-01-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  13. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  14. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  15. A non-classical view of the modulation of mineral precipitation by organic additives

    Ruiz-Agudo, Encarnacion; Ruiz-Agudo, Cristina; Burgos-Cara, Alejandro; Putnis, Christine; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2016-04-01

    Questions persist on the mechanisms of crystallization of sparingly soluble minerals such as calcium carbonate, calcium oxalate or barium sulphate. Compared to CaCO3, the mechanisms of nucleation and growth in the CaC2O4-H2O or BaSO4-H2O systems have received less attention. These phases are important due to their relevance as biominerals and/or unwanted mineral deposits in technological applications. Growing evidence suggests that sparingly soluble salts form by non-classical nucleation and growth pathways, where pre-nucleation ion associates and amorphous (solid or liquid) precursor phase(s) play a critical role (e.g. Rodríguez-Navarro et al. (2015), Ruiz-Agudo et al. (2015)). Indeed the identification of pre-nucleation species in these systems and their strong interactions with organic compounds (Verch et al. 2011) raises the possibility that the control of organics on biomineralization may begin even earlier than previously thought. A sound knowledge of the physical mechanisms by which acidic macromolecules affect nucleation and early growth may offer general insights concerning the molecular control of biomineralization, as well as being critical for improving strategies to control unwanted mineral deposition or for the synthesis of biomimetic materials. Here we present investigations on the initial stages of the precipitation of these relevant minerals in organic-free solutions to identify the precipitation pathway and to look for any potential precursor phase(s) to the final, crystalline polymorph. As well, we explore the effects that several acidic organic compounds have on the different precipitation stages identified. We find that organic additives such as citric acid, polyacrilic acid or a commercial copolymer of maleic acid/allyl sulfonic acid with phosphonate groups can be active at modifying pre-nucleation stages (destabilizing of pre-nucleation species or hampering the aggregation and growth of pre-nucleation associates) and subsequently strongly

  16. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis essential oil

    Ana Carolina B. Sodré

    2011-10-01

    Full Text Available Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L. essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

  17. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis essential oil

    Ana Carolina B. Sodré

    2012-02-01

    Full Text Available Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L. essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

  18. ADUBAÇÃO MINERAL E ORGÂNICA DA ABÓBORA HÍBRIDA: CRESCIMENTO MINERAL AND ORGANIC FERTILIZER OF THE HYBRID SQUASH: GROWTH

    Antônio Américo Cardoso

    2007-09-01

    Full Text Available

    Com finalidade de avaliar a resposta da abóbora híbrida cv. Tetsukabuto à adubação orgânica e mineral, foram realizados sete experimentos em Ponte Nova, Minas Gerais, em solo podzólico vermelho-amarelo câmbico fase terraço. Cada experimento constituiu uma época de amostragem, que foi iniciada aos 21 dias e encerrada aos 105 dias após a semeadura, com intervalos regulares de 14 dias. Nestes experimentos foram testados cinco tratamentos de adubação mais um tratamento controle (sem adubação. Nos tratamentos de adubação, definidos por meio de um corte em diagonal de um fatorial completo, foram aplicadas as doses de 0; 3; 6; 9 e 12 t/ha (base seca de composto orgânico de resíduo de suínos e bagaço de cana, juntamente com 0,772; 0,579; 0,386; 0,193 e 0 t/ha de adubo mineral NPK 4-14-8, respectivamente, em quatro repetições, no delineamento de blocos ao acaso. A substituição de parte da adubação mineral pela orgânica aumentou o número de nós da rama principal, o comprimento total da ramificação e os pesos das matérias secas da parte aérea, da parte reprodutiva e do fruto. A maior porcentagem de matéria seca no fruto e o menor crescimento vegetativo, aos 105 dias após a semeadura, foram obtidos quando toda a adubação mineral foi substituída pela orgânica.

    PALAVRAS-CHAVE: Moranga híbrida; Cucurbita maxima x C. moschata; crescimento.

    In order to evaluate the response of hybrid squash cv. Tetsukabuto to mineral (NPK and organic compost, seven experiments were carried out in Ponte Nova, State of Minas Gerais, Brazil, on a yellow-red cambic podsoil. Each experiment constituted one sampling date, which began at the 21st  day and ended at the 105th day after sowing, with 14 days intervals. In these experiments five

  19. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  20. Organic-mineral and organic fertilization in the strawberry (Fragaria x Ananasa Duch. crop under greenhouse conditions

    Carlos Osvaldo Romero Romano

    2012-09-01

    Full Text Available A good combination of organic fertilizers and mineral fertilizers may allow a reduction in the use of agrochemicals, to benefit the environment and health of consumers, to obtained crops and safe products with lower content of chemical residues. In this paper, we assess the effect of organic fertilization and organic mineral in the cultivation of strawberries cv. Festival, in a factorial treatment designin 3x23 with 24 treatments in an experimental design in randomized blocks with four replicates under greenhouse conditions in Atlixco, Puebla. The factors and levels of study: chemical fertilization (FQ, three levels of N-P2O5-K2O 0-0-0, 45-20-20 and 90-35-35 kg ha-141 3 con un total de 24 commercial organic nutrient (Activator QFprepared fulvic acid (AF at a concentration of (13.58% with two levels 0 and 450 ml ha-1,growth regulator (RCcommercial vegetable (Biozyme®, whit 78.87% of plant extracts and phytohormones, and 1.86% of microelements at evels of 0 and 20 l ha-1 and vermicompost (V of cattle manure at 50 and 100 g / pot. The experiment was divided into two periods from February to May and June to September 2011. The treatments applications were edafic (FQ and V and foliar (AF and RC in both stages of treatment applications were made at 10, 40 and 60 days after transplantation. The variables analyzed were number of stolons, stolon length, diameter and length fruit, number and weight of fruit per week, period, and the total of the two periods. Two twice a week the number of ripe fruits was counted, the diameter and length fruit and weight was measured. Every eight days after the formation of the first stolons, counted and measured. Statistical analysis was performed using the SAS program. In the period from February-May treatment FQ50-AF1-RC1-V50 showedstatistically different (Tukey, p = 0.05 %. for variables length fruit (2.95 cm, diameter fruit (3.76 cm, weight of fruit perweek (11.31 g and period (135.69 g. In the period from June

  1. Evidence for organic complexed copper in sea water

    Slowey, J F; Jeffrey, L M; Hood, D W

    1967-04-22

    A few attempts have been made to characterize the chemical components contributing to the copper content of seawater. About 0.3 mu/liter of particulate copper in 2 stations in the English Channel and 15 mu/liter of ultrafilterable (10 mu) but non-dialyzable copper in a sample from Texas Bay has been reported. Also the evidence has been shown for copper in the organic form in waters of the Florida Current. The occasional presence of non- dialyzable copper for many samples from the Gulf of Mexico suggests that strongly complexed copper-organic compounds are present in seawater. This communication presents evidence for such complexes that are extractable into a nonpolar solvent in the absence of any added chelating agent. Preliminary results have shown that the copper- organic complex isolated by chloroform extraction occurs in the eighth fraction of the Hirsch and Ahrens lipid separation method using silica gel chromatography. This would indicate that copper complex is associated with the phospholipid, amino lipid, or porphyrin fraction of the lipids.

  2. Nuclear organization of the rock hyrax (Procavia capensis) amygdaloid complex.

    Limacher-Burrell, Aude-Marie; Bhagwandin, Adhil; Gravett, Nadine; Maseko, Busisiwe C; Manger, Paul R

    2016-07-01

    The current study details the nuclear organization of the rock hyrax amygdaloid complex using both Nissl and myelin stains, along with a range of immunohistochemical stains. The rock hyrax appears to be the least derived of the Afrotherians, a group with a huge range of body phenotypes, life histories and specialized behaviours, brain sizes, and ecological niches. In this sense, the rock hyrax represents a species where the organization of the amygdaloid complex may be reflective of that in stem Eutherian mammals. Our analysis indicates that the nuclear organization of the rock hyrax amygdaloid complex is indeed very similar to that in other mammals studied, with four major nuclear groupings (the deep or basolateral group; the superficial or cortical-like or corticomedial group; the centromedial group; and the other amygdaloid nuclei) being observed, which is typical of Eutherian mammals. Moreover, each of these groupings is composed of several nuclei, the vast majority of which were readily identified in the rock hyrax. Small nuclei identified in rodents and primates were absent in the superficial and centromedial groups, seemingly involved with olfaction. A novel shell-like nucleus of the accessory basal nuclear cluster was observed in the rock hyrax, again, likely to be involved in olfaction. The current study underlines the conserved nature of nuclear parcellation in the Eutherian mammal amygdaloid complex and indicates that across most species, the flow of information processing related to species-specific affective-laden stimuli and the resultant physiological and behavioural outcomes are likely to be similar across species.

  3. Technetium Chemistry in HLW: Role of Organic Complexants

    Hess, Nancy J.; Blanchard, David L. Jr.; Campbell, James A.; Cho, Herman M.; Rai, Dhanpat Rai; Xia, Yuanxian; Conradson, Steven D.

    2002-01-01

    Technetium complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that longterm consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists, and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges, we present a research program to study Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques. On the basis of such studies, we will acquire thermodynamic data for the identified Tc-organic complexes over a wide range of chemical conditions in order to develop credible models to predict Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  4. Tc Chemistry in HLW: Role of Organic Complexants

    Hess, Nancy S.; Conradsen, Steven D.

    2003-01-01

    Tc complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that long-term consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges we are conducting a research program to study to develop thermodynamic data on Tc-organic complexation over a wide range of chemical conditions. We will attempt to characterize Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques to validate our model. On the basis of such studies we will develop credible model of Tc chemistry in HLW that will allow prediction of Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  5. Complexity in plasma: From self-organization to geodynamo

    Sato, T.

    1996-01-01

    A central theme of open-quote open-quote Complexity close-quote close-quote is the question of the creation of ordered structure in nature (self-organization). The assertion is made that self-organization is governed by three key processes, i.e., energy pumping, entropy expulsion and nonlinearity. Extensive efforts have been done to confirm this assertion through computer simulations of plasmas. A system exhibits markedly different features in self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. As a practical application of our grand view of self-organization a preferential generation of a dipole magnetic field is successfully demonstrated. copyright 1996 American Institute of Physics

  6. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  7. Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA

    Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.

    2015-01-01

    We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future

  8. Study of the degradation of organic molecules complexing radionuclides by using Advanced Oxidation Processes

    Rekab, K.

    2014-01-01

    This research thesis reports the study of the application of two AOPs (Advanced Oxidation Processes) to degrade and mineralise organic molecules which are complexing radio-elements, and thus to allow their concentrations by trapping on mineral matrices. EDTA (ethylene diamine tetraacetic acid) is chosen as reference organic complexing agent for preliminary tests performed with inactive cobalt 59 before addressing actual nuclear effluents with active cobalt 60. The author first presents the industrial context (existing nuclear wastes, notably liquid effluents and their processing) and proposes an overview of the state of the art on adsorption and precipitation of cobalt (natural and radioactive isotope). Then, the author presents the characteristics of the various studied oxides, the photochemical reactor used to perform tests, experimental techniques and operational modes. Results are then presented regarding various issues: adsorption of EDTA and the Co-EDTA complex, and cobalt precipitation; determination of the lamp photon flow by chemical actinometry and by using the Keitz method; efficiency of different processes (UV, UV/TiO 2 , UV/H 2 O 2 ) to degrade EDTA and to degrade the Co-EDTA complex; processing of a nuclear effluent coming from La Hague pools with determination of decontamination factors

  9. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  10. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.

    Zhang, Weihua; Huang, Xinchen; Jia, Yanming; Rees, Frederic; Tsang, Daniel C W; Qiu, Rongliang; Wang, Hong

    2017-04-01

    Pyrolyzing sludge into biochar is a potentially promising recycling/disposal solution for municipal wastewater sludge, and the sludge-derived biochar (SDBC) presents an excellent sorbent for metal immobilization. As SDBC is composed of both mineral oxides and carbonized organic compartment, this study therefore compared the sorption behaviour of Pb and Zn on SDBC to those of individual and mixture of activated carbon (AC) and amorphous aluminium oxide (Al 2 O 3 ). Batch experiments were conducted at 25 and 45 °C, and the metal-loaded sorbents were artificially aged in the atmosphere for 1-60 days followed by additional sorption experiments. The Pb sorption was generally higher than Zn sorption, and the co-presence of Pb reduced Zn sorption on each studied sorbent. Higher sorption capacities were observed at 45 °C than 25 °C for SDBC and AC, while the opposite was shown for Al 2 O 3 , indicating the significance of temperature-dependent diffusion processes in SDBC and AC. Nevertheless, metal sorption was more selective on Al 2 O 3 that showed a greater affinity towards Pb over Zn under competition, correlating with the reducible fraction of sequential extraction. Furthermore, significant amounts of Pb and Zn were additionally sorbed on SDBC following 30-day ageing. The X-ray diffraction revealed the formation of metal-phosphate precipitates, while the X-ray photoelectron spectroscopy showed a larger quantity of metal-oxygen bonding after 30-day ageing of metal-loaded SDBC. The results may imply favourable long-term transformation and additional sorption capacity of SDBC. In conclusion, SDBC resembles the sorption characteristics of both organic and mineral sorbents in different aspects, presenting an appropriate material for metal immobilization during soil amendment.

  11. Sequester of metals and mineralization of organic contaminants with microbial mats

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  12. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  13. Environmental assessment of applicability of mineral-organic composite for landfill area rehabilitation

    Mizerna, Kamila; Król, Anna; Mróz, Adrian

    2017-10-01

    This paper undertakes an assessment of the impact of a mineral-organic composite on the environment as well as the potential for its application for land rehabilitation purposes. The analysis involves the release of the leachable contaminations from the material subjected to testing. This material was formed by a composite manufactured on the basis of communal bottom ash and stabilized sewage sludge. The sludge resulting from wastewater treatment was subjected to stabilization and dehydration in waste pounds at the phase of pre-watering until 20% of dry mass is obtained. Subsequently, they were mixed with bottom ash, which was obtained from selective waste collection, in a 1:1 mass ratio. The analysis involved the leaching of inorganic contaminants in the form of heavy metals, sulphates (VI), chlorides, and fluorides as well as organic compounds in the form of organic carbon solution under the effect of leachant with a various level of pH. The analysed components were characterized by various leaching behaviour depending on the leachant pH. On the basis of the results, it was able to assess the potential hazard posed by the examined material on the environment as a consequence of its application for landfill area rehabilitation.

  14. Environmental assessment of applicability of mineral-organic composite for landfill area rehabilitation

    Mizerna Kamila

    2017-01-01

    Full Text Available This paper undertakes an assessment of the impact of a mineral-organic composite on the environment as well as the potential for its application for land rehabilitation purposes. The analysis involves the release of the leachable contaminations from the material subjected to testing. This material was formed by a composite manufactured on the basis of communal bottom ash and stabilized sewage sludge. The sludge resulting from wastewater treatment was subjected to stabilization and dehydration in waste pounds at the phase of pre-watering until 20% of dry mass is obtained. Subsequently, they were mixed with bottom ash, which was obtained from selective waste collection, in a 1:1 mass ratio. The analysis involved the leaching of inorganic contaminants in the form of heavy metals, sulphates (VI, chlorides, and fluorides as well as organic compounds in the form of organic carbon solution under the effect of leachant with a various level of pH. The analysed components were characterized by various leaching behaviour depending on the leachant pH. On the basis of the results, it was able to assess the potential hazard posed by the examined material on the environment as a consequence of its application for landfill area rehabilitation.

  15. The complex use of religion in decisions on organ transplantation.

    Röcklinsberg, Helena

    2009-03-01

    Because of its existential character, organ transplantation is strongly connected to a person's view of life. This article describes how participants in a focus group use religious elements in decision-making on transplantation medicine in four European countries. Further these findings are related to two influential theologians: James Gustafson and Paul Ramsey, and their thinking on the role of religion in medical ethics. Both participants' and theologians' use of religious elements is complex, and show significant variety in regard to both content and form. Decisions in transplantation medicine would benefit from considering the complexity of religious views when striving for informed consent as participative involvement.

  16. Absolute band structure determination on naturally occurring rutile with complex chemistry: Implications for mineral photocatalysis on both Earth and Mars

    Li, Yan; Xu, Xiaoming; Li, Yanzhang; Ding, Cong; Wu, Jing; Lu, Anhuai; Ding, Hongrui; Qin, Shan; Wang, Changqiu

    2018-05-01

    Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d

  17. The Early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization

    Dostal, Jaroslav; Kontak, Daniel J.; Karl, Susan M.

    2014-01-01

    The Early Jurassic (ca. 177 Ma) Bokan Mountain granitic complex, located on southern Prince of Wales Island, southernmost Alaska, cross-cuts Paleozoic igneous and metasedimentary rocks of the Alexander terrane of the North American Cordillera and was emplaced during a rifting event. The complex is a circular body (~3 km in diameter) of peralkaline granitic composition that has a core of arfvedsonite granite surrounded by aegirine granite. All the rock-forming minerals typically record a two-stage growth history and aegirine and arfvedsonite were the last major phases to crystalize from the magma. The Bokan granites and related dikes have SiO2 from 72 to 78 wt. %, high iron (FeO (tot) ~3-4.5 wt. %) and alkali (8-10 wt.%) concentrations with high FeO(tot)/(FeO(tot)+MgO) ratios (typically >0.95) and the molar Al2O3/(Na2O+K2O) ratio Nd values which are indicative of a mantle signature. The parent magma is inferred to be derived from an earlier metasomatized lithospheric mantle by low degrees of partial melting and generated the Bokan granitic melt through extensive fractional crystallization. The Bokan complex hosts significant rare-metal (REE, Y, U, Th, Nb) mineralization that is related to the late-stage crystallization history of the complex which involved the overlap of emplacement of felsic dikes, including pegmatite bodies, and generation of orthomagmatic fluids. The abundances of REE, HFSE, U and Th as well as Pb and Nd isotopic values of the pluton and dikes were modified by orthomagmatic hydrothermal fluids highly enriched in the strongly incompatible trace elements, which also escaped along zones of structural weakness to generate rare-metal mineralization. The latter was deposited in two stages: the first relates to the latest stage of magma emplacement and is associated with felsic dikes that intruded along the faults and shear deformations, whereas the second stage involved ingress of hydrothermal fluids that both remobilized and enriched the initial

  18. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  19. Complexity in plasma. A grand view of self-organization

    Sato, Tetsuya.

    1994-11-01

    The central theme of the Complexity is the inquest of the creation of ordered structure in nature. Extensive computer simulations on plasmas have revealed that self-organization is governed by the three key processes, i.e. energy pumping, entropy expulsion and nonlinearity. A system exhibits characteristically different self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. (author)

  20. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter

    Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel

    2017-07-01

    The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment

  1. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals.

    Stefanello, C; Santos, T C; Murakami, A E; Martins, E N; Carneiro, T C

    2014-01-01

    This study was carried out with the purpose of evaluating the effect of supplementing hens' diets with trace minerals from inorganic or organic sources on the productive performance, eggshell quality, and eggshell ultrastructure of laying hens. Three hundred sixty Hy-Line W36 laying hens between 47 to 62 wk of age were used and distributed in a completely randomized experimental design with 9 treatments, 5 replicates, and 8 birds for each experimental unit. The treatments consisted of a control diet without supplementation of the trace minerals Mn, Zn, and Cu; 4 supplementation levels of these trace minerals from an inorganic source; and the same levels of supplementation from an organic source (proteinates). The supplementation levels in milligrams per kilogram for Mn, Zn, and Cu, were, respectively, 35-30-05, 65-60-10, 95-90-15, and 125-120-20. There was no effect of supplementation of trace minerals on the rate of posture, feed intake, feed conversion, specific weight, and Haugh unit of eggs. However, there was a quadratic effect (P < 0.05) of the levels of trace mineral supplementation on average egg weight and egg mass; the results did not differ regarding the source used. The increase in the levels of supplementation of Mn, Zn, and Cu provided a linear increase (P < 0.05) in the breaking strength and the percentage of eggshell. There was a linear decrease (P < 0.05) in the egg loss and the number of mammillary buttons in the shell. The best results were obtained using diets supplemented with trace minerals from an organic source because these diets provided lower egg loss, higher thickness, and increased strength of the shell. Structurally, organic Mn, Zn, and Cu provided higher thickness of the palisade layer and lower mammillary density. The trace mineral supplementation improved the structural characteristics and the quality of the eggshells.

  2. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  3. Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive

    Bülent Özdalyan

    2018-06-01

    Full Text Available The heat values of waste mineral oils are equal to the heat value of the fuel oil. However, heat value alone is not sufficient for the use of waste minerals oils as fuel. However, the critical physical properties of fuels such as density and viscosity need to be adapted to the system in order to be used. In this study, the engine oils used in the first 10,000 km of the vehicles were used as waste mineral oil. An organic-based Mn additive was synthesized to improve the properties of the waste mineral oil. It was observed that mixing the Mn additive with the waste mineral oil at different doses (4, 8, 12, and 16 ppm improves the viscosity of the waste oil and the flash point. The resulting fuel was evaluated for emission using different loads in a 5 kW capacity generator to compare the fuel with standard diesel fuel and to determine the effect of Mn addition. In the experimental study, it was observed that the emission characteristics of the fuel obtained from waste mineral oil were worse than diesel fuel, but some improvement was observed with Mn addition. As a result, we found that the use of waste mineral oils in engines in fuel standards was not appropriate, but may be improved with additives.

  4. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity.

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  5. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H [Institute of Physics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle/S (Germany); Simon, Paul [Max-Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kim, Jeong-Sook [Department of Dental Technology, Daegu Health College, 702-722 Daegu (Korea, Republic of)], E-mail: gyeong.kim@physik.uni-halle.de

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  6. Predicting bi-decadal organic carbon mineralization in northwestern European soils with Rock-Eval pyrolysis

    Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric

    2017-04-01

    The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic

  7. Self-organized topology of recurrence-based complex networks

    Yang, Hui; Liu, Gang

    2013-01-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks

  8. Mineralization of Organically Bound Nitrogen in Soil as Influenced by Plant Growth and Fertilization

    Sørensen, Lasse Holst

    1982-01-01

    A loam soil containing an organic fraction labelled with15N was used for pot experiments with spring barley, rye-grass and clover. The organically bound labelled N was mineralized at a rate corresponding to a half-life of about 9 years. Fertilization with 106 and 424 kgN/ha of unlabelled N...... in the form of KNO3 significantly increased uptake of labelled N from the soil in barley and the first harvest of rye-grass crops. The fertilized plants removed all the labelled NH4 and NO3 present in the soil, whereas the unfertilized plants removed only about 80%. The second, third and fourth harvests...... of the unfertilized rye-grass took up more labelled N than the fertilized rye-grass. The total uptake in the four harvests was similar whether the plants were fertilized or not. Application of KCl to barley plants in amounts equivalent to that of KNO3 resulted in a small but insignificant increase in uptake...

  9. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems.

    Grunert, Oliver; Hernandez-Sanabria, Emma; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar H; Perneel, Maaike; Van Labeke, Marie-Christine; Reheul, Dirk; Boon, Nico

    2016-01-05

    The choice of soilless growing medium for plant nutrition, growth and support is crucial for improving the eco-sustainability of the production in horticultural systems. As our current understanding of the functional microbial communities inhabiting this ecosystem is still limited, we examined the microbial community development of the two most important growing media (organic and mineral) used in open soilless horticultural systems. We aimed to identify factors that influence community composition over time, and to compare the distribution of individual taxa across growing media, and their potential functionality. High throughput sequencing analysis revealed a distinctive and stable microbial community in the organic growing medium. Humidity, pH, nitrate-N, ammonium-N and conductivity were uncovered as the main factors associated with the resident bacterial communities. Ammonium-N was correlated with Rhizobiaceae abundance, while potential competitive interactions among both Methylophilaceae and Actinobacteridae with Rhizobiaceae were suggested. Our results revealed that soilless growing media are unique niches for diverse bacterial communities with temporal functional stability, which may possibly impact the resistance to external forces. These differences in communities can be used to develop strategies to move towards a sustainable horticulture with increased productivity and quality.

  10. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake.

    Lepot, K; Compère, P; Gérard, E; Namsaraev, Z; Verleyen, E; Tavernier, I; Hodgson, D A; Vyverman, W; Gilbert, B; Wilmotte, A; Javaux, E J

    2014-09-01

    spheres interpreted as coccoidal bacteria may represent fossils of intracellular calcification. These organo-mineral associations support organically driven nanocarbonate crystallization and stabilization, hence providing potential markers for microbial calcification in ancient rocks. © 2014 John Wiley & Sons Ltd.

  11. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  12. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  13. An efficient link prediction index for complex military organization

    Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing

    2017-03-01

    Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.

  14. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  15. Effect of Gamma Irradiation, Organic and Mineral Fertilizers on Growth, Yield and Fruit Quality of Sweet Pepper

    Fath El-Bab, T.Sh.

    2014-01-01

    Field experiment was carried out for two successive seasons 2011 and 2012, on sweet pepper ( Capsicum annuum L. ) cv. California wonder in the Research Station of Atomic Energy Authority at Inshas, Egypt. This research aimed to evaluate response of sweet pepper to chemical and organic manure (poultry or sheep) fertilizers. Organic manures were treated with gamma rays at the dose of 10 KGy to keep it free from pathogenic organism pests and weed seeds. Growth characters such as plant height, num - ber of leaves, number of stems and dry weight per plant in the two seasons were significantly respond to tested factors. The highest vegetative growth characters were induced by 100% mineral fertilizer. Meanwhile, the lowest vegetative growth characters were recorded by using 100% organic manure as compared to mineral fertilizer. On the other hand dry weight of plants treated with organic manure treatment significantly decreased as compared to mineral fertilizer in the two seasons. Furthermore, using organic manure had enhanced or improved the quality of sweet pepper fruits. In conclusion, mineral fertilizers combined with organic fertilizers were the best treatment resulted in the highest vegetative growth, yield and fruit quality of sweet pepper. This treatment resulted in not only higher total chlorophyll in leave content compared to control plants, but also the highest chemical properties values of fruits, total soluble solids, acidity, vitamin C. and carotenoids in the two seasons. Nitrogen, phosphorus and potassium content non significantly increased with all treatments except that of 100% chemical fertilizer. The improvement of plant growth and production recorded with the irradiated organic manure as compared to the unirradiated one. All parameters were higher in sweet pepper fertilized with poultry manure as compared to that fertilized with sheep manure. Although the treatment of organic manure only gave to some extent, less total yield, it has great impact on the

  16. Responses of milk quality to roasted soybeans, calcium soap and organic mineral supplementation in dairy cattle diets

    Adawiah

    2006-12-01

    Full Text Available Milk quality is affected by feed nutrient either macronutrient or micronutrient. Roasted soayabeans and calcium soap were to increase supply by pas protein and fat to dairy cattle. Thus, organic mineral was to increase bioavailability of feed mineral to animal. The objective of this study was to evaluate roasted soybean, mineral soap and organic mineral supplementation on milk quality of dairy cattle. Twenty lactating Frisian Holstein cows (initial weight 361.4 ± 40.39 kg were assigned into a randomized complete block design with 5 treatments and 4 blocks. The treatments were A: basal diet, B: A + roasted soybean, C: B + calcium soap of corn oil, D: C + calcium soap of corn oil, E: C + calcium soap of fish oil. The experimental diets were offered for 9 and 2 weeks preliminary. The results of the experiment showed that milk protein and lactose were not affected by diets. Milk dry matter of cows fed A, B, and D diets were higher (P<0.05 than those of fed C and E diets. Milk fat of cows fed A, B and D diets were higher (P<0.05 than those of fed C and E diets. Milk density of cows fed B and E diets were higher (p<0.05 than those of fed A, C and D diets. Milk TPC of cows fed B diet were higher (0.05 than those of fed A, C, D, and E diets. It is concluded that milk quality especially milk protein and lactose concentration are not affected by roasted soyabeans, Ca-soap, and organic mineral. Calcium soap of fish oil and organic mineral decrease population of milk bacteria.

  17. Organic analyses of an actual and simulated mixed waste. Hanford's organic complexant waste revisited

    Toste, A.P.; Osborn, B.C.; Polach, K.J.; Lechner-Fish, T.J.

    1995-01-01

    Reanalysis of the organics in a mixed waste, an organic complexant waste, from the U.S. Department of Energy's Hanford Site, has yielded an 80.4% accounting of the waste's total organic content. In addition to several complexing and chelating agents (citrate, EDTA, HEDTA and NTA), 38 chelator/complexor fragments have been identified, compared to only 11 in the original analysis, all presumably formed via organic degradation. Moreover, a mis identification, methanetricarboxylic acid, has been re-identified as the chelator fragment N-(methylamine)imino-diacetic acid (MAIDA). A nonradioactive simulant of the actual waste, containing the parent organics (citrate, EDTA, HEDTA and NTA), was formulated and stored in the dark at ambient temperature for 90 days. Twenty chelator and complexor fragments were identified in the simulant, along with several carboxylic acids, confirming that myriad chelator and complexor fragments are formed via degradation of the parent organics. Moreover, their abundance in the simulant (60.9% of the organics identified) argues that the harsh chemistries of mixed wastes like Hanford's organic degradation, even in the absence of radiation. (author). 26 refs., 2 tabs

  18. Magmatic evolution and REE mineralization in the early Cambrian Jbel Boho igneous complex in the Bou Azzer inlier (Anti-Atlas/Morocco)

    Benaouda, Rachid

    2015-01-01

    The igneous rocks of Jbel Boho emerged in three phases: an initial phase with alkaline volcanism followed by the intrusion of a syenitic pluton and later the emplacement of a dyke swarm. The Jbel Boho alkaline complex shows some interesting aspects of hydrothermal REE mineralization in the late differentiation stage. REE mineralization is found in a rhyolitic dyke and some late hydrothermal veins. Synchysite-(Ce), which was identified by EPMA analysis, is the main REE mineral.

  19. Geomorphology and landscape organization of a northern peatland complex

    Richardson, M. C.

    2012-12-01

    The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.

  20. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data

    Ros, G.H.

    2012-01-01

    Extractable organic matter (EOM) fractions have been used to assess the capacity of soils to supply nitrogen (N), but their role in N mineralization and their potential to improve agricultural fertilizer management are still under debate. This paper shows evidence that the relationship between EOM

  1. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  2. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  3. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    K. Heckman; A.S. Grandy; X. Gao; M. Keiluweit; K. Wickings; K. Carpenter; J. Chorover; C. Rasmussen

    2013-01-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering...

  4. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  5. Mercury reduction and complexation by natural organic matter

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10 6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  6. Predicting Complex Organic Molecule Emission from TW Hya

    Vissapragada, Shreyas; Walsh, Catherine

    2017-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has significantly increased our ability to observe the rich chemical inventory of star and planet formation. ALMA has recently been used to detect CH3OH (methanol) and CH3CN (methyl cyanide) in protoplanetary disks; these molecules may be vital indicators of the complex organic ice reservoir in the comet-forming zone. We have constructed a physiochemical model of TW Hya, a well-studied protoplanetary disk, to explore the different formation mechanisms of complex ices. By running our model through a radiative transfer code and convolving with beam sizes appropriate for ALMA, we have obtained synthetic observations of methanol and methyl cyanide. Here, we compare and comment on these synthetic observations, and provide astrochemical justification for their spatial distributions.

  7. Effect of organic mineral supplementation on the egg quality of semi-heavy layers in their second cycle of lay

    ESPB Saldanha

    2009-12-01

    Full Text Available This study was carried out to evaluate the effects of dietary trace mineral levels and sources on egg quality parameters of second-cycle semi-heavy layers. A number of 360 72-week-old layers were submitted to forced molting. Upon return of lay (83 weeks of age, birds were distributed according to a completely randomized experimental design of six treatments with six replicates of 10 birds each. The control treatment consisted of 0.10% dietary supplementation of trace minerals from inorganic sources, which was proportionally replaced by five levels (110, 100, 90, 80, 70% of an organic trace mineral supplement containing 30, 30, 40, 6, 0.61, and 0.3 g/kg product of Zn, Fe, Mn, Cu, I, and Se, respectively. All diets contained equal protein, energy, and amino acid levels. Every 28 days of the experimental period (112 days four eggs per replicate were collected for egg quality evaluation. The following parameters were evaluated: specific gravity, yolk, albumen and eggshell percentages, yolk index, Haugh units, and eggshell thickness and breaking strength. One sample per replicate, consisting of the pool of the yolks of three eggs collected at the end of each experimental period, was used to assess protein and mineral (Ca, P, Cu, Fe, Mn, and Zn contents. The results were submitted to ANOVA, and means to the test of Tukey at 5% significance level. The evaluated trace mineral levels and sources did not influence any of the studied egg quality parameters. It was concluded that reducing organic trace mineral supplementation in up to 70% relative to 100% inorganic trace mineral supplementation does not affect egg parameters and therefore, can be applied to the diet of semi-heavy layers in their second cycle of lay.

  8. A divergent heritage for complex organics in Isheyevo lithic clasts

    van Kooten, Elishevah M.M.E.; Nagashima, Kazuhide; Kasama, Takeshi

    2017-01-01

    enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data......, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System’s N and H isotope variability.......Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus...

  9. Geochemistry of the uranium mineralized Achala granitic complex, Argentina: Comparison with Hercynian peraluminous leucogranites of western Europe

    Cuney, M.; Leroy, J.; Valdiviezo, P.A.; Daziano, C.; Gamba, M.; Zarco, A.J.; Morello, O.; Ninci, C.; Molina, P.

    1989-01-01

    The Achala granitic complex belongs to the Sierras Pampeanas Hercynian belt, located west of the city of Cordoba, Argentina. This complex is very large (about 100 km N-S and 40 km E-W) and is composed of biotite, biotite with muscovite and muscovite with tourmaline granites intruded in amphibolite grade metamorphic rocks, along a main N 20 deg. E structural direction. Numerous uranium mineralizations are located within the granitic massif and tungsten mineralizations are present both in the enclosing metamorphic rocks and in the granite. The geochemistry of the granite has been studied in four test areas (Southern, Copina, Median and Don Vincente). Two test areas (Median and Don Vicente) present clear evidence of hydrothermal alteration: albitization and dequartzification similar to the French 'episyenites', silicification and argillic alteration. Potassic alteration is rare and weakly developed. The two test areas with hydrothermal alteration present a high uranium geochemical background (5-30 ppm). High thorium contents (up to 65 ppm) are essentially observed in the less differentiated granites of the Copina and Median areas. Thorium/uranium ratios are highly variable (1-10). Uranium minerals are related to different environments - (1) apatite-biotite enclave mineralized with uraninite and uranothorite, (2) gneiss from the contact metamorphism rim, (3) granite with incipient dequartzification, (4) granite associated with albitic episyenites and (5) silicified granite - but are all located in the two test areas presenting clear evidence of hydrothermal alteration. The three petrogenetic events are clearly related to very different mechanisms, separated from each other by several tens of millions of years in the west European Hercynian chain. In the same period the same succession of events leading to uranium deposits is observed in Argentina. 34 refs, 10 figs, 1 tab

  10. Adsorption and Desorption of Cesium in Clay Minerals: Effects of Natural Organic Matter and pH

    Yoon, Hongkyu; Ilgen, Anastasia; Mills, Melissa; Lee, Moo; Seol, Jeung Gun; Cho, Nam Chan; Kang, Hyungyu

    2017-04-01

    Cesium (Cs) released into the environment (e.g., Fukushima accident) poses significant environmental concerns and remediation challenges. A majority of Cs in the environment have remained within the surface soils due to the strong adsorption affinity of Cs towards clay minerals. Different clay minerals have different bonding sites, resulting in various adsorption mechanisms at nanometer scale. For example, the illite commonly has a basal spacing of 1.0 nm, but becomes wider to 1.4 nm once other cations exchange with K in the interlayer site. Cs adsorbs into these expanded wedged zone strongly, which can control its mobility in the environment. In addition, natural organic matter (NOM) in the surface soils can interact with clay minerals, which can modify the mechanisms of Cs adsorption on the clay minerals by blocking specific adsorption sites and/or providing Cs adsorption sites on NOM surface. In this work, three representative clay minerals (illite, vermiculite, montmorillonite) and humic acid (HA) are used to systematically investigate the adsorption and desorption behavior of Cs. We performed batch adsorption experiments over a range of Cs concentrations on three clay minerals with and without HA, followed by sequential desorption batch testing. We tested desorption efficiency as a function of initial adsorbed Cs concentration, HA content, sodium concentration, and pH. The sequential extraction results are compared to the structural changes in clay minerals, measured using extended X-ray absorption fine structure spectroscopy (EXAFS) and aberration-corrected (scanning) transmission electron microscopy (TEM) - energy dispersive X-ray spectroscopy (EDX). Hence, this work aims to identify the mechanisms of Cs fixation at the nanometer (or atomic-) scale as a function of the clay mineral properties (e.g. expandability, permanent surface charge) and varying organic matter content at different pH values and to enhance our atomic-scale mechanistic understanding of

  11. The effects of using of mineral and organic toxin absorbents on broiler performance and internal organs weight in experimental aflatoxicosis

    Behnam Heidarpour

    2016-04-01

    Full Text Available Introduction The occurrence of mycotoxins in foods and feeds is a problem of major concern in all over the world. Profitability of poultry production can be greatly affected due to the frequency of feed contamination and the detrimental effects of these toxins on the performance. Aflatoxins, a group of closely related and biologically active mycotoxins, are produced by strains of Aspergillus flavus and Aspergillus parasiticus. They commonly occur as natural contaminant of poultry feeds. Domestic animal species such as chickens, ducks, cattle and turkeys consuming sublethal doses of aflatoxins for several days developed a toxic syndrome in which liver damage was the most significant change. The biological effects of aflatoxins could be categorized into two groups, long term and short term effects. Long term effects included chronic toxicity, cancer, birth defects and genetic alterations. Aflatoxins affected all poultry species, although they generally take relatively high levels to cause mortality, low levels can be detrimental if continually fed. Material and Methods This study was conducted to determine the efficacy of mineral, organic toxin absorbents, humic acid and yeast cell wall on performance and internal organs weight of broilers in experimental aflatoxicosis. This study was conducted in a completely randomize design with 432 Ross-308 broilers with 9 treatments, 4 replicates and 12 broilers in each replicate. Treatments included diet without aflatoxin, 2: diet contaminated with aflatoxin, 3: diet contaminated with aflatoxin and supplemented with 0.20 Humic acid, 4: diet contaminated with aflatoxin and supplemented with 0.40 Humic acid, 5: diet contaminated with aflatoxin and supplemented with 0.60 Humic acid, 5: diet contaminated with aflatoxin and supplemented with 0.80 Humic acid, 6: diet contaminated with aflatoxin and supplemented with 0.80 Humic acid, 7: diet contaminated with aflatoxin and supplemented with 1.00 Humic acid, 8: diet

  12. Compliance and High Reliability in a Complex Healthcare Organization.

    Simon, Maxine dellaBadia

    2018-01-01

    When considering the impact of regulation on healthcare, visualize a spider's web. The spider weaves sections together to create the whole, with each fiber adding to the structure to support its success or lead to its failure. Each section is dependent on the others, and all must be aligned to maintain the structure. Outside forces can cause a shift in the web's fragile equilibrium.The interdependence of the sections of the spider's web is similar to the way hospital departments and services work together. An organization's structure must be shaped to support its mission and vision. At the same time, the business of healthcare requires the development and achievement of operational objectives and financial performance goals. Establishing a culture that is flexible enough to permit creativity, provide resiliency, and manage complexity as the organization grows is fundamental to success. An organization must address each of these factors while maintaining stability, carrying out its mission, and fostering improvement.Nature's order maintains the spider's web. Likewise, regulation can strengthen healthcare organizations by initiating disruptive changes that can support efforts to achieve and sustain high reliability in the delivery of care. To that end, leadership must be willing to provide the necessary vision and resources.

  13. Investigation into organic boron compounds complexing. 25. Triaryl borane complexes with benzimidazole

    Belonovich, M I; Lapkin, I I; Morozova, T L; Okatysheva, L Yu; Rybakova, M N; Yuzhakova, G A [Permskij Gosudarstvennyj Univ. (USSR)

    1984-02-01

    Coordination of organic boron compounds with heterocyclic ligands is studied. Substances containing one molecule of ligand per one molecule of triarylborane are extracted when mixing ether solution of triarylborane and alcohol solution of benzimidazole. Based on IR spectra it is stated that coordination with boron is realized at the expense of pyridine nitrogen atom of imidazole cycle. Dipole momenta are determined for synthesized complexes using Debye method.

  14. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  15. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  16. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.

    Wang, Peng; Liu, Yunjia; Menzies, Neal W; Wehr, J Bernhard; de Jonge, Martin D; Howard, Daryl L; Kopittke, Peter M; Huang, Longbin

    2016-11-01

    Arsenic (As) is commonly associated with Cu ore minerals, with the resultant risk that As can be released offsite from mine tailings. We used synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide in situ, laterally-resolved speciation of As within tailings which differed in magnetite content (5-12%) and organic matter content (0-5%). Although the total As content was lower in tailings with low magnetite (LM), the soluble (pore water) As was actually 7-times higher in LM tailings than in high magnetite (HM) tailings. Additionally, amendment with 5% sugarcane mulch residues (SMR) (for revegetation) further increased soluble As due to the dissolution and oxidation of arsenopyrite or orpiment. Indeed, in HM tailings, arsenopyrite and orpiment initially accounted for 88% of the total As, which decreased to 48% upon the addition of SMR - this being associated with an increase in As V -ferrihydrite from 12% to 52%. In LM tailings, the pattern of As distribution and speciation was similar, with As as As V -ferrihydrite increasing from 57% to 75% upon the addition of SMR. These findings indicate that changes in ore processing technology, such as the recovery of magnetite could have significant environmental consequences regarding the As mobilisation and transformation in mine tailings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique.

    Magaia, Telma; Uamusse, Amália; Sjöholm, Ingegerd; Skog, Kerstin

    2013-12-01

    The harvesting, utilization and marketing of indigenous fruits and nuts have been central to the livelihoods of the majority of rural communities in African countries. In this study we report on the content of dietary fiber, minerals and selected organic acids in the pulps and kernels of the wild fruits most commonly consumed in southern Mozambique. The content of soluble fiber in the pulps ranged from 4.3 to 65.6 g/100 g and insoluble fiber from 2.6 to 45.8 g/100 g. In the kernels the content of soluble fiber ranged from 8.4 to 42.6 g/100 g and insoluble fiber from 14.7 to 20.9 g/100 g. Citric acid was found in all fruits up to 25.7 g/kg. The kernels of Adansonia digitata and Sclerocarya birrea were shown to be rich in calcium, iron, magnesium and zinc. The data may be useful in selecting wild fruit species appropriate for incorporation into diets.

  18. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P arbuscular mycorrhizal colonization of roots.

  19. Study of environmental radioactivity in three important Italian rivers using sediment mineral organic detritus indicator

    Fontana, C.; Aebischer, M.L.; Musumeci, R.G.; Sogni, R.; Borio, R.; Bucci, S.; Giannardi, C.; Magnoni, M.; Margini, G.

    1997-01-01

    When studying radionuclides introduced into the environment because of accidental spillage of radioactive substances from the atmosphere into running water and rivers, as in the accident at Chernobyl, a series of measurements and a knowledge of appropriate indicators are needed in order to best use the information. Radionuclides enter the water in the following way: they fall directly onto the surface of the water and then spread and sink, forming sediment on the river bed. S.M.O.D., sediments mineral organic detritus, is an important matrix for research on contaminants present in running water.This has been demonstrated in Italy where repeated research was done in various portions of the Po River. The studies have shown that S.M.O.D. is a good indicator for many radionuclides, both of fission as in Cs-137, Cs-134, Sb-125, Ru-106, and activation as in Mn-54 and Co-60. S.M.O.D. reveals the spatial radio contamination both of a diffuse source present in the river as in the case of fall-out from the nuclear power plant at Chernobyl or of a specific source as in spillage from a nuclear power plant or from hospital or industrial waste.It has been shown that S.M.O.D. is also an efficient indicator for other kinds of containments like heavy metals and pesticides. The work carried out on three major rivers: the Po, the Arno and the Tiber. (authors)

  20. Nature, Origin and Transfers of SPM (Mineral, Organic, and Biological) in Hydrosystems : a New Methodological Approach by Morphogranulometry

    Viennet, D.; Fournier, M.; Copard, Y.; Dupont, J. P.

    2017-12-01

    Source to sink is one of the main concepts in Earth Sciences for a better knowledge of hydrosystems dynamics. Regarding this issue, the present day challenge consists in the characterization by in-situ measurements of the nature and the origin of suspended particles matters (SPM). Few methods can fully cover such requirements and among them, the methodology using the form of particles deserves to be developed. Indeed, morphometry of particles is widely used in sedimentology to identify different sedimentary stocks, source-to-sink transport and sedimentation mechanisms. Currently, morphometry analyses are carried out by scanning electron microscope coupled to image analysis to measure various size and shape descriptors on particles like flatness, elongation, circularity, sphericity, bluntness, fractal dimension. However, complexity and time of analysis are the main limitations of this technique for a long-term monitoring of SPM transfers. Here we present an experimental morphometric approach using a morphogranulometer (a CCD camera coupled to a peristaltic pump). The camera takes pictures while the sample is circulating through a flow cell, leading to the analysis of numerous particles in a short time. The image analysis provides size and shape information discriminating various particles stocks according to their nature and origin by statistical analyses. Measurements were carried out on standard samples of particles commonly found in natural waters. The size and morphological distributions of the different mineral fractions (clay, sand, oxides etc), biologic (microalgae, pollen, etc) and organic (peat, coal, soil organic matter, etc) samples are statistically independent and can be discriminated on a 4D graph. Next step will be on field in situ measurements in a sink-spring network to understand the transfers of the particles stocks inside this simple karstic network. Such a development would be promising for the characterisation of natural hydrosystems.

  1. The dissolution rate of silicate glasses and minerals: an alternative model based on several activated complexes

    Berger, G.

    1997-01-01

    Most of the mineral reactions in natural water-rock systems progress at conditions close to the chemical equilibrium. The kinetics of these reactions, in particular the dissolution rate of the primary minerals, is a major constrain for the numerical modelling of diagenetic and hydrothermal processes. In the case of silicates, recent experimental studies have pointed out the necessity to better understand the elementary reactions which control the dissolution process. This article presents several models that have been proposed to account for the observed dissolution rate/chemical affinity relationships. The case of glasses (R7T7), feldspars and clays, in water, in near neutral pH aqueous solutions and in acid/basic media, are reviewed. (A.C.)

  2. Selfish cellular networks and the evolution of complex organisms.

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Study of the organic -15N mineralization in an Oxisol and its absorption by a grass (Melinis minutiflora Beauv.)

    Urquiaga C, S.; Libardi, P.L.; Reichardt, K.; Padovese, P.P.; Moraes, S.O.; Victoria, R.L.

    1982-01-01

    Mineralization of organic-N to soil samples of an Oxisol as 15 N-labeled bean straw, with and without N from fertilizer (urea) was studied, as well as the effect of expanded vermiculite in the production and absorption of the mineralized-N by a grass. The experiment was conducted in plastic pots. The fertilizer urea (46,64%N) utilized was labelled (5,2% of 15 N) atoms). All experimental pots received 150 ppm of P and K as simple superphosphate (18% P 2 O 5 ) and 26% CaO) and potassium sulphate (60% K 2 O), respectively. The grass was planted by putting 8 small pieces by pot. The aerial part was harvested at 30 days intervals. Grass production was a function of the N available and bean straw behaved as an important N source for the plants; at 30 days (first sampling) the production N extraction and efficiency of utilization of the organic N were at their maximum, decreasing (p=0,01) at each following harvest; after the first sampling the mineralization rate of organic N was very low, decreasing significantly the grass production; N fertilizer favoured significantly the mineralization and the efficiency of utilization of the organic-N applied; vermiculite did not affect either production or the N extraction by the grass; in the soil mineral-N, after the culture, the percentage of N from labelled sources was two times that of the total-N and lower than in the plant in the final harvest. (Author) [pt

  4. Social behavior of bacteria: from physics to complex organization

    Ben-Jacob, E.

    2008-10-01

    I describe how bacteria develop complex colonial patterns by utilizing intricate communication capabilities, such as quorum sensing, chemotactic signaling and exchange of genetic information (plasmids) Bacteria do not store genetically all the information required for generating the patterns for all possible environments. Instead, additional information is cooperatively generated as required for the colonial organization to proceed. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessments of information). These afford the cell certain plasticity to select its response to biochemical messages it receives, including self-alteration and broadcasting messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intra-cellular level to the whole colony. Collectively bacteria store information, perform decision make decisions (e.g. to sporulate) and even learn from past experience (e.g. exposure to antibiotics)-features we begin to associate with bacterial social behavior and even rudimentary intelligence. I also take Schrdinger’s’ “feeding on negative entropy” criteria further and propose that, in addition organisms have to extract latent information embedded in the environment. By latent information we refer to the non-arbitrary spatio-temporal patterns of regularities and variations that characterize the environmental dynamics. In other words, bacteria must be able to sense the environment and perform internal information processing for thriving on latent information embedded in the complexity of their environment. I then propose that by acting together, bacteria can perform this most elementary cognitive function more efficiently as can be illustrated by their cooperative behavior.

  5. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; hide

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  6. Atrazine sorption by hydroxy-interlayered clays and their organic complexes.

    Indraratne, Srimathie P; Farenhorst, Annemieke; Goh, Tee Boon

    2008-01-01

    This study examined the sorption of atrazine by hydroxy-Fe interlayered montmorillonite (FeMt) and its hydroquinone (FeMtHQ), citrate (FeMtCt) and catechol (FeMtCC) complexes as well as by hydroxy-Al interlayered montmorillonite (AlMt) and its hydroquinone (AlMtHQ) and citrate (AlMtCt) complexes. Found among the clays were sorption distribution coefficients (K(d)) ranging from 24 to 123 mL g(-1) and maximum sorption (M) ranging from 2.2 to 16.8 microg g(-1). Both K(d) and M decreased in the order of FeMtCC > FeMtHQ > AlMtHQ > (AlMt = FeMt) > (AlMtCt = FeMtCt). The pH was negatively correlated with both K(d) (r = -0.90, p 0.96, p 0.94, p AlMt). This suggests that functional groups of Fe-OH and Al-OH in FeMt and AlMt reduced the available sorption sites for atrazine by making complexes with citrate ions while forming FeMtCt and AlMtCt. The atrazine was sorbed through the hydrophobic interactions with organic compound surfaces as well as through H-bonding and ionic bonding with clay-mineral surfaces.

  7. Osteoporosis, bone mineral density and CKD-MBD complex (I): Diagnostic considerations.

    Bover, Jordi; Ureña-Torres, Pablo; Torregrosa, Josep-Vicent; Rodríguez-García, Minerva; Castro-Alonso, Cristina; Górriz, José Luis; Laiz Alonso, Ana María; Cigarrán, Secundino; Benito, Silvia; López-Báez, Víctor; Lloret Cora, María Jesús; daSilva, Iara; Cannata-Andía, Jorge

    2018-04-24

    Osteoporosis (OP) and chronic kidney disease (CKD) independently influence bone and cardiovascular health. A considerable number of patients with CKD, especially those with stages 3a to 5D, have a significantly reduced bone mineral density leading to a high risk of fracture and a significant increase in associated morbidity and mortality. Independently of classic OP related to age and/or gender, the mechanical properties of bone are also affected by inherent risk factors for CKD ("uraemic OP"). In the first part of this review, we will analyse the general concepts regarding bone mineral density, OP and fractures, which have been largely undervalued until now by nephrologists due to the lack of evidence and diagnostic difficulties in the context of CKD. It has now been proven that a reduced bone mineral density is highly predictive of fracture risk in CKD patients, although it does not allow a distinction to be made between the causes which generate it (hyperparathyroidism, adynamic bone disease and/or senile osteoporosis, etc.). Therefore, in the second part, we will analyse the therapeutic indications in different CKD stages. In any case, the individual assessment of factors which represent a higher or lower risk of fracture, the quantification of this risk (i.e. using tools such as FRAX ® ) and the potential indications for densitometry in patients with CKD could represent an important first step pending new clinical guidelines based on randomised studies which do not exclude CKD patients, all the while avoiding therapeutic nihilism in an area of growing importance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China

    OUYANG Xuejun; ZHOU Guoyi; HUANG Zhongliang; ZHOU Cunyu; LI Jiong; SHI Junhui; ZHANG Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Gnangdong Province, China). The soils were incubated at 25℃ for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4+-N and NO3--N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and

  9. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of

  10. The Complex Stratigraphy of the Highland Crust in the Serenitatis Region of the Moon Inferred from Mineral Fragment Chemistry

    Ryder, Graham; Norman, Marc D.; Taylor, G. Jeffrey

    1997-01-01

    rocks do not contribute significantly to the fragment population. Nor do ferroan anorthosites contribute more than a tiny part of even the plagiociase fragment population. A few mineral fragments that are consistent with the cryptic low-K Fra Mauro chemical component were found, and these appear to be from gabbroic sources. The mineral fragment populations cannot be mixed in their observed proportions to produce the whole rock composition, because the fragments are more refractory and deficient in Ti, P, and alkalis. A preferential contribution to the melt from a rock similar to sodic ferrogabbro can partly resolve the discrepancy. The population of mineral fragments requires a very diverse population of igenous rocks that are not all related to each other, demonstrating the existence of a complex crust built of numerous separate igneous plutons. Many of these plutons may have crystallized at shallow depths. The chemical composition of the melt breccias, in combination with the mineral fragment data and an understanding of the cratering process, suggests that the deepest crust sampled by the Serenitatis impace (not necessarily the deepest crust) was basaltic in composition, including KREEP and gabbroic rocks like sodic ferrogabbro, and lacking abundant olivine-rich material. These were overlain by Mg-suite rocks of varied types, including norites and troctolites that supplied most of the olivine mineral fragments. Granulities, which are metamorphosed and more feldspathic breccias, were abundant near the surface. Remote sensing indicates that the entire Serenitatis region lacks ferroan anorthosite, consistent with the results of our study.

  11. Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758)

    Domínguez, David; Rimoldi, Simona; Robaina, Lidia E.; Torrecillas, Silvia; Terova, Genciana; Zamorano, María J.; Karalazos, Vasileios; Hamre, Kristin; Izquierdo, Marisol

    2017-01-01

    Substituting fishmeal (FM) with vegetable meal (VM) can markedly affect the mineral composition of feeds, and may require additional mineral supplementation. Their bioavailability and optimal supplementation levels depend also on the form of delivery of minerals. The aim of the study was to determine the effect of different delivery forms of three major trace elements (Zn, Mn and Se) in a marine teleost. Gilthead sea bream juveniles of 22.5 g were fed a VM-based diet for 12 weeks that was eit...

  12. Leaf litter and roots as sources of mineral soil organic matter in temperate deciduous forest with and without earthworms

    Fahey, T.; Yavitt, J. B.

    2012-12-01

    We labeled sugar maple trees with 13C to quantify the separate contributions of decaying leaf litter and root turnover/rhizosphere C flux to mineral soil organic matter (SOM). Labeled leaf litter was applied to forest plots with and without earthworms and recovery of the label in SOM was quantified over three years. In parallel, label recovery was quantified in soils from the labeling chambers where all label was supplied by belowground C flux. In the absence of earthworms about half of the label added as leaf litter remained in the surface organic horizons after three years, with about 3% recovered in mineral SOM. The label was most enriched on silt + clay surfaces, representing precipitation of DOC derived from litter. Earthworms mixed nearly all the leaf litter into mineral soil within one year, and after two years the label was most enriched in particulate organic matter held within soil aggregates produced by worms. After three years 15-20% of the added label was recovered in mineral SOM. In the labeling chambers over 75% of belowground C allocation (BCA) was used in root and rhizosphere respiration in the first year after labeling. We recovered only 3.8% of estimated BCA in SOM after 3 years; however, expressed as a proportion of fine root production plus rhizosphere C flux, this value is 15.4%, comparable to that for leaf litter in the presence of earthworms. In conclusion, both roots and leaf litter contribute significantly to the formation of stabilized mineral SOM in temperate deciduous forests, and this process is profoundly altered by the invasion of lumbricid earthworms.

  13. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.

    2011-01-01

    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.

  15. Complexity Analysis of Industrial Organizations Based on a Perspective of Systems Engineering Analysts

    I. H. Garbie

    2011-12-01

    Full Text Available Complexity in industrial organizations became more difficult and complex to be solved and it needs more attention from academicians and technicians. For these reasons, complexity in industrial organizations represents a new challenge in the next decades. Until now, analysis of industrial organizations complexity is still remaining a research topic of immense international interest and they require reduction in their complexity. In this paper, analysis of complexity in industrial organizations is shown based on the perspective of systems engineering analyst. In this perspective, analysis of complexity was divided into different levels and these levels were defined as complexity levels. A framework of analyzing these levels was proposed and suggested based on the complexity in industrial organizations. This analysis was divided into four main issues: industrial system vision, industrial system structure, industrial system operating, and industrial system evaluating. This analysis shows that the complexity of industrial organizations is still an ill-structured and a multi-dimensional problem.

  16. Understanding implementation in complex public organizations – implication for practice

    Gry Cecilie Høiland

    2016-10-01

    Full Text Available The effective implementation of politically initiated public service innovations to the front-lines of the public service organization, where the innovation is to be applied, is a challenge that both practitioners and researchers struggle to solve. We highlight the importance of analysing contextual factors at several levels of the implementation system, as well as the importance of considering how the practical everyday work situations of the front-line workers influence their application of the innovation in question. We illustrate this by exploring the implementation process of a specific work inclusion measure, looking at its wider context and some of its implementation outcomes at a specific public agency. The intention is to illustrate the significance of considering the contextual complexity influencing implementation work as a reminder for practitioners to take this into account in their planning and practices.

  17. Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched peatland

    Mikutta, Christian; Langner, Peggy; Bargar, John R.; Kretzschmar, Ruben

    2016-01-01

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7–6.6, E_h = –127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L_3-edge X-ray absorption spectroscopy. The soils contained 2.3–47.4 wt % organic C, 4.1–58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̄ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35–68% of total U (x̄ = 50%, n = 15). Shell-fit analyses of bulk U L_3-edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̄ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ~3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. As a result, our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  18. Tetra- and Hexavalent Uranium Forms Bidentate-Mononuclear Complexes with Particulate Organic Matter in a Naturally Uranium-Enriched Peatland.

    Mikutta, Christian; Langner, Peggy; Bargar, John R; Kretzschmar, Ruben

    2016-10-04

    Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7-6.6, E h = -127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L 3 -edge X-ray absorption spectroscopy. The soils contained 2.3-47.4 wt % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35-68% of total U (x̅ = 50%, n = 15). Shell-fit analyses of bulk U L 3 -edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̅ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).

  19. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  20. Investigations on the transformation of N-fertilizer and the mineralization of organic N using 15N Pt. 1

    Latkovics, Gy.-ne

    1979-01-01

    A composting experiment was set up on chernozem-type brown forest soil to investigate the transformation of nitrogen fertilizer and the mineralization of organic N. For the average soil sample from the ploughed layer the pH value was 7.1, the mineral N content 2.85 mg, the fixed ammonium content 15.98 mg and the total N 140.8 mg100/g soil. The humus content was 1.91%. In the experiment 15 N labelled ammonium nitrate was used, and, as 15 N labelled organic matter, ground, air-dried rye-grass and bean stalks and with approximately the same N content as the 0.4% of the soil quantity measured. The values obtained by chemical methods and isotope indication show that the N-loss during composting was negligible and that the methods tested are suitable for the investigation of the transformation processes of nitrogen. (author)

  1. Structural organization and spectroscopy of peptide-actinide(IV) complexes

    Dahou, S.

    2010-01-01

    The contamination of living organisms by actinide elements is at the origin of both radiological and chemical toxicity that may lead to severe dysfunction. Most of the data available on the actinide interaction with biological systems are macroscopic physiological measurements and are lacking a molecular description of the systems. Because of the intricacy of these systems, classical biochemical methods are difficult to implement. Our strategy consisted in designing simplified biomimetic peptides, and describing the corresponding intramolecular interactions with actinides. A carboxylic pentapeptide of the form DDPDD has been at the starting point of this work in order to further assess the influence of the peptide sequence on the topology of the complexes.To do so, various linear (Asp/Ala permutations, peptoids) and cyclic analogues have been synthesized. Furthermore, in order to include the hydroxamic function (with a high affinity for Fe(III)) in the peptide, both desferrioxamine and acetohydroxamic acid have been investigated. However because of difficulties in synthesis, we have not been able to test these peptides. Three actinide cations have been considered at oxidation state +IV (Th, Np, Pu) and compared to Fe(III), often considered as a biological surrogate of Pu(IV). The spatial arrangement of the peptide around the cation has been probed by spectrophotometry and X-ray Absorption Spectroscopy. The spectroscopic data and EXAFS data adjustment lead us to rationalize the topology of the complexes as a function of the peptide sequence: mix hydroxy polynuclear species for linear and cyclic peptides, mononuclear for the desferrioxamine complexes. Furthermore, significant differences have appeared between Fe(III) and actinide(IV), related to differences of reactivity in aqueous medium. (author)

  2. Redefining the modular organization of the core Mediator complex.

    Wang, Xuejuan; Sun, Qianqian; Ding, Zhenrui; Ji, Jinhua; Wang, Jianye; Kong, Xiao; Yang, Jianghong; Cai, Gang

    2014-07-01

    The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.

  3. Role of complex utilization of mineral raw materials In geological research

    Takacs, P.; Varju, G.

    1979-01-01

    Presents Hungarian research efforts on ways of utilizing the secondary raw materials alunite, pumice and slate coal from various mines. The slate coal is separated from brown coal and disposed of at spoil banks of brown coal mines, due to its high ash content (up to 56.8% under dry conditions), silicate content up to 58.2% and low calorific value between 1500 and 2780 kcal/kg. The research proposal for utilizing slate coal is directed at partial separation of the mineral and coal content by comminution, peptization and hydrocentrifugal separation. The larger part of the silicate content is held in the colloid suspension, which could be used for conditioning drilling mud or foundry sand. The produced coal concentrate has a reduced ash content and higher calorific value (between 500 and 800 kcal/kg) and could be employed in soil amelioration or combustion. (10 refs.) (In German)

  4. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia

    O. Kiseleva

    2017-07-01

    Full Text Available The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan (SEPES ophiolites. Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites. The chromitites are classified into type I and type II based on their Cr#. Type I (Cr# = 59–85 occurs in both northern and southern branches, whereas type II (Cr# = 76–90 occurs only in the northern branch. PGE contents range from ∑PGE 88–1189 ppb, Pt/Ir 0.04–0.42 to ∑PGE 250–1700 ppb, Pt/Ir 0.03–0.25 for type I chromitites of the northern and southern branches respectively. The type II chromitites of the northern branch have ∑PGE contents higher than that of type I (468–8617 ppb, Pt/Ir 0.1–0.33. Parental melt compositions, in equilibrium with podiform chromitites, are in the range of boninitic melts and vary in Al2O3, TiO2 and FeO/MgO contents from those of type I and type II chromitites. Calculated melt compositions for type I chromitites are (Al2O3melt = 10.6–13.5 wt.%, (TiO2melt = 0.01–0.44 wt.%, (Fe/Mgmelt = 0.42–1.81; those for type II chromitites are: (Al2O3melt = 7.8–10.5 wt.%, (TiO2melt = 0.01–0.25 wt.%, (Fe/Mgmelt = 0.5–2.4. Chromitites are further divided into Os-Ir-Ru (I and Pt-Pd (II based on their PGE patterns. The type I chromitites show only the Os-Ir-Ru pattern whereas type II shows both Os-Ir-Ru and Pt-Pd patterns. PGE mineralization in type I chromitites is represented by the Os-Ir-Ru system, whereas in type II it is represented by the Os-Ir-Ru-Rh-Pt system. These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction. However, the chromitites and PGE mineralization of the southern

  5. Radio catalysis application in degradation of complex organic samples

    Moreno L, A.

    2014-01-01

    The generation of wastewater is a consequence of human activities, industries to be the generators of a large part of these discharges. These contaminated waters can be processed for their remediation; however the recalcitrant organic compounds are hardly removed through conventional treatments applied, so that new technologies have been developed for disposal such as the advanced oxidation technologies or processes. With the aim of the study is to apply ionizing radiation as a method of remediation in wastewater, in this work were carried out experiments of radiolysis and radio catalysis, which are techniques considered advanced oxidation technologies, that consist in irradiate with 60 Co gamma radiation solutions of 4- chloro phenol and methylene blue, applied at different concentrations and using as process control measurements of the compound not degraded by UV-vis spectrophotometry at 507 and 664 nm for 4-chloro phenol and methylene blue respectively. At doses greater than 2.5 kGy were near-zero degradation. Degradation experiments were also conducted by photo catalysis by irradiation with a UV lamp of 354 nm wavelength. For 4-chloro phenol results showed that degradation is efficient (39%). With those previous results, these techniques were applied to degrade complex mixtures of organic compounds from samples of wastewater from a sewage treatment plant, where was considered as process control measurement of the dissolved organic carbon obtained by a spectrophotometric analysis at 254 nm, and a maximum of 26% degradation was obtained by applying 80 kGy. On the other hand, a series of experiments fractionating the irradiations at intervals of 20 kGy to obtain a cumulative dose of 80 kGy, which was 2.8 times greater with respect to degradation by radio catalysis with continuous irradiation. (Author)

  6. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.

    2013-11-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density

  7. The study of the sorption capacity of mineral kasongan and sand mixture of the waste of uranium organic phase

    Budiyono, M. E.; Sardjono, D.; Sukosrono

    1996-01-01

    An experimental investigation on the sorption capacity of mineral Kasongan and sand of Progo of the waste of uranium organic phase which to be connected with a backfill material which can be used to carried out of waste transportation from uncertain unit of the wastes to process of the wastes. The aim of the investigation wastes transportation must be conducted of the anticipation, that of the wastes with safe to unit management of wastes. Therefore must be investigated of the uranium organic wastes. This investigations which influence sorption ability, so an experimental investigation on its absorbability is necessary since this nuclide can not be dispersed to the environment. This investigation was carried out by varying some parameters which influence the sorption ability or sorptive capacity of the mineral Kasongan and the sand of Progo. The variables investigated were the grains size of the backfill material. Also the composition of mineral Kasongan/sand of Progo. The grains size were varied from 10-200 mesh and the composition were varied from 100/0 to 0/100 by weight. The sorption capacity of the maximum results was also determined. It can be concluded that the sorption capacity of the mineral Kasongan was the best at the grains of size about 80 mesh. The sorption capacity was 58 x 10 -2 ml/g and the grains size of the sand of Progo about 20 to 80 mesh was 30 x 10 -2 ml/g. The best sorption capacity of 58 x 10 -2 ml/g was gained at the composition of 100 % mineral Kasongan and 0% sand Progo. (author)

  8. [Assessment of efficiency of dietotherapy with addition of a vitamin-mineral complex in patients with diabetes mellitus type 2].

    Lapik, I A; Sokol'nikov, A A; Sharafetdinov, Kh Kh; Sentsova, T B; Plotnikova, O A

    2014-01-01

    The influence of diet inclusion of vitamin and mineral complex (VMC), potassium and magnesium in the form of asparaginate on micronutrient status, body composition and biochemical parameters in patients with diabetes mellitus type 2 (DM2) has been investigated. 120 female patients with DM2 and obesity of I-III degree (mean age - 58 +/- 6 years) have been included in the study. The patients were divided into two groups: main group (n = 60) and control group (n = 60). For 3 weeks patients of both groups received a low-calorie diet (1600 kcal/day). Patients of the main group received VMC, providing an additional intake of vitamins C and E (100-120% RDA), beta-carotene (40% RDA), nicotinamide (38% RDA), pantothenic acid and biotin (60% RDA), vitamins B12, B2 and folic acid (75-83% RDA), vitamins B1 and B6 (160-300% RDA), zinc (100% RDA) and chromium (400% RDA), and also received magnesium (17.7% RDA) and potassium (9.4% RDA) in the form of asparaginate. Body composition, biochemical parameters and micronutrient status (blood serum level of vitamins C, D, B6, B12, folate, potassium, calcium, magnesium, zinc, phosphorus) were evaluated in all patients before and after the 3-week course of diet therapy. After the low-calorie diet therapy average body weight reduction was 4.2 +/- 0.2 kg in the main group, and 4.4 +/- 0.1 kg in the control group, without statistically significant differences between groups. Statistically significant decrease of total cholesterol, triglycerides, and glucose concentration in blood serum was registered in both groups. It should be noted that in the control group glycemia decreased on 1.2 +/- 0.1 mmol/l, while the main group showed a decrease on 1.8 +/- 0.1 (p l). Initial assessment of vitamin and mineral status revealed that most patients were optimal supplied with vitamins and minerals. After the dietotherapy significant increase of vitamin C, 25-hydroxyvitamin D, vitamin B6, folate, vitamin B12, potassium, magnesium, calcium, zinc and

  9. The evaluation of physico-chemical parameters of the Nasrand Plutonic complex by using mineral composition

    Fatemeh Sarjoughian

    2017-02-01

    Full Text Available Introduction Mineral composition is sensitive to variations in the composition of the magma and can be used to characterize the physical conditions of crystallization such as temperature, pressure, oxygen fugacity and water content. The studies have demonstrated that geobarometery by amphibole provides a tool for determining the depth of crystallization and knowledge of the depth of crystallization of hornblende through to solidification of calc-alkaline plutons (Anderson and Smith, 1995. The composition of pyroxene can be used as crystallization pressure and temperature indicators of pyroxene too. Anlytical methods The mineral compositions of the Nasrand intrusion were determined by electron microprobe, with special emphasis on the amphibole, feldspar, and pyroxene at the Naruto University, Japan, the EPMA (Jeol- JXA-8800R was used at operating conditions of 15 kV, 20 nA acceleration voltage and 20s counting time. Results The Nasrand intrusion (33°13'–33°15' N, 52°33'–52°34'E with an outcrop area of about 40 km2 is situated in the Urumieh–Dokhtar magmatic belt, SE of Ardestan. It is composed of granite and granodiorite and various dikes of diorite and gabbro which are intruded in it. It is intruded into Eocene volcanic rocks, including andesite, rhyolite, and dacite. The petrographical studies indicate that the granitic and granodioritic rocks contain major minerals such as quartz, K-feldspar, plagioclase, and amphibole, which are in an approximate equilibrium state. The gabbroic-dioritic dikes usually show microgranular porphyric texture. They mainly consist of plagioclase, amphibole, and pyroxene. The plagioclase shows variable composition from albite to oligoclase in the granitoid rocks and from oligoclase to bytownite in dioritic and gabbroic dikes (Deer et al., 1991. The amphiboles are calcic and their composition varies from hornblende to actinolite, whereas the composition of the basic dikes is inclined to hastingsite (Leake et

  10. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  11. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  12. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  13. Investigation of Organic Matters and their Roles in Deposition and Phosphate Mineralization in the Kuh-e-Sefid Deposit, Ramhormoz

    Houshang Pourkaseb

    2017-07-01

    Full Text Available Introduction It has been recently stated that phosphorite deposits are in fact marine biogenic materials, due to bacterial activity producing bio-apatite. In addition, Phosphorites contain 15–20 wt.% P2O5 (Tzifas et al., 2014. In this deposit, phosphate mineralization has occurred as phosphorite lenses with Eocene age within the Pabdeh Formation, with thickness up to 1.5 meters and width of 15 meters and its hosted rock is black shale. According to the presence of indices of fossils such as Globorotalia, Hantkenina, its age can be attributed to the middle Eocene. The Pabdeh formation is a very rich organic matter in addition to the presence of phosphate (Damiri, 2011. The formation due to planktonic foraminifera rich in organic matter is like the hydrocarbon source rock (Daneshian et al., 2012. In marine basins where upwelling and productivity are limited, phosphates may develop outside of microbial cells and also within bacterial cellular structures, formed by slow bacterial assimilation of phosphorus from assaying organic matter in areas of restricted sedimentation (O’Brine et al., 1981. It is therefore suggested that the upwelling currents did that in the recycling of phosphorus from dead organisms such as fishes and other marine vertebrates. The aim of this study is investigation of organic matter’s species and their roles in deposition and phosphate mineralization in the Kuh-e-Sefid phosphate deposit using XRD, FTIR and Rock-Eval pyrolysis. Materials and methods In field observations, 12 samples were selected and they were taken from units of phosphate and shale host rock in the Kuh-e-Sefid phosphate ore deposit. Ten cross sections were studied by conventional microscopic methods. Rock-Eval analysis was used in order to determine the organic carbon in the geology Department of the Shahid Chamran University of Ahvaz. The Phosphorite samples were determined by XRD at the Kansaran Binaloud Company in the Science and Technology campus in

  14. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

    Wolthers, M.; Charlet, L.; Van Cappellen, P.

    2008-01-01

    The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineralaqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on

  15. Improving mining technology and organization of labor in the light of medical-biological aspects of physical health of miners

    Egorov, P.V.; Nirenburg, K.G.; Davydova, N.N.; Dyatlova, L.A. (Kuzbasskii Politekhnicheskii Institut (USSR))

    1991-12-01

    Transfer to a contract-bonus system in mines of the Severokuzbassugol' and Leninskugol' associations (USSR) increased coal mining productivity by 42.2-54.4%, but, at the same time, problems concerning miners' health were noted. Presents data on the productivity and labor conditions of contract teams working at coal mining and in development faces. The influence of noise and vibration induced stresses on organisms of underground workers is analyzed. Investigations showed that 3 stages of exhaustion are likely to develop and that the most vulnerable are the cardiovascular system and the respiratory tract. The 3 stages of exhaustion and ability to recover were studied on mining machine operators and drivers of heading machines. Data showed that during the 1985-89 period, 972 miners received disability certificates; the rate of disability was 2.6 miners per 1 Mt of coal; 40.5% of miners over 40 years working on labor-intensive jobs had three or more chronic diseases which could cause permanent disability. In the structure of disability, cardio-vascular system cases accounted for 25%, osseous-muscular system cases for 20% and pulmonary diseases for 13%. Stresses the need for every mine to maintain its own medical center equipped with inhalation therapy, psychological relief, acupuncture and physiotherapy facilities.

  16. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  17. The optical constants of the organic thin films in the case of xanthats adsorption at the surface of semiconductors minerals

    Todoran, Radu; Todoran, Daniela

    2008-01-01

    The paper present the determinations of some kinetic parameters that characterize the kinetics of the adsorption phenomenon of some organic xanthate molecule on the surface of some natural semiconductor mineral (galena, sphalerite) in order to understand the inward mechanism of this phenomenon. Among the methods of inquiry that allow kinetics determination in situ the optical ones were chosen relying on the change of the liquid-mineral semiconductor interface, and permitting continuous inquires without disturbing the inward development of the processes. Into the computation, we took into the consideration the physical values which feature the roughness of the solid surface, the diffusion into liquid media and the energetic non-homogeneities of the surface. The R s /R p =f(θ) characteristic helps us to establish the thickness of the adsorbed layer, as well as to determine the optical parameters of the thin film. the experimental results allow us to get some information on the mineral and mineral-solution of xanthate, as well allow us to get some information on the parameters which, in correlation with other proportions experimentally determined - could had as to estimations of the dynamic of the surface of a semiconductor solid body. (Author)

  18. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  19. Elaborations in the area of complex reprocessing of mineral raw materials

    Mirsaidov, U.M.

    2002-01-01

    In present time complex using of raw materials has important significance as it connected with solving problems of creating of waste less and ecologically clean technologies. Elaboration and assimilation of waste less technologies has special significance for chemical, mountain-chemical, metallurgical branches of industry. In this part of book author gives several methods of waste less and ecologically clean technologies

  20. Biogeochemical stability and reactions of iron-organic carbon complexes

    Yang, Y.; Adhikari, D.; Zhao, Q.; Dunham-Cheatham, S.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.; Tang, Y.; Obrist, D.; Roden, E. E.

    2017-12-01

    Our core hypothesis is that the degradation rate of soil organic carbon (OC) is governed by the amount of iron (Fe)-bound OC, and the ability of microbial communities to utilize OC as an energy source and electron shuttle for Fe reduction that in turn stimulates reductive release of Fe-bound labile dissolved OC. This hypothesis is being systematically evaluated using model Fe-OC complexes, natural soils, and microcosm system. We found that hematite-bound aliphatic C was more resistant to reduction release, although hematite preferred to sorb more aromatic C. Resistance to reductive release represents a new mechanism that aliphatic soil OC was stabilized by association with Fe oxide. In other studies, pyrogenic OC was found to facilitate the reduction of hematite, by enhancing extracellular electron transport and sorbing Fe(II). For ferrihydrite-OC co-precipitates, the reduction of Fe and release of OC was closely governed by the C/Fe ratio in the system. Based on the XPS, XANES and XAFS analysis, the transformation of Fe speciation was heterogeneous, depending on the conformation and composition of Fe-OC complexes. For natural soils, we investigated the quantity, characteristics, and reactivity of Fe-bound OC in soils collected from 14 forests in the United States. Fe-bound OC contributed up to 57.8% of total OC in the forest soils. Under the anaerobic conditions, the reduction of Fe was positively correlated to the electron accepting capacity of OC. Our findings highlight the closely coupled dynamics of Fe and OC, with broad implications on the turnover of OC and biogeochemical cycles of Fe.

  1. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multi-organ technetium complexes production and use thereof

    Koehler, G.A.; Pestel, G.M.

    1976-01-01

    Chemical complexes, useful as radiopharmaceuticals, are formed by reacting technetium-99m with substituted or unsubstituted alkyl monophosphonic acids and certain ester derivatives thereof. The complexes are formed by reducing pertechnetate ion chemically or electrolytically in the presence of the phosphonic acid. By chemical modification of the phosphonic acid complexing agent, it is possible to ''tailor'' complexes for kidney, liver or bone imaging. The complexes are normally used in a physiologically acceptable aqueous medium. 20 Claims, No Drawings

  3. Oxygen consumption during mineralization of organic compounds in water samples from a small sub-tropical reservoir (Brazil

    Cunha-Santino Marcela Bianchessi da

    2003-01-01

    Full Text Available Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid to 71.5 mg.l-1 (glucose. The highest deoxygenation rate (kD was observed for mineralization of tannic acid (0.321 day-1 followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively. From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid to 2.55 (sucrose.

  4. Southern complex: geology, geochemistry, mineralogy, and mineral chemistry of selected uranium- and thorium-rich granites

    Hoffman, M.A.

    1987-01-01

    Four major rock groups are defined in the Southern Complex: the Bell Creek Granite (BCG), the Clotted Granitoids (CGR), the Albite Granite (AGR), and the Migmatite Complex. Metatexites of the Migmatite Complex are the oldest rocks and include paleosome of a metasedimentary and metavolcanic protolith represented by Banded Iron Formation, Banded Amphibolite, and Banded Gneisses, and interlayered or crosscutting leucogranites. The CGR span the range from metatexite to diatexite and represent in-situ partial melting of metapelitic layers in the protolith during intrusion of the BCG. The BCG cuts the migmatites, is locally cut by the CGR, and was derived by partial melting of a dominantly metasedimentary protolith at some depth below the presently exposed migmatites during a regional tectonothermal event. The Albite Granite is a 2km diameter, muscovite-fluorite-columbite-bearing intrusive stock that cuts all other major units. The thorium history of the BCG is a function of the history of monazite. The thorium history of the CGR is also dominated by monazite but the thorium content of this unit cannot be entirely accounted for by original restite monazite. The uranium history of the BCG and CGR was dominated by magmatic differentiation and post magmatic, metamorphic and supergene redistributions and is largely independent of the thorium history. The thorium and uranium history of the AGR was dominated by magmatic/deuteric processes unlike the BCG and CGR

  5. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc : a column experiment

    Refaey, Y.; Jansen, B.; Parsons, J.R.; de Voogt, P.; Bagnis, S.; Markus, A.; El-Shater, A.-H.; El-Haddad, A.-A.; Kalbitz, K.

    2017-01-01

    Infiltration of heavy metal (HM) polluted wastewater can seriously compromise soil and groundwater quality. Interactions between mineral soil components (e.g. clay minerals) and dissolved organic matter (DOM) play a crucial role in determining HM mobility in soils. In this study, the influence of

  6. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  7. Organic horizon and mineral soil mercury along three clear-cut forest chronosequences across the northeastern USA.

    Richardson, Justin B; Petrenko, Chelsea L; Friedland, Andrew J

    2017-12-01

    Mercury (Hg) is a globally distributed pollutant trace metal that has been increasing in terrestrial environments due to rising anthropogenic emissions. Vegetation plays an important role in Hg sequestration in forested environments, but increasing tree removal for biofuels and wood products may affect this process. The long-term effect of clear-cutting on forest soil Hg remains uncertain, since most studies are limited to measuring changes for event. The chronosequence approach, which substitutes space for time using forest stands of different ages since clear-cutting, allows for investigation of processes occurring over decades to centuries. Here, we utilized three clear-cut forest soil chronosequences across the northeastern USA to understand Hg accumulation and retention over several decades. Total Hg concentrations and pools were quantified for five soil depth increments along three chronosequences. Our results showed Hg concentrations and pools decreased in the initial 20 years following clear-cutting. Mineral soil Hg pools decreased 21-53% (7-14 mg m -2 ) between 1-5-year-old stands and 15-25-year-old stands but mineral soil Hg pools recovered in 55-140-year-old stands to similar values as measured in 1-5-year-old stands. Our study is one of the first to demonstrate a decrease and recovery in Hg pool size. These changes in Hg did not correspond with changes in bulk density, soil C, or pH. We utilized a simple two-box model to determine how different Hg fluxes affected organic and mineral soil horizon Hg pools. Our simple model suggests that changes in litterfall and volatilization rates could have caused the observed changes in organic horizon Hg pools. However, only increases in leaching could reproduce observed decreases to mineral soil Hg pools. Further studies are needed to determine the mechanism of Hg loss from forest soils following clear-cutting.

  8. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.

    Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K

    2007-01-01

    Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.

  9. Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil

    Hybholt, Trine K.; Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Johnsen, Anders R., E-mail: arj@geus.dk [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2011-05-15

    The aim of the study was to determine centimeter-scale spatial variation in mineralization potential in diffusely polluted soil. To this end we employed a 96-well microplate method to measure the mineralization of {sup 14}C-labeled organic compounds in deep-well microplates and thereby compile mineralization curves for 348 soil samples of 0.2-cm{sup 3}. Centimeter-scale spatial variation in organic matter and the mineralization of glucose, benzoic acid, and PAHs (phenanthrene and pyrene) was determined for urban road-side soil sampled as arrays (7 x 11 cm) of 96 subsamples. The spatial variation in mineralization was visualized by means of 2-D contour maps and quantified by means of semivariograms. The geostatistical analysis showed that the easily degradable compounds (glucose and benzoic acid) exhibited little spatial variation in mineralization potential, whereas the mineralization was highly heterogeneous for the PAH compounds that require specialized degraders. The spatial heterogeneity should be taken into account when estimating natural attenuation rates. - Highlights: > Geostatistics were applied at the centimeter scale. > Glucose and benzoic acid mineralization showed little spatial variation. > PAH mineralization was highly variable at the sub-centimeter scale. > High spatial heterogeneity may be caused by low functional redundancy. - This study supports the hypothesis that specialized xenobiotic degraders may show high spatial heterogeneity in soil due to low functional redundancy.

  10. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  11. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs

  12. Complex organizations: the case of the Brazilian nuclear sector

    Xavier, Roberto Salles

    2009-01-01

    The resumption of the Brazilian Nuclear Program (BNP), in the proposed size and after 20 years of paralysis, requires profound changes in the current organizational modeling of the national nuclear industry. The effectiveness of any process of organizational change is limited to three factors. The theoretical bottleneck happens when you do not know enough about a phenomenon in order to effect the desired changes. The resource bottleneck occurs when knowledge may be available to change people's behavior but the funds necessary for implementation may be lacking. The organizational bottleneck emerges when there are knowledge and resources to solve a problem, but may not able to organize the resources in order to carry out the problem-solving effort. In the case of resumption of BNP seems clear that there is the knowledge of what is needed to make policy and the intention to allocate the necessary resources. But the question is the following: the current organizational model of the Brazilian nuclear sector is consistent with the goals laid down in the scenario of resumption of BNP? That is, is there organizational ability to leverage a program of the size proposed for the nuclear area? Find answers to these questions is crucial, because the organizational model of the Brazilian nuclear sector consists of elements involving a complex interorganizational system. Thus, this article is to examine the appropriateness of the current organizational modeling of the Brazilian nuclear sector to current demands of society. As a result, the article aims to propose recommendations for a remodeling of the nuclear sector, taking into account the current national and international scenarios of nuclear energy. (author)

  13. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  14. Mobility of organic complexes of radionuclides in soils

    Swanson, J.L.

    1983-01-01

    Results are presented to illustrate the importance of another important aspect of kinetically-inert complexes of Ni and Co to radionuclide migration; such complexes can be sorbed by some soils, while only the uncomplexed species are sorbed by others. As shown earlier, when only uncomplexed species are sorbed the kinetic inertness of the complexes can prevent significant sorption of the radionuclides by soil. Other data provide added evidence that the importance of kinetically-inert complexes varies greatly among complexants, as well as among soils. 6 references, 8 figures

  15. Radioactivity of heavy minerals and geochemistry of trace elements and radon, resulting from the weathering of the ophiolitic complex, Northwest of Syria

    Kattaa, B.; Al-Hilal, M.; Jubeli, Y.

    1999-06-01

    Geochemical and radiometric survey of stream sediments resulting from the weathering of ophiolitic complex at Al-Basit area were carried out. Several exploration techniques have been used to evaluate the radioactive elements and minerals in the area, and to estimate the significance of the radioactivity of the source rocks of these elements and minerals. determination of radioelements and some trace elements in stream sediments, in addition to gamma-ray spectrometry and radon gas measurement in water of springs and wells were carried out in the study area. The results show that the high values of radioactive elements and radon concentration are related to the occurrence of syenite nepheline and plageogranite, characterized by higher content of these elements compared to mafic and ultramafic rocks. Mineralogical study of the heavy minerals shows that the abundant minerals are pyroxene and amphibole, while less abundant minerals are iron oxides (limonite and hematite), chromite, ilmenite, olivine and magnetite. Rare minerals are zircon, apatite, barite, tourmaline and sphen. The absence of monazite, xenotime and thorite in the collected samples is mainly attributed to the very limited occurrence of their source rocks. However, this results is rather restricted to the collected samples. High concentration of magnetite and ilmenite in some samples was noted, in addition to the presence of mineral called galaxite which was not reported previously. Gold flake was also found in one of the samples. The study of grain morphology suggests that the heavy minerals were transported for short distance from their source rocks. Grain size analyse of heavy minerals reveals that the concentration of economic minerals such as chromite and ilmenite increases with the decrease of the grain size. (author)

  16. Cover plants and mineral nitrogen: effects on organic matter fractions in an oxisol under no-tillage in the cerrado

    Isis Lima dos Santos

    2014-12-01

    Full Text Available Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation. The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L. Millsp; and Sorghum bicolor (L. Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.

  17. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  18. Variáveis relacionadas à estabilidade de complexos organo-minerais em solos tropicais e subtropicais brasileiros Selected soil-variables related to the stability of organo-minerals complexes in tropical and subtropical brazilian soils

    Alberto Vasconcellos Inda Junior

    2007-10-01

    Full Text Available A estabilidade de complexos organo-minerais é uma característica importante quanto à química e física de solos tropicais e subtropicais. O objetivo deste estudo foi identificar variáveis relacionadas à estabilidade de complexos organo-minerais, avaliada pela energia de ultra-som necessária para a dispersão total do solo em partículas primárias, em seis solos das regiões Sul e Centro-Oeste do Brasil com textura e mineralogia distintas. A energia de ultra-som necessária para dispersão total dos solos variou de 239 a 2.389J mL-1, sendo diretamente relacionada aos teores de carbono orgânico (R²=0,799, PThe stability of organo-mineral complexes is an important characteristic related to the soil chemistry and physics of tropical and subtropical soils. This study was aimed at identifing the variables related to the stability of organo-mineral complexes, evaluated by ultrasonic energy necessary to complete soil dispersion, of six soils from South and West-Center regions of Brazil with distint texture and mineralogy. The ultrasonic energy to complete soil dispersion varied from 239 a 2389J mL-1, and was positively related to the soil organic carbon concentrations (R²=0.799, P<0.05. The clay mineralogy had an important role to the stability of organo-mineral complexes, which were related to the content of low cristalinity iron oxides (R²=0.586, P<0.10, but did not had relationship with the total pedogenic iron oxides. The qualitative analysis of the clay mineralogy, by X-ray diffraction, evidenced that gibbsite and goethite are the main clay minerals related to the stability of organo-mineral complexes, reinforcing the importance of these minerals on the physical protection and coloidal stability of the soil organic matter in the tropical and subtropical soils.

  19. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  20. Mineral-associated organic matter: are we now on the right path to accurately measuring and modelling it?

    Cotrufo, M. F.

    2017-12-01

    Mineral-associated organic matter (MAOM) is the largest and most persistent pool of carbon in soil. Understanding and correctly modeling its dynamic is key to suggest management practices that can augment soil carbon storage for climate change mitigation, as well as increase soil organic matter (SOM) stocks to support soil health on the long-term. In the Microbial Efficiency Mineral Stabilization (MEMS) framework we proposed that, contrary to what originally thought, this form of persistent SOM is derived from the labile components of plant inputs, through their efficient microbial processing. I will present results from several experiments using dual isotope labeling of plant inputs that largely confirm this opinion, and point to the key role of dissolved organic matter in MAOM formation, and to the dynamic nature of the outer layer of MAOM. I will also show how we are incorporating this understanding in a new SOM model, which uses physically defined measurable pools rather than turnover-defined pools to forecast C cycling in soil.

  1. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  2. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  3. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  4. Prediction of complexes of uranyl and organic substances by molecular orbital calculation

    Nagasaki, S.; Tsushima, S.; Todoriki, M.; Tanaka, S.; Suzuki, A.

    1999-01-01

    Structure of UO 2 2+ complexes with salicylic acid was optimized by using molecular orbital calculation (ab initio method). The bond distances between U and O atoms (O eq ) of carboxyl group and phenyl group in salicylic acid were evaluated and compared with those measured experimentally by Denecke et al. The calculated distance relatively agrees with the experimental one. The frontier electron densities in the complexes were also calculated. Strong localization of frontier electron density in the complexes was not observed, suggesting that the complexes are subject to only weak interactions with rocks, minerals and other compounds in the geosphere. (author)

  5. A Novel Real-Time Coal Miner Localization and Tracking System Based on Self-Organized Sensor Networks

    Wang Yang

    2010-01-01

    Full Text Available With the development of information technology, we envision that the key of improving coal mine safety is how to get real-time positions of miners. In this paper, we propose a prototype system for real-time coal miner localization and tracking based on self-organized sensor networks. The system is composed of hardware and software platform. We develop a set of localization hardware devices with the Safety Certificate of Approval for Mining Products include miner node, wired fixed access station, and base with optical port. On the software side, we develop a layered software architecture of node application, server management, and information dissemination and broadcasting. We also develop three key localization technologies: an underground localization algorithm using received signal strength indication- (RSSI- verifying algorithm to reduce the influence of the severe environment in a coal mine; a robust fault-tolerant localization mechanism to improve the inherent defect of instability of RSSI localization; an accurate localization algorithm based on Monte Carlo localization (MCL to adapt to the underground tunnel structure. In addition, we conduct an experimental evaluation based on a real prototype implementation using MICA2 motes. The results show that our system is more accurate and more adaptive in general than traditional localization algorithms.

  6. 77 FR 59287 - National Organic Program (NOP); Sunset Review (2012) for Nutrient Vitamins and Minerals

    2012-09-27

    ...) from creating certification programs to certify organic farms or handling operations unless the State.... Pursuant to the OFPA (7 U.S.C. 6507(b)(2)), a State organic certification program may contain additional... the State and for the certification of organic farm and handling operations located within the State...

  7. Structure of rhenium (5) complexes with petroleum organic sulfur compounds

    Akhmadieva, R.G.; Yusupova, N.A.; Numanov, N.U.; Basitova, S.M.

    1985-01-01

    Structure of Re(5) complexes with petroleum sulfides (L) of ReOCl 3 (L) 2 composition is studied by the UV- and IR-spectroscopy method in a short-wave and long-wave ranges. It is shown that Re(5) complex with L are of the form of flattened octahedron,where three Cl atoms and one L molecule are arranged in the plane around Re atom. The structure is analogous to structure of Re complexes with synthetic cyclic sulfides

  8. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  9. Complexes of actinides with naturally occuring organic substances - Literature survey

    Olofsson, U.; Allard, B.

    1983-02-01

    Properties of naturally occurring humic and fulvic acids and their formation of actinide complexes are reviewed. Actinides in all the oxdation states III, IV, V and VI would form complexes with many humic and fulvic acids, comparable in strength to the hydroxide and carbonate complexes. Preliminary experiments have shown, that the presence of predominantly humic acid complexes would significantly reduce the sorption of americium on geologic media. This does not, however, necessarily lead to a potentially enhanced mobility under environmental conditions, since humic and fulvic acids carrying trace metals also would be strongly bound to e.g. clayish material. (author)

  10. 17-β estradiol and testosterone mineralization and incorporation into organic matter in broiler litter-amended soils.

    Durant, Michelle B; Hartel, Peter G; Cabrera, Miguel L; Vencill, William K

    2012-01-01

    The presence of the hormones estradiol and testosterone in the environment is of concern because they adversely affect vertebrate sexual characteristics. Land spreading broiler litter introduces these hormones into the environment. We conducted two studies. The first study determined the mineralization of C-labeled estradiol and testosterone at three water potentials and three temperatures in four broiler litter-amended soils. With a few exceptions, the mineralization of each hormone either stayed the same or increased with increasing water content (both hormones) and increasing (estradiol) or decreasing (testosterone) temperature. Mineralization was dependent on soil type. The second study determined the incorporation of C-labeled estradiol and testosterone into (i) three soil organic matter (SOM) fractions (fulvic acid, humic acid, and humin) at two water potentials, two temperatures, and one sampling time, and (ii) at one water potential, one temperature, and seven sampling times. As time increased, higher temperature and water potential decreased percentages of C estradiol and testosterone in water- and acetone-soluble fractions and increased percentages in SOM fractions. However, the distribution of the two hormones in SOM fractions differed. For estradiol, higher temperature and water potential increased the percentage in all three SOM fractions. For testosterone, higher temperature and water potential increased the percentage of hormone in fulvic acid and humin. Although the mineralization studies suggest the potential for these hormones to still have environmental effects, the incorporation of the two hormones into SOM suggest that land spreading these hormones may actually be less of an environmental concern. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea)

    Golubkov, Sergey; Golubkov, Mikhail; Tiunov, Alexei; Nikulina, Vera

    2017-07-01

    The Neva Estuary situated in the eastern part of the Gulf of Finland is one of the largest estuaries of the Baltic Sea. At present, heavy nutrient and organic matter loading, mainly from the Neva River and point sources in the upper estuary are the most serious environmental problem for the Neva Estuary and adjacent parts of the eastern Gulf of Finland. Long-term studies of mid-summer primary production and mineralization of organic matter were conducted in upper and middle parts of the Neva Estuary. A considerable increase of production and biomass of phytoplankton was observed in the middle part of the estuary during the last decades mainly due to an increase in biomass of cyanobacteria. However, they are mostly concentrated in the upper water layers and only a small part of them reached the near bottom water layers and may be used as a food by zoobenthos. The mineralization of organic matter in the water column was twice higher than primary production that indicates the importance of allochthonous organic matter in the carbon budget of the both parts of the estuary. The carbon isotope signature of seston and most of the zoobenthic species in the upper part of the estuary was close to the signature of allochthonous carbon leaking from watershed (- 27‰). Higher values of δ13C of seston in the upper mix layer of the Middle estuary indicate intensive primary production in mid-summer. The carbon isotopic signature of zoobenthos in this part of the estuary was also in general lower than in the Neva Bay reflected higher importance of autochthonous organic matter in food webs of the estuary.

  12. Interactions Between Snow-Adapted Organisms, Minerals and Snow in a Mars-Analog Environment, and Implications for the Possible Formation of Mineral Biosignatures

    Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.

    2015-12-01

    Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated

  13. Using 15N in studies on the uptake of mineral and organic nitrogen by plants

    Mitovska, R.

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen ( 15 N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N

  14. Using /sup 15/N in studies on the uptake of mineral and organic nitrogen by plants

    Mitovska, R. (Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Pochvoznanie)

    1983-01-01

    Modelled microplot field experiments at the Central Experimental Station of the All-Union Institute of Fertilizers and Agrochemistry in Moscow were used to study the uptake of nitrogen (/sup 15/N) applied together or individually with minerals or with green oats mass or in both ways. The studies were conducted on soddy podzolic, heavy loam, soddy podzolic sandy soil and leached chernozem. It was established that the soddy podzolic heavy loam had the highest natural fertility and showed greatest response to the applied N.

  15. The organization of mineral exploitation and the relationship to urban structures and local business development

    Hendriksen, Kåre; Hoffmann, Birgitte; Jørgensen, Ulrik

    2013-01-01

    The paper explores relations between mining and urban structures as these are decisive for involving the local workforce and developing local businesses. A major challenge for Greenland is the on-going decoupling between existing settlements and the main export industry based on marine living...... also for the surrounding community. The paper explores if a different and long-term organisation of exploitation of mineral resources with establishment of flexible settlements creates an attractive and sustainable alternative with a reasonable population and economic diversity....

  16. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon ratios

    Hermansen, Cecilie; Knadel, Maria; Møldrup, Per

    2016-01-01

    The ratios of mineral fines (carbon (OC), consisting of the n-ratio (i.e., the clay/OC ratio) and m-ratio (i.e., the fines/OC ratio) have recently been used to analyze and predict soil functional properties such as tilth conditions, clay dispersibility, degree...... from seven Danish and one Greenlandic fields, with a large textural range (clay: 0.027–0.355 kg kg−1; OC: 0.011–0.084 kg kg−1; n-ratio: 0.49–16.80; m-ratio: 1.46–32.14), were analyzed for texture and OC and subsequently scanned with a vis-NIR spectrometer from 400 to 2500 nm. The spectral data were...

  17. Synthesis and Characterization of Organ Tin (IV) Complexes ...

    User

    2012-08-21

    Aug 21, 2012 ... the reference drug. In addition, within the diorganotin(IV) complexes, monomeric type (3) exhibited a slightly better activity as compared to the organodistannoxane dimer types (1 and 4). Key words: Preliminary in vitro cytotoxic assay, organotin(IV) complexes, comparison study. INTRODUCTION. Although ...

  18. Organic matter in North Bohemian Tertiavy and Cretaceous sediments with uranium mineralization

    Simanek, V.

    1979-01-01

    Significant variability was found in the qualitative and the quantitative compositions of dispersed organic matter in Tertiary rocks with uranium ore content between hundredths and units of percentage of the rocks. In Cretaceous rocks with similar proportion of uranium in w.% the variability is much smaller. In rocks with higher organic carbon and uranium levels the organic matter is in a more advanced stage of carbonification metamorphosis than in rocks with lower levels of the components. A statistical correlation test showed free positive correlation between the levels of uranium and organic carbon and the levels of uranium and strongly carbonified organic components and negative correlation between uranium level and humic substances on one hand and the uranium level and bitumens on the other. In Cretaceous sediments, the individual organic compounds were analytically determined in addition to the total level of organic carbon, the strongly carbonified organic components, humic substances and bitumens. Higher fatty acids in ppm concentrations were also found. Their distribution corresponds to the usual distribution in sediments. Rocks with lower contents of organic matter and uranium usually contain phenol aldehydes bound to glycosides while those with higher contents of uranium and organic carbon contain higher amounts of free phenol aldehydes. The composition of amino acids indicates genetic links to the microbial activity. (author)

  19. Mineral chemistry and geothemobarometry of mantle harzburgites in the Eastern Metamorphic Complex of Khoy ophiolite -NW Iran

    Morovvat Faridazad

    2017-02-01

    Full Text Available Introduction Khoy ophiolite at the global scale is in the middle part of the Alp-Himalaya orogenic belt and it is extended over 3900 Km2 which indicates remnant Neotethys oceanic lithosphere in the Mesozoic era (Kananian et al., 2010. In this paper, in addition to a review of previous investigations about Khoy ophiolite, we will try to determine the nature and kind of minerals, origin and partial melting rate as well as the equilibrium pressure and temperature of harzburgites from the Eastern Metamorphic Complex of Khoy ophiolite. Materials and methods Thin sections microscopy studies were carried out following field investigations. EPMA analysis was carried out with using a Superprobe JEOL, JXA 8200 Microprobe unit at the state of WDS and under condition of 15kv accelerating voltage, 10nA current beam, 1µm beam diameter and collection of natural and synthetic standards for calibration. Results The study area is located at the NW of Iran and north of the Khoy city in the west Azarbaijan province. This area is part of the ophiolitic complex of NW Iran and belongs to its Eastern Metamorphic Complex. This metamorphic zone has large tectonically segments of the metamorphic ophiolites which mainly include serpentinized peridotites with associated metagabbros. There are three types of peridotitic rocks in this area which are: Lherzolites, harzburgites and dunites. Lherzolites are composed of olivine (60-70%, orthopyroxene (10-30% and clinopyroxene (~10-20% with minor amounts (~2% of Cr-spinel mineral. Harzburgites are composed of olivine (70-80%, orthopyroxene (10-20% and clinopyroxene (~5% with minor amounts (~2% of Cr-spinel mineral. Dunites are composed of olivine (90-95%, orthopyroxene (5-10% with minor amounts (~1-2% of Cr-spinel mineral. Composition range of olivines is between Fo89.46 Fa10.37 to Fo89.86 Fa10.0 as well as NiO content range is 018-046 (wt %. The calculated Mg# of olivines is 0.90 and the composition of olivines in Fo-Fa diagram

  20. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Final report, June 31, 1990--December 31, 1994

    Sandhu, S.S.

    1994-12-31

    Funds were received from the United States Department of Energy to study the effects of soil mineral phases on the rates of abiotic degradation of tetraphenylborate (TPB) and diphenylboronic acid (DPBA). In addition to kaolinite and montmorillonite clay minerals, the role of goethite, corundum, manganite, and rutile in the degradation of organoborates was also evaluated. The effects of DPBA, argon, molecular dioxygen (O{sub 2}), temperature, and organic matter on the degradation of organoborates were also measured. The results indicated that TPB and DPBA degraded rapidly on the mineral surfaces. The initial products generated from the degradation of TPB were DPBA and biphenyl; however, further degradation resulted in the formation of phenylboric acid and phenol which persisted even after TPB disappeared. The data also showed that the rate of TPB degradation was faster in kaolinite, a 1:1 clay mineral, than in montmorillonite, a double layer mineral. The initial degradation of TPB by corundum was much higher than goethite, manganite and rutile. However, no further degradation by this mineral was observed where as the degradation of TPB continued by goethite and rutile minerals. Over all, the degradation rate of TPB was the highest for goethite as compared to the other metal oxide minerals. The degradation of TPB and DPBA was a redox reaction where metals (Fe, Al, Ti, Mn) acted as Lewis acids. DPBA and argon retarded the TPB degradation where as molecular oxygen organic matter and temperature increased the rate of TPB disappearance.

  1. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  2. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  3. DETERMINATION OF MINERAL COMPOSITION OF ORGANIC AND CONVENTIONAL BEVERAGES BY DISPERSIVE ENERGY X-RAY FLUORESCENCE SPECTROMETRY

    L. CONSOLI

    2012-11-01

    Full Text Available Fruits are natural sources of minerals whose ingestion is recommended in a balanced diet. The increasing consumption of fruit-based beverages demands the development of rapid methods to evaluate their quality parameters. X-ray fluorescence spectrometry is an analytical-nuclear technique that is gaining space in the environmental and geological fields, and has been explored modestly in the food field. The main objective of this work was to develop a methodology to determine the mineral content of fruit-based beverages by applying this technique. Beverages manufactured from organic and conventional fruit varieties were evaluated, aiming to compare their nutritional value. The research was divided into three steps: in the first step, a direct measurement of the samples was made, that is, without prior preparation; in the second, standard curves were prepared with the elements of calcium and potassium, based on the category of ‘fine samples’. Lastly, these curves were used to determine concentrations of calcium and potassium in the samples of juices and pulps prepared as ‘fine samples’. The fine sample measurements showed results more exact compared to that obtained from the direct measurements. From the data evaluated, it was not possible to attribute better nutritional quality to either the organic or conventional samples.

  4. Effect on light intensity and mineral nutrition on carbohydrate and organic acid content in leaves of young coffee plants

    Georgiev, G.; Vento, Kh.

    1975-01-01

    Young coffee plants (Coffea arabica, L., var. Caturra) were grown under different conditions of mineral nutrition (1/8 N-P-K, N-P-K, 3 N-P-K, N 1/2-P-K and N-2P-K) and illumination (directly in the sunlight or shaded) with the aim of studying the effect of light and mineral nutrition on carbohydrate and organic acid content of the leaves. For determining these compounds 14 CO 2 was used. Sugars were separated after the method of paper chromatography. The results obtained showed that the incorporation of 14 C in sugars and organic acids was more intensive in plants grown directly in the sunlight, while in starch 14 C was incorporated more intensively in the shaded plants. Carbohydrate content rose parallel to the increase of nitrogen in the nutrient solution. Changingthe rate of phosphorus from 1/2P to two doses exerted highest effect on 14 C incorporation in starch and in hemicellulose. (author)

  5. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers.

    Sinkovič, Lovro; Demšar, Lea; Žnidarčič, Dragan; Vidrih, Rajko; Hribar, Janez; Treutter, Dieter

    2015-01-01

    Chicory (Cichorium intybus L.) is a typical Mediterranean vegetable, and it shows great morphological diversity, including different leaf colours. Five cultivars commonly produced in Slovenia ('Treviso', 'Verona', 'Anivip', 'Castelfranco', 'Monivip') were grown in pots under controlled conditions in a glasshouse, with organic and/or mineral fertilizers administered to meet nitrogen requirements. HPLC analysis was carried out to study the phenolic compositions of the leaves. A total of 33 phenolic compounds were extracted from these chicory leaves and were quantitatively evaluated in an HPLC-DAD-based metabolomics study. Among the cultivars, the highest TPC was seen for 'Treviso' (300.1 mg/100 g FW), and the lowest, for 'Castelfranco' (124.9 mg/100g FW). Across the different treatments, the highest TPC was in the control samples (254.3 mg/100 g FW), and the lowest for the organic (128.6 mg/100 g FW) and mineral fertilizer (125.5 mg/100 g FW) treatments. The predominant phenolic compounds in all of the samples were hydroxycinnamic acids, including chlorogenic and cichoric acid. Fertilizer administration provides a discriminant classification of the chicory cultivars according to their phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Gendered Managerial Discourses in Sport Organizations: Multiplicity and Complexity

    Knoppers, Annelies; Anthonissen, A.

    2007-01-01

    The lack of women in senior management functions in sport may in part be attributed to dominant discursive managerial practices in sport organizations. The purpose of this study is to explore ways in which the discourses and their subtexts used by directors of Dutch national sport organizations

  7. Implications of Complexity and Chaos Theories for Organizations that Learn

    Smith, Peter A. C.

    2003-01-01

    In 1996 Hubert Saint-Onge and Smith published an article ("The evolutionary organization: avoiding a Titanic fate", in The Learning Organization, Vol. 3 No. 4), based on their experience at the Canadian Imperial Bank of Commerce (CIBC). It was established at CIBC that change could be successfully facilitated through blended application…

  8. Growth Performance, Mineral Digestibility, and Blood Characteristics of Ostriches Receiving Drinking Water Supplemented with Varying Levels of Chelated Trace Mineral Complex.

    Seyfori, Hossein; Ghasemi, Hossein Ali; Hajkhodadadi, Iman; Nazaran, Mohammad Hassan; Hafizi, Maryam

    2018-05-01

    The effects of water supplementation of chelated trace minerals (CTM, which is named Bonzaplex designed with chelate compounds technology) on growth performance, apparent total tract digestibility (ATTD) of minerals, and some blood metabolites, TM, and antioxidant enzyme values in African ostriches were investigated from 8 to 12 months of age. A total of 20 8-month-old ostriches (five birds in five replicate pens) was randomly allocated into one of the following four treatments: (1) control (basal diet + tap water), (2) low CTM (basal diet +100 mg/bird/day CTM powder in tap water), (3) medium CTM (basal diet +1 g/bird/day CTM powder in tap water), and (4) high CTM (basal diet +2 g/bird/day CTM powder in tap water). Compared with control, medium CTM improved (P water can be recommended for improving growth performance, mineral absorption, and antioxidant status of ostriches fed diets containing the recommended levels of inorganic TM.

  9. Carbon dynamics in no-till soil due to the use of industrial organic waste and mineral fertilizer

    Jucimare Romaniw

    Full Text Available ABSTRACTThe use of organic waste from industrial processes in agriculture is a strategy not only for improving soil properties but also for promoting the utilization of recycled nutrients by market crops and for reducing environmental impact. The aim of this study was to evaluate the effects of using organic waste from pork and poultry slaughterhouses (OWS applied alone or in combination with mineral fertilizer (MF on the dynamics of soil organic matter (SOM compartments. The experimental design adopted was that of completely randomized blocks with six treatments and three replicates. The treatments consisted of a general control (T1 without the addition of MF and OWS, the application of MF alone at 100% of the recommended fertilizer levels for the crops (T2,the application of OWS alone at a fixed dose of 2 Mg ha-1 (T3, and the following three combinations of MF and OWS: 75% MF + 25% OWS (T4; 50% MF + 50% OWS (T5; and 25% MF + 75% OWS (T6. The application of OWS promoted increase in the labile fractions extracted by potassium permanganate (C-OXP and hot water (C-HW compared with using MF alone. Using OWS in the combination of 50% MF + 50% OWS increased the content and stock of total organic carbon (TOC in the 0-20 cm layer and of particulate organic C (POC and C-OXP in the 0-5 cm layer.

  10. Complementary Enzymes Activities in Organic Phosphorus Mineralization and Cycling by Phosphohydrolases in Soils

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...

  11. Ammonia and Mineral Losses on Dutch Organic Farms with Pregnant Sows

    Ivanova-Peneva, S.G.; Aarnink, A.J.A.; Verstegen, M.W.A.

    2006-01-01

    The main objective of this study was to quantify ammonia emissions from organically raised pregnant sows and to compare them with emissions from conventional pig production. A second objective was to quantify the nutrients deposited in the paddock in organic pig grazing systems. Measurements were

  12. Changes in subchondral bone mineral density and collagen matrix organization in growing horses.

    Holopainen, Jaakko T; Brama, Pieter A J; Halmesmäki, Esa; Harjula, Terhi; Tuukkanen, Juha; van Weeren, P René; Helminen, Heikki J; Hyttinen, Mika M

    2008-12-01

    The effects of growth and maturation on the mineral deposition and the collagen framework of equine subchondral bone (SCB) were studied. Osteochondral specimens (diameter 6 mm) from the left metacarpophalangeal joint of 5-(n=8), 11-(n=8) and 18-month-old (n=6) horses were investigated at two differently loaded sites (Site 1 (S1): intermittent peak loading; Site 2 (S2): habitual loading). The SCB mineral density (BMD) was measured with peripheral quantitative computer tomography (pQCT), and the data were adjusted against the volume fraction (Vv) of the bone extracellular matrix (ECM). Polarised light microscopy (PLM) was used to analyze the Vv, the collagen fibril parallelism index and the orientation angle distribution in two fractions (1 mm/fraction) beneath the osteochondral junction of the SCB. PLM analysis was made along two randomly selected perpendicularly oriented vertical sections to measure the tissue anisotropy in the x-, y-, and z-directions. The BMD of SCB at S1 and S2 increased significantly during maturation. At the same time, the Vv of the ECM increased even more. This meant that the Vv-adjusted BMD decreased. There were no significant differences between sites. The basic collagen fibril framework of SCB seems to be established already at the age of 5 months. During maturation, the extracellular matrix underwent a decrease in collagen fibril parallelism but no changes in collagen orientation. The variation was negligible in the collagen network estimates in the two section planes. Growth and maturation induce significant changes in the equine SCB. The BMD increase in SCB is primarily due to the growth of bone volume and not to any increase in mineral deposition. An increase in weight-bearing appears to greatly affect the BMD and the volume of the extracellular matrix. Growth and maturation induce a striking change in collagen fibril parallelism but not in fibril orientation. The structural anisotropy of the subchondral bone is significant along the

  13. The Bio-accessibility of Synthetic Fe-Organo Complexes in Subsurface Soil with Elevated Temperature: a Proxy for the Vulnerability of Mineral Associated Carbon to Warming Rachel C. Porras, Peter S. Nico, and Margaret Torn Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    Porras, R. C.; Hicks Pries, C.

    2015-12-01

    Globally, subsurface soils (>30 cm) represent an important reservoir of soil organic carbon (SOC). However, the vulnerability of this deep SOC and, in particular mineral-associated SOC, to warming, and its potential to amplify the effects of climate change is highly uncertain. To gain insight into the bio-accessibility and temperature sensitivity of mineral-associated organic C, we conducted a series of incubations using soils collected from three depths (0-10, 50-60, and 80-90 cm) under coniferous forest. The soils are moderately acidic (mean pH=6.5) sandy, mixed, mesic Ultic Haploxeralfs. To understand how mechanisms controlling SOC bio-accessibilty or temperature sensitivity differ with depth and with the properties of Fe-organo complexes (i.e.,degree of crystallinity, amount of reactive surface area, or surface saturation), we used a 13C labeled glucose substrate to prepare synthetic Fe-organo complexes spanning a range of crystallinity and mineral surface saturation. The synthetic Fe-organo complexes were then added to soil from three depths. The soils containing the 13C labeled Fe-organo adduct were incubated at two temperatures (ambient and +4°C) and respired 13CO2 was measured and used to estimate flux rates. Differences in measured 13CO2 fluxes as a function of depth, surface loading, and mineral properties are discussed in terms of their implications for the temperature sensitivity of mineral protected organic carbon in subsurface soils.

  14. Complex organic molecules in strongly UV-irradiated gas

    Cuadrado, S.; Goicoechea, J. R.; Cernicharo, J.; Fuente, A.; Pety, J.; Tercero, B.

    2017-07-01

    We investigate the presence of complex organic molecules (COMs) in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre (mm) line survey using the IRAM 30 m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5'' resolution maps of the H2CO JKa,Kc = 51,5 → 41,4 and C18O J = 3 → 2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H213CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. The inferred column densities are in the 1011-1013 cm-2 range. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-thermodynamic equilibrium excitation analysis for molecules with known collisional rate coefficients suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td≳ 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). The non-detection of HDCO towards the PDR edge is consistent with the

  15. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization

    Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong

    2018-05-01

    The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios uranium ore potential of the granites in the Zhuguangshan complex. The geochemical variations of U-bearing and barren granites can serve as a potential detector for granite-hosted uranium deposits.

  16. Understanding and Designing Military Organizations for a Complex Dynamic Environment

    Hicks, Christopher E

    2008-01-01

    .... The two theories will be used to describe the external environment and how it relates to DoD organizations, current DoD organizational structures, and transformational concepts related to organizational design...

  17. White organic light-emitting diodes with Zn-complexes.

    Kim, Dong-Eun; Shin, Hoon-Kyu; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo

    2014-02-01

    This paper reviews OLEDs fabricated using Zn-complexes. Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were synthesized as new electroluminescence materials. The electron affinity (EA) and ionization potential (IP) of Zn complexes were also determined and devices were characterized. Zn complexes such as Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were found to exhibit blue and yellow emissions with wavelengths of 455, 532, and 535 nm, respectively. On the other hand, Zn(HPB)2 and Zn(HPB)q were applied as hole-blocking materials. As a result, the OLED efficiency by using Zn(HPB)2 as a hole-blocking material was improved. In particular, the OLED property of Zn(HPB)2 was found to be better than that of Zn(HPB)q. Moreover, Zn(phen)q was used as an electron-transporting material and compared with Alq3. The performance of the device with Zn(phen)q as an electron-transporting material was improved compared with Alq3-based devices. The Zn complexes can possibly be used as hole-blocking and electron-transporting materials in OLED devices. A white emission was ultimately realized from the OLED devices using Zn-complexes as inter-layer components.

  18. Mobility of organic complexes of some non-TRU fission and activation products: a selective review

    Wiggins, D.J.; Franz, J.A.

    1978-05-01

    Zr, Nb, Ni, and possibly Tc are mobile in the presence of aqueous organic complexing agents to a certain extent. Low pH appears to be required for efficient complex formations with organic ligands in aqueous media. Zr complexes with a number of synthetic chelating agents such as EDTA, and DTPA to form stable, water-soluble complexes in acidic and neutral aqueous systems. Zr also complexes with HIMDA or HXG to form a stable, water soluble complex in any aqueous system and with ..cap alpha..-hydroxy carboxylic acids in alkaline aqueous systems. Uncomplexed Zr would be readily absorbed by or precipitated on soil. It is predicted that the organic complexes of Zr would be absorbed less by soil than uncomplexed zirconium. Nb generally forms the most stable complexes with nitrogen containing chelating ligands such as EDTA, and less stable complexes with ..cap alpha..-hydroxy carboxylic acids and monodentate ligands. Uncomplexed Nb would be efficiently absorbed by or precipitated on soil from aqueous systems. Despite the high stability constants of complexed Nb, one would predict that organic complexes of niobium would be absorbed by soil because of hydrolysis of complexed Nb to insoluble hydrous niobium oxide. Ni complexes strongly with a number of oxygen and nitrogen containing organic ligands. Uncomplexed Ni is absorbed by soil in acidic and neutral aqueous systems and precipitated on soil in alkaline aqueous systems. Two complexes of Ni are known to be absorbed to a much lesser extent by soil (Ni-DTPA, Ni-EDTA). Fulvic acid and synthetic chelating agents are known to greatly enhance the movement of Ni in soil and to reduce Ni absorption by soil. Tc complexes with organic ligands in a reducing environment but the behavior of these complexes in a nonreducing environment is unknown. 8 tables, 3 figs. 62 refs.

  19. Mobility of organic complexes of some non-TRU fission and activation products: a selective review

    Wiggins, D.J.; Franz, J.A.

    1978-05-01

    Zr, Nb, Ni, and possibly Tc are mobile in the presence of aqueous organic complexing agents to a certain extent. Low pH appears to be required for efficient complex formations with organic ligands in aqueous media. Zr complexes with a number of synthetic chelating agents such as EDTA, and DTPA to form stable, water-soluble complexes in acidic and neutral aqueous systems. Zr also complexes with HIMDA or HXG to form a stable, water soluble complex in any aqueous system and with α-hydroxy carboxylic acids in alkaline aqueous systems. Uncomplexed Zr would be readily absorbed by or precipitated on soil. It is predicted that the organic complexes of Zr would be absorbed less by soil than uncomplexed zirconium. Nb generally forms the most stable complexes with nitrogen containing chelating ligands such as EDTA, and less stable complexes with α-hydroxy carboxylic acids and monodentate ligands. Uncomplexed Nb would be efficiently absorbed by or precipitated on soil from aqueous systems. Despite the high stability constants of complexed Nb, one would predict that organic complexes of niobium would be absorbed by soil because of hydrolysis of complexed Nb to insoluble hydrous niobium oxide. Ni complexes strongly with a number of oxygen and nitrogen containing organic ligands. Uncomplexed Ni is absorbed by soil in acidic and neutral aqueous systems and precipitated on soil in alkaline aqueous systems. Two complexes of Ni are known to be absorbed to a much lesser extent by soil (Ni-DTPA, Ni-EDTA). Fulvic acid and synthetic chelating agents are known to greatly enhance the movement of Ni in soil and to reduce Ni absorption by soil. Tc complexes with organic ligands in a reducing environment but the behavior of these complexes in a nonreducing environment is unknown. 8 tables, 3 figs. 62 refs

  20. In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships

    Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.

    2012-01-01

    Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.

  1. Influence of organic matter and clay minerals in migration of derivative compounds of hydrocarbons; Influencia da materia organica e argilominerais na migracao de compostos derivados de hidrocarbonetos

    Ramos, Denize Gloria Barcellos; Mendonca Filho, Joao Graciano de; Polivanov, Helena [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Geociencias. Dept. de Geologia]. E-mail: denize@geologia.ufrj.br; graciano@geologia.ufrj.br; helena@acd.ufrj.br

    2003-07-01

    Soil samples from the Guanabara Bay in Duque de Caxias city (RJ) were submitted to mineralogical and organic geochemistry analyses. This proceeding was used mainly to determine a possible interaction of hydrocarbons contaminants with the organic matter and the clay minerals presents in this mangrove. The sampling was carried out using Direct Push techniques. Thus, the mainly clay minerals characterizes were: gibbsite, illite, caulinite and smectite. The compositional analysis of organic constituents showed a predominance of amorphous material (degraded cuticles), followed of wood material and sporomorphs constituents, suggesting that the biological degradation occurred in situ. (author)

  2. Effect of organic manure on nitrogen mineralization, nitrogen accumulation, nitrogen use efficiency and apparent nitrogen recovery of cauliflower (Braccica oleracea L., var. Botrytis)

    Beah, A.A.; Norman, P.E.; Scholberg, J.M.S.; Lantinga, E.A.; Conteh, A.R.

    2015-01-01

    Aims: The main aim of the study was to assess the effects of organic manure on nitrogen mineralization, uptake, use and recovery of cauliflower.
    Methodology: Nitrogen is one of the major yield limiting nutrients in cauliflower production. However, organic manure is applied to supplement soil

  3. Geologic Mapping in Nogal Peak Quadrangle: Geochemistry, Intrusive Relations and Mineralization in the Sierra Blanca Igneous Complex, New Mexico

    Goff, F.; Kelley, S. A.; Lawrence, J. R.; Cikowski, C. T.; Krier, D. J.; Goff, C. J.; McLemore, V. T.

    2011-12-01

    Nogal Peak quadrangle is located in the northern Sierra Blanca Igneous Complex (SBIC) and contains most of the White Mountain Wilderness (geologic map is available at http://geoinfo.nmt.edu/publications/maps/geologic/ofgm/details.cfml?Volume=134). The geology of the quad consists of a late Eocene to Oligocene volcanic pile (Sierra Blanca Volcanics, mostly alkali basalt to trachyte) intruded by a multitude of dikes, plugs and three stocks: Rialto, 31.4 Ma (mostly syenite), Three Rivers, ca. 29 to 27 Ma (quartz syenite intruded by subordinate alkali granite), and Bonito Lake, 26.6 Ma (mostly monzonite). Three Rivers stock is partially surrounded by alkali rhyolites that geochemically resemble the alkali granites. The circular shape of the stock and surrounding rhyolites suggests they form the root of a probable caldera. SBIC rocks have compositions typical of those found within the Rocky Mountain alkaline belt and those associated with continental rift zone magmatism. Because the volcanic host rocks are deeply eroded, intrusive relations with the stocks are well exposed. Most contacts at stock margins are near vertical. Roof pendants are common near some contacts and stoped blocks up to 700 m long are found within the Three Rivers stock. Contacts, pendants and stoped blocks generally display some combination of hornfelsing, brecciation, fracturing, faulting and mineralization. Sierra Blanca Volcanics display hydrothermal alteration increasing from argillic in the NW sector of the quad to high-temperature porpylitic near stock margins. Retrograde phyllic alteration occurs within breccia pipes and portions of the stocks. Mineral deposits consist of four types: Placer Au, fissure veins (mostly Ag-Pb-Zn±Au), breccia pipes (Au-Mo-Cu), and porphyry Mo-Cu. A singular pipe on the SW margin of Bonito Lake stock contains sapphire-lazulite-alunite. Although Au has been intermittently mined in the quad since 1865, best production of Au originated around the turn of the last

  4. Self-organization scenario acting as physical basis of intelligent complex systems created in laboratory

    Lozneanu, Erzilia; Sanduloviciu, Mircea

    2006-01-01

    The recognition of limits in the tendency to miniaturize the so-called self-organizing devices inspired scientists to seek inspiration from living organisms that operate with functional elements that employ thermal energy exploiting quantum phenomena. Here we show how such operations are performed by a complex space charge configuration emerged by self-organization in plasma. Endowed with a special kind of memory, the complexity is able to ensure its survival in a metastable state performing the operations 'learned' during its emergence by self-organization. Possessing memory, the complexity works as an intelligent system able to evolve under suitable environmental conditions

  5. Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2), pyrrotite (Fe1-xS) and molybdenite (MoS2)

    Francisco Junior, Wilmo E.; Bevilaqua, Denise; Garcia Junior, Oswaldo

    2007-01-01

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferroxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample. (author)

  6. Characterization of Aluminum(III) Complexes in Coal Organic Matter

    Straka, Pavel

    2016-01-01

    Roč. 7, č. 4 (2016), s. 378-394 ISSN 2156-8251 Institutional support: RVO:67985891 Keywords : aluminium * complex * 27Al MAS NMR * coal * lignite * altered coal Subject RIV: DD - Geochemistry http://www.scirp.org/journal/AJAC/

  7. Complexity in behavioural organization and strongylid infection among wild chimpanzees

    Burgunder, J.; Pafčo, B.; Petrželková, Klára Judita; Modrý, David; Hashimoto, C.; MacIntosh, A. J. J.

    2017-01-01

    Roč. 129, July (2017), s. 257-268 ISSN 0003-3472 Institutional support: RVO:60077344 Keywords : behavioural complexity * chimpanzees * fractal analysis * health monitoring * Pan troglodytes schweinfurthii * strongylid infection Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.869, year: 2016

  8. Complexity in behavioural organization and strongylid infection among wild chimpanzees

    Burgunder, J.; Pafčo, B.; Petrželková, Klára Judita; Modrý, D.; Hashimoto, C.; MacIntosh, A. J. J.

    2017-01-01

    Roč. 129, July (2017), s. 257-268 ISSN 0003-3472 Institutional support: RVO:68081766 Keywords : behavioural complexity * chimpanzees * fractal analysis * health monitoring * Pan troglodytes schweinfurthii * strongylid infection Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.869, year: 2016

  9. Optimal Inference of Modelling Parameters to Simulate Complex Trends across Soft Boundaries : A Case Study in Heavy Mineral Sands

    Wambeke, T.; Benndorf, J.

    2014-01-01

    A risk-robust development of a heavy mineral resource requires an assessment of the geological uncertainty and spatial variability of the key factors impacting the mining and processing operation. Attributes of interest are the total heavy mineral grade, the slime content and the amount of oversized

  10. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together

  11. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-01-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We investig......Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We...

  12. Edible Giblets and Bone Mineral Characteristics of Two Slow-Growing Chicken Genotypes Reared in an Organic System

    E Eleroğlu

    Full Text Available ABSTRACT This study was conducted to compare edible giblets weight, tibial bone mineral density (BMD, and bone mineral content (BMC of two slow-growing broiler genotypes (Hubbard S757; S757 and Hubbard Grey Barred JA; GB-JA reared with outdoor access, and to determine the relationship between these variables. Day-old chicks (straight-run of the genotypes S757 (n=120 and GB-JA (n=120 were housed for 98 days. Each genotype was assigned to six pens of 20 birds each. Birds were reared in indoor floor pens and moving shelters with outdoor access (during daylight hours. Absolute body (BW, heart (HW, spleen (SW, liver (LW, gizzard (GW, and abdominal fat pad (AFW weights of the genotype S757 and male birds were statistically higher than that of the genotype GB-JA and female birds. Genotype statistically affected relative HW, whereas sex affected relative GW. Although BMD values were not influenced by genotype or sex, S757 birds and males presented statistically higher tibial BMC, lean, lean+BMC, total mass values (g and area (cm2 compared with GB-JA birds and females. BW, HW, SW, LW, GW and AFW were positively correlated with BMC obtained by DXA. In conclusion, the measured traits influenced by genetic strain and sex. The use of the Hubbard S757 genotype in organic production systems with outdoor access is recommend.

  13. Organic complexation of iron in the West Atlantic Ocean

    Gerringa, L.J.A.; Rijkenberg, M.J.; Schoemann, V.; Laan, P.; de Baar, H.J.W.

    2015-01-01

    The characteristics of the dissolved iron (DFe) binding organic ligands were determined during 3 Dutch GEOTRACES cruises covering the length of the West Atlantic Ocean. Adsorptive Differential Pulse Cathodic Stripping Voltammetry (AdDPCSV) with TAC as competing ligand was used to measure Fe binding

  14. Does Contract Complexity Limit Opportunities? Vertical Organization and Flexibility

    H.P.G. Pennings (Enrico)

    2010-01-01

    textabstractThe vertical organization of production entails a range of make-or-buy decisions of intermediate goods that are influenced by the difficulty of writing contracts with a potential supplier. When contracting causes high transaction costs, a firm can decide to vertically integrate the

  15. A divergent heritage for complex organics in Isheyevo lithic clasts

    van Kooten, Elishevah M.M.E.; Nagashima, Kazuhide; Kasama, Takeshi

    2017-01-01

    enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data...

  16. Physiological Studies On Response Of Grape Transplants To Mineral And Irradiated Organic Fertilizers

    Mohamed, M.F.A.

    2013-01-01

    This work was conducted during two successive seasons throughout 2008, 2009 and 2010 years under green house conditions. Three factorial experiments were included the 1st was dealing with investigating the effect of soil added compost rate (0.0, 5.0, 10.0 and 20.0 %) and gamma irradiated compost dose (0.0, 5.0, 10.0 and 15.0 KGy). Where, two other experiments were devoted for studying the effect of soil applied compost (irradiated or un-irradiated) from one hand and the rate of either N (urea/ ammonium sulphate) or K (K 2 SO 4 ) fertilization rates from the other for 2nd and 3rd experiments, respectively. Obtained results could be summarized as follows: 1- Application of compost, in particular irradiated one at 10.0% was the most promising treatment in the 1st experiment, improved significantly all growth, leaf chlorophyll, stem total carbohydrates and leaf mineral composition especially macro elements (N, P and K). 2- All N or K soil applied reflected positively on the above mentioned measurements of Thompson seedless rooted cuttings with a relative tendency of variance occurred from one N or K treatment to another. 3- It can be concluded that compost application to coarse-textured soil improved it and reflected on plants. Irradiating compost with effective dose (10 KGy) greatly increased compost efficiency which could be reached the double.

  17. Mineralization Rate Constants, Half-Lives and Effects of Two Organic

    INTRODUCTION. Low soil fertility is one the ... important for maintenance of fertility of tropical soils. ... soil N. Thus, total N in the soil and the amount released for plant uptake depend on its content of organic ... capacity for productivity, nutrient cycling, filtering and buffering ... (Steel and Torrie, 1981) and, thereafter, Fischer's.

  18. Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.).

    Ding, X.; Fu, L.; Liu, C.; Chen, F.; Hoffland, E.; Shen, J.; Zhang, F.; Feng, G.

    2011-01-01

    Abstract To test the hypothesis that rhizosphere acidification would enhance the hydrolyzation of organic phosphates by increasing phosphatase activity. A Petri dish experiment with sterile agar and a pot experiment with a low P soil were used. In the Petri dish experiment, roots of each plant were

  19. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  20. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  1. Organizations as complex systems an introduction to knowledge cybernetics

    Yolles, Maurice

    2006-01-01

    Managing the Complex is an ambitious title - and it would be an audacious one if we were not to begin with a frank admission: to date few to none of us have a skill set which includes managing the complex. We try various things, we write about others, and we wonder about still others. When a tool, perspective, or technique comes along which seems to evoke success, we emulate it probe it and recoil at the all too often admission that it was situation and context which afforded success its opportunity, and not some quality intrinsic to the tool perspective or technique. Indeed, if the study of complexity has done anything for managers, and for those who espouse managerial theory, it is in providing a 'scientific foundation' for the notion that context matters. Those who preach abstract ideas have then to reconcile themselves to the notion that situation and embodiment matters. Those who believe in strong causality and determinism are left to wrestle with the role of chance, uncertainty, and chaos. Those who pre...

  2. Mergers and acquisitions in professional organizations: a complex adaptive systems approach.

    Walls, M E; McDaniel, R R

    1999-09-01

    Nurse managers face unique challenges as they cope with mergers and acquisitions among health care organizations. These challenges can be better understood if it is recognized that health care institutions are professional organizations and that the transformations required are extremely difficult. These difficulties are caused, in part, by the institutionalized nature of professional organizations, and this nature is explicated. Professional organizations are stubborn. They are repositories of expertise and values that are societal in origin and difficult to change. When professional organizations are understood as complex adaptive systems, complexity theory offers insight that provide strategies for managing mergers and acquisitions that may not be apparent when more traditional conceptualizations of professional organizations are used. Specific managerial techniques consistent with both the institutionalized characteristics and the complex adaptive systems characteristics of professional organizations are offered to nurse managers.

  3. An Improved Conceptually-Based Method for Analysis of Communication Network Structure of Large Complex Organizations.

    Richards, William D., Jr.

    Previous methods for determining the communication structure of organizations work well for small or simple organizations, but are either inadequate or unwieldy for use with large complex organizations. An improved method uses a number of different measures and a series of successive approximations to order the communication matrix such that…

  4. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs

  5. Homeland Security Organizations: Design Contingencies in Complex Environments

    2011-09-01

    intelligence agencies did not anticipate the adaptation of al-Qaeda from a central command structure to the current collection of regional franchises ...suspicious activities by terrorist groups throughout the summer, culminating in the December explosion at the Great Western Forum sports venue in...Great Western Forum sports arena in Inglewood, California. The target of the attack was an event organized to honor military personnel who had served

  6. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  7. Process and device for liquid organic waste processing by sulfuric mineralization

    Aspart, A.; Gillet, B.; Lours, S.; Guillaume, B.

    1990-01-01

    In a chemical reactor containing sulfuric acid are introduced the liquid waste and nitric acid at a controlled flow rate for carbonization of the waste and oxidation of carbon on sulfur dioxide, formed during carbonization, regenerating simultaneously sulfuric acid. Optical density of the liquid is monitored to stop liquid waste feeding above a set-point. The liquid waste can be an organic solvent such as TBP [fr

  8. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption-desorption and ATR-FTIR study.

    Yeasmin, Sabina; Singh, Balwant; Kookana, Rai S; Farrell, Mark; Sparks, Donald L; Johnston, Cliff T

    2014-10-15

    Batch experiments were conducted to evaluate the sorption-desorption behaviour of (14)C-labelled carboxylic acids (citric and oxalic) and amino acids (glutamic, alanine, phenylalanine and lysine) on pure minerals (kaolinite, illite, montmorillonite, ferrihydrite and goethite). The sorption experiments were complemented by ATR-FTIR spectroscopy to gain possible mechanistic insight into the organic acids-mineral interactions. In terms of charge, the organic solutes ranged from strongly negative (i.e., citric) to positively charged solutes (i.e., lysine); similarly the mineral phases also ranged from positively to negatively charged surfaces. In general, sorption of anionic carboxylic and glutamic acids was higher compared to the other compounds (except lysine). Cationic lysine showed a stronger affinity to permanently charged phyllosilicates than Fe oxides. The sorption of alanine and phenylalanine was consistently low for all minerals, with relatively higher sorption and lower desorption of phenylalanine than alanine. Overall, the role of carboxylic functional groups for the sorption and retention of these carboxylic and amino acids on Fe oxides (and kaolinite) and of amino group on 2:1 phyllosilicates was noticeable. Mineral properties (surface chemistry, specific surface area), chemistry of the organic compounds (pKa value, functional groups) and the equilibrium pH of the system together controlled the differences in sorption-desorption patterns. The results of this study aid to understand the effects of mineralogical and chemical factors that affect naturally occurring low molecular weight organic compounds sorption under field conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive x-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu

    Sengupta, S.K.; Nathan, N.P.; Ganesan, V.; Shome, S.

    2005-01-01

    The alkaline complexes of the Southern Granulite Terrain (SGT) are generally restricted within NNW-SSE-trending Dharmapuri Shear Zone (DSZ), extending from Gudiyatham in the north and Bhavani in the south in Tamil Nadu. REE-rich phases have been studied under EDX (Energy Dispersive X-rays) from the different alkaline suites of Tamil Nadu. In Elagiri, the Th-rich epidote/allanite is concentrically zoned and occurs in the outermost coarse sub-solvus syenite, indicating that the REE concentration is restricted within the late-stage magmatic activity. In Koratti, the apatites are LREE rich. In Samalpatti Complex, the carbonatites host a number of REE-rich minerals commonly classified as betafite, along with nioborutite and nioboilmenite. The niobo-rutile and niobo-ilmenite show exsolved texture. The betafite is zoned with mendelyeerite. Some of the molybdenite in Samalpatti is dendritic indicating incomplete crystallisation. In Sivamalai, the REE phases are generally associated with ferrosyenite and nepheline syenite as adsorbed grains around apatite or carbonate. The REE minerals are Zr-REE titanate, REE-titano silicate and REE-yttrium silicate. In the Pikkili Complex, the REE minerals generally occur as rim around apatite and calcite. A discrete metamict allanite grain with radial cracks occurs within syenite. In Pakkanadu Complex zoned allanite occurs with distinct chemical zonation in syenite. Monazite and celesto-barite are associated with barite suggesting that the REE phases are developed in the late intrusive stage. (author)

  10. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  11. Structural effects of C60+ bombardment on various natural mineral samples-Application to analysis of organic phases in geological samples

    Siljestroem, S.; Lausmaa, J.; Hode, T.; Sundin, M.; Sjoevall, P.

    2011-01-01

    Organic phases trapped inside natural mineral samples are of considerable interest in astrobiology, geochemistry and geobiology. Examples of such organic phases are microfossils, kerogen and oil. Information about these phases is usually retrieved through bulk crushing of the rock which means both a risk of contamination and that the composition and spatial distribution of the organics to its host mineral is lost. An attractive of way to retrieve information about the organics in the rock is depth profiling using a focused ion beam. Recently, it was shown that it is possible to obtain detailed mass spectrometric information from oil-bearing fluid inclusions, i.e. small amounts of oil trapped inside a mineral matrix, using ToF-SIMS. Using a 10 keV C 60 + sputter beam and a 25 keV Bi 3 + analysis beam, oil-bearing inclusions in different minerals were opened and analysed individually. However, sputtering with a C 60 + beam also induced other changes to the mineral surface, such as formation of topographic features and carbon deposition. In this paper, the cause of these changes is explored and the consequences of the sputter-induced features on the analysis of organic phases in natural mineral samples (quartz, calcite and fluorite) in general and fluid inclusions in particular are discussed. The dominating topographical features that were observed when a several micrometers deep crater is sputtered with 10 keV C 60 + ions on a natural mineral surface are conical-shaped and ridge-like structures that may rise several micrometers, pointing in the direction of the incident C 60 + ion beam, on an otherwise flat crater bottom. The sputter-induced structures were found to appear at places with different chemistry than the host mineral, including other minerals phases and fluid inclusions, while structural defects in the host material, such as polishing marks or scratches, did not necessarily result in sputter-induced structures. The ridge-like structures were often covered

  12. Information driven self-organization of complex robotic behaviors.

    Georg Martius

    Full Text Available Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI, also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.

  13. Complex forming properties of natural organic acids. Pt. 2

    Ephraim, J.H.; Mathuthu, A.S.; Marinsky, J.A.

    1990-07-01

    An ultrafiltration technique combined with ion-selective-electrode and atomic absorption methods have been employed to obtain information on the complex forming properties of fulvic acid with iron and calcium. A model for interpreting complexation of metal ions to fulvic acid at any pH, medium ionic strength and metal to fulvic acid ratio developed earlier has been used in an attempt to predict the nature of iron and calcium interaction to Armadale Horizon Bh fulvic acid. Binding of calcium to fulvic acid which is enhanced at pHs greater than 6.0 has reasonably been predicted by the model taking into consideration complications due to the polyelectrolyte nature and the heterogeneity of the fulvic acid. The lack of agreement observed between the model predicted binding behavior and the experimentally observed results for the fulvic acid-iron system has been attributed to the formation of metal-induced aggregation. Reduction of Fe(III) to Fe(II) by the fulvic acid as reported by other workers is corroborated. (orig.)

  14. New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilimaussaq complex, South Greenland

    Karup-Møller, Sven; Rose-Hansen, John

    2013-01-01

    apatite structure, and Ca-poor A1 with composition (Fe,Mn,Ca)1.5REE6Si6FO22 and unknown structure. Mineral A2 with composition (Ca,Fe)1.2 REE4Si6O19-y(OH)2y.nH2O is indistinguishable from A1 in EMP-backscattered light and has only been found at a limited number of localities. Mineral A2 also occurs...

  15. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  17. Cellulose synthase complex organization and cellulose microfibril structure.

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  18. Productivity and accumulation of nutrients in plants of jambu, under mineral and organic fertilizationProdutividade e acúmulo de nutrientes em plantas de jambu, sob adubação orgânica e mineral

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The organic production is a system that allows achieving good levels of productivity, while avoiding the risks of chemical contamination of farmers, consumers and the environment. Because jambu plant is widely used as alternative medicine and cosmetics industries, has been increasing interest in its cultivation. The aim of this study was to analyze the biomass, accumulation of nutrient, productivity and determine the pesticide residue in plant jambu when grown under organic and mineral fertilization. The experiment was conducted at the Experimental Farm São Manuel, FCA / UNESP. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. The characteristics evaluated were plant height, fresh and dry weight, nutrients of accumulation in shoots and productivity. Mineral fertilizer gave higher biomass, productivity and accumulation of N and K in relation to organic fertilizer used. It is recommended the dose of 90g m-2 of urea as appropriate to obtain these results. However the organic fertilization favored the accumulation of phosphorus in plants jambu in relation the mineral fertilizer, and the dose of 10 kg m-2 of cattle manure recommended to achieve this result in plants jambu. We did not detect the presence of phosphorous and carbamate on leaves of jambu under organic and mineral fertilization. However, we observed the presence of chlorine in the leaves used for the two fertilizations.A produção orgânica é um sistema que permite alcançar bons níveis de produtividade, evitando ao mesmo tempo os riscos de contaminação química do agricultor, dos consumidores e do meio ambiente. Pelo fato da planta de jambu ser bastante utilizada como medicamento alternativo e por indústrias de cosméticos, vem aumentando o interesse pelo seu cultivo. Assim, o

  19. Self-organization of complex networks as a dynamical system.

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  20. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  1. Adsorption of Nucleic Acid/Protein Supramolecular Complexes on Goethite: The Influence of Solution Interactions on Behavior at the Solution-Mineral Interface

    Schmidt, M.; Martinez, C. E.

    2017-12-01

    Adsorption of biomolecule rich supramolecular complexes onto mineral surfaces plays an important role in the development of organo-mineral associations in soils. In this study, a series of supramolecular complexes of a model nucleic acid (deoxyribonucleic acid (DNA)) and protein (bovine serum albumin (BSA)) are synthesized, characterized and exposed to goethite to probe their adsorption behavior. To synthesize DNA/BSA complexes, a fixed DNA concentration (0.1 mg/mL) was mixed with a range of BSA concentrations (0.025-0.5 mg/mL) in 5 mM KCl at pH=5.0. Circular dichroism spectroscopy demonstrates strong, cooperative, Hill-type binding between DNA and BSA (Ka= 4.74 x 105 M-1) with DNA saturation achieved when BSA concentration reaches 0.4 mg/mL. Dynamic light scattering measurements of DNA/BSA complexes suggest binding accompanies disruption of DNA-DNA intermolecular electrostatic repulsion, resulting in a decrease of the DNA slow relaxation mode with increasing amount of BSA. Zeta potential measurements show increasing amounts of BSA lead to a reduction of negative charge on DNA/BSA complexes, in line with light scattering results. In situ attenuated total reflectance Fourier transform infrared spectroscopic studies of adsorption of DNA/BSA complexes onto goethite show that complexation of BSA with DNA appears to hinder direct coordination of DNA backbone phosphodiester groups with goethite, relative to DNA by itself. Furthermore, increasing amount of BSA (up to 0.4 mg/mL) in DNA/BSA complexes enhances DNA adsorption, possibly as a result of reduced repulsion between adsorbed DNA helices. When BSA concentration exceeds 0.4 mg/mL, a decrease in adsorbed DNA is observed. We hypothesize that this discrepancy in behavior between systems with BSA concentrations below and above saturation of DNA is caused by initial fast adsorption of loosely associated BSA on goethite, restricting access to goethite surface sites. Overall, these results highlight the impact of solution

  2. Interactions between organic resources and mineral inputs in the context of conservation agriculture

    Vanlauwe, B.; Bationo, A.

    2003-01-01

    Lots of efforts are currently being implemented to demonstrate and disseminate conservation agriculture (CA) in various areas in the tropics, and specifically in Central America and SSA. These efforts are usually not backstopped by a clear understanding of the functioning and relative importance of the impacts of the 3 principles on the farming systems. Issues that should receive special attention are (i) the interactions between water and nutrient use efficiencies, (ii) soil organic matter (SOM) dynamics and the impacts of an enhanced SOM status on functions regulating crop growth, (iii) niches for implementation of CA taking into account variability in biophysical and socio-economic conditions at the farm and community level, and (iv) impact of CA on the abundance and composition of belowground biota

  3. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  4. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  5. GENETIC FINGERPRINTING OF MYCOBACTERIUM AVIUM COMPLEX (MAC) ORGANISMS ISOLATED FROM HOSPITAL PATIENTS AND THE ENVIRONMENT

    A particularly pathogenic group of mycobacteria belong to the Mycobacterium avium complex (MAC), which includes M. avium and M. intracellulare. MAC organisms cause disease in children, the elderly, and immuno-compromised individuals. A critical step in preventing MAC infections...

  6. Service quality and maturity of health care organizations through the lens of Complexity Leadership Theory.

    Horvat, Ana; Filipovic, Jovan

    2018-02-01

    This research focuses on Complexity Leadership Theory and the relationship between leadership-examined through the lens of Complexity Leadership Theory-and organizational maturity as an indicator of the performance of health organizations. The research adopts a perspective that conceptualizes organizations as complex adaptive systems and draws upon a survey of opinion of 189 managers working in Serbian health organizations. As the results indicate a dependency between functions of leadership and levels of the maturity of health organizations, we propose a model that connects the two. The study broadens our understanding of the implications of complexity thinking and its reflection on leadership functions and overall organizational performance. The correlations between leadership functions and maturity could have practical applications in policy processing, thus improving the quality of outcomes and the overall level of service quality. © 2017 John Wiley & Sons, Ltd.

  7. Exploring Trianglamine Derivatives and Trianglamine Coordination Complexes as Porous Organic Materials

    Eziashi, Magdalene

    2018-01-01

    , they are still a poorly researched class of macrocycles today. Trianglamines have yet a role to play as porous organic molecules for separation processes, as macrocyclic precursors to build increasingly complex supramolecular assemblies and as building blocks

  8. The relationship between the bone mineral density and urinary cadmium concentration of residents in an industrial complex

    Shin, Minah; Paek, Domyung [Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, Gwanak-599, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Yoon, Chungsik, E-mail: csyoon@snu.ac.kr [Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, Gwanak-599, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2011-01-15

    Background: An association between cadmium exposure and bone mineral density (BMD) has been demonstrated in elderly women, but has not been well studied in youths and men. Some studies report either no or a weak association between cadmium exposure and bone damage. Objectives: This study was designed to investigate the relationship between the urinary cadmium (U-Cd) levels and BMD of females and males of all ages. Methods: A total of 804 residents near an industrial complex were surveyed in 2007. U-Cd and BMD on the heel (non-dominant calcaneus) were analyzed with AAS-GTA and Dual-Energy X-ray absorptiometry, respectively. Demographic characteristics were collected by structured questionnaires. Osteoporosis and osteopenia were defined by BMD cut-off values and T-scores set by the WHO; T score>-1, normal; -2.5=}1.0 {mu}g/g creatinine) in females (OR=2.92; 95% CI, 1.51-5.64) and in males (OR=3.37; 95% CI, 1.09-10.38). With the multiple linear regression model, the BMD of the adult group was negatively associated with U-Cd (<0.05), gender (female, p<0.001) and age (p<0.001). The BMD of participants who were {<=}19 years of age was negatively associated with gender (female, p<0.01), whereas it was positively associated with age and BMI (p<0.001). BMD was not associated with exercise, smoking habits, alcohol consumption, job or parental education. Conclusion: Results suggested that U-Cd might be associated with osteopenia as well as osteoporosis in both male and female adults. Age and female gender were negatively associated with BMD in the adult group, whereas age was positively

  9. The relationship between the bone mineral density and urinary cadmium concentration of residents in an industrial complex

    Shin, Minah; Paek, Domyung; Yoon, Chungsik

    2011-01-01

    Background: An association between cadmium exposure and bone mineral density (BMD) has been demonstrated in elderly women, but has not been well studied in youths and men. Some studies report either no or a weak association between cadmium exposure and bone damage. Objectives: This study was designed to investigate the relationship between the urinary cadmium (U-Cd) levels and BMD of females and males of all ages. Methods: A total of 804 residents near an industrial complex were surveyed in 2007. U-Cd and BMD on the heel (non-dominant calcaneus) were analyzed with AAS-GTA and Dual-Energy X-ray absorptiometry, respectively. Demographic characteristics were collected by structured questionnaires. Osteoporosis and osteopenia were defined by BMD cut-off values and T-scores set by the WHO; T score>-1, normal; -2.5< T score <-1, osteopenia; and T score <-2.5, osteoporosis. Logistic and multiple linear regressions were applied to estimate the association between U-Cd levels and BMD. Results: The U-Cd levels in females (0.64 μg/g creatinine) were higher than those in males (0.48 μg/g creatinine) (p<0.001). With the logistic regression model, osteopenia was associated with high U-Cd levels (≥1.0 μg/g creatinine) in females (OR=2.92; 95% CI, 1.51-5.64) and in males (OR=3.37; 95% CI, 1.09-10.38). With the multiple linear regression model, the BMD of the adult group was negatively associated with U-Cd (<0.05), gender (female, p<0.001) and age (p<0.001). The BMD of participants who were ≤19 years of age was negatively associated with gender (female, p<0.01), whereas it was positively associated with age and BMI (p<0.001). BMD was not associated with exercise, smoking habits, alcohol consumption, job or parental education. Conclusion: Results suggested that U-Cd might be associated with osteopenia as well as osteoporosis in both male and female adults. Age and female gender were negatively associated with BMD in the adult group, whereas age was positively associated with

  10. Perencanaan Strategik SBU Mineral PT Sucofindo (Persero

    Suprapto Suprapto

    2017-05-01

    Full Text Available Strategic planning requires an organization in the face of today's business competition and a more complex future. Likewise, Mineral Gas Station also requires this strategic planning as a newly formed business unit of 2015. Therefore, the company analyzed its internal and external factors as well as a future review of the mineral service industry to stay afloat, grow and develop. The objectives of this study were to identify the internal performance and core competencies of Mineral Gas Station, to identify the external macro environment condition and external micro intensity of mineral service industry competition, to map the current position of the company, to recommend appropriate business strategy in facing competition pressure, and to develop the objectives and program of the company. This research used descriptive and quantitative analysis methods with a purposive sampling technique. The results show that the position of Mineral Gas Station on the intensity of mineral service competition is 'moderate' and is in quadrant of 'grow and build'. Therefore, the appropriate strategy is intensive strategy (market penetration, market development and product development. Mineral Gas Station require to conduct customer satisfaction surveys related to customer perspectives which becomes the most important strategic factor with a focus on customer complaint factor. Further research is needed by involving all external parties so that the results will be more independent.Keywords: mineral services, strategic planning, competition, mineral gas station, SucofindoABSTRAKPerencanaan strategik dibutuhkan organisasi dalam menghadapi persaingan bisnis saat ini dan masa depan yang semakin komplek. Demikian juga yang dibutuhkan SBU Mineral sebagai unit bisnis yang baru terbentuk 2015, dengan menganalisis faktor internal dan ekternal perusahaan serta tinjauan masa depan industri jasa mineral untuk tetap bertahan, tumbuh dan berkembang. Tujuan penelitian ini adalah

  11. [Influence of hypocaloric diet with addition of a vitamin-mineral complex on status of patients with obesity 1st and 2nd degrees].

    Sharafetdinov, Kh Kh; Plotnikova, O A; Zykina, V V; Mal'tsev, G Iu; Sokol'nikov, A A; Kaganov, B S

    2011-01-01

    Addition of a vitamin-mineral complex (VMC) to a standard hypocaloric diet leads to a positive dynamics of antropometric characteristics in patients with obesity 1st and 2nd degrees which is comparable to effectiveness of standard dietotherapy (dietary treatment) traditionally used in complex treatment of obesity. Addition of 1,8 mg of vitamin B2 as part of VMC to a hypocaloric diet is shown to be inadequate in eradication of marginal provision of riboflavin when using diets reduced in calories.

  12. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  13. Application of statistical physics approaches to complex organizations

    Matia, Kaushik

    The first part of this thesis studies two different kinds of financial markets, namely, the stock market and the commodity market. Stock price fluctuations display certain scale-free statistical features that are not unlike those found in strongly-interacting physical systems. The possibility that new insights can be gained using concepts and methods developed to understand scale-free physical phenomena has stimulated considerable research activity in the physics community. In the first part of this thesis a comparative study of stocks and commodities is performed in terms of probability density function and correlations of stock price fluctuations. It is found that the probability density of the stock price fluctuation has a power law functional form with an exponent 3, which is similar across different markets around the world. We present an autoregressive model to explain the origin of the power law functional form of the probability density function of the price fluctuation. The first part also presents the discovery of unique features of the Indian economy, which we find displays a scale-dependent probability density function. In the second part of this thesis we quantify the statistical properties of fluctuations of complex systems like business firms and world scientific publications. We analyze class size of these systems mentioned above where units agglomerate to form classes. We find that the width of the probability density function of growth rate decays with the class size as a power law with an exponent beta which is universal in the sense that beta is independent of the system studied. We also identify two other scaling exponents, gamma connecting the unit size to the class size and gamma connecting the number of units to the class size, where products are units and firms are classes. Finally we propose a generalized preferential attachment model to describe the class size distribution. This model is successful in explaining the growth rate and class

  14. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  15. Hydrothermal minerals

    Nath, B.N.

    flux. Circulation of seawater through the oceanic crust and upper mantle gives rise to a complex series of physical and chemical reactions that lead to the 1) formation of seafloor mineral deposits; 2) alteration of oceanic crust; 3) control... temperature in the high-temperature reaction zone near the heat source. Important parameters in determining the high- temperature fluid composition are • pressure, • temperature, • water/rock ratio, • rock composition, • recharge fluid...

  16. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  17. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  18. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  19. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  20. Discovery of uranium mineralizations in the rhyolite-granite complex in the Jabal Eghei area of southern Libya

    Kovačević Jovan

    2013-01-01

    Full Text Available During investigation of the Jabal Eghei area in southern Libya and the production of geological maps at a scale of 1:250 000 (Tibesti sector, sheet Wadi Eghei NF 34-1 and NF 34-2, regional prospecting for mineral raw materials was performed. Radiometric survey of observed targets at the sites indicated two significant uranium mineralizations in rhyolites, and some smaller ones in granites that are in close contact with rhyolites. Rhyolites are located in the central part of the investigated region. They cut through granite rocks. The first mineralization is in the central part of the rhyolite region, which is mostly composed of silificated rhyolites. The second one was discovered near the granite-rhyolite contact zone, characterized by the presence of silicified breccia rocks. These findings were confirmed by laboratory measurements of more than seventy samples collected in the area, using high resolution gamma-ray spectrometry. The concentrations of uranium in these mineralizations were found to range from approx. 50 mg kg-1 to more than 600 mg kg-1. The latter value is about 240 times above the Earth’s average. Besides uranium, these measurements have also given concentrations of thorium and potassium. Additional geochemical analysis was performed on samples taken from locations where uranium anomalies were discovered using ICP-MS technique, in which concentrations of more than forty elements were determined. Uranium mineralizations are accompained by increased contents of silver (up to 17 times, arsenic (up to 8 times, molybdenum (up to 50 times, mercury (up to 9 times, and lead (up to 14 times, in regard to the Clark’s values. These results warrant a continued investigation of this region because of potential interest in the discovery of nuclear mineral raw materials.

  1. Complex nuclear geophysical methods and apparatus to increase the efficiency of prospecting extracting and processing nonradioactive minerals as examplified by tin ores

    Baldin, S.A.; Voloshchuk, S.N.; Egiazarov, B.G.; Zernov, L.V.; Luchin, I.A.; Matveev, V.V.; Pukhal'skij, L.Ch.; Chesnokov, N.I.

    1979-01-01

    Described is the complex of nuclear geophysical methods and apparatus, with the help of which the problem of the industrial control at all stages of ore concentrating industry are being solved. γ resonance and X-ray radiometric methods and apparatus providing express and not less accurate determination of general tin and tin in the form of cassiterite are used in the complex. The devices developed on the base of semiconductor spectrometers and used both under industrial conditions and in production regimes are used for the first time in the practice of ore concentrating industry. The essential positive effect of the complex on technical economical indices of the industry is found out; it allows to use more effective methods of extracting and processing technology. The similar complexes may be developed for other kinds of nonradioactive minerals

  2. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  3. Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea.

    Vuuren, van M.M.I.; Berendse, F.

    1993-01-01

    The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been

  4. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna comple...

  5. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  6. Complexity of matrix organization and problems caused by its inadequate implementation

    Janićijević Nebojša

    2007-01-01

    Full Text Available Matrix organization model is a sophisticated structure intended to combine both the efficiency and effectiveness of the functional and the product/service/customer/area dimensions. From the moment it was introduced in practice, this organizational architecture was accepted with enthusiasm, because it represented a complex organizational response adequate to the conditions which most of the companies in the world have been facing since 1970s. Although matrix organization is not a novelty, it is still a controversial model of organization design. The aim of this paper is to provide a deeper insight into the causes and effects of organizational misfits which appear in the implementation phase of three-dimensional matrix organization, as well as to offer some practical recommendations for managers on how to improve their capacities for successful management of complex matrix organization architecture in their organizations.

  7. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.

    de Carvalho, Rodrigo Tomazetto; Salgado, Leonardo Tavares; Amado Filho, Gilberto Menezes; Leal, Rachel Nunes; Werckmann, Jacques; Rossi, André Linhares; Campos, Andrea Porto Carreiro; Karez, Cláudia Santiago; Farina, Marcos

    2017-06-01

    Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs. © 2017 Phycological Society of America.

  8. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  9. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  10. The animal sensorimotor organization: a challenge for the environmental complexity thesis.

    Keijzer, Fred; Arnellos, Argyris

    2017-01-01

    Godfrey-Smith's environmental complexity thesis (ECT) is most often applied to multicellular animals and the complexity of their macroscopic environments to explain how cognition evolved. We think that the ECT may be less suited to explain the origins of the animal bodily organization, including this organization's potentiality for dealing with complex macroscopic environments. We argue that acquiring the fundamental sensorimotor features of the animal body may be better explained as a consequence of dealing with internal bodily-rather than environmental complexity. To press and elucidate this option, we develop the notion of an animal sensorimotor organization (ASMO) that derives from an internal coordination account for the evolution of early nervous systems. The ASMO notion is a reply to the question how a collection of single cells can become integrated such that the resulting multicellular organization becomes sensitive to and can manipulate macroscopic features of both the animal body and its environment. In this account, epithelial contractile tissues play the central role in the organization behind complex animal bodies. In this paper, we relate the ASMO concept to recent work on epithelia, which provides empirical evidence that supports central assumptions behind the ASMO notion. Second, we discuss to what extent the notion applies to basic animal architectures, exemplified by sponges and jellyfish. We conclude that the features exhibited by the ASMO are plausibly explained by internal constraints acting on and within this multicellular organization, providing a challenge for the role the ECT plays in this context.

  11. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  12. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  13. Using Spent Mushroom Substrate as the Base for Organic-Mineral Micronutrient Fertilizer – Field Tests on Maize

    Łukasz Tuhy

    2015-07-01

    Full Text Available Spent mushroom substrate (SMS is a noxious byproduct of the mushroom industry. The aim of this work was to convert SMS into organic-mineral micronutrient (Zn(II, Mn(II, and Cu(II fertilizer via biosorption and examine the effect of its application in field tests on maize compared to commercial reference micronutrient fertilizer. Crop yield and crop quality were assessed, and multielemental analysis of grains was conducted for the evaluation of the fertilization effect on maize grains and to assess bioavailability of nutrients from fertilizers. Grain yield for maize treated with micronutrients delivered with SMS was noticeably higher (11.5% than the untreated group and the NPK (nitrogen, phosphorus, potassium fertilizer treated only group (2.8%. Bioavailability (TF of micronutrients from SMS were comparable with reference micronutrient fertilizer (7% Zn, 4% Mn, and 2.3% Cu. The new product has the potential to be used as a micronutrient fertilizer. Satisfactory results of grain yield (6.4 Mg ha-1, high content of micronutrients (Zn 1.6%, Mn 1.2%, and Cu 1.8%, and macronutrients (P 1.0%, S 3.1%, Ca 8.2%, and K 0.2% were observed. The bioavailability suggests that enriched SMS could be a good alternative to fertilizers in the present market.

  14. Self-organization in Complex Systems The Past, Present, and Future of Synergetics : International Symposium

    Pelster, Axel

    2016-01-01

    This proceedings volume contains talks and poster presentations from the International Symposium "Self-Organization in Complex Systems: The Past, Present, and Future of Synergetics", which took place at Hanse-Wissenschaftskolleg, an Institute of Advanced Studies, in Delmenhorst, Germany, during the period November 13 - 16, 2012. The Symposium was organized in honour of Hermann Haken, who celebrated his 85th birthday in 2012. With his fundamental theory of Synergetics he had laid the mathematical-physical basis for describing and analyzing self-organization processes in a diversity of fields of research. The quest for common and universal principles of self-organization in complex systems was clearly covered by the wide range of interdisciplinary topics reported during the Symposium. These extended from complexity in classical systems and quantum systems over self-organisation in neuroscience even to the physics of finance. Moreover, by combining a historical view with a present status report the Symposium con...

  15. Effect of mineral and organic fertilization on grey water footprint in a fertirrigated crop under semiarid conditions.

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana

    2016-04-01

    The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). In semiarid scenarios with low water quality, where the irrigation is necessary to maintain production, green WF is zero because the effective rainfall is negligible. As well as blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. The major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study is focused in assessment mineral and organic fertilization on grey WF in a fertirrigated melon crop under semiarid conditions, which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12

  16. Geochronology of the Sleeper deposit, Humboldt County, Nevada: epithermal gold-silver mineralization following emplacement of a silicic flow-dome complex

    Conrad, J.E.; McKee, E.H.; Rytuba, J.J.; Nash, J.T.; Utterback, W.C.

    1993-01-01

    The high-grade gold-silver deposits at the Sleeper mine are low sulfidation, quartz-adularia-type epithermal deposits, formed during the final stages of igneous hydrothermal activity of a small middle Miocene silicic flow-dome complex in north-central Nevada. There were multiple pulses of alteration and mineralization but all occurred within a period of less than 2 m.y. Later supergene alteration formed opal and alunite about 5.4 Ma but produced no Au or Ag mineralization other than some remobilization to produce locally rich pockets of secondary Au and Ag enrichment and is unrelated to the older magmatic hydrothermal system. The Sleeper deposit in the northern part of the Great Basin is genetically related to bimodal volcanism that followed a long period of arc-related andesitic volcanism in the same general region. -from Authors

  17. Astrophyllite-group minerals from the Ilímaussaq complex, South Greenland (contribution to the mineralogy of Ilímaussaq no. 123)

    Macdonald, R.; Karup-Møller, Sven; Rose-Hansen, J.

    2007-01-01

    in the formation of kupletskite in some rocks. Altered zones in certain astrophyllites and niobophyllites have compositional features similar to the type 'hydroastrophyllite'. The astrophyllite-group minerals in the hydrothermal veins crystallized at temperatures below 400°C at 1 kbar and under high pH and low......Electron microprobe analyses are presented for astrophyllite-group minerals from hydrothermal veins and pegmatites of the Ilimaussaq complex, South Greenland. The analyses fall mainly into two groups: (1) niobophyllites with the highest Nb/(Nb+Ti) ratios yet recorded (∼0.9), occurring only...... oxygen fugacity, whereas those in the pegmatites were formed from water-rich melts which were hotter (≥450°C), less basic and more oxidized. © 2007 The Mineralogical Society....

  18. The mineralization and transformation of both added organic nitrogen and native soil N in red soils from four different ecological conditions

    Ye Qingfu; Zhang Qinzheng; He Zhenli; Xi Haifu; Wu Gang; Wilson, M.J.

    1998-01-01

    The NH 4 + -N, microbial biomass-N, humus-N, and extractable organic N derived from the added 15 N-labelled ryegrass and soil indigenous pool were measured separately with 15 N tracing techniques. Based on the recovery of NH 4 + - 15 N and lost- 15 N (mainly as NH 3 ), more than 30% of the added ryegrass 15 N was mineralized in 15 d. The amount of mineralized N increased with time up to 90 d for all soils except for the upland soil in which it decreased slightly. The mineralization of ryegrass N and incorporation of ryegrass- 15 N into microbial biomass was greatest in upland soil. The transformation of ryegrass 15 N into humus 15 N occurred rapidly in 15 d, with higher humus 15 N occurring in the upland or tea-garden soil than the paddy and unarable soil. The addition of ryegrass caused additional mineralization of soil indigenous organic N and enhanced the turnover of both microbial biomass N and stable organic N in soils

  19. Effect of organic complexants on the mobility of low-level-waste radionuclides in soils

    Swanson, J.L.

    1982-02-01

    The effect of certain organic complexants on the distribution of some radionuclides between solution and soil has been measured. The complexants and radionuclides examined are some of those most likely to be present in low-level waste disposal sites; Cs, Sr, Ni, Co, and Eu radionuclides, and EDTA, DTPA, oxalate, and citrate complexants. The effect of complexants was found to vary widely; in some systems there was no effect and in other systems there were large effects. In some cases slow rates of reaction have not allowed equilibrium measurements to be made

  20. Prediction of extraction ability during metal complexing with organic phosphorus extractants

    Rozen, A.M.; Krupnov, B.V.

    1995-01-01

    Quantum-chemical calculations of thermodynamic parameters of complexing of neutral organic phosphorus compounds (phosphates, phosphine oxides and diphosphine dioxides with different substituents) with seven acceptors of different strength have been made. It is shown that in a wide range of the complexes strength change the entropy contribution of the Gibbs energy of complexing depends but slightly both on the ligand basicity and on the acceptor nature. It is ascertained that this reaction series is isoentropic for any Lewis acid. Practicability of the previously used correlation between extractability and complexing enthalpy has been proved. 17 refs., 1 fig., 1 tab