WorldWideScience

Sample records for mineral processing waste

  1. From mineral processing to waste treatment: an open-mind process simulator

    International Nuclear Information System (INIS)

    Guillaneau, J.C.; Brochot, S.; Durance, M.V.; Villeneuve, J.; Fourniguet, G.; Vedrine, H.; Sandvik, K.; Reuter, M.

    1999-01-01

    More than two hundred companies are using the USIM PAC process simulator within the mineral industry world-wide. Either for design or plant adaptation, simulation is increasingly supporting the process Engineer in his activities. From the mineral field, new domains have been concerned by this model-based approach as new models are developed and new applications involving solid waste appears. Examples are presented in bio-processing, steel-making flue dust treatment for zinc valorisation, soil decontamination or urban waste valorisation (sorting, composting and incineration). (author)

  2. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  3. Management of waste from mining and minerals processing

    International Nuclear Information System (INIS)

    Kraus, W.

    2000-01-01

    Growing attention has been paid to exposures to enhanced natural radiation in the last decade. One important problem is the management of waste from mining and minerals processing. The inconsistencies in the relevant approaches may partly be a consequence of the fact that feasible but too expensive measures to reduce doses may be unreasonable because of their socio-economic impacts. Although in principle airborne and liquid effluents belong to the definition of radioactive waste they are not discussed in this paper: There are three different basic waste types: -Waste rock piles and tailings from uranium mining and milling as practices. -Wastes created by mining and processing of minerals where the enhanced radioactivity is incidental to the work, e.g. phosphate industry, processing of metal ores and zircon sands, manufacture of rare earths, manufacture and use of thorium compounds, oil and gas extraction industry, combustion of coal. (Amounts of wastes and their activity concentrations are very different in different countries. Most of these 'practices' already exist, and they might be included in the radiation protection system like an intervention situation. In the European Basic Safety Standards they are called 'work activities'.) -Residues from former mining and processing, where radiation protection had not or inadequately been observed, as pure intervention situations. To solve radiation protection problems with regard to enhanced natural radioactivity a flexible approach is to be preferred. After an overview of the problems and their significance in a country work activities and intervention situations of concern should be identified. Compliance with established dose criteria should be achieved by simple intervention measures. Only if this is not possible a radiation protection system as for practices should be applied. At present efforts are focussed on occupational exposures. The management of wastes should analogously and simultaneously be included in new

  4. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)], E-mail: al-abed.souhail@epa.gov; Jegadeesan, G. [Pegasus Technical Services Inc., 46 East Hollister Street, Cincinnati, OH 45219 (United States); Purandare, J. [Englandgeosystem Inc., 15375 Barranca Pkwy, Suite F-106, Irvine, CA 92618 (United States); Allen, D. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2008-05-30

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste.

  5. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    International Nuclear Information System (INIS)

    Al-Abed, Souhail R.; Jegadeesan, G.; Purandare, J.; Allen, D.

    2008-01-01

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste

  6. Proceedings of XXIV international mineral processing congress

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dianzuo; Sun Chuan Yao; Wang Fu Liang; Zhang Li Cheng; Han Long (eds.)

    2008-07-01

    Topics covered in volume 1 include applied mineralogy, comminution, classification, physical separation, flotation chemistry, sulphide flotation, non-sulphide flotation and reagent in mineral industry. Volume 2 covers processing of complex ores, processing of industrial minerals and coal, solid liquid separation, dispersion and aggregation, process simulation, expert systems and control of mineral processing, biohydrometallurgy, and mineral chemical processing. Volume 3 contains powder technology, mineral materials, treatment and recycling for solid wastes, waste water treatment, secondary resource recovery, soil remediation, concentrator engineering and process design, and application of mineral processing in related industry. It includes a CD-ROM of the proceedings.

  7. Mineralizer effects on mullite formation from kaolin processing wastes in Para-Brazil

    International Nuclear Information System (INIS)

    Martelli, Marlice Cruz; Angelica, Romulo Simoes; Neves, Roberto de Freitas

    2009-01-01

    Mullite is a relatively rare mineral in nature, formed under exceptional conditions of high temperature and pressure, which can be used to synthesize this mineral. Mullite presents good chemical and thermal stability among others properties that explain the importance of mullite in traditional and advanced ceramics. This research proposes the development of a process to synthesize mullite using the wastes from kaolin processing industries located in the Rio Jari (Monte Dourado-PA) and Rio Capim (Ipixuna-PA) districts. The synthesized materials will be studied for application as silicon-aluminum refractory bricks. The steps are mineralogical and chemical characterization, verifying the differences between the materials processing through firing of the wastes at increasing levels of temperature with 100 deg C increments, ranging from 600 to 1000 deg C and 1200 to 1500 deg C, during 3 hours at each level. Methods include the study of temperature and impurities effects through X-ray-powder and scanning electron microscopy. (author)

  8. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    Science.gov (United States)

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  9. Utilization of mining and mineral wastes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Hong, Seung Woong; Choi, Young Yoon; Kim, Byung Gyu; Park, Je Shin [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Up to now, it is estimated that more than 50 million tons of mineral wastes have been generated mining industries and deposited on the land in Korea. Much of cultivated land and hilly areas have been occupied by this wastes, which cause pollution of the environment. Utilization of the mineral wastes is preferable to stabilization because full use would both eliminate the waste and broaden the mineral resource base. Therefore, the development of utilization techniques of mineral wastes is very important not only for improving the environment but also for resource conservation. In countries with high population and poor natural resources like Korea, the utilization of these wastes is essential to decrease the environmental problem and the secure the resources and the study on this field play a important part. Therefore, the objective of this study is to develop the utilization techniques of the mineral wastes. In first year's research, the contents and scope of this study are 1) Present condition and Field Survey on the mineral wastes with respect of their utilization, 2) Reviews of Current effects and research to utilize mineral wastes, 3) Characterization of mineral wastes and environmental test, 4) Evaluation and study on the utilization. (author). 67 refs., 25 tabs., 54 figs.

  10. Utilization of mining and mineral wastes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Ho; Hong, Seung Woong; Choi, Young Yoon; Kim, Byung Gyu; Park, Je Shin [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Up to now, it is estimated that more than 50 million tons of mineral wastes have been generated mining industries and deposited on the land in Korea. Much of cultivated land and hilly areas have been occupied by this wastes, which cause pollution of the environment. Utilization of the mineral wastes is preferable to stabilization because full use would both eliminate the waste and broaden the mineral resource base. Therefore, the development of utilization techniques of mineral wastes is very important not only for improving the environment but also for resource conservation. In countries with high population and poor natural resources like Korea, the utilization of these wastes is essential to decrease the environmental problem and the secure the resources and the study on this field play a important part. Therefore, the objective of this study is to develop the utilization techniques of the mineral wastes. In first year's research, the contents and scope of this study are 1) Present condition and Field Survey on the mineral wastes with respect of their utilization, 2) Reviews of Current effects and research to utilize mineral wastes, 3) Characterization of mineral wastes and environmental test, 4) Evaluation and study on the utilization. (author). 67 refs., 25 tabs., 54 figs.

  11. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    Science.gov (United States)

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  12. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  13. Towards zero waste production in the minerals and metals sector

    Science.gov (United States)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  14. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Barney, G.S.

    1975-05-01

    Radioactive cesium (primarily 137 Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137 Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO 2 /Al 2 O 3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  15. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    International Nuclear Information System (INIS)

    Jantzen, C.

    2008-01-01

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  16. Synthesis of magnetite nanoparticles from mineral waste

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohit [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Sakthivel, R., E-mail: velsak_r@yahoo.com [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Behura, Reshma; Mishra, B.K. [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Das, D. [UGC-DAE Consortium, Kolkata (India)

    2015-10-05

    Highlights: • Mineral waste becomes a valuable source for the synthesis of magnetite. • Milling helps uniform mixing of reductant with iron ore tailings. • Magnetite nanoparticles exhibit saturation magnetization of 60 emu/g. • Ag coating induces antibacterial activity of magnetite. - Abstract: Magnetite nanoparticles were synthesized from iron ore tailings – a mineral waste collected from the iron ore processing plant. Mechanical milling followed by chemical route is employed to obtain the magnetite nanoparticles from the waste. The magnetite nanoparticles were characterized by X-ray diffractometer, Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrometer and Vibrating Sample Magnetometer. X-ray diffraction pattern confirms the existence of a magnetite phase. Field Emission Scanning Electron Microscopic (FE-SEM) pictures reveal that the particle size is below 100 nm. Fourier Transform Infrared (FTIR) spectrum shows a band at 570 cm{sup −1} for the Fe–O bond vibration. Vibrating Sample Magnetometric (VSM) study shows high saturation magnetization value of 60 emu/g at low applied magnetic field. Silver coated magnetite nanoparticles exhibits antibacterial property whereas bare magnetite does not.

  17. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  18. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    Science.gov (United States)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  19. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  20. Degradation of dome cutting minerals in Hanford waste-13100

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  1. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  2. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  4. Definition and manufacture of vitreous matrices using innovative processes for the confinement of nuclear wastes or industrial toxic wastes

    International Nuclear Information System (INIS)

    Boen, R.; Ladirat, C.; Lacombe, J.

    1997-01-01

    Vitrification appears as a solution to toxic mineral waste confinement; this solution has been demonstrated at an industrial level for radioactive wastes. The utilization of cold crucible direct induction melting furnaces, associated to various waste pre-treatments and well-adapted gas processing, leads to the confinement of numerous toxic mineral wastes in a borosilicate vitreous matrix which quality and long term behaviour may be precisely defined

  5. Fabrication of Mineralized Collagen from Bovine Waste Materials by Hydrothermal Method as Promised Biomaterials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Macossay, Javier

    2011-01-01

    In the present study, we aimed to produce mineralized-collagen by hydrothermal process. A simple method not depending on additional foreign chemicals has been employed to isolate the mineralized-collagen fibers from bovine waste. The process of extraction involves the use of hydrothermal method...... mineral content in the individual fibers. The X-ray diffraction showed the crystalline feature of the obtained nano-compounds. The thermo gravimetric analysis was used to differentiate between the collagen and mineral parts of obtained product. Overall, the results generously indicated production of well...

  6. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  7. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  8. Mineral waste: the required governance environment to enable re-use

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-05-01

    Full Text Available extraction (adapted from Pearce and Turner 1990...................................................................................................................................14 Figure 10: Use of a tax to internalise environmental externalities (adapted... to account for 221 million tons or 47% of all mineral waste produced in South Africa (Table 4). Mineral waste is therefore the largest, single source of waste in South Africa, much of which is considered hazardous by government. Mining 87.7% Power...

  9. Radioactive Demonstration Of Final Mineralized Waste Forms For Hanford Waste Treatment Plant Secondary Waste By Fluidized Bed Steam Reforming Using The Bench Scale Reformer Platform

    International Nuclear Information System (INIS)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137 Cs, 129 I, 99 Tc, Cl, F, and SO 4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form

  10. Processing of basalt fiber production waste

    Science.gov (United States)

    Sevostyanov, V. S.; Shatalov, A. V.; Shatalov, V. A.; Golubeva, U. V.

    2018-03-01

    The production of mineral rock wool forms a large proportion of off-test waste products. In addition to the cost of their production, there are costs for processing and utilization, such as transportation, disposal and preservation. Besides, wastes have harmful effect on the environment. This necessitates research aimed to study the stress-related characteristics of materials, their recyclability and use in the production of heat-saving products.

  11. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  12. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    Science.gov (United States)

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  14. Improvement of home composting process of food waste using different minerals.

    Science.gov (United States)

    Margaritis, M; Psarras, K; Panaretou, V; Thanos, A G; Malamis, D; Sotiropoulos, A

    2018-03-01

    This article presents the experimental study of the process of composting in a prototype home-scale system with a special focus on process improvement by using different additives (i.e. woodchips, perlite, vermiculite and zeolite). The interventions with different bulking agents were realized through composting cycles using substrates with 10% additives in specific mixtures of kitchen waste materials. The pre-selected proportion of the mixtures examined was 3:1:1 in cellulosic:proteins:carbohydrates, in order to achieve an initial C/N ratio equal to 30. The control of the initial properties of the examined substrates aimed at the consequent improvement of the properties of the final product (compost). The results indicated that composting process was enhanced with the use of additives and especially the case of zeolite and perlite provided the best results, in terms of efficient temperature evolution (>55 °C for 4 consecutive days). Carbon to nitrogen ratios decreased by 40% from the initial values for the reactors were minerals were added, while for the bioreactor tested with woodchips the reduction was slight, showing slowest degradation rate. Moisture content of produced compost varied within the range of 55-64% d.m., while nutrient content (K, Na, Ca, Mg) was in accordance with the limit values reported in literature. Finally, the composts obtained, exhibited a satisfactory degree of maturity, fulfilling the criterion related to the absence of phytotoxic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  16. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Laidler, J.J.

    1994-01-01

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  17. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  18. Scientific and Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural Minerals

    Directory of Open Access Journals (Sweden)

    Heping Xie

    2015-03-01

    Full Text Available The issues of reducing CO2 levels in the atmosphere, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several leading large-scale CO2 mineralization methodologies from a technical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided.

  19. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    International Nuclear Information System (INIS)

    Jia, C.Q.; Pickles, C.A.; Brienne, S.; Rao, S.R.

    2008-01-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry; Pickles, C.A. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mining Engineering; Brienne, S. [Teck Cominco Metals Ltd., Trail, BC (Canada). Applied Research and Engineering; Rao, S.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Mining and Materials Engineering] (eds.)

    2008-07-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  1. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples

    International Nuclear Information System (INIS)

    Williamson, Aimee Lynn; Caron, François; Spiers, Graeme

    2014-01-01

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 ( 226 Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 ( 235 U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the 226 Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and 226 Ra leaching. Pacified samples resist the release of 226 Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. - Highlights: • Gamma counting showed an 84% decrease in 235 U after biogeochemical mineral leaching. • Chemical digestion/ICP-MS analysis also showed an 84% decrease in total U. • Over

  2. Environmental issues and waste management in energy and minerals production

    International Nuclear Information System (INIS)

    Yegulalp, T.M.; Kim, K.

    1992-01-01

    This book includes the following topics: water management in the minerals industry; management of radioactive wastes in the energy industry; the US high-level radioactive waste program; acid mine drainage; health risks from uranium mill tailings; alternate energy sources, such as hydrogen; superconductive magnetic energy storage; nuclear waste

  3. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    Science.gov (United States)

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  4. MINERALIZING, STEAM REFORMING TREATMENT OF HANFORD LOW-ACTIVITY WASTE (a.k.a. INEEL/EXT-05-02526)

    International Nuclear Information System (INIS)

    A. L. Olson; N. R. Soelberg; D. W. Marshall; G. L. Anderson

    2005-01-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization''. The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2-5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.4 hours of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  5. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  6. Enhanced99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    OpenAIRE

    Um, W; Luksic, SA; Wang, G; Saslow, S; Kim, DS; Schweiger, MJ; Soderquist, CZ; Bowden, ME; Lukens, WW; Kruger, AA

    2017-01-01

    © 2017 Elsevier B.V. Technetium ( 99 Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt sample...

  7. Recycling of radioactive mineral waste by activity separation

    International Nuclear Information System (INIS)

    Schartmann, F.; Cramer, T.; Meier-Kortwig, J.; Diedenhofen, S.; Wotruba, H.

    2005-01-01

    The AST process is a device for the recycling of building rubble originating from the dismantling of nuclear installations. Due to the activity separation in the process, a major part of rubble which would have otherwise been radioactive waste can now be cleared. The AST process has been developed in the course of the combined research project ''Aufbereitung radioaktiver mineralischer Rueckstaede durch Aktivitaetsseparation (Recycling of radioactive mineral waste by activity separation)'' which was sponsored by the BMBF (Federal Ministry for Education and Research). The first step was to investigate the activity distribution between the various constituents of activated heavy concrete (additions: hematite, magnetite, iron cuttings), of contaminated heavy and normal concrete, as well as of composition floor. Heavy concrete with metal additions showed a selective activation of the various constituents. Contaminated rubble often exhibits a selective enrichment of the activity in the cement in contrast to the aggregate. The AST facility for activity separation was designed on the basis of these results. Trial operation with various types of building rubble was carried out using three methods for sorting, screening according to grain size, magnetic separation and radiometric sorting. The use of these three methods was adapted to the material. (orig.)

  8. The study of the sorption capacity of mineral kasongan and sand mixture of the waste of uranium organic phase

    International Nuclear Information System (INIS)

    Budiyono, M. E.; Sardjono, D.; Sukosrono

    1996-01-01

    An experimental investigation on the sorption capacity of mineral Kasongan and sand of Progo of the waste of uranium organic phase which to be connected with a backfill material which can be used to carried out of waste transportation from uncertain unit of the wastes to process of the wastes. The aim of the investigation wastes transportation must be conducted of the anticipation, that of the wastes with safe to unit management of wastes. Therefore must be investigated of the uranium organic wastes. This investigations which influence sorption ability, so an experimental investigation on its absorbability is necessary since this nuclide can not be dispersed to the environment. This investigation was carried out by varying some parameters which influence the sorption ability or sorptive capacity of the mineral Kasongan and the sand of Progo. The variables investigated were the grains size of the backfill material. Also the composition of mineral Kasongan/sand of Progo. The grains size were varied from 10-200 mesh and the composition were varied from 100/0 to 0/100 by weight. The sorption capacity of the maximum results was also determined. It can be concluded that the sorption capacity of the mineral Kasongan was the best at the grains of size about 80 mesh. The sorption capacity was 58 x 10 -2 ml/g and the grains size of the sand of Progo about 20 to 80 mesh was 30 x 10 -2 ml/g. The best sorption capacity of 58 x 10 -2 ml/g was gained at the composition of 100 % mineral Kasongan and 0% sand Progo. (author)

  9. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin D., E-mail: Benjamin.Williams@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Neeway, James J., E-mail: James.Neeway@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Snyder, Michelle M.V., E-mail: Michelle.ValentaSnyder@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Bowden, Mark E., E-mail: Mark.Bowden@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Amonette, James E., E-mail: Jim.Amonette@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Arey, Bruce W., E-mail: Bruce.Arey@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Pierce, Eric M., E-mail: pierceem@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, MS-6035, Room 372, Oak Ridge, TN 37831 (United States); Brown, Christopher F., E-mail: Christopher.Brown@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Qafoku, Nikolla P., E-mail: Nik.Qafoku@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States)

    2016-05-15

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product. - Highlights: • Simulated Hanford waste was treated by the Fluidized Bed Steam Reformer (FBSR) process. • The FBSR granular product was encapsulated in a geopolymer monolith. • Leach tests were performed to examine waste form performance. • XRD revealed the structure of a previously unreported sodium aluminosilicate phase. • Monolithing of granular waste forms may lead to a reduction in crystallinity.

  10. Pirm wastes: permanent isolation in rock-forming minerals

    International Nuclear Information System (INIS)

    Smyth, J.R.; Vidale, R.J.; Charles, R.W.

    1977-01-01

    The most practical system for permanent isolation of radioactive wastes in granitic and pelitic environments may be one which specifically tailors the waste form to the environment. This is true because if recrystallization of the waste form takes place within the half-lives of the hazardous radionuclides, it is likely to be the rate-controlling step for release of these nuclides to the ground-water system. The object of the proposed waste-form research at Los Alamos Scintific Laboratory (LASL) is to define a phase assemblage which will minimize chemical reaction with natural fluids in a granitic or pelitic environment. All natural granites contain trace amounts of all fission product elements (except Tc) and many contain minor amounts of these elements as major components of certain accessory phases. Observation of the geochemistry of fission-product elements has led to the identification of the natural minerals as target phases for research. A proposal is made to experimentally determine the amounts of fission product elements which can stably be incorporated into the phases listed below and to determine the leachability of the assemblage this produced using fluids typical of the proposed environments at the Nevada Test Site. This approach to waste isolation satisfies the following requirements: (1) It minimizes chemical reaction with the environment (i.e., recrystallization) which is likely to be the rate-controlling step for release of radionuclides to groundwater; (2) Waste loading (hence temperature) can be easily varied by dilution with material mined from the disposal site; (3) No physical container is required; (4) No maintenance is required (permanent); (5) The environment acts as a containment buffer. It is proposed that such wastes be termed PIRM wastes, for Permanent Isolation in Rock-forming Minerals

  11. Process and device for liquid organic waste processing by sulfuric mineralization

    International Nuclear Information System (INIS)

    Aspart, A.; Gillet, B.; Lours, S.; Guillaume, B.

    1990-01-01

    In a chemical reactor containing sulfuric acid are introduced the liquid waste and nitric acid at a controlled flow rate for carbonization of the waste and oxidation of carbon on sulfur dioxide, formed during carbonization, regenerating simultaneously sulfuric acid. Optical density of the liquid is monitored to stop liquid waste feeding above a set-point. The liquid waste can be an organic solvent such as TBP [fr

  12. Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive

    Directory of Open Access Journals (Sweden)

    Bülent Özdalyan

    2018-06-01

    Full Text Available The heat values of waste mineral oils are equal to the heat value of the fuel oil. However, heat value alone is not sufficient for the use of waste minerals oils as fuel. However, the critical physical properties of fuels such as density and viscosity need to be adapted to the system in order to be used. In this study, the engine oils used in the first 10,000 km of the vehicles were used as waste mineral oil. An organic-based Mn additive was synthesized to improve the properties of the waste mineral oil. It was observed that mixing the Mn additive with the waste mineral oil at different doses (4, 8, 12, and 16 ppm improves the viscosity of the waste oil and the flash point. The resulting fuel was evaluated for emission using different loads in a 5 kW capacity generator to compare the fuel with standard diesel fuel and to determine the effect of Mn addition. In the experimental study, it was observed that the emission characteristics of the fuel obtained from waste mineral oil were worse than diesel fuel, but some improvement was observed with Mn addition. As a result, we found that the use of waste mineral oils in engines in fuel standards was not appropriate, but may be improved with additives.

  13. SYNROC process. A geochemical approach to nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W O; Major, A [Australian National Univ., Canberra. Research School of Earth Sciences

    1979-08-01

    The SYNROC process is proposed to immobilize high-level wastes as dilute solid solutions in the constituent minerals of a synthetic rock formed from a mixture of oxides. New modification of the SYNROC was developed. Experiments showed that the entire spectra of high-level waste elements can be incorporated in the crystal lattices of Ba-hollandite, perovskite and zirconolite. This titanate assemblage has been proved to be exceptionally resistant to hydrothermal leaching, and in this respect, amongst others, it is demonstrably superior to alternative ceramic waste forms and to borosilicate glasses. The relative stability of various waste forms was compared in hydrothermal leaching experiments using both pure water and 10 w/o NaCl solution. Borosilicate glasses were almost completely decomposed and disintegrated after only 24 hours at 350 deg C and 1000 bars, and the extensive loss of hazardous high-level waste elements occurred. The phase pollucite in ceramic waste forms began to decompose at 400 deg C. The hollandite-perovskite-zirconolite SYNROC assemblage was proved to be exceptionally resistant to leaching, surviving invariably the extreme conditions up to 900 deg C and 5000 bars. Geochemical studies of the naturally-occurring minerals containing radwaste elements are relevant to the problem of radiation damage to SYNROC phases. These imply that the 2-particle flux in SYNROC is unlikely to be enough to impair the ability to immobilize radwaste for the required period. The production of SYNROC is explained in detail. The SYNROC phases have the structures analogous to the natural minerals which have survived a variety of geological conditions for millions of years while retaining certain high-level waste elements in their crystal lattices.

  14. Treatment and conditioning of radioactive waste solution by natural clay minerals

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-Massry, E.H.; Khalifa, S.M.; Aly, H.F.

    1999-01-01

    Natural inorganic exchangers. Was used to remove caesium, cobalt and europium using zinc sulfate as coagulant also different clay minerals. These calys include, feldrspare, aswanly, bentionite, hematite, mud, calcite, basalt, magnetite, kaoline sand stone, limonite and sand. The factros affecting the removal process namely PH, particle size, temperature and weight of the clay have been studied. Highest removal for Cs-137, Co-60 and Eu-152 and 154 was achived by asswanly and bentonite. Sand stone is more effective than the other clays. Removal of Cs-137 from low level waste solution is in the order the sequence, aswanly (85.5%)> bentonite (82.2%)> sandstone (65.4%). Solidified cement products have been evaluated to determine optimum conditions of mixing most sludges contained clays by testing mechanical strength and leaching rates of the waste products. The solidified waste forms were found more acceptable for handing, storage and ultimate disposal

  15. Energy recovery from containerized waste

    International Nuclear Information System (INIS)

    Benoit, M.R.; Hansen, E.R.; Reese, T.J.

    1991-01-01

    This patent describes a method for achieving environmentally sound disposal of solid waste in an operating rotary kiln. It comprises: a heated, rotated cylinder containing in-process mineral material, the method comprising the steps of packaging the waste in containers and charging the containerized waste into the kiln to contact the mineral material at a point along the length of the kiln cylinder where the kiln gas temperature is sufficient to decompose volatile components of the waste released upon contact of the waste with the in-process mineral material

  16. Minerals and design of new waste forms for conditioning nuclear waste

    Science.gov (United States)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  17. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  18. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  19. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  20. Experimental formation of Pb, Sn, Ge and Sb sulfides, selenides and chlorides in the presence of sal ammoniac: A contribution to the understanding of the mineral formation processes in coal wastes self-ignition

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Veselovský, F.; Drábek, M.; Kříbek, B.; Klementová, Mariana

    176-177, May (2017), s. 1-7 ISSN 0166-5162 Institutional support: RVO:68378271 Keywords : coal wastes * metalloids * mineral formation * self-burning processes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 4.783, year: 2016

  1. Treatment and Conditioning of Radioactive Waste Solution by Natural Clay Minerals

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; Abdel-Raouf, M.W.; El-Massry, E.H.; Khalifa, S.M.; Aly, H.F.

    1999-01-01

    Chemical precipitation processes have been used for the treatment of radioactive elements from aqueous solution. The volume reduction is not very great and storage facilities are expensive. There are some radionuclides which are so difficult to be precipitated by this common method, so they may be precipitated by adding solid materials such as natural inorganic exchangers. In this woek, improvement the removal of caesium, cobalt and europium with zinc sulfate as coagulant and different clay minerals have been investigated. These include, Feldespare, Aswanly, Bentionite, Hematite, Mud, Calcite, Basalt, Magnetite, Kaoline, Sand stone, Limonite and Sand. The parameters affecting the precipitation process such as pH, particle size, temperature and weight of the clay have been studied. The results indicate that, the highest removal for Cs-137, Co-60 and Eu-152 and154 by Asswanly, Bentonite and Sand stone is more than the other clays. Removal of Cs-137 from low level waste solution with these three natural clays took the sequence, Aswanly (85.5%) > Bentonite (82.2%) > Sandstone (65.4%). Solidified cement products have been evaluated to determine mechanical strength and leaching rates of the waste products. The solidified waste forms were found more acceptable for handling ,storage and ultimate disposal

  2. Enhanced 99 Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui; Saslow, Sarah; Kim, Dong-Sang; Schweiger, Michael J.; Soderquist, Chuck Z.; Bowden, Mark E.; Lukens, Wayne W.; Kruger, Albert A.

    2017-11-01

    Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals. Two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 – 1,000 oC. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc was partially oxidized from Tc(IV) to Tc(VII) as the melt temperature increased. However, Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.

  3. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    Science.gov (United States)

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  4. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  5. Hydrometalurgical processes for mineral complexes

    International Nuclear Information System (INIS)

    Barskij, L.A.; Danil'chenko, L.M.

    1977-01-01

    Requirements for the technology of the processing of ores including uranium ores and principal stages of the working out of technological schemes are described in brief. There are reference data on commercial minerals and ores including uranium-thorium ores, their classification with due regard for physical, chemical and superficial properties which form the basis for ore-concentrating processes. There are also presented the classification of minerals including uranium minerals by their flotation ability, flotation regimes of minerals, structural-textural characteristics of ores, genetic types of ore formations and their concentrating ability, algorithmization of the apriori evaluation of the concentration and technological diagnostics of the processing of ores. The classification of ore concentration technique is suggested

  6. Carbon mineralization in mine tailing ponds amended with pig slurries and marble wastes

    Directory of Open Access Journals (Sweden)

    Raul Zornoza

    2012-07-01

    Full Text Available Effective application of organic residues to reclaim soils requires the optimization of the waste management to minimize CO2 emissions and optimize soil C sequestration efficiency. In this study, the short-term effects of pig slurry amendment alone and together with marble waste on organic matter mineralization in two tailing ponds from Cartagena-La Unión Mining District (SE Spain were investigated in a field remediation experiment. The treatments were: marble waste (MW, pig slurry (PS, marble waste + pig slurry (MW+PS, and control. Soil carbon mineralization was determined using a static chamber method with alkali absorption during 70 days. Soil respiration rates in all plots were higher the first days of the experiment owing to higher soil moisture and higher mean air temperature. MW plots followed the same pattern than control plots, with similar respiration rates. The addition of pig slurry caused a significant increase in the respiration rates, although in MW+PS plots, respiration rates were lower than in PS plots. The cumulative quantities of C-CO2 evolved from the pig slurry mineralization were fitted to a first-order kinetic model explaining 90% of the data. This model implies the presence of only one mineralisable pool (C0. The values of the index C0*constant rate/added C were similar for PS plots in both tailing ponds, but lower in the MW+PS treatment, suggesting that the application of marble reduces the degradability of the organic compounds present in the pig slurry. Thus, the application of marble wastes contributes to slow down the loss of organic matter by mineralization.

  7. The behaviour of radionuclides in the processing of rare earth minerals

    International Nuclear Information System (INIS)

    Hart, K.P.; Brown, S.A.; Levins, D.M.

    1993-01-01

    In recent years the presence of thorium in monazites has been seen as significant economic obstacle to utilisation of this resource. In particular, the environmental problems encountered with disposal of the radioactive wastes in France, China and Malaysia have led to a decline in the use of monazite as rare earth feed stock. The price of monazite has consequently fallen from $800 per tonne to the present price of $250 per tonne and significant quantities of monazite are now being ploughed back into the tailings from mineral sands processing. The environmental problems experienced overseas with disposal of monazite wastes have resulted mainly from poor waste disposal practices and/or inappropriate siting of plants rather than an insoluble waste management problem. Nevertheless, it is important to understand the behaviour of radionuclides during the processing of monazite so that appropriate measures can be undertaken to minimise the environmental impact. This paper discusses the potential hazards associated with radionuclides in the thorium and uranium decay chain. The partitioning of radioactivity during the processing of monazite is described and results of experimental work are presented on the behaviour of radionuclides during the chemical processing of beach sand monazite and the supergene monazite from Mt Weld which contains far lower levels of thorium and uranium. 5 refs., 7 tabs., 2 figs

  8. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  9. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  10. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    International Nuclear Information System (INIS)

    Boris, G.F.; Bamberger, J.A.

    1999-01-01

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove approximately98% of the waste, approximately3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing borehole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team

  11. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  12. Radioactive waste disposal and study of mineral deposit of uranium

    International Nuclear Information System (INIS)

    Doi, Kazumi

    2003-01-01

    To realize high level radioactive waste disposal, it is need to guarantee with high reliability safety of isolation of radioactive waste during some ten thousand years. There are two important factors related to geophysics such as ground water and diastrophism. The problems to be solved in the present point are followings; 1) increasing data of characteristics of radionuclide within high level radioactive waste, 2) development of undisruptive exploration technologies of lithosphere, especially formal fabric of pore and 3) improvement of protection technologies of diastrophism. Our country has to make efforts to realize the safety of isolation of radioactive waste on the basis of researches, by means of keeping them in the strong facilities without disposal. The formation of concentrated uranium in the mineral deposit was explained in relation with high level radioactive waste disposal. (S.Y.)

  13. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  14. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  15. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  16. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  17. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    International Nuclear Information System (INIS)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-01-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials

  18. The Transformation of Coal-Mining Waste Minerals in the Pozzolanic Reactions of Cements

    Directory of Open Access Journals (Sweden)

    Rosario Giménez-García

    2016-06-01

    Full Text Available The cement industry has the potential to become a major consumer of recycled waste materials that are transformed and recycled in various forms as aggregates and pozzolanic materials. These recycled waste materials would otherwise have been dumped in landfill sites, leaving hazardous elements to break down and contaminate the environment. There are several approaches for the reuse of these waste products, especially in relation to clay minerals that can induce pozzolanic reactions of special interest in the cement industry. In the present paper, scientific aspects are discussed in relation to several inert coal-mining wastes and their recycling as alternative sources of future eco-efficient pozzolans, based on activated phyllosilicates. The presence of kaolinite in this waste indicates that thermal treatment at 600 °C for 2 h transformed these minerals into a highly reactive metakaolinite over the first seven days of the pozzolanic reaction. Moreover, high contents of metakaolinite, together with silica and alumina sheet structures, assisted the appearance of layered double hydroxides through metastable phases, forming stratlingite throughout the main phase of the pozzolanic reaction after 28 days (as recommended by the European Standard as the reaction proceeded.

  19. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  20. Geochemical processes to mobilization of radionuclides from radioactive waste

    International Nuclear Information System (INIS)

    Bragea, M.

    2005-01-01

    On time to alteration the waste by natural weather in isolated area of waste dumps we can notice chemical, biochemical and geochemical modification. Disposability and flow of water are two of the most important parameter which affect the waste chemistry and migration of contamination from wastes. The water behaves like a mechanism of transport for cationic and anionic components and influenced solubility and salt migration from dump. The salt migration towards residue surfaces is affected by short distance between water and surface. The salts are redissolving and moving through the capillary towards the surface when precipitate. The reactions inside of waste are influenced by geochemical point of view mainly by the amount of sulfated salts and chloride, by the disposability of water, pH and by the chemical mineral heterogeneous of waste. Obviously, if the process of alteration by atmospherically agents and those effects about waste can be minimized we could minimize even chemical modification in order to form the salts. This paper examines the mechanism by which 226 Ra and U nat can enter in groundwater and those, which control its concentration. (author)

  1. Proceedings of the 18. international symposium on mine planning and equipment selection (MPES 2009) and the 11. international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2009) : mine planning and equipment selection and environmental issues and waste management in energy and mineral production

    International Nuclear Information System (INIS)

    Singhal, R.K.; Mehrotra, A.; Fytas, K.; Ge, H.

    2009-01-01

    This conference focused on the application of innovative technologies to the mineral industries and the development of productive methods for the mining and processing industries. It was attended by participants from North and South America, Europe, Australia, Africa and Asia with backgrounds in computer sciences, mining engineering and research in mineral production. The major topics addressed regarding mine planning and equipment selection included economic and technical feasibility studies; reserve estimation; mine development; design and planning of surface and underground mines; drilling, blasting, tunneling and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; mining in terms of health, safety and the environment; and rock mechanics and geotechnical applications. The topics addressed regarding waste management in energy and mineral production included the environmental impacts of coal-fired power projects; mining and reclamation; water management; social aspects of rehabilitation; sustainable development for mineral and energy industries; remediation of contaminated soil and groundwater; health hazard and safety issues in small-scale mining; environmental issues in surface and underground mining of metalliferous, coal, uranium and industrial minerals; occupational health and safety; control of effluents from mineral processing, metallurgy and chemical plants; emerging technologies for environmental protection; reliability of waste containment structures; and tailings treatment, recycling and disposal. The conference featured 162 presentations, of which 30 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  2. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration

    International Nuclear Information System (INIS)

    Cárdenas-Escudero, C.; Morales-Flórez, V.; Pérez-López, R.; Santos, A.; Esquivias, L.

    2011-01-01

    Highlights: ► Phosphogypsum wastes are proposed to reduce CO 2 greenhouse gas emissions. ► Phosphogypsum dissolution with NaOH results in Ca(OH) 2 precipitation and Na 2 SO 4 . ► Aqueous carbonation of Ca(OH) 2 with CO 2 results in the CaCO 3 precipitation. ► Metals contained in the phosphogypsum are transferred to the final calcite. ► Applications of CaCO 3 and Na 2 SiO 4 by-products are proposed to improve viability. - Abstract: Industrial wet phosphoric acid production in Huelva (SW Spain) has led to the controversial stockpiling of waste phosphogypsum by-products, resulting in the release of significant quantities of toxic impurities in salt marshes in the Tinto river estuary. In the framework of the fight against global climate change and the effort to reduce carbon dioxide emissions, a simple and efficient procedure for CO 2 mineral sequestration is presented in this work, using phosphogypsum waste as a calcium source. Our results demonstrate the high efficiency of portlandite precipitation by phosphogypsum dissolution using an alkaline soda solution. Carbonation experiments performed at ambient pressure and temperature resulted in total conversion of the portlandite into carbonate. The fate of trace elements present in the phosphogypsum waste was also investigated, and trace impurities were found to be completely transferred to the final calcite. We believe that the procedure proposed here should be considered not only as a solution for reducing old stockpiles of phosphogypsum wastes, but also for future phosphoric acid and other gypsum-producing industrial processes, resulting in more sustainable production.

  3. Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1989-01-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages

  4. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire.

    Science.gov (United States)

    Civeira, Matheus S; Pinheiro, Rafael N; Gredilla, Ainara; de Vallejuelo, Silvia Fdez Ortiz; Oliveira, Marcos L S; Ramos, Claudete G; Taffarel, Silvio R; Kautzmann, Rubens M; Madariaga, Juan Manuel; Silva, Luis F O

    2016-02-15

    Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles

  5. Mineral transformation controls speciation and pore-fluid transmission of contaminants in waste-weathered Hanford sediments

    Science.gov (United States)

    Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon

    2014-09-01

    Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet

  6. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  7. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  8. Waste treatment by selective mineral ion exchanger

    International Nuclear Information System (INIS)

    Polito, Aurelie

    2007-01-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  9. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  10. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    Science.gov (United States)

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  11. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  12. Overview of mineral waste form development for the electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Pereira, C.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Argonne is developing a method to treat spent nuclear fuel in a molten salt electrorefiner. Wastes from this treatment will be converted into metal and mineral forms for geologic disposal. A glass-bonded zeolite is being developed to serve as the mineral waste form that will contain the fission products that accumulate in the electrorefiner salt. Fission products are ion exchanged from the salt into the zeolite A structure. The crystal structure of the zeolite after ion exchange is filled with salt ions. The salt-loaded zeolite A is mixed with glass frit and hot pressed. During hot pressing, the zeolite A may be converted to sodalite which also retains the waste salt. The glass-bonded zeolite is leach resistant. MCC-1 testing has shown that it has a release rate below 1 g/(m 2 day) for all elements

  13. THE EFFECT OF DIFFERENT EXPOSURE CONDITIONS ON THE CHARACTERISTICS OF THE MINERAL MATRICES STABILIZING HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Anna Król

    2016-05-01

    Full Text Available Mineral binders are more and more often used in the difficult process of disposal of inorganic hazardous waste containing heavy metals. Composites solidifying hazardous waste are deposited in the environment, which exposes them to the interaction of many variable factors. The paper presents the effect of different exposure conditions on physical and mechanical properties of concrete stabilizing galvanic sewage sludge (GO. The effect of the cyclic freezing and thawing, carbon dioxide (carbonation and high temperatures (200 °C, 400 °C, 600 °C on the properties of stabilizing matrices has been described. The results, in most cases, show a loss of durability of composites solidifying sewage sludge (GO by the influence of external conditions.

  14. Recovery of mineral oil from waste emulsion using electrocoagulation method

    Directory of Open Access Journals (Sweden)

    Razali Mohd Najib

    2016-01-01

    Full Text Available This paper presents a research to recover mineral oil from industrial waste emulsion. This research also evaluates the standard of water produced after the oil recovery. The ecosystem could be polluted if this waste is not treated prior to discharge. The equipment needed for this experiment is power supply (generator, connecting wire and metal plate for providing the coagulant. The chosen plates were aluminium and iron plate. The power supply will be connected to the plate producing anode (positive terminal and cathode (negative terminal. Both plates are immersed into a beaker containing waste emulsion. The charge supplied by the current will cause the aluminium or ferum to dissisipate and became ions. These ions will attract the oil to flock together and float at the surface. The water will then filter by using filter paper. Electrocoagulation was done without addition of chemical thus can prevent the hazard from the chemicals. The samples was sent for oil and grease test. The optimum time needed for recovery of oil was 3 hours. The percentage recovery reach constant trend of 95% afterwards. When the power consumption increases, the percentage recovery also increases. However, the current should be lower than 0.5 ampere as it is the limit that human body can withstand. Thus, power consumption of 27.5 Watt was chosen as optimum value. The oil recovery of at power consumption at 27.5W is 96%. The best plate in the process was the aluminium pair which can recover more than ferum plate. The present work concludes the promising future for waste water treatment by usage of electrocoagulation technique.

  15. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  16. Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1988-07-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs

  17. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    International Nuclear Information System (INIS)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr 90 , Cs 137 , and Pu 239 . Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150 0 C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

  18. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at 6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment

  19. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  20. Processing, microstructure, leaching, and long-term stability studies related to titanate high-level waste forms

    International Nuclear Information System (INIS)

    Dosch, R.G.; Headley, T.J.; Northrup, C.J.; Hlava, P.F.

    1983-05-01

    A process leading to titanate-based waste forms for commercial high-level nuclear waste is described. Radionuclides are fixed on hydrous calcium titanate by ion exchange/sorption reactions and the material is converted to a dense, ceramic form by hot pressing. Transmission electron microscopy-electron microprobe characterization was done to determine the effects of compositional changes and process variations on microstructure. Leaching studies in the range of 22 to 150 0 C and pH 2 to 12 were done to assess the effects of the same variables on leaching behavior. Samples of a reference borosilicate glass waste form were leached under the same conditions to provide a direct comparison between the two waste forms. Lead-ion implantation was used to simulate long-term α-recoil damage in the crystalline titanate phases. Comparison of α-recoil damage in natural minerals with damage induced in synthesized samples of the same mineral suggest that Pb-ion implantation is a valid technique for simulating α-recoil effects. All the titanate phases sustained significant lattice damage at equivalent α-doses of 1 x 10 19 /cm 3 ; however, Rutherford backscattering and transmission electron microscopy studies showed that the damage did not result in significant matrix dissolution in these leaching tests

  1. Fluorimetric determination of uranium in certain refractory minerals, environmental samples and industrial waste materials

    International Nuclear Information System (INIS)

    Premadas, A.; Saravanakumar, G.

    2005-01-01

    A simple sample decomposition and laser fluorimetric determination of uranium at trace level is reported in certain refractory minerals, like ilmenite, rutile, zircon and monazite; environmental samples viz. soil and sediments; industrial waste materials, such as, coal fly ash and red mud. Ilmenite sample is decomposed by heating with ammonium fluoride. Rutile, zircon and monazite minerals are decomposed by fusion using a mixture of potassium bifluoride and sodium fluoride. Environmental and industrial waste materials are brought into solution by treating with a mixture of hydrofluoric and nitric acids. The laser induced fluorimetric determination of uranium is carried out directly in rutile, zircon and in monazite minerals and after separation in other samples. The determination limit was 1 μg x g -1 for ilmenite, soil, sediment, coal fly ash and red mud samples, and it is 5 μg x g -1 for rutile, zircon and monazite. The method is also developed for the optical fluorimetric determination of uranium (determination limit 10 μg x g -1 ) in ilmenite, rutile, zircon and monazite minerals. The methods are simple, accurate, and precise and they require small quantity of sample and can be applied for the routine analysis. (author)

  2. Directions of development of research methods in the assessment of leaching of heavy metals from mineral waste

    Directory of Open Access Journals (Sweden)

    Król Anna

    2016-01-01

    Full Text Available There are many test methods to assess the level of the release of heavy metals into the environment from mineral waste materials. Leaching methods can be different depending on the leaching time periods, leaching dynamics, sample preparation method or the pH of the elution medium. In Poland, little attention is paid to the research on the relationship between the leaching of particular heavy metals from mineral wastes and changes in environmental conditions, including the pH of the environment. Tests being carried out abroad have started to pay great attention to the pH-dependent impact of the environment and the liquid being in contact with the material on the degree of leaching contaminants from wastes. The solubility of all metals depends on the value of the pH. Authors of the paper will try to prove that Polish methods of waste characterization is incomplete and inconsistent with opinions prevailing in the global literature. The procedure described in the Polish standards are insufficient to determine the actual level of leaching of heavy metals having regard to the impact of multiple external conditions on the level of leaching of heavy metals. Paper will present a directions of development of research methods in the assessment of leaching of heavy metals from mineral waste.

  3. Nitrogen balance as a tool to assess nitrogen mineralized from winery wastes under different irrigation strategies

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    Grape marc is a by-product coming from the winery industry, composed of skins, seeds and stalks generated during the crushing process. In Spain, large quantities of wine are produced every year (3,610,000 tonnes in 2010 (FAO, 2010)) with the consequent waste generation. With an adequate composting treatment, this waste can be applied to soils as a source of nutrients and organic matter. Compost N forms added to soil are mostly organic N forms, so organic N can be mineralized during the crop period and thus be taken up by the plants, immobilised, or leached. Compost N mineralization depends on factors such as compost C/N ratio but also on climate conditions. Estimation of N mineralization is necessary to optimise crop yield and minimize the risk of N losses to the environment, especially in zones vulnerable to nitrate pollution. The aim of this work was to assess mineralized N during the crop season when applying grape marc compost as fertilizer in a melon crop cultivated under different drip irrigation rates. A nitrogen balance in field conditions was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T/ha (D3); and two irrigation rates (100% ETc and 120% ETc). The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant uptake and nitrate losses were measured weekly; mineral N in soil was determined before compost addition and at the end of the crop cycle. An estimation of soil mineralized N during the crop season using nitrogen balance is presented. Results are compared with data obtained in laboratory conditions. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  4. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr/sup 90/, Cs/sup 137/, and Pu/sup 239/. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150/sup 0/C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated.

  5. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  6. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  7. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  8. A catalytic wet oxidation process for mixed waste volume reduction/recycling

    International Nuclear Information System (INIS)

    Dhooge, Patrick M.

    1992-01-01

    Mixed wastes have presented a challenge to treatment and destruction technologies. A recently developed catalytic wet oxidation method has promising characteristics for volume reduction and recycling of mixed wastes. The process utilizes iron (III) as an oxidant in the presence of homogeneous cocatalysts which increase organics' oxidation rates and the rate of oxidation of iron (II) by oxygen. The reaction is conducted in an aqueous mineral acid solution at temperatures of 373 - 573 deg K. The mineral acid should solvate a number of heavy metals, including U and Pu. Studies of reaction rates show that the process can oxidize a wide range of organic compounds including aromatics and chlorinated hydrocarbons. Rate constants in the range of 10 -7 to 10 -4 sec -1 , depending on the cocatalyst, acidity, type of anions, type of organic, temperature, and time. Activation energies ranged from 25. to 32. KJ/mole. Preliminary measurements of the extent of oxidation which could be obtained ranged from 80% for trichloroethylene to 99.8% for 1,2,4-trimethylbenzene; evidence was obtained that absorption by the fluorocarbon liners of the reaction bombs allowed some of the organics to escape exposure to the catalyst solution. The results indicate that complete oxidation of the organics used here, and presumably many others, can be achieved. (author)

  9. Certified reference materials for the determination of mineral oil hydrocarbons in water, soil and waste

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Liebich, A.; Win, T.; Nehls, I.

    2005-07-01

    The international research project HYCREF, funded by the European Commission in the 5{sup th} Framework programme, aimed to develop methods to prepare homogeneous and stable water-, soil- and waste reference materials contaminated with mineral oil hydrocarbons and to test certify the mineral oil content by gas chromatographic methods. As mineral oil products are important sources for environmental contaminations a high need exists for certified reference materials for their determination using the new gas chromatographic methods (soil: ISO/FDIS 16703, waste: ENpr 14039, water: ISO 9377-2). The experimental conditions and results for preparation and characterisation of a total of nine reference materials (3 water, 3 soil- and 3 waste materials) are described and discussed. Target values for the reference materials were defined at the beginning of the project in order to have clear quality criteria, which could be compared with the achieved results at the end of the project. These target specifications were related to the maximum uncertainty from test certification exercises (<5% for soil/waste and <10% for water), the maximum inhomogeneity between bottles (<3%) and minimum requirements for stability (>5 years for soil/waste and >2 years for water). The feasibility studies showed that solid materials (soil, waste) could be prepared sufficiently homogeneous and stable. The test certified values of the 6 solid materials comprise a wide range of mineral oil content from about 200-9000 mg/kg with expanded uncertainties between 5.7-13.1% using a coverage factor k (k=2). The development of new water reference materials - the so-called ''spiking pills'' for an offshore- and a land-based discharge water represents one of the most innovative aspects of the project. The spiking pill technology facilitates the application and storage and improves the material stability compared with aqueous materials. Additional to the preparation and test certification of

  10. Peat-based organic growbags as a solution to the mineral wool waste problem

    Directory of Open Access Journals (Sweden)

    O. Grunert

    2008-09-01

    Full Text Available The vast amount of solid waste produced each year is one of the greatest problems associated with greenhouse horticulture in some European countries. In particular, the disposal of used growing media arising from the soil-less cultivation of vegetables in mineral wool creates serious difficulties. The non-biodegradability of these mainly inorganic substrates causes environmental concern and has prompted the search for alternative growing media such as cocos derivatives, perlite and resin foam (Fytocell®. Organic substrates in combination with biodegradable material such as plastic, rope and clippings have the advantage that re-use or recycling of the waste is easier, cheaper and more environmentally friendly than for mineral wool. However, the differing physical and chemical characteristics of the alternative substrates may affect yield significantly. Substrates based respectively on peat and peat with cocos derivatives were tested against a mineral wool control for the production of tomato in three consecutive years. Both organic substrates were placed in biodegradable plastic bags. Greenhouse experiments demonstrated that plants grown in the pure peat substrate rooted more easily than plants grown in the peat-cocos substrate or mineral wool, and that they developed less blossom-end rot in both peat substrates than in mineral wool. Due to the buffering capacity of the organic substrates, the electrical conductivity of the draining water appeared to be more stable during cultivation. The total yield of tomato fruits was similar for all substrates, and no differences between substrates could be observed in the quality of the fruits produced. On the other hand, flavour tests demonstrated that plants grown on peat substrate produced more tasty fruits under certain conditions. The results of this study show that organic growbags are promising and competitive alternatives to mineral wool.

  11. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  12. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  13. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms

    International Nuclear Information System (INIS)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandria

    1999-01-01

    The recent arms reduction treaties between the U.S. and Russia have resulted in inventories of plutonium in excess of current defense needs. Storage of this material poses significant, and unnecessary, risks of diversion, especially for Russia whose infrastructure for protecting these materials has been weakened since the collapse of the Soviet Union. Moreover, maintaining and protecting these materials in their current form is costly. The United States has about sixty metric tons of excess plutonium, half of which is high-purity weapon material. This high purity material will be converted into mixed oxide (MOX) fuel for use in nuclear reactors. The less pure excess plutonium does not meet the specifications for MOX fuel and will not be purified to meet the fuel specifications. Instead, it will be immobilized directly in a ceramic. The ceramic will be encased in a high level waste (HLW) glass monolith (i.e., the can-in-canister option) thus making a form that simulates the intrinsic security of spent nuclear fuel. The immobilized product will be placed in a HLW repository. To meet the repository requirements, the product must be shown to be durable for the intended storage time, the host matrix must be stable in the radiation environment, the solubility and leaching characteristics of the plutonium in the host material must be established, and optimum processing parameters must be determined for the entire compositional envelope of feed materials. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste forms proposed as immobilization matrices. However, the relevant thermodynamic data (e.g., enthalpy, entropy, and heat capacity) for the ceramic forms are severely lacking and this information gap directly affects the Energy Department's ability to license the disposal matrices and methods. High-temperature solution

  14. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  15. Long-term evolution of radio-active waste storage in geological formations: analogy with the weathering of mineral deposits

    International Nuclear Information System (INIS)

    Cantinolle, P.; Griffault, L.; Jebrak, M.

    1986-01-01

    The aim of this study was to select examples of mineral deposits and their weathering environment, showing the long-term behaviour, in geological time, measuring (area, volume) some constituent elements of radio-active waste storage subject to the hazards of hydrogeochemical weathering. Initially, a feasibility study was made to collate data available within the BRGM (mining group and public service) and from literature dealing with weathering of deposits. It was thus discovered that the analogy between radio-active waste storage and mineral deposits could be approached in two different yet complementary ways: - one approach is to observe the behaviour of a mineral deposit in relation to the country rocks. For this a bibliographic metallogenic study was made. The other approach is to observe the behaviour of chemical elements during deposition of a mineral deposit whose genesis is similar to the spatial and thermal environment of a deposit of radio-active waste in a geological formation. For this two sites were selected corresponding to hydrothermal systems showing strong analogies to those expected in the neighbourhood of the storage sites. These two sites, Langenberg in the Vosges and La Telhaie in Brittany, were the subject of complementary analytical work [fr

  16. Fundamental thermodynamics of actinide-bearing mineral waste forms. 1998 annual progress report

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Williamson, M.A.

    1998-01-01

    'The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly, understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpy of formation of actinide substituted zircon, zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stability of these materials. This report summarizes work after eight months of a three year project.'

  17. Promising Technologies of Mining and Processing of Solid Minerals

    Science.gov (United States)

    Shabaev, Sergey; Ivanov, Seregey; Vakhianov, Evgeniy

    2017-11-01

    The continuing growth in mineral extraction entails an increase in industrial waste, which in turn has a negative impact on the environment. Rubber-tired vehicles, in which the tires wear colossally, is mainly used as a transport for loading, unloading, transportation and other types of work in the extraction of solid minerals. The used tires are not disposed in any way, but are stored in special areas where harmful toxic substances are emitted under the influence of ultraviolet rays. Therefore, a decision was made to find a method for utilization and rational use of industrial waste in the road construction sector. The operating temperature of composite rubber-bituminous binders based on rubber crumb from the used automobile tires is estimated in this paper, which is necessary for assigning technological parameters of production and laying of asphalt-concrete mixtures produced on their basis. It is established that composite rubber-bituminous binders based on rubber chips from the used automobile tires, produced according to the two-stage technology, have the same viscosity as the original petroleum bitumen, at a temperature increased by 20°C.

  18. Hydraulic Mineral Waste Transport and Storage

    Science.gov (United States)

    Pullum, Lionel; Boger, David V.; Sofra, Fiona

    2018-01-01

    Conventional mineral waste disposal involves pumping dilute concentration suspensions of tailings to large catchment areas, where the solids settle to form a consolidated base while the excess water is evaporated. Unfortunately, this often takes years, if ever, to occur, and the interim period poses a severe threat to the surrounding countryside and water table. A worldwide movement to increase the concentration of these tailings to pastes for disposal above and below ground, obviating some of these issues, has led to the development of new technologies. Increasing the solids concentrations invariably produces non-Newtonian effects that can mask the underlying nature of the suspension mechanics, resulting in the use of poor pipeline and disposal methods. Combining rheological characterization and analysis with non-Newtonian suspension fluid mechanics provides insight into these flows, both laminar and turbulent. These findings provide the necessary basis for successful engineering designs.

  19. Procedure to use phosphogypsum industrial waste for mineral CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Escudero, C. [Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville (Spain); Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Av. Americo Vespucio, 49, 41092 Seville (Spain); Morales-Florez, V., E-mail: victor.morales@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Av. Americo Vespucio, 49, 41092 Seville (Spain); Perez-Lopez, R. [Departamento de Geologia, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario Campus del Carmen, Avenida de las Fuerzas Armadas, 21071 Huelva (Spain); Instituto de Diagnostico Ambiental y Estudios del Agua (IDAeA-CSIC), Jordi Girona 18, 08034 Barcelona (Spain); Santos, A. [Departamento de Ciencias de la Tierra, Universidad de Cadiz, Campus del Rio San Pedro, Av. Republica Saharaui s/n, 11510 Puerto Real (Spain); Esquivias, L. [Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville (Spain); Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Av. Americo Vespucio, 49, 41092 Seville (Spain)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Phosphogypsum wastes are proposed to reduce CO{sub 2} greenhouse gas emissions. Black-Right-Pointing-Pointer Phosphogypsum dissolution with NaOH results in Ca(OH){sub 2} precipitation and Na{sub 2}SO{sub 4}. Black-Right-Pointing-Pointer Aqueous carbonation of Ca(OH){sub 2} with CO{sub 2} results in the CaCO{sub 3} precipitation. Black-Right-Pointing-Pointer Metals contained in the phosphogypsum are transferred to the final calcite. Black-Right-Pointing-Pointer Applications of CaCO{sub 3} and Na{sub 2}SiO{sub 4} by-products are proposed to improve viability. - Abstract: Industrial wet phosphoric acid production in Huelva (SW Spain) has led to the controversial stockpiling of waste phosphogypsum by-products, resulting in the release of significant quantities of toxic impurities in salt marshes in the Tinto river estuary. In the framework of the fight against global climate change and the effort to reduce carbon dioxide emissions, a simple and efficient procedure for CO{sub 2} mineral sequestration is presented in this work, using phosphogypsum waste as a calcium source. Our results demonstrate the high efficiency of portlandite precipitation by phosphogypsum dissolution using an alkaline soda solution. Carbonation experiments performed at ambient pressure and temperature resulted in total conversion of the portlandite into carbonate. The fate of trace elements present in the phosphogypsum waste was also investigated, and trace impurities were found to be completely transferred to the final calcite. We believe that the procedure proposed here should be considered not only as a solution for reducing old stockpiles of phosphogypsum wastes, but also for future phosphoric acid and other gypsum-producing industrial processes, resulting in more sustainable production.

  20. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  1. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  2. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  3. Use of a tangential filtration unit for processing liquid waste from nuclear laundries

    International Nuclear Information System (INIS)

    Augustin, X.; Buzonniere, A. de; Barnier, H.

    1993-01-01

    Nuclear laundries produce large quantities of weakly contaminated effluents charged with insoluble and soluble products. In collaboration with CEA, TECHNICATOME has developed an ultrafiltration process for liquid waste from nuclear laundries, associated with prior in-solubilization of the radiochemical activity. This process 'seeded ultrafiltration' is based on the use of decloggable mineral filter media and combines very high separation efficiency with long membrane life. The efficiency of the tangential filtration unit which has been processing effluents from the Cadarache Nuclear Research Center (CEA-France) nuclear laundry since mid-1988, has been confirmed on several sites

  4. Pyro-processes and the wastes

    International Nuclear Information System (INIS)

    Kurata, Masaki; Tokiwai, Moriyasu; Inoue, Tadashi; Nishimura, Tomohiro

    2000-01-01

    Reprocessing using pyrometallurgical processes is generally considered to have economical benefits comparing with conventional aqueous processes because of the combination of simpler process and equipments, less criticality, and more compact facilities. On the other hand, the pyrometallurgical processes must generate peculiar wastes and R and D on those wastes is slightly inferior, as compared with the main processes. In this paper, process flows of major pyrometallurgical processes are firstly summarized and, then, the present R and D condition on the wastes are shown. (author)

  5. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  6. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  7. A novel mineral flotation process using Thiobacillus ferrooxidans.

    Science.gov (United States)

    Nagaoka, T; Ohmura, N; Saiki, H

    1999-08-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.

  8. Areal variability of the mineral soil cover in a reclaimed soda waste dumping site

    Directory of Open Access Journals (Sweden)

    Klatka Sławomir

    2017-03-01

    Full Text Available Areal variability of the mineral soil cover in a reclaimed soda waste dumping site. This paper provides an analysis of the areal variability of the thickness and selected physical and chemical properties of the mineral cover formed in the process of settling ponds reclamation at the former Krakow Soda Plant “Solvay”. The topsoil is intended to provide a substrate for plants, therefore, its quality is the main determinant of the development for herbaceous and woody vegetation. Areal variability of the topsoil parameters was determined by kriging. In the context of the envisaged direction of management of the settling ponds, the analysis showed that electrical conductivity, thickness of the soil cover and the sand fraction content have potentially the highest impact on the diversification of vegetation. Understanding the spatial variability of the soil cover parameters, that are essential for vegetation, may contribute to increasing the efficiency of biological reclamation and also to cost reduction. Precise selection of the areas unsuitable for plant growth makes it possible to improve soil parameters on limited areas similarly as in the precision agriculture.

  9. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  10. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  11. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  12. Radionuclide Incorporation in Secondary Crystalline Minerals Resulting from Chemical Weathering of Selected Waste Glasses: Progress Report: Task kd.5b

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Serne, R. Jeffrey; Legore, Virginia L.; Parker, Kent E.; Orr, Robert D.; McCready, David E.; )

    2003-01-01

    Experiments were conducted by Pacific Northwest National Laboratory to evaluate potential incorporation of radionuclides in secondary mineral phases that form from weathering vitrified nuclear waste glasses. These experiments were conducted as part of the Immobilized Low-Activity Waste-Performance Assessment (ILAW-PA) to generate data on radionuclide mobilization and transport in a near-field environment of disposed vitrified wastes. The results of these experiments demonstrated that radionuclide sequestration can be significantly enhanced by promoting the formation of cage structured minerals such as sodalite from weathering glasses. These results have important implications regarding radionuclide sequestration/mobilization aspects that are not currently accounted for in the ILAW PA. Additional studies are required to confirm the results and to develop an improved understanding of the mechanisms of sequestration of radionuclides into the secondary and tertiary weathering products o f the ILAW glass to help refine how contaminants are released from the near-field disposal region out into the accessible environment. Of particular interest is to determine whether the contaminants remain sequestered in the glass weathering products for hundreds to thousands of years. If the sequestration can be shown to continue for long periods, another immobilization process can be added to the PA analysis and predicted risks should be lower than past predictions

  13. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  14. Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol

    International Nuclear Information System (INIS)

    Vaughan, Sarah M.; Dalal, Ram C.; Harper, Stephen M.; Menzies, Neal W.

    2011-01-01

    Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N 2 O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N ( 14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N 2 O production over the 28 day incubation from the control soil was 1.5 mg/N 2 O/m 2 , and 11 mg/N 2 O/m 2 from the control + N. The N 2 O emission decreased with GWC addition (P 2 O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N 2 O production during the first week of the trial, when soil N 2 O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N 2 O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N 2 O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N 2 O, an important greenhouse gas.

  15. Promising Technologies of Mining and Processing of Solid Minerals

    Directory of Open Access Journals (Sweden)

    Shabaev Sergey

    2017-01-01

    Full Text Available The continuing growth in mineral extraction entails an increase in industrial waste, which in turn has a negative impact on the environment. Rubber-tired vehicles, in which the tires wear colossally, is mainly used as a transport for loading, unloading, transportation and other types of work in the extraction of solid minerals. The used tires are not disposed in any way, but are stored in special areas where harmful toxic substances are emitted under the influence of ultraviolet rays. Therefore, a decision was made to find a method for utilization and rational use of industrial waste in the road construction sector. The operating temperature of composite rubber-bituminous binders based on rubber crumb from the used automobile tires is estimated in this paper, which is necessary for assigning technological parameters of production and laying of asphalt-concrete mixtures produced on their basis. It is established that composite rubber-bituminous binders based on rubber chips from the used automobile tires, produced according to the two-stage technology, have the same viscosity as the original petroleum bitumen, at a temperature increased by 20°C.

  16. The influence of mineral additives on the mechanical performances of the conditioning matrix of radioactive waste by cementation

    International Nuclear Information System (INIS)

    Dragolici, F.; Rotarescu, G.; Turcanu, C.N.

    1997-01-01

    To improve the quality of the conditioning matrix of radioactive waste by the cementation technology, mineral additives which are diminishing the leaching rate of the radionuclides in the disposal environment are used. The studies performed until now have as an objective the obtaining of the most propitious mixture of cement and bentonite or cement and volcanic tuff, which have the mechanical properties similar to the cement paste used for the conditioning of the radioactive waste. This mixture, cement - mineral binder, in the future is required to be used at the Radioactive Waste Treatment Plant - IPNE - HH Bucharest- Magurele for the conditioning of the radioactive wastes, taking in consideration the properties of these mineral binders: very good plasticity and capacity of adsorption, which lead at the decrease of porosity. Bentonite is a clay already used in the technology of disposal as a filling material to diminish the radioactive spreading because of degradation in time of the metallic package or the intrusion of casual water. The composition of the cement - bentonite - water system is checked by the cement to water and cement to bentonite ratio, by strength and by the separated water volume. The studies show that the best mechanical performance was obtained for a cement to water ratio 10. Taking in consideration the property of bentonite to fill compactly the free spaces in the presence of water, what entails the occurrence of internal tensions in the matrix structure, which leads, in turn, to appearance of microfissures, the mixtures examined by mechanical tests had in their composition less than 10 % bentonite. For volcanic tuff, similar results were obtained using almost the same ratios. In these conditions, the results obtained allow to draw the conclusion that the adequate usage of the mineral additives do not change the resistance of the cement paste used in the conditioning of the radioactive waste. (authors)

  17. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate

  18. Addressing mixed waste in plutonium processing

    International Nuclear Information System (INIS)

    Christensen, D.C.; Sohn, C.L.; Reid, R.A.

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed

  19. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Nomura, Ichiro; Hashimoto, Yasuo.

    1984-01-01

    Purpose: To improve the volume-reduction effect, as well as enable simultaneous procession for the wastes such as burnable solid wastes, resin wastes or sludges, and further convert the processed materials into glass-solidified products which are much less burnable and stable chemically and thermally. Method: Auxiliaries mainly composed of SiO 2 such as clays, and wastes such as burnable solid wastes, waste resins and sludges are charged through a waste hopper into an incinerating melting furnace comprising an incinerating and a melting furnace, while radioactive concentrated liquid wastes are sprayed from a spray nozzle. The wastes are burnt by the heat from the melting furnace and combustion air, and the sprayed concentrated wastes are dried by the hot air after the combustion into solid components. The solid matters from the concentrated liquid wastes and the incinerating ashes of the wastes are melted together with the auxiliaries in the melting furnace and converted into glass-like matters. The glass-like matters thus formed are caused to flow into a vessel and gradually cooled to solidify. (Horiuchi, T.)

  20. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  1. Organic waste incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P. [CEA Valrho, Bagnols sur Ceze Cedex (France); Chateauvieux, H.; Thiebaut, C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2001-07-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and {alpha}-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  2. Organic waste incineration processes

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P.; Chateauvieux, H.; Thiebaut, C.

    2001-01-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and α-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  3. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  4. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  5. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  6. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  7. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  8. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  9. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  10. Stainless steel-zirconium alloy waste forms

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-01-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ''noble'' nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation

  11. Process Waste Assessment - Paint Shop

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is open-quote Paint Shop wasteclose quotes -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so

  12. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  13. Defining a metal-based waste form for IFR pyroprocessing wastes

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Park, J.Y.; Ackerman, J.P.

    1994-01-01

    Pyrochemical electrorefining to recover actinides from metal nuclear fuel is a key element of the Integral Fast Reactor (IFR) fuel cycle. The process separates the radioactive fission products from the long-lived actinides in a molten LiCl-KCl salt, and it generates a lower waste volume with significantly less long-term toxicity as compared to spent nuclear fuel. The process waste forms include a mineral-based waste form that will contain fission products removed from an electrolyte salt and a metal-based waste form that will contain metallic fission products and the fuel cladding and process materials. Two concepts for the metal-based waste form are being investigated: (1) encapsulating the metal constituents in a Cu-Al alloy and (2) alloying the metal constituents into a uniform stainless steel-based waste form. Results are given from our recent studies of these two concepts

  14. Mineral processing and characterization of coal waste to be used as fine aggregates for concrete paving blocks

    Directory of Open Access Journals (Sweden)

    C. R. Santos

    Full Text Available Commercial coal production in the southern region of Brazil has been occurring since the beginning of the twentieth century. Due to the geological characteristics of the region, large amounts of solid wastes are generated. The aim of this work was to evaluate the use of coal waste to produce concrete paving blocks. A procedure to process the coal waste with the purpose of reducing the sulfur content and changing the particle size distribution of the material to meet the specification of fine aggregates was developed. The methodology considered the following steps: (a sampling of a coal mining waste; (b gravity separation of the fraction with specific gravity between 2.4 and 2.8; (c comminution of the material and particle size analysis; (d technological characterization of the material and production of concrete paving blocks; and (e acidity generation prediction (environmental feasibility. The results showed that the coal waste considered in this work can be used to replace conventional sand as a fine aggregate for concrete paving blocks in a proportion of up to 50%. This practice can result in cleaner coal production and reduce the demand for exploitation of sand deposits.

  15. Electron accelerators for waste processing

    International Nuclear Information System (INIS)

    Kon'kov, N.G.

    1976-01-01

    The documents of the International symposium on radiation vaste processing are presented. Questions on waste utilization with the help of electron accelerators are considered. The electron accelerators are shown to have an advantage over some other ionizing radiation sources. A conclusion is made that radiation methods of waste processing are extensively elaborated in many developed countries. It has been pointed out that an electron accelerator is a most cheap and safe ionizing radiation source primarily for processing of gaseous and liquid wastes

  16. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  17. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  18. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    Science.gov (United States)

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Conceptual process for immobilizing defense high level wastes in SYNROC-D

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    It is believed that the immobilization of defense wastes in SYNROC-D possesses important advantages over an alternative process which involves immobilizing the sludges in borosilicate glass. (1) It is possible to immobilize about 3 times the weight of sludge in a given volume of SYNROC-D as compared to borosilicate glass. The costs of fabrications, transport and ultimate geologic storage are correspondingly reduced; (2) the mineral assemblage of SYNROC-D is vastly more stable in the presence of groundwaters than are borosilicate glasses. The long-lived actinide elements, in particular, are immobilized much more securely in SYNROC-D than in glass; and (3) SYNROC-D is composed of thermodynamically compatible phases which possess crystal structures identical to those of natural minerals which are known to have survived in geological environments at elevated pressures and temperatures for periods of 500 to 2000 million years and to have retained radioactive elements quantitatively for these periods despite strong radiation damage. It is this evidence, provided by nature herself, which can demonstrate to the community that the shorter times required for radwaste immobilization under the much less extreme pressure, temperature conditions present in a suitable geological repository can be successfully achieved. Glass, as a waste-form, is intrinsically incapable of providing this assurance

  20. Incineration and pyrolysis vs. steam gasification of electronic waste.

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  2. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  3. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  4. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  5. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  7. Selected scientific articles. (Investigations in the field of hydrides chemistry and mineral raw materials processing)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    Articles, included in the present book are covering period 1977-2013 y. The main scientific articles in the field of power-consuming substances, mineral raw-materials and wastes reprocessing, including uranium industry wastes are collected. Scientific works on hydrogen chemistry which carried out basically bu U.M. Mirsaidov without co-authors are considered. These works are on aluminium hydrides and borohydrides lanthanides. Besides, author's popular-science articles on research carried out by Academy of Sciences during the period when he was the President of Academy of Sciences of the Republic of Tajikistan (1995-2005) are included. Mineral raw materials and wastes reprocessing results are given as well. The book is intended for engineer and technical staff, those working in the field of hydrogen chemistry, hydrometallurgy workers, engineering chemists as well as for PhD, post graduate students and students of appropriate profiles.

  8. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  9. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  10. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  11. Liquid waste processing device

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Obe, Etsuji; Wakamatsu, Toshifumi.

    1989-01-01

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  12. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  13. Rock geochemistry related to mineralization processes in geothermal areas

    Science.gov (United States)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  14. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  15. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  16. Liquid waste processing at Comanche Peak

    International Nuclear Information System (INIS)

    Hughes-Edwards, L.M.; Edwards, J.M.

    1996-01-01

    This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs

  17. Mineral and chemical composition of mine wastes of Markusovce sludge bed; Mineralne a chemicke zlozenie banskych odpadov odkaliska Markusovce

    Energy Technology Data Exchange (ETDEWEB)

    Radkova, A; Volekova, B [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra mineralogie a petrologie, 84215 Bratislava (Slovakia)

    2012-04-25

    Identification of minerals occurring in sludge bed material allows to assess the extent of migration of elements in the actual body of the sludge bed. It provides important information on the potential environmental pollution as well as on possible contamination of groundwater by potentially toxic elements. In Markusovce sludge bed there is saved about 9.9 million tons of waste material after flotation treatment of barytes - siderite-sulphide ore. Currently, the sludge bed is being extracted again due to the high content of barite. Concentrations of potentially toxic elements can be considered as relatively low. The most commonly occurring minerals in the samples are siderite and quartz, with minor rates are represented muscovite and dolomite. The content of barite increases towards the depth, which may be due to imperfect ore processing technology during the early stages of mining. Hematite is abundantly presented in the heavy fraction of the samples. The sulphide content is generally low, pyrite, chalcopyrite, tetrahedrite and cinnabar are most frequently presented. Monitored potentially toxic elements are mainly bounded to the primary sulfide minerals that are poorly oxidized. (authors)

  18. Code of Practice on Radiation Protection in the Mining and Processing of Mineral Sands (1982) (Western Australia)

    International Nuclear Information System (INIS)

    1982-01-01

    This Code establishes radiation safety practices for the mineral sands industry in Western Australia. The Code prescribes, not only for operators and managers of mines and processing plants but for their employees as well, certain duties designed to ensure that radiation exposure is kept as low as reasonably practicable. The Code further provides for the management of wastes, again with a view to keeping contaminant concentrations and dose rates within specified levels. Finally, provision is made for the rehabilitation of those sites in which mining or processing operations have ceased by restoring the areas to designated average radiation levels. (NEA) [fr

  19. ENVIRONMENTAL ASPECTS OF USE, DEVELOPMENT AND DISPOSAL OF MINERAL WOOL IN THE CONTEXT OF ENVIRONMENTAL RESOURCES POLLUTION BY WASTE RETARDATION

    Directory of Open Access Journals (Sweden)

    Dorota Nowak

    2014-10-01

    Full Text Available In this study presents the environmental aspects of the use, management and disposal of mineral wool. Fiber structure makes that wool products have many unique properties enabling them to be versatile. With all the advantages of mineral wool is one very significant drawback - does not decompose. From the point of view of slowing (retardation transformation of environmental resources, the introduction of mineral wool to crops under glass, in a very much reduced use of peatlands, which for reasons of natural resources are extremely important. On the other hand, problems of rational use of mineral wool already postconsumer caused among others formation of "wild dumps" and thus transforming the landscape, and, due to their characteristics (respirable fibers, the risk to health. Manufacture of asbestiform can cause ecological consequences within almost all elements of the environment. Therefore, the overall assessment of the impact in this case, mineral wool on the environment would need to be so. "Life cycle assessment" - called the method of LCA (Life Cycle Assessmentwhich is commonly called the "cradle to grave" - that is, from extraction of raw materials, through processing, exploitation, to the storage of waste. Therefore, the responsibility for the redevelopment of the post-production of mineral wool should lie with the producer of wool. These issues are the subject of discussion in this study.

  20. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Sakuramoto, Naohiko.

    1992-01-01

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  1. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  2. Processability analysis of candidate waste forms

    International Nuclear Information System (INIS)

    Gould, T.H. Jr.; Dunson, J.B. Jr.; Eisenberg, A.M.; Haight, H.G. Jr.; Mello, V.E.; Schuyler, R.L. III.

    1982-01-01

    A quantitative merit evaluation, or processability analysis, was performed to assess the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste form candidates. The reference borosilicate glass process was rated as the simplest, followed by FUETAP concrete, glass marbles in a lead matrix, high-silica glass, crystalline ceramics (SYNROC-D and tailored ceramics), and coated ceramic particles. Cost estimates for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities are also reported

  3. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  4. Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    International Nuclear Information System (INIS)

    Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

    2011-01-01

    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

  5. Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

    2011-12-01

    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

  6. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  7. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    Li Yuxiang; Qian Guangren; Yi Facheng; Shi Rongming; Fu Yibei; Li Lihua; Zhang Jun

    1999-01-01

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr 2+ , Cs + leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  8. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    International Nuclear Information System (INIS)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert

    2015-01-01

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  9. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)

    2015-08-15

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  10. 26 CFR 1.381(c)(18)-1 - Depletion on extraction of ores or minerals from the waste or residue of prior mining.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... transfer, to an allowance for depletion under section 611 in respect of ores or minerals extracted from...

  11. Processing of low-level wastes

    International Nuclear Information System (INIS)

    Vance, J.N.

    1986-01-01

    Although low-level wastes have been generated and have required processing for more than two decades now, it is noteworthy that processing methods are continuing to change. The changes are not only attributable to improvements in technology, but are also the result of changing regulations and economics and uncertainties regarding the future availabilities of burial space for disposal. Indeed, because of the changes which have and are taking place in the processing of low-level waste, an overview of the current situation is in order. This presentation is a brief overview of the processing methods generally employed to treat the low-level wastes generated from both fuel cycle and non-fuel cycle sources. The presentation is far too brief to deal with the processing technologies in a comprehensive fashion, but does provide a snapshot of what the current or typical processing methods are and what changes are occurring and why

  12. Emerging industrial processes for low grade rare earth mineral concentrates

    International Nuclear Information System (INIS)

    Soldenhoff, Karin; Ho, Elizabeth

    2015-01-01

    Historically rare earth recovery has mainly been derived from the processing of monazite, bastnasite and xenotime containing ores amenable to beneficiation, yielding high grade mineral concentrates. A notable exception is the recovery of heavy rare earths from ionic clays in Southern China. Recently, projects are being proposed to treat a range of mineral concentrates which tend to be lower grade with wide ranging modal mineralogy for rare earths and associated gangue minerals. This has a significant impact on processing routes. This paper discusses processes proposed for emerging rare earth producers and how different projects have responded to particular challenges including: Control of phosphorous due to the presence of xenotime or monazite type minerals; Control of phosphorous due to the presence of rare earth containing apatite; Rare earth recovery from polymetallic ores; Control of radionuclides in rare earth processing, etc.

  13. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  14. Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Nagy, Kathryn L.; Sturchio, Neil C.

    2003-01-01

    This project, renewal of a previous EMSP project of the same title, is in its first year of funding at the University of Illinois at Chicago. The purpose is to continue investigating rates and mechanisms of reactions between primary sediment minerals found in the Hanford subsurface and leaked waste tank solutions. The goals are to understand processes that result in (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that can drive redox reactions affecting dissolved contaminant mobility. A post-doctoral scientist, Dr. Sherry Samson, has been hired and two masters of science students are beginning to conduct experimental research. One research project that is underway is focused on measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms. The first set of experiments is being conduced at room temperature. Subsequent experiments will examine the role of temperature because tank solutions in many cases were near boiling when leakage is thought to have occurred and temperature gradients have been observed beneath the SX and BX tank farms. The dissolution experiments are being conducted in stirred-flow kinetic reactors using powdered labradorite feldspar from Pueblo Park, New Mexico

  15. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  16. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl-, F- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.

  17. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  18. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  19. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    International Nuclear Information System (INIS)

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  20. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  1. Tannins in Mineral Processing and Extractive Metallurgy

    Directory of Open Access Journals (Sweden)

    Jordan Rutledge

    2015-08-01

    Full Text Available This study provides an up to date review of tannins, specifically quebracho, in mineral processing and metallurgical processes. Quebracho is a highly useful reagent in many flotation applications, acting as both a depressant and a dispersant. Three different types of quebracho are mentioned in this study; quebracho “S” or Tupasol ATO, quebracho “O” or Tupafin ATO, and quebracho “A” or Silvafloc. It should be noted that literature often refers simply to “quebracho” without distinguishing a specific type. Quebracho is most commonly used in industry as a method to separate fluorite from calcite, which is traditionally quite challenging as both minerals share a common ion—calcium. Other applications for quebracho in flotation with calcite minerals as the main gangue source include barite and scheelite. In sulfide systems, quebracho is a key reagent in differential flotation of copper, lead, zinc circuits. The use of quebracho in the precipitation of germanium from zinc ores and for the recovery of ultrafine gold is also detailed in this work. This analysis explores the wide range of uses and methodology of quebracho in the extractive metallurgy field and expands on previous research by Iskra and Kitchener at Imperial College entitled, “Quebracho in Mineral Processing”.

  2. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables

  3. Waste processing method

    International Nuclear Information System (INIS)

    Furukawa, Osamu; Shibata, Minoru.

    1996-01-01

    X-rays are irradiated from a predetermined direction to solid wastes containing radioactive isotopes packed in a bag before charged into an inlet of an incinerator. Most of the wastes is burnable plastics such as test tubes and papers. Glasses such as chemical bottles and metals such as lead plates for radiation shielding are contained as a portion of the wastes. The X-rays have such an intensity capable of discriminating metals and glasses from burnable materials. Irradiation images formed on a X-ray irradiation receiving portion are processed, and the total number of picture elements on the portion where a gradation of the light receiving portion of the metal is within a predetermined range is counted on the image. Then, the bag having total picture elements of not less than a predetermined number are separated from the bag having a lesser number. Similar processings are conducted for glasses. With such procedures, the bags containing lead and glasses not suitable to incineration are separated from the bags not containing them thereby enabling to prevent lowering of operation efficiency of the incinerator. (I.N.)

  4. The Effect of Mineral Powders Derived From Industrial Wastes on Selected Mechanical Properties of Concrete

    Science.gov (United States)

    Galińska, Anna; Czarnecki, Sławomir

    2017-10-01

    In recent years, concrete has been the most popular construction material. The main component of the concrete is cement. However, its production and transport causes significant emissions of CO2. Reports in the literature show that many laboratories are attempting to modify the composition of the concrete using various additives. These attempts are primarily designed to eliminate parts of cement. The greater part of the cement will be replaced with the selected additive, the more significant is the economic and ecological effect. Most attempts are related to the replacement of the selected additive in an amount of from 10 to 30% by weight of cement. Mineral powders, which are waste material producing crushed aggregate, are increasingly used for this purpose. Management of the waste carries significant cost related to their storage and disposal. With this in mind, the aim of this study was to evaluate the effect of mineral powders derived from industrial wastes on selected mechanical properties of concrete. In particular, the aim was to determine the effect of quartz and quartz-feldspar powders. For this purpose, 40, 50, 60% by weight of the cement was replaced by the selected powders. The results obtained were analysed and compared with previous attempts to replace the selected additive in an amount of from 10 to 30% by weight of cement.

  5. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  6. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  7. Biorefine: Recovery of nutrients and metallic trace elements from different wastes by chemical and biochemical processes

    OpenAIRE

    Tarayre, Cédric; Fischer, Christophe; De Clercq, Lies; Michels, Evi; Meers, Erik; Buysse, Jeroen; Delvigne, Frank; Thonart, Philippe

    2014-01-01

    At present, most waste processing operations are not oriented towards the valorization of valuable reusable components such as nitrogen, phosphorus, potassium and even Metallic Trace Elements (MTEs). Currently, sewage sludge, for example is usually used as a fertilizer in agriculture, in energy production or in the field of construction. Ashes originating from sludge incineration contain heavy metals and minerals in large quantities. Manure is mainly used in agriculture, although considerable...

  8. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    International Nuclear Information System (INIS)

    Banerjee, Pradipta; Madhu, S.; Chandra Babu, N.K.; Shanthi, C.

    2015-01-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl 2 , 5 mM of Na 2 HPO 4 , 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO − and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals

  9. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  10. Vitrification process testing for reference HWVP waste

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.; Goles, R.W.; Nakaoka, R.K.; Kruger, O.L.

    1991-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify high-level radioactive wastes stored on the Hanford site. The vitrification flow-sheet is being developed to assure the plant will achieve plant production requirements and the glass product will meet all waste form requirements for final geologic disposal. The first Hanford waste to be processed by the HWVP will be a neutralized waste resulting from PUREX fuel reprocessing operations. Testing is being conducted using representative nonradioactive simulants to obtain process and product data required to support design, environmental, and qualification activities. Plant/process criteria, testing requirements and approach, and results to date will be presented

  11. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  12. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  13. Annotated bibliography: overview of energy and mineral resources for the Nevada nuclear-waste-storage investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bell, E.J.; Larson, L.T.

    1982-09-01

    This Annotated Bibliography was prepared for the US Department of Energy as part of the Environmental Area Characterization for the Nevada Nuclear Waste Storage Investigations (NNWSI) at the Nevada Test Site (NTS). References were selected to specifically address energy resources including hydrocarbons, geothermal and radioactive fuel materials, mineral resources including base and precious metals and associated minerals, and industrial minerals and rock materials which occur in the vicinity of the NNWSI area

  14. Safe immobilization of high-level nuclear reactor wastes

    International Nuclear Information System (INIS)

    Ringwood, A.; Kesson, S.; Ware, N.; Hibberson, W.; Major, A.

    1979-01-01

    The advantages and disadvantages of methods of immobilizing high-level radioactive wastes are discussed. Problems include the devitrification of glasses and the occurrence of radiation damage. An alternative method of radioctive waste immobilization is described in which the waste is incorporated in the constituent minerals of a synthetic rock, Synroc. Synroc is immune from devitrification and is composed of phases which possess crystal structures identical to those of minerals which are known to have retained radioactive elements in geological environments at elevated pressures and tempertures for long periods. The composition and mineralogy of Synroc is given and the process of immobilizing wastes in Synroc is described. Accelerated leaching tests at elevated pressures and temperatures are also described

  15. Impact of ARPANS-like legislation on minerals industry in Australia - the TENORM issue

    International Nuclear Information System (INIS)

    Koperski, J.

    2001-01-01

    Processing of minerals results in increased concentrations of the naturally occurring radioactive materials (NORM) in mineral products and/or process wastes, relative to those in the source materials. Due to the current legislative trends this technologically enhanced naturally occurring radioactive material (TENORM) phenomenon may bring mineral processing practices, including disposal of NORM-elevated wastes, into the realm of regulatory concern for practically all mineral-processing operations in Australia. The 1999 Australian Radiation Protection and Nuclear Safety (ARPANS) legislation has been based on the 1996 International Basic Safety Standards (BSS) recommended by the International Atomic Energy Agency (IAEA). As such, it contains very restrictive exemption criteria from the provisions of the legislation. ARPANS legislation is only binding upon Commonwealth entities. They, incidentally, do not include minerals industry operations. This legislation has been incompatible with the nature of the minerals industry. However, the current legislative developments have been aimed at imposing this legislation onto States and Territories. If this happens, and the current ARPANS legislative exemption criteria are not rationalised, major radiation safety-related operational and administrative impacts on the Australian minerals industry will occur. They will result in a marked burden to the national economy for yet to be clearly identified health and safety benefits. It is thus recommended that, without compromising rational radiation protection principles and practices, legislation commensurate with the nature of the minerals industry operations, national and state circumstances, conditions and interests be adopted in Australia. Such legislation would follow the spirit of the IAEA 1996 recommendations. Copyright (2001) Australasian Radiation Protection Society Inc

  16. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  17. Waste Disposition Issues and Resolutions at the TRU Waste Processing Center at Oak Ridge TN

    International Nuclear Information System (INIS)

    Gentry, R.

    2009-01-01

    This paper prepared for the Waste Management Conference 2009 provides lessons learned from the Transuranic (TRU) Waste Processing Center (TWPC) associated with development of approaches used to certify and ensure disposition of problematic TRU wastes at the Waste Isolation Pilot Plant (WIPP) site. The TWPC is currently processing the inventory of available waste TRU waste at the Oak Ridge National Lab (ORNL). During the processing effort several waste characteristics were identified/discovered that did not conform to the normal standards and processes for disposal at WIPP. Therefore, the TWPC and ORNL were challenged with determining a path forward for this problematic, special case TRU wastes to ensure that they can be processed, packaged, and shipped to WIPP. Additionally, unexpected specific waste characteristics have challenged the project to identify and develop processing methods to handle problematic waste. The TWPC has several issues that have challenged the projects ability to process RH Waste. High Neutron Dose Rate resulting from both Californium and Curium in the waste stream challenge the RH-TRU 72-B limit for dose rate measured from the side of the package under normal conditions of transport, as specified in Chapter 5.0 of the RH-TRU 72-B SAR (i.e., ≤10 mrem/hour at 2 meters). Difficult to process waste in the hot cell has introduced processing and handling difficulties included problems associated with the disposition of prohibited items that fall out of the waste stream such as liquids, aerosol cans, etc. Lastly, multiple waste streams require characterization and AK challenge the ability to generate dose-to curie models for the waste. Repackaging is one solution to the high neutron dose rate issue. In parallel, an effort is underway to request a change to the TRAMPAC requirements to allow shielding in the drum or canister to reduce the impact of the high neutron dose rates. Due diligence on supporting AK efforts is important in ensuring adequate

  18. Regulatory issues associated with exclusion, exemption, and clearance related to the mining and minerals processing industries

    International Nuclear Information System (INIS)

    Metcalf, P.; Woude, S. van der; Keenan, N.; Guy, S.

    1997-01-01

    The concepts of exclusion, exemption and clearance have been established in international recommendations and, standards for radiation protection and the management of radioactive waste in recent years. The consistent application of these concepts has given rise to various problems in different spheres of use. This is particularly the case in the mining and minerals processing industries dealing with materials exhibiting elevated concentrations of naturally occurring radionuclides. This paper takes the South African mining industry as an example and highlights some of the issues that have arisen in applying these concepts within a regulatory control regime. (author)

  19. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  20. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    International Nuclear Information System (INIS)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin

    2010-05-01

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  1. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin [Yongin University, Yongin (Korea, Republic of)

    2010-05-15

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  2. Process waste assessment for the Radiography Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie (μCi) activity. The photochemical processes generate most of the Radiography Laboratory's routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance

  3. Innovation processes in technologies for the processing of refractory mineral raw materials

    Science.gov (United States)

    Chanturiya, V. A.

    2008-12-01

    Analysis of the grade of mineral resources of Russia and other countries shows that end products that are competitive in terms of both technological and environmental criteria in the world market can only be obtained by the development and implementation of progressive technologies based on the up-to-date achievements of fundamental sciences. The essence of modern innovation processes in technologies developed in Russia for the complex and comprehensive processing of refractory raw materials with a complex composition is ascertained. These processes include (i) radiometric methods of concentration of valuable components, (ii) high-energy methods of disintegration of highly dispersed mineral components, and (iii) electrochemical methods of water conditioning to obtain target products for solving specific technological problems.

  4. Multibarrier waste forms. Part III: Process considerations

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1979-10-01

    The multibarrier concept for the solidification and storage of radioactive waste utilizes up to three barriers to isolate radionuclides from the environment: a solidified waste inner core, an impervious coating, and a metal matrix. The coating and metal matrix give the composite waste form enhanced inertness with improvements in thermal stability, mechanical strength, and leach resistance. Preliminary process flow rates and material costs were evaluated for four multibarrier waste forms with the process complexity increasing thusly: glass marbles, uncoated supercalcine, glass-coated supercalcine, and PyC/Al 2 O 3 -coated supercalcine. This report discusses the process variables and their effect on optimization of product quality, processing simplicity, and material cost. 11 figures, 2 tables

  5. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  6. Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet

    International Nuclear Information System (INIS)

    Olson, Arlin

    2012-01-01

    The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

  7. Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Arlin Olson

    2012-02-28

    The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

  8. Process and apparatus for distilling bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Veyrier, J A

    1922-03-27

    This process of distillation of bituminous minerals and particularly bituminous limestone is characterized by the fact that the minerals are introduced into the retort where they stand only the temperature necessary to distill the water and lighter oils that they contain and then are drawn out into the hearth and serve for heating the retort. The apparatus is characterized by the fact that the retort has a screw conveyor, placed in the flue of the hearth, supplied with a chamber for evacuation below this hearth.

  9. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    International Nuclear Information System (INIS)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-01-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization. The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2-5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  10. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  11. Waste Receiving and Processing Module 2A waste certification strategy

    International Nuclear Information System (INIS)

    LeClair, M.D.; Pottmeyer, J.A.; Hyre, R.A.

    1994-01-01

    This document addresses the certification of Mixed Low Level Waste (MLLW) that will be treated in the Waste Receiving and Processing Facility Module 2A (WRAP 2A) and is destined for disposal in the MLLW trench of the Low Level Burial Grounds (LLBG). The MLLW that will be treated in WRAP 2A contains land disposal restricted and radioactive constituents. Certification of the treated waste is dependent on numerous waste management activities conducted throughout the WRAP 2A operation. These activities range from waste treatability testing conducted prior to WRAP 2A waste acceptance to overchecking final waste form quality prior to transferring waste to disposal. This document addresses the high level strategies and methodologies for certifying the final waste form. Integration among all design and verification activities that support final waste form quality assurance is also discussed. The information generated from this effort may directly support other ongoing activities including the WRAP 2A Waste Characterization Study, WRAP 2A Waste Analysis Plan development, Sample Plan development, and the WRAP 2A Data Management System functional requirements definition

  12. On-line measurement and control in sustainable mineral processing and energy production

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    2002-01-01

    Sustainable development can be defined as development that 'meets the needs of the present without compromising the ability of future generations to meet their own needs' (WCED, 1987). A sustainable minerals and energy industry will need to achieve a number of related objectives including greater energy efficiency, improved utilisation of ore deposits, improved utilisation of existing plant, improved product quality, reduction of waste material, reduction of pollution levels and improved safety margins. These objectives all relate in varying degrees to the triple bottom line of economic, social and environmental benefits. One critical component in achieving these objectives is to develop and apply improved control systems across the full range of industry applications from mining to processing and utilisation. However process control relies heavily on the availability of suitable on-line process instrumentation to provide the data and feedback necessary for its implementation. There is a lot of truth in the saying 'if you can't measure it you can't control it'. In the past measurement was achieved by manual sampling followed by sample preparation (such as drying, mixing, crushing and dividing) and off-line laboratory analysis. However this procedure is often subject to significant sampling errors and, most importantly, the measurements are too slow for control purposes. By contrast, on-line analysis can provide rapid and accurate measurement in real time thus opening up new possibilities for improved process control. As a result, there has been a rapid increase in the industrial application of on-line analysis instrumentation over the past few decades. The main purpose of this paper is to briefly review some past Australian developments of on-line analysis systems in the mineral and coal industries and to discuss present developments and future trends

  13. Support for DOE program in mineral waste-form development

    International Nuclear Information System (INIS)

    Palmour, H. III; Hare, T.M.; Russ, J.C.; Batchelor, A.D.; Paisley, M.J.; Freed, L.E.

    1982-09-01

    This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables

  14. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  15. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  16. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  17. Model Predictive Control of Mineral Column Flotation Process

    Directory of Open Access Journals (Sweden)

    Yahui Tian

    2018-06-01

    Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.

  18. Principles of image processing in machine vision systems for the color analysis of minerals

    Science.gov (United States)

    Petukhova, Daria B.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2014-09-01

    At the moment color sorting method is one of promising methods of mineral raw materials enrichment. This method is based on registration of color differences between images of analyzed objects. As is generally known the problem with delimitation of close color tints when sorting low-contrast minerals is one of the main disadvantages of color sorting method. It is can be related with wrong choice of a color model and incomplete image processing in machine vision system for realizing color sorting algorithm. Another problem is a necessity of image processing features reconfiguration when changing the type of analyzed minerals. This is due to the fact that optical properties of mineral samples vary from one mineral deposit to another. Therefore searching for values of image processing features is non-trivial task. And this task doesn't always have an acceptable solution. In addition there are no uniform guidelines for determining criteria of mineral samples separation. It is assumed that the process of image processing features reconfiguration had to be made by machine learning. But in practice it's carried out by adjusting the operating parameters which are satisfactory for one specific enrichment task. This approach usually leads to the fact that machine vision system unable to estimate rapidly the concentration rate of analyzed mineral ore by using color sorting method. This paper presents the results of research aimed at addressing mentioned shortcomings in image processing organization for machine vision systems which are used to color sorting of mineral samples. The principles of color analysis for low-contrast minerals by using machine vision systems are also studied. In addition, a special processing algorithm for color images of mineral samples is developed. Mentioned algorithm allows you to determine automatically the criteria of mineral samples separation based on an analysis of representative mineral samples. Experimental studies of the proposed algorithm

  19. Assessment of environmental impact models in natural occurring radionuclides solid wastes disposal from the mineral industry

    International Nuclear Information System (INIS)

    Pontedeiro, Elizabeth May Braga Dulley

    2006-07-01

    This work evaluates the behavior of wastes with naturally occurring radionuclides as generated by the mineral industry and their final disposal in landfills. An integrated methodology is used to predict the performance of an industrial landfill for disposal of wastes containing NORM/TENORM, and to define acceptable amounts that can be disposed at the landfill using long-term environmental assessment. The governing equations for radionuclide transport are solved analytically using the generalized integral transform technique. Results obtained for each compartment of the biogeosphere are validated with experimental results or compared to other classes of solutions. An impact analysis is performed in order to define the potential consequences of a landfill to the environment, considering not only the engineering characteristics of the waste deposit but also the exposure pathways and plausible scenarios in which the contaminants could migrate and reach the environment and the human population. The present work permits the development of a safety approach that can be used to derive quantitative waste acceptance criteria for the disposal of NORM/TENORM waste in landfills. (author)

  20. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  1. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  2. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  3. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  4. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    Science.gov (United States)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  5. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  6. Presence of potentially critical substances in waste paper

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas Fruergaard

    2013-01-01

    the process itself as well as the quality or functionality of the final product. Such additives may be re-introduced to the paper production process once waste paper is recycled, leading to their accumulation and spreading in newly manufactured paper and board products. This study aimed at identification...... of the critical additives potentially present in paper products and quantification of a selected group of additives (Mineral Oil Hydrocarbons) in waste paper and board source segregated from Danish municipal solid waste....

  7. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  8. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    Science.gov (United States)

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  9. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    International Nuclear Information System (INIS)

    Borai, E.H.; Harjula, R.; Malinen, Leena; Paajanen, Airi

    2009-01-01

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs + ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  10. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  11. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    Science.gov (United States)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  12. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  13. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  14. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets. Copyright © 2015. Published by Elsevier Ltd.

  15. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  16. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Amoroso, J.; Marra, J.

    2014-01-01

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  17. Advanced liquid waste processing technologies: Theoretical versus actual application

    International Nuclear Information System (INIS)

    Barker, Tracy A.

    1992-01-01

    This paper provides an overview of Chem-Nuclear Systems, Inc. (CNSI) experience with turn-key chromate removal at the Maine Yankee Nuclear Plant. Theoretical and actual experiences are addressed on topics such as processing duration, laboratory testing, equipment requirements, chromate removal, waste generation, and waste processing. Chromate salts are used in industrial recirculation cooling water systems as a corrosion inhibitor. However, chromates are toxic at concentrations necessary for surface inhibition. As a result, Chem-Nuclear was contracted to perform turn-key chromate removal and waste disposal by demineralization. This project was unique in that prior to on-site mobilization, a composite sample of chromated waste was shipped to CNSI laboratories for treatment through a laboratory scale system. Removal efficiency, process media requirements, and waste processing methodology were determined from this laboratory testing. Samples of the waste resulting from this testing were processed by dewatering and solidification, respectively. TCLP tests were performed on the actual processed waste, and based on the TCLP results, pre-approval for media waste disposal was obtained. (author)

  18. Treatment and minimization of heavy metal-containing wastes 1995

    International Nuclear Information System (INIS)

    Hager, J.P.; Mishra, B.; Litz, J.L.

    1995-01-01

    This symposium was held in conjunction with the 1995 Annual Meeting of the Minerals, Metals and Materials Society in Las Vegas, Nevada, February 12--16, 1995. The purpose of this meeting was to provide a forum for exchange of state-of-the-art information on treating and minimizing heavy metal-containing wastes. Papers were categorized under the following broad headings: aqueous processing; waste water treatment; thermal processing and stabilization; processing of fly ash, flue dusts, and slags; and processing of lead, mercury, and battery wastes. Individual papers have been processed separately for inclusion in the appropriate data bases

  19. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  20. Biological-chemical ways in the treatment of selected wastes types

    Directory of Open Access Journals (Sweden)

    Peter Fečko

    2005-11-01

    Full Text Available The mineral biotechnologies, a domain of the primary raw material processing, are increasingly diversifying into some metallurgical areas. The presented results of research carried out with metallurgical wastes from aluminium production, lead waste remaking of use of bio-chemical methods. The results obtained and the proposed technologies applying bio-chemical processes enable a complex processing and an use of the waste sludge from the aluminium production and the matte-based copper production for the production of hematite pigments.

  1. Quality assessment of compost prepared with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Jodar J. R.

    2017-11-01

    Full Text Available One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  2. Quality assessment of compost prepared with municipal solid waste

    Science.gov (United States)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  3. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  4. Bioprocessing papaya processing waste for potential aquaculture feed supplement--economic and nutrient analysis with shrimp feeding trial.

    Science.gov (United States)

    Kang, H Y; Yang, P Y; Dominy, W G; Lee, C S

    2010-10-01

    Papaya processing waste (PPW), a major fruit processing waste in the Hawaii islands, served as substrate for yeast (Saccharomyces cerevisiae) growth. The fermented PPW products containing nutrients of 45% crude protein and various fat, fiber, lignin, cellulose, and minerals were advantages to nutrients of yeast alone. Three experimental diets controlled at 35% protein formulation containing different levels of inclusion of PPW products and a commercial control diet were fed to shrimps for 8 weeks. The 50% inclusion of PPW diets were comparable to commercial feed in weight, growth, feed conversion ratio (FCR) and survival rate. Such bioprocess treatment system would be economically feasible with the control of annual cost and increase of the amount of PPW treated. The selling price of PPW products and annual operation and maintenance cost were the most influential factors to additional profits. This study presented a promising alternative for environmental-friendly treatment of organic wastes as well as the sustainability of local agriculture and aquaculture industries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Fuel processing. Wastes processing

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2000-01-01

    The gaseous, liquid and solid radioactive effluents generated by the fuel reprocessing, can't be release in the environment. They have to be treated in order to respect the limits of the pollution regulations. These processing are detailed and discussed in this technical paper. A second part is devoted to the SPIN research program relative to the separation of the long life radionuclides in order to reduce the radioactive wastes storage volume. (A.L.B.)

  6. Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange

    Science.gov (United States)

    Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander

    2016-09-01

    The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.

  7. New high-level waste management technology for IFR pyroprocessing wastes

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.

    1993-01-01

    The pyrochemical electrorefining process for recovery of actinides in spent fuel from the Integral Fast Reactor accumulates fission product wastes as chlorides dissolved in molten LiCI-KCI and as metals, some of which are in molten cadmium. Pyrochemical processes are being developed to recover uranium and transuranium elements for return to the reactor, and to separate and immobilize fission products in suitable waste forms. Solvent cadmium is recycled within the process. Electrolyte salt is treated in a series of salt/cadmium extraction steps; it is also returned to the process. Salt-borne fission products are concentrated on a zeolite bed that is converted to a stable, leach-resistant mineral. Rare earth fission products from the salt, noble metal fission products, and cladding hulls are dispersed in a metal matrix

  8. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  9. Different Methods for Conditioning Chloride Salt Wastes

    International Nuclear Information System (INIS)

    De Angelis, G.; Fedeli, C.; Capone, M.; Marzo, G.A.; Mariani, M.; Da Ros, M.; Giacobbo, F.; Macerata, E.; Giola, M.

    2015-01-01

    Three different methods have been used to condition chloride salt wastes coming from pyro-processes. Two of them allow to synthesise sodalite, a naturally occurring mineral containing chlorine: the former, starting from Zeolite 4A, which transforms the zeolite into sodalite; the latter, which starts from kaolinite, giving sodalite as well. In addition, a new matrix, termed SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ), has been synthesised. It is able to form different mineral phases which occlude fission metals. The products from the different processes have been fully characterised. In particular the chemical durability of the final waste forms has been determined using the standard product consistency test. According to the results obtained, SAP seems to be a promising matrix for the incorporation of chloride salt wastes from pyro-processes. Financial support from the Nuclear Fission Safety Programme of the European Union (projects ACSEPT, contract FP7-CP-2007- 211 267, and SACSESS, Collaborative Project 323282), as well as from Italian Ministry for Economic Development (Accordo di Programma: Piano Annuale di Realizzazione 2008-2009) is gratefully acknowledged. (authors)

  10. Recent Progress on Data-Based Optimization for Mineral Processing Plants

    Directory of Open Access Journals (Sweden)

    Jinliang Ding

    2017-04-01

    Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.

  11. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  12. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation

    Directory of Open Access Journals (Sweden)

    L. Yao

    2011-03-01

    Full Text Available Relations between mineralization and certain geological processes are established mostly by geologist's knowledge of field observations. However, these relations are descriptive and a quantitative model of how certain geological processes strengthen or hinder mineralization is not clear, that is to say, the mechanism of the interactions between mineralization and the geological framework has not been thoroughly studied. The dynamics behind these interactions are key in the understanding of fractal or multifractal formations caused by mineralization, among which singularities arise due to anomalous concentration of metals in narrow space. From a statistical point of view, we think that cascade dynamics play an important role in mineralization and studying them can reveal the nature of the various interactions throughout the process. We have constructed a multiplicative cascade model to simulate these dynamics. The probabilities of mineral deposit occurrences are used to represent direct results of mineralization. Multifractal simulation of probabilities of mineral potential based on our model is exemplified by a case study dealing with hydrothermal gold deposits in southern Nova Scotia, Canada. The extent of the impacts of certain geological processes on gold mineralization is related to the scale of the cascade process, especially to the maximum cascade division number nmax. Our research helps to understand how the singularity occurs during mineralization, which remains unanswered up to now, and the simulation may provide a more accurate distribution of mineral deposit occurrences that can be used to improve the results of the weights of evidence model in mapping mineral potential.

  14. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  15. Waste package materials selection process

    International Nuclear Information System (INIS)

    Roy, A.K.; Fish, R.L.; McCright, R.D.

    1994-01-01

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  16. Decontamination of radioactive liquid systems by modified clay minerals

    OpenAIRE

    Petrushka, Ihor; Moroz, Olexandr

    2016-01-01

    The process mechanism for sorption of strontium and cesium from liquid radioactive waste using modified bentonites from Yaziv sulfur deposit was investigated. The technique for predicting the intensity of the sorption process based on the comparison of experimental and calculated values of mass transfer coefficients was proposed. It was detected that the process of sorption extraction of strontium and cesium from liquid medium using modified clay minerals may be bes...

  17. Process for continuous distillation of bituminous minerals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Marie, J J

    1923-01-26

    An apparatus is described for operating the process, in which the petroleum-bearing asphaltic or bituminous minerals are charged to the upper part of a vertical furnace with a lining of refractory material and varying sections; air is necessary for combustion and inert gas is necessary to regulate this combustion and to remove the hydrocarbons being blown into the lower part of the furnace; the hydrocarbons in vapor state or gases being removed are received in the condensers where they are deposited in the liquid state; the liquid from the condensers is next centrifuged to give oils essentially like natural petroleum, leaving as residue solid hydrocarbons and entrained mineral; the minerals treated are removed by gravity at the bottom of the furnace.

  18. Processing of transuranic waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Gruber, L.M.; Mentrup, S.J.

    1986-01-01

    Transuranic wastes at the Savannah River Plant (SRP) have been retrievably stored on concrete pads since early 1972. This waste is stored primarily in 55-gallon drums and large carbon steel boxes. Higher activity drums are placed in concrete culverts. In support of a National Program to consolidate and permanently dispose of this waste, a major project is planned at SRP to retrieve and process this waste. This project, the TRU Waste Facility (TWF), will provide equipment and processes to retrieve TRU waste from 20-year retrievable storage and prepare it for permanent disposal at the Waste Isolation Pilot Plant (WIPP) geological repository in New Mexico. This project is an integral part of the SRP Long Range TRU Waste Management Program to reduce the amount of TRU waste stored at SRP. The TWF is designed to process 15,000 cubic feet of retrieved waste and 6200 cubic feet of newly generated waste each year of operation. This facility is designed to minimize direct personnel contact with the waste using state-of-the-art remotely operated equipment

  19. Electrochemical processing of low-level waste solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Ebra, M.A.

    1987-01-01

    The feasibility of treating low-level Savannah River Plant (SRP) waste solutions by an electrolytic process has been demonstrated. Although the economics of the process are marginal at the current densities investigated at the laboratory scale, there are a number of positive environmental benefits. These benefits include: (1) reduction in the levels of nitrate and nitrite in the waste, (2) further decontamination of 99 Tc and 106 Ru, and (3) reduction in the volume of waste

  20. A big picture prospective for wet waste processing management

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1996-01-01

    This paper provides an overview of general observations made relative to the technical and economical considerations being evaluated by many commercial nuclear power plants involving their decision making process for implementation of several new wet waste management technologies. The waste management processes reviewed include the use of, Reverse Osmosis, Non-Precoat Filters, Resin Stripping ampersand Recycling, Evaporation ampersand Calcination (RVR trademark, ROVER trademark ampersand Thermax trademark), Compression Dewatering (PressPak trademark), Incineration (Resin Express trademark), Survey ampersand Free Release (Green Is Clean) and Quantum Catalytic Extraction Processing (QCEP trademark). These waste management processes are reviewed relative to their general advantages and disadvantages associated with the processing of various wet waste streams including: reactor make-up water, floor drain sludges and other liquid waste streams such as boric acid concentrates and steam generator cleaning solutions. A summary of the conclusions generally being derived by most utilities associated with the use of these waste management processes is also provided

  1. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1981-01-01

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  3. Quantum-CEP trademark for mixed waste processing

    International Nuclear Information System (INIS)

    Nahass, P.; Sekula-Moise, P.A.; Chanenchuk, C.A.

    1994-01-01

    No commercially available technology exists to effectively treat the hundreds of thousands of tons of mixed waste stored and generated in the United States and worldwide. Catalytic Extraction Processing (CEP) is an innovative flexible recycling technology which has inherent advantages for processing mixed wastes in a wide variety of chemical and physical forms. CEP uses a molten metal bath to completely dissociate feeds and recombine them with selected reactants to form useful products. Dissolved carbon in the metal bath creates a reducing atmosphere, readily converting hydrocarbons to synthesis gas, metals to alloys in their reduced state, and inorganics to an engineered ceramic phase. Process conditions can be manipulated to strongly favor partitioning of select radionuclides to a nonleachable vitreous phase, ready for final form disposal. Molten Metal Technology has adapted its CEP technology for radioactive processing and has delivered Quantum-CEP trademark units to customers for demonstration of mixed waste processing leading to commercial scale installations for reducing both private and government inventories. Agreements have also been reached to build commercial CEP facilities to recycle hazardous and industrial wastes

  4. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  5. Processing and discarding method for contaminated concrete wastes

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Konishi, Masao; Matsuda, Atsuo; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakajima, Yoshiro

    1998-01-01

    Contaminated concrete wastes are crashed into granular concrete wastes having a successive grain size distribution. They are filled in a contamination processing vessel and made hardenable in the presence of a water-hardenable material in the granular concrete wastes. When underground water intrudes into the contamination processing vessel filled with the granular concrete wastes upon long-term storage, the underground water reacts with the water-hardenable material to be used for the solidification effect. Accordingly, leaching of contaminated materials due to intrusion of underground water can be suppressed. Since the concrete wastes have a successive grain size distribution, coarse grains can be used as coarse aggregates, medium grains can be used as fine aggregates and fine grains can be used as a solidifying material. Accordingly, the amount of wastes after processing can be remarkably reduced, with no supply of a solidifying material from outside. (T.M.)

  6. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  7. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  8. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  9. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    International Nuclear Information System (INIS)

    Okeson, J.K.; Galloway, R.M.; Wilhite, E.L.; Woolsey, G.B.; Ferguson, R.B.

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste

  10. Characterization of surface processes on mineral surfaces in aqueous solutions. Annual report for fiscal year 1993

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1993-11-01

    Performance assessments by Los Alamos National Laboratory for the DOE's Yucca Mountain Site Characterization Project (YMP) are being done investigating the environmental risk related to long-term disposal of hazardous wastes resulting from the use of radioactive materials that must subsequently be isolated from the environment. The YMP site, located in southwestern Nevada, is intended for the storage of high-level wastes generated by nuclear energy-related activities, including spent fuel and waste from reprocessed fuel rods. The work covered by this contract is necessary for producing a defensible model and dataset, and may be critical for evaluation of repository compliance. This work, performed by the Environmental Engineering and Science research group at Stanford University, will quantify the adsorption of uranyl on various minerals. The project's principle objective is to provide sorption coefficients for uranyl and other ions of interest to predict radionuclide movements form the repository to accessible environments. This adsorption data is essential for the unambiguous interpretation of field experiments and observations. In this report, details of the activity and progress made with respect to the study of uranyl adsorption on mineral surfaces is presented and discussed

  11. Microbial processes in radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, L.; Farkas-Galgoczi, G.; Diosi, G.

    2002-01-01

    Microbial processes could potentially affect the performance of a radioactive waste disposal system and related factors that could have an influence on the mobility of radionuclides are outlined. Analytical methods, including sampling of water, rock and surface swabs from a potential disposal site, are described and the quantitative as well as qualitative experimental results obtained are given. Although the results contribute to an understanding of the impact of microbial processes on deep geological disposal of nuclear waste, there is not yet sufficient information for a model which will predict the consequences of these processes. (author)

  12. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Inaguma, Masahiko; Takahara, Nobuaki; Hara, Satomi.

    1996-01-01

    In a processing device for filtering laundry liquid wastes and shower drains incorporated with radioactive materials, a fiber filtration device is disposed and an activated carbon filtration device is also disposed subsequent to the fiber filtration device. In addition, a centrifugal dewatering device is disposed for dewatering spent granular activated carbon in the activated carbon filtration device, and a minute filtering device is disposed for filtering the separated dewatering liquid. Filtrates filtered by the minute filtration device are recovered in a collecting tank. Namely, at first, suspended solid materials in laundry liquid wastes and shower drains are captured, and then, ingredients concerning COD are adsorbed in the activated carbon filtration device. The radioactive liquid wastes of spent granular activated carbon in the activated carbon filtration device are reduced by dewatering them by the centrifugal dewatering device, and then the granular activated carbon is subjected to an additional processing. Further, it is separated by filtration using the minute filtration device and removed as cakes. Since the filtrates are recovered to the collecting tank and filtered again, the water quality of the drains is not degraded. (N.H.)

  13. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kurumada, Norimitsu; Shibata, Setsuo; Wakabayashi, Toshikatsu; Kuribayashi, Hiroshi.

    1984-01-01

    Purpose: To facilitate the procession of liquid wastes containing insoluble salts of boric acid and calcium in a process for solidifying under volume reduction of radioactive liquid wastes containing boron. Method: A soluble calcium compound (such as calcium hydroxide, calcium oxide and calcium nitrate) is added to liquid wastes whose pH value is adjusted neutral or alkaline such that the molar ratio of calcium to boron in the liquid wastes is at least 0.2. Then, they are agitated at a temperature between 40 - 70 0 C to form insoluble calcium salt containing boron. Thereafter, the liquid is maintained at a temperature less than the above-mentioned forming temperature to age the products and, thereafter, the liquid is evaporated to condensate into a liquid concentrate containing 30 - 80% by weight of solid components. The concentrated liquid is mixed with cement to solidify. (Ikeda, J.)

  14. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  15. Net mineralization nitrogen and soil chemical changes with application of organic wastes with ‘Fermented Bokashi Compost’ - doi: 10.4025/actasciagron.v35i2.15133

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2012-12-01

    Full Text Available The use of organic wastes in agricultural soils is one of the possible ways to employ these materials. The aims of this study were to evaluate the effectiveness of organic wastes and Fermented Bokashi Compost (FBC, to establish the most efficient use of organic wastes for a soil, changing the net nitrogen mineralization and soil chemical properties. The experimental design was completely randomized in a 6 x 2 x 5 factorial, being five organic wastes plus an control (soil without waste, with or without FBC, evaluated at 0, 7, 42, 70 and 91 days of incubation, with three replicates, under laboratory conditions. The organic wastes enhanced the soil chemical properties and increased nitrogen concentration in soil. However, the net nitrogen mineralization was affected by C/N ratio of wastes and incubation time. The FBC mixed with the wastes accelerated and enhanced organic matter degradation, resulting in quickly available quantity of net nitrogen. The wastes can be considered potentially useful as organic fertilizer but their usefulness appears to depend on knowing the C/N ratio of each one. The FBC can be used when one wants a more accelerated degradation, resulting in a quicker quantity of available nutrients to the plants.

  16. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  17. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  18. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  19. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  20. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  1. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  2. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  3. Tracer investigations of macroprocesses in mineral processing. 1

    International Nuclear Information System (INIS)

    Koch, P.

    1981-01-01

    Results obtained from tracer studies in mineral processing have been evaluated with regard to the effects of hydrodynamic and design parameters of the single cell on flotation kinetics, to the residence time in single and in series-connected cells, and to the possibility of designing process control models. An algorithm is given for technological interpretation of results obtained from residence time and process kinetics studies

  4. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  5. The Plasco Process for energy from waste

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, R.M. [Plasco Energy Group, Ottawa, ON (Canada)

    2006-07-01

    Plasco Energy Group (Plasco) has a patented process that provides a way of recycling products that are difficult or uneconomic for conventional recycle programs. This presentation included information on the Plasco PGP system that can process energy from waste. The specifications and benefits of the Plasco process were discussed, notably that no energy supplements such as coal or natural gas are required for the process. The amount of power consumed by households and in a Plasco plant were identified. The amounts of waste processed and converted by the Plasco plant were also provided along with sketches of Plasco's Ottawa demonstration facility and Plasco gasification converter. Last, the presentation addressed the cooperative solution involving several partners such as the city of Ottawa, province of Ontario and Plasco. The waste recycling opportunities for communities were also highlighted. 1 tab., figs.

  6. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Hubbard, Alexander; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Ebel, Denton S. [Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192 (United States); D' Alessio, Paola, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org, E-mail: mordecai@amnh.org, E-mail: debel@amnh.org, E-mail: p.dalessio@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, MICH (Mexico)

    2013-04-10

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  7. Current and potential uses of bioactive molecules from marine processing waste.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  8. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  9. Using high temperature gas-cooled reactors for energy neutral mineral development processes – A proposed IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Haneklaus, N.; Reitsma, F.; Tulsidas, H.; Dyck, G.; Koshy, T.; Tyobeka, B.; Schnug, E.; Allelein, H-J.; Birky, B.

    2014-01-01

    Today, uranium mined from various regions is the predominant reactor fuel of the present generation of nuclear power plants. The anticipated growth in nuclear energy may require introducing uranium/thorium from unconventional resources (e.g. phosphates, coal ash or sea water) as a future nuclear reactor fuel. The demand for mineral commodities is growing exponentially and high-grade, easily-extractable resources are being depleted rapidly. This shifts the global production to low-grade, or in certain cases unconventional mineral resources, the production of which is constrained by the availability of large amounts of energy. Numerous mining processes can benefit from the use of so-called “thermal processing”. This is in particular beneficial for (1) low grade deposits that cannot be treated using the presently dominant chemical processing techniques; (2) the extraction of high purity end products; and (3) the separation of high value or unwanted impurities (e.g. uranium, thorium, rare earths, etc.) that could be used/sold, when extracted, which will result in cleaner final products. The considerably lower waste products also make it attractive compared to chemical processing. In the future, we may need to extract nuclear fuel and minerals from the same unconventional resources to make nuclear fuel- and low grade ore processing feasible and cost-effective. These processes could be sustainable only if low-cost, carbon free, reliable energy is available for comprehensive extraction of all valuable commodities, for the entire life of the project. Nuclear power plants and specifically High Temperature Gas-cooled Reactors (HTGRs) can produce this energy and heat in a sustainable way, especially if enough uranium/thorium can be extracted to fuel these reactors.

  10. Toxic and hazardous waste disposal. Volume 1. Processes for stabilization/solidification

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1979-01-01

    Processes for the stabilization and/or solidification of toxic, hazardous, and radioactive wastes are reviewed. The types of wastes classified as hazardous are defined. The following processes for the solidification of hazardous wastes are described: lime-based techniques; thermoplastic techniques; organic polymer techniques; and encapsulation. The following processes for the solidification of high-level radioactive wastes are described: calcination; glassification; and ceramics. The solidification of low-level radioactive wastes with asphalt, cement, and polymeric materials is also discussed. Other topics covered include: the use of an extruder/evaporator to stabilize and solidify hazardous wastes; effect disposal of fine coal refuse and flue gas desulfurization slurries using Calcilox additive stabilization; the Terra-Tite Process; the Petrifix Process; the SFT Terra-Crete Process; Sealosafe Process; Chemfix Process; and options for disposal of sulfur oxide wastes

  11. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  12. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  13. UTILIZATION OF MINERAL FIBER WASTE IN THE PRODUCTION OF GYPSUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Solov'ev Vitaliy Nikolaevich

    2018-01-01

    Full Text Available Subject: the effectiveness of using compositions with the use of basalt fibers is proven, but the composition must be selected depending on the binder and additives chosen. Research objectives: we examine the possibility of waste recycling of basalt fiber production during manufacturing of modified gypsum composite material with improved characteristics. Materials and methods: as a raw material, a gypsum binder of Samara production was used. As a reinforcement additive, a disperse waste of basalt fiber production of Tver region was used. Studying characteristics of the gypsum binder and modified mixture, and also comparative analysis of these characteristics by average density, total porosity, strength in compression and flexure of the gypsum composite were carried out using standard techniques. Results: dependence of physical and mechanical properties of the modified gypsum material on the content of the basalt fiber additive is established. It was found that an increase in concentration of the additive requires an increased water content or additional use of plasticizer. Conclusions: modification of gypsum stone with a mineral basalt additive will increase the strength, density and durability of thin-walled gypsum products, and, consequently, the demand for products due to ensuring their high quality in transportation and installation.

  14. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 ± 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area

  15. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  16. The review of recent carbonate minerals processing technology

    Science.gov (United States)

    Solihin

    2018-02-01

    Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is

  17. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  18. Hospital waste processing. Tratamiento de residuos hospitalarios

    Energy Technology Data Exchange (ETDEWEB)

    Rocafiguera, X de

    1994-01-01

    Generally speaking, Hospitalary wastes are apparently similar to any kind of urban waste. Nevertheless it must be taken into account that the origin of Hospitalary wastes is different as they can be contaminated with microbes, virus, bacteria, bacillus...Because of this they should be treated and stored with special techniques in all the process. (Author)

  19. Waste Minimization Study on Pyrochemical Reprocessing Processes

    International Nuclear Information System (INIS)

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-01-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal

  20. Thermal process for immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Kupfer, M.J.; Schulz, W.W.

    1971-01-01

    The Thermalt process involves an exothermic, thermite-like reaction of aluminum metal with basalt, quartz sand, and radioactive waste. The resulting melt when solidified is a silicious stone-like material that is similar in chemical composition to basalt. The process utilizes low cost ingredients: basalt rock, which occurs naturally in the Hanford region, inexpensive aluminum metal such as aluminum scrap which need not be pure, and the waste which is predominately sodium nitrate salt. The waste itself along with the basalt provides the oxygen necessary for the reaction. The exothermic reaction provides the necessary heat to melt the ingredients thus eliminating the need for external heat sources such as furnaces which are necessary with most other melt methods. The final product is highly stable and essentially nonleachable; leach rates appear as low or lower than other melt products described in the literature. Initial studies indicate the process is effective for both low-level and high-level wastes. (U.S.)

  1. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  2. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  3. Hanford's self-assessment of the solid waste forecast process

    International Nuclear Information System (INIS)

    Hauth, J.; Skumanich, M.; Morgan, J.

    1996-01-01

    In fiscal year (FY) 1995 the forecast process used at Hanford to project future solid waste volumes was evaluated. Data on current and future solid waste generation are used by Hanford site planners to determine near-term and long-term planning needs. Generators who plan to ship their waste to Hanford's Solid Waste Program for treatment, storage, and disposal provide volume information on the types of waste that could be potentially generated, waste characteristics, and container types. Generators also provide limited radionuclide data and supporting assumptions. A self-assessment of the forecast process identified many effective working elements, including a well-established and systematic process for data collection, analysis and reporting; sufficient resources to obtain the necessary information; and dedicated support and analytic staff. Several areas for improvement were identified, including the need to improve confidence in the forecast data, integrate forecast data with other site-level and national data calls, enhance the electronic data collection system, and streamline the forecast process

  4. Minerals and design of new waste forms for conditioning nuclear waste; Les mineraux et la formulation de nouvelles matrices de stockage pour les dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Montel, J.M. [G2R, CNRS, Ecole nationale superieure de geologie, Nancy-universite, BP 70239, 54056 Vandoeuvre-les-Nancy (France)

    2011-02-15

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs. (author)

  5. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  6. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  7. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  8. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  9. The TEES process cleans waste and produces energy

    International Nuclear Information System (INIS)

    Elliott, D.C.; Silva, L.J.

    1995-02-01

    A gasification system is under development that can be used with most types of wet organic wastes. The system operates at 350 degrees C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet waste can be fed as a solution or slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. The system has utility both for direct conversion of high-moisture biomass to fuel gas or as a wastewater cleanup system for wet organic wastes including unconverted biomass from bioconversion processes. By the use of this system >99% conversions of organic waste to medium-Btu fuel gas can be achieved

  10. Prediction of geological and mechanical processes while disposing of high-level waste (HLW) into the earth crust

    International Nuclear Information System (INIS)

    Kedrovsky, O.L.; Morozov, V.N.

    1992-01-01

    Prediction of geological and mechanical processes while disposing of high-level waste of atomic industry into the earth crust is the fundamental base for ecological risk assessment (possible consequences) while developing repository designs. The subject of this paper is the analytical estimate of possibilities of rock fracturing mechanisms to predict isolation properties loss by massif beginning from crystal lattice of minerals up to large fracture disturbances under conditions of long-term influence of pressure, temperature, and radiation. To solve the problem possibilities of kinetic

  11. Technical and economic evaluation of processes being developed for solid waste processing

    International Nuclear Information System (INIS)

    Tittlova, E.; Hladky, E.

    1985-01-01

    An analysis was made of the economic benefits of two developed processes for reducing the volume of solid radioactive wastes prior to disposal, namely compacting and incineration. Input data were obtained from the actual production of solid radioactive wastes at the V-1 nuclear power plant, from compacting on site, and the operation of an experimental incineration plant. The two WWER-440 units of the V-1 nuclear power plant generate ca 200 m 3 of wastes per annum (not including air filters and wood) of which 69% is assumed to be incinerable and 27% compactable. The rest is disposed of without prior volume reduction. Disposal costs are assessed at 7,500 Czechoslovak crowns per 1 m 3 of wastes, representing a total of 1.5 million crowns per annum. As compared with the disposal of unprocessed wastes the compacting of 95% of wastes generated, reduces the costs of transport and disposal to 25%. With both compacting and incineration, the costs represent 16 to 25% of the initial sum, depending on the ratio of the two processes. The high capital costs of building the incineration plant will thus be offset by the reduction in costs of the radioactive waste disposal. From the technical point of view the analysis did not make a detailed comparison of the properties of the compacted incinerable wastes and ash with regard to stability and leachability of radionuclides. It did also not take into account operating costs and the technological challenge of the two waste volume redution processes. (Z.M.)

  12. Mineral carbonation - possibilities in and ex-situ, evaluation and experiments in laboratory. Final report

    International Nuclear Information System (INIS)

    Bodenan, F.; Bailly, L.; Piantone, P.; Seron, A.; Touze, S.

    2006-01-01

    This report proposes a state of the art of the knowledge and a synthesis of the studies realized at the BRGM since many years, especially in the following domains: the possibilities of the natural minerals and alkaline wastes for the CO 2 sequestration under mineral form, a accounting analysis of the ex-situ processes called direct and indirect, the design of experimental bench scale to study the mineral carbonation at ambient conditions and at high pressure and temperature. (A.L.B.)

  13. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  14. Posibility for application of froth separation process in beneficiation of raw minerals

    Directory of Open Access Journals (Sweden)

    František Tichánek

    2005-11-01

    Full Text Available Froth separation belongs to newer flotation methods that are suitable for the separation of fine-grained raw materials whose size is too big for regular flotation. The technology of coarse-grained flotation has a significant economical effect because it allows a decrease in the costs for mineral processing. The article concerneds the posibility of using the froth separation process during the mineral processing of bituminous coal.

  15. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  16. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.

    Science.gov (United States)

    Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B

    2018-01-16

    This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  17. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  18. Waste Form Features, Events, and Processes

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  19. Waste Form Features, Events, and Processes

    Energy Technology Data Exchange (ETDEWEB)

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  20. Process and technological wastes compaction through a fluidized bed incineration process

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1993-01-01

    The various fluidized bed systems (dense or circulating) are reviewed and the advantages of the circulation fluidized bed are highlighted (excellent combustion performance, clean combustion, large operating range, poly-functionality with regards to waste type, ...). Applications to contaminated graphite (with the problem of ash management) and to plant process wastes (ion exchangers, technological wastes, aqueous effluents); study of the neutralization and chlorine emission

  1. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  2. Radioactive waste safety appraisal. An international peer review of the licence application for the Australian near surface radioactive waste disposal facility. Report of the IAEA International Review Team

    International Nuclear Information System (INIS)

    2004-05-01

    Radioactive waste has been generated in Australia for a number of decades from the production and use of radioactive materials in medicine and industry, from the processing of various minerals containing natural radionuclides and from various research activities. It has been decided in the overall interest of safety and security to develop a radioactive waste disposal facility to accommodate the low level and short lived intermediate level waste, which make up the bulk of the waste, other than mining and minerals processing residues. A site selection process has been undertaken and environmental impact statement report prepared and approved. A licence application has been submitted to the national nuclear regulatory authority, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for siting, construction and operation of the facility. In order to assist the CEO of ARPANSA with his deliberations in this regard a request was made to the IAEA, in terms of its statutory mandate to establish international safety standards for radioactive waste safety and to provide for their application, to undertake an international peer review of the licence application and to advise the CEO accordingly. The outcome and recommendations of this peer review are presented in the report

  3. Pilot process waste assessment for the fireset area

    International Nuclear Information System (INIS)

    Cole, M.J.; Goethe, M.C.

    1992-08-01

    A pilot process waste assessment (WA) was conducted in the fireset area to develop methodology for conducting future process waste assessments. The study was conducted on trichloroethylene spray cleaning using the guidance for PWAs supplied by Environment, Safety, and Health (ES ampersand H). The first objective was to draw up a flow diagram (see Appendix A, worksheet 4) for the process. When this was done, a mass balance (see Appendix A, Worksheet 5) was conducted to determine the quantity of incoming material and where it was going during the process. The mass balance showed that a large quantity of trichloroethylene and all the isopropyl alcohol was being released to the atmosphere instead of being captured in the waste solvent container. Upon completion of the mass balance, waste minimization options where identified (see Appendix A, Worksheet 8) to reduce or eliminate the quantity of hazardous solvent used

  4. Method for processing radioactive wastes containing sodium

    International Nuclear Information System (INIS)

    Kubota, Takeshi.

    1975-01-01

    Object: To bake, solidify and process even radioactive wastes highly containing sodium. Structure: H and or NH 4 zeolites of more than 90g per chemical equivalent of sodium present in the waste is added to and left in radioactive wastes containing sodium, after which they are fed to a baker such as rotary cylindrical baker, spray baker and the like to bake and solidify the wastes at 350 to 800 0 C. Thereby, it is possible to bake and solidify even radioactive wastes highly containing sodium, which has been impossible to do so previously. (Kamimura, M.)

  5. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  6. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    Energy Technology Data Exchange (ETDEWEB)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  7. Treatment of tributyl phosphate wastes by extraction cum pyrolysis process

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Ramaswamy, M.; Kartha, P.K.S.; Kutty, P.V.E.; Ramanujam, A.

    1989-01-01

    For the treatment of spent tri n-butyl phospate (TBP) wastes from Purex process, a method involving extraction of TBP with phosphoric acid followed by pyrolysis of TBP - phosphoric acid phase was investigated. The process was examined with respect to simulated waste, process solvent wastes and aged organic waste samples. These studies seem to offer a simple treatment method for the separation of bulk of diluent from spent solvent wastes. The diluent phase needs further purification for reuse in reprocessing plant; otherwise it can be incinerated. (author). 18 refs., 3 tabs., 6 figs

  8. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  9. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

    1994-01-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste

  10. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  11. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-01-01

    , fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  12. 30 CFR 47.53 - Alternative for hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that— (a...

  13. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  14. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  15. Preoperational assessment of solute release from waste rock at proposed mining operations

    International Nuclear Information System (INIS)

    Lapakko, Kim A.

    2015-01-01

    Highlights: • Modeling to estimate solute release from waste rock at proposed mines is described. • Components of the modeling process are identified and described. • Modeling inputs required are identified and described. • Examples of data generated and their application are presented. • Challenges inherent to environmental review are identified. - Abstract: Environmental assessments are conducted prior to mineral development at proposed mining operations. Among the objectives of these assessments is prediction of solute release from mine wastes projected to be generated by the proposed mining and associated operations. This paper provides guidance to those engaged in these assessments and, in more detail, provides insights on solid-phase characterization and application of kinetic test results for predicting solute release from waste rock. The logic guiding the process is consistent with general model construction practices and recent publications. Baseline conditions at the proposed site are determined and a detailed operational plan is developed and imposed upon the site. Block modeling of the mine geology is conducted to identify the mineral assemblages present, their masses and compositional variations. This information is used to select samples, representative of waste rock to be generated, that will be analyzed and tested to describe characteristics influencing waste rock drainage quality. The characterization results are used to select samples for laboratory dissolution testing (kinetic tests). These tests provide empirical data on dissolution of the various mineral assemblages present as waste rock. The data generated are used, in conjunction with environmental conditions, the proposed method of mine waste storage, and scientific and technical principles, to estimate solute release rates for the operational scale waste rock. Common concerns regarding waste rock are generation of acidic drainage and release of heavy metals and sulfate. Key solid

  16. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  17. Microbial processes in radioactive waste disposal

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    2000-04-01

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  18. Microbial processes in radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    2000-04-15

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  19. Proposed methods for treating high-level pyrochemical process wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Miller, W.E.; Steunenberg, R.K.

    1985-01-01

    This survey illustrates the large variety and number of possible techniques available for treating pyrochemical wastes; there are undoubtedly other process types and many variations. The choice of a suitable process is complicated by the uncertainty as to what will be an acceptable waste form in the future for both TRU and non-TRU wastes

  20. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  1. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun; Daniel, Richard C.; Herting, Daniel L. [Washington River Protection Solutions, Richland, Washington 99354, United States; Ilton, Eugene S.; Lumetta, Gregg J.; Clark, Sue B. [Chemistry

    2018-01-02

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  2. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  3. Process Waste Assessment for the Plotting and Digitizing Support Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-04-01

    This Process Waste Assessment was conducted to evaluate the Plotting and Digitizing Support Laboratory, located in Building 913, Room 157. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility

  4. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  5. Waste minimization/pollution prevention at R ampersand D facilities: Implementing the SNL/NM Process Waste Assessment Program

    International Nuclear Information System (INIS)

    Kjeldgaard, E.A.; Stermer, D.L.; Saloio, J.H. Jr.; Lorton, G.A.

    1993-01-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Process Waste Assessment (PWA) program began formally on November 2, 1992. This program represents the first laboratory-wide attempt to explicitly identify and characterize SNL/NM's waste generating processes for waste minimization purposes. This paper describes the major elements of the SNL/NM PWA program, the underlying philosophy for designing a PWA program at a highly diverse laboratory setting such as SNL/NM, and the experiences and insights gained from five months of implementing this living program. Specifically, the SNL/NM PWA program consists of four major, interrelated phases: (1) Process Definition, (2) Process Characterization, (3) Waste Minimization Opportunity Assessment, and (4) Project Evaluation, Selection, Implementation, and Tracking. This phased approach was developed to Provide a flexible, yet appropriate, level of detail to the multitude of different ''processes'' at SNL/NM. Using a staff infrastructure of approximately 60 Waste Minimization Network Representatives (MinNet Reps) and consulting support, the SNL/NM PWA program has become the linchpin of even more progressive and proactive environmental, safety, and health (ES ampersand H) initiatives such as: (1) cradle-to-grove material/waste tracking, (2) centralized ES ampersand H reporting, and (3) detailed baselining and tracking for measuring multi-media waste reduction goals. Specific examples from the SNL/NM PWA program are provided, including the results from Process Definition, Process Characterization, and Waste Minimization Opportunity Assessments performed for a typical SNL/NM process

  6. Low Activity Waste Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  7. Fiscal 1998 research report on the demand forecast of rare element minerals, recycling technology of rare elements from waste, and substitute rare element minerals; 1998 nendo chosa hokokusho. Kisho genso koseki no juyo yosoku, kisho genso no haikibutsu kara no kaishu gijutsu oyobi daitai kisho genso koseki nado ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Rare element mineral is indispensable material for functionalization of high-tech raw materials. Its deposit is poor, an increase in its future demand is expected, and its information disclosure is insufficient because of strategic important material. To solve these problems, the following were studied systematically, and urgent research themes on rare element minerals were clarified: (1) High-efficiency recycling technology of rare elements, (2) Waste treatment system after recycling of rare elements from the viewpoint of environmental measures, (3) Establishment of the database of rare element minerals, and development of new substitute rare element minerals, and (4) Design method of substitute materials possible to generate various existing functions without any rare elements. Among them, in particular, precise separation of 46 kinds of rare elements from waste of high-tech raw materials, and recycling of rare elements from zinc refining waste and pyrite ore deposit containing copper were pointed out as important themes. (NEDO)

  8. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  9. EMSP Project 70070: Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Nagy, Kathryn L.

    2004-01-01

    Since the late 1950s, leaks from 67 single-shell tanks at the Hanford Site have released about 1 million curies to the underlying sediments. The radioactive material was contained in water-based solutions generally characterized as having high pH values (basic solutions), high nitrate and nitrite concentrations, and high aluminum concentrations. The solutions were also hot, in some cases at or near boiling, as well as complex and highly variable in composition reflecting solutions obtained from multiple methods of reprocessing spent nuclear fuel. In order to understand the observed and probable distribution of radionuclides in the ground at Hanford, major reactions that likely occurred between the leaked fluids and the sediment minerals were investigated in laboratory experiments simulating environmental conditions. Reactions involving the dissolution of quartz and biotite and the simultaneous formation of new minerals were quantified at controlled pH values and temperature. Result s show that the dissolution of quartz and formation of new zeolite-like minerals could have altered the flow path of ground water and contaminant plumes and provided an uptake mechanism for positively-charged soluble radionuclides, such as cesium. The dissolution of biotite, a layered-iron-aluminum-silicate mineral, provided iron in a reduced form that could have reacted with negatively-charged soluble chromium, a toxic component of the wastes, to cause its reduction and precipitation as a new reduced-chromium mineral. The quantity of iron released in the experiments is sufficient to explain observations of reductions in dissolved chromium concentration in a plume beneath one Hanford tank. Fundamental data obtained in the project are the rates of the reactions at variable temperatures and pHs. Fundamental data were also obtained on aspects of the surface reactivity of clay or layered-silicate minerals, a small proportion of the total mass of the sediment minerals, but a large proportion

  10. Vermicomposting of vegetable waste: A biophysicochemical process ...

    African Journals Online (AJOL)

    some cities, the organic waste (market, municipal, household) are dumped indiscriminately or littered on the streets causing environmental deterioration. Biological processes such as composting followed by vermicomposting to convert vegetables waste (as valuable nutrient source) in agriculturally useful organic fertilizer ...

  11. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  12. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  13. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  14. Influence of radiation on the system liquid radioactive wastes: geologic formation

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Balukova, V.D.; Kabakchi, S.A.; Medvedeva, M.L.

    1979-01-01

    Introduction of liquid radioactive wastes into deep strata-collectors results in a number of physical-chemical processes: precipitation, dissolution, complex formation, sorption, etc. The area occupied by the injected waste and changes in the nature of the liquid phase depend primarily on radiolysis processes in the heterogeneous system of liquid waste-stratal material occurring at elevated temperatures and pressures. Experiments that simulate actual conditions of temperature, pressure and high radiation levels on this system have been performed. Results are presented for radiolytic gas formation and for changes in the liquid phase and sorption capacity of stratal minerals. It is shown that the temperature increase in the stratum-collector significantly enhances waste decomposition processes, promotes sorption of radionuclides and decreases the mobility of the waste in the formation

  15. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  16. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  17. More value from food waste

    DEFF Research Database (Denmark)

    Kim, Mi Sun; Na, Jeong-Geol; Lee, Mo-Kwon

    2016-01-01

    Anaerobic digestion (AD) is one of the traditional technologies for treating organic solid wastes, but its economic benefit is sometimes questioned. To increase the economic feasibility of the treatment process, the aim of this study was to recover not only biogas from food waste but lactic acid...... the supernatant by the combined process of nanofiltration and water-splitting electrodialysis. The process could recover highly purified LA by removing 85% of mineral ions such as Naþ, Kþ, Mg2þ, and Ca2þ and 90% of residual carbohydrates. Meanwhile, the solid residue remained after centrifugation was further...... (LA) as well. At first, LA fermentation of food waste (FW) was conducted using an indigenous mixed culture. During the operation, temperature was gradually increased from 35 C to 55 C, with the highest performance attained at 50 C. At 50 C and hydraulic retention time (HRT) of 1.0 d, LA concentration...

  18. Process innovations in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Theyyunni, T.K.

    1995-01-01

    Innovative processes and techniques were investigated for their possible application in the management of low, intermediate and high level radioactive wastes. High decontamination, high volume reduction, process simplicity and operational safety are some of the objectives of these investigation. Based on the favourable results, it is hoped that many of these process innovations can be introduced in the waste management schemes with beneficial results. (author)

  19. Chemistry research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Vikis, A.C.; Garisto, F.; Lemire, R.J.; Paquette, J.; Sagert, N.H.; Saluja, P.P.S.; Sunder, S.; Taylor, P.

    1988-01-01

    This publication reviews chemical research in support of the Canadian Nuclear Fuel Waste Management Program. The overall objective of this research is to develop the fundamental understanding required to demonstrate the suitability of waste immobilization media and processes, and to develop the chemical information required to predict the long-term behaviour of radionuclides in the geosphere after the waste form and the various engineered barriers containing it have failed. Key studies towards the above objective include experimental and theoretical studies of uranium dioxide oxidation/dissolution; compilation of thermodynamic databases and an experimental program to determine unavailable thermodynamic data; studies of hydrothermal alteration of minerals and radionuclide interactions with such minerals; and a study examining actinide colloid formation, as well as sorption of actinides on groundwater colloids

  20. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  1. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  2. Plasma processing of compacted drums of simulated radioactive waste

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Larsen, M.M.

    1991-01-01

    The charter of the Department of Energy (DOE) Office of Technology Development (OTD) is to identify and develop technologies that have potential application in the treatment of DOE wastes. One particular waste of concern within the DOE is transuranic (TRU) waste, which is generated and stored at several DOE sites. High temperature DC arc generated plasma technology is an emerging treatment method for TRU waste, and its use has the potential to provide many benefits in the management of TRU. This paper begins by discussing the need for development of a treatment process for TRU waste, and the potential benefits that a plasma waste treatment system can provide in treating TRU waste. This is followed by a discussion of the results of a project conducted for the DOE to demonstrate the effectiveness of a plasma process for treating supercompacted TRU waste. 1 fig., 1 tab

  3. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  4. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  5. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  6. Immobilization of organic liquid wastes

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1985-01-01

    This report describes a portland cement immobilization process for the disposal treatment of radioactive organic liquid wastes which would be generated in a a FFTF fuels reprocessing line. An incineration system already on-hand was determined to be too costly to operate for the 100 to 400 gallons per year organic liquid. Organic test liquids were dispersed into an aqueous phosphate liquid using an emulsifier. A total of 109 gallons of potential and radioactive aqueous immiscible organic liquid wastes from Hanford 300 Area operations were solidified with portland cement and disposed of as solid waste during a 3-month test program with in-drum mixers. Waste packing efficiencies varied from 32 to 40% and included pump oils, mineral spirits, and TBP-NPH type solvents

  7. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  8. Radioactive alpha wastes processing at the nuclear center of Mol

    International Nuclear Information System (INIS)

    Voorde, N. van de

    1978-01-01

    This process is based on calcination at very high temperature (1500 0 C) of wastes, mainly burnable, with selected non-burnable wastes, such as glass, metal, sludge, ion echanger, etc. Incineration wastes melt at this temperature and an insoluble granitic mass is obtained. This operation is performed in a special oven equipped with a gas purification device installed in a place like alpha bearing wastes treatment working spot where the staff can work in an air-supplied suit. Two incineration units are planned, the first one with a capacity of 150 kg/hr in view to treat a large amount of wastes with a low plutonium content (max. 10 mg/l), the second smaller with a capacity of 10 kg/hr, specially designed to process wastes with a high Pu content. This project for the first unit, at least is now tested with beta gamma wastes processing. Alpha bearing wastes pocessing will start at the end of 1978, we are now building the second unit [fr

  9. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  10. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  11. Characterization and process technology capabilities for Hanford tank waste disposal

    International Nuclear Information System (INIS)

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory's (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory's extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory's radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations

  12. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  13. Strategy for research on radioactive waste processing and conditioning in France

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Tallec, M.

    2001-01-01

    Research on radioactive medium level waste processing and conditioning aims at offering processing routes for waste forms and materials of potential value that are not yet provided easy handling by existing industrial processes. These studies are mandatory under the Dec 31, 1991 law and are coordinated by CEA. The strategy relies on the completion and rationalization of the existing processing routes, within acceptable technical and economic limits. Waste processing techniques aim at reducing the volume and the chemical diversity of medium activity waste, and are based on incineration-vitrification. Conditioning techniques call for high performance matrices and standardized containers, the latter keeping an ability to contain bulk waste. (author)

  14. Department of Energy's process waste assessment graded approach methodology

    International Nuclear Information System (INIS)

    Pemberton, S.E.

    1994-03-01

    As the initial phase of the formal waste minimization program, the Department of Energy requires assessments of all its waste-generating operations. These assessments, called process waste assessments (PWAs), are a tool which helps achieve the pollution prevention goals. The DOE complex is comprised of numerous sites located in many different states. The facilities as a whole represent a tremendous diversity of technologies, processes, and activities. Due to this diversity, there are also a wide variety and number of waste streams generated. Many of these waste streams are small, intermittent, and not of consistent composition. The PWA graded approach methodology addresses these complexities and recognizes that processes vary in the quantity of pollution they generate, as well as in the perceived risk and associated hazards. Therefore, the graded approach was developed to provide a cost-effective and flexible methodology which allows individual sites to prioritize their local concerns and align their efforts with the resources allocated. This presentation will describe a project sponsored by the DOE Office of Environmental Restoration and Waste Management, Waste Minimization Division, which developed a graded approach methodology for use throughout the DOE. This methodology was initiated in FY93 through a combined effort of the following DOE/Defense Program sites: Kansas City Plant, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories. This presentation will describe the process waste assessment tool, benefits achieved through the completion of PWAs, DOE's graded approach methodology, and an update on the project's current status

  15. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  19. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr

  1. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  2. Process development for treatment of fluoride containing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahesh; Kanvinde, V Y [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many chemical and metallurgical industries generate liquid wastes containing high values of fluorides in association of nitrates and other metals. Due to harmful effects of fluorides these type of wastes can not be disposed off in the environment without proper treatment. Bench-scale laboratory experiments were conducted to develop a process scheme to fix the fluorides as non-leachable solid waste and fluoride free treated liquid waste for their disposal. To optimize the important parameters, simulated synthetic and actual wastes were used. For this study, three waste streams were collected from Nuclear Fuel Complex, Hyderabad. (author). 6 tabs., 1 fig.

  3. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  4. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Science.gov (United States)

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  5. French processes for waste embedding. The use of epoxy resin for waste containment

    International Nuclear Information System (INIS)

    Augustin, X.; Gauthey, J.C.

    1993-01-01

    The low- and medium-level wastes generated by nuclear facilities when operating as well as during their decommissioning (dismantling, decontamination, etc.) are embedded for the purpose of obtaining a product suitable for disposal. Due to the varieties of waste produced, it was necessary to resort to multi-purpose techniques to solve problems relating to their embedding. The process for waste embedding in thermosetting polymer (polyester, epoxy) developed by the French Atomic Energy Commission (CEA) and its subsidiary TECHNICATOME is easy to operate and yields excellent results having regard to volume reduction and containment of radioisotopes (particularly caesium). The industrial development of this process has led to the design of small, flexible, fixed or mobile, embedding stations. Examples illustrating the increasing use of this process during facility dismantling are described

  6. Process Technical Basis Documentation Diagram for a solid-waste processing facility

    International Nuclear Information System (INIS)

    Benar, C.J.; Petersen, C.A.

    1994-02-01

    The Process Technical Basis Documentation Diagram is for a solid-waste processing facility that could be designed to treat, package, and certify contact-handled mixed low-level waste for permanent disposal. The treatment processes include stabilization using cementitious materials and immobilization using a polymer material. The Diagram identifies several engineering/demonstration activities that would confirm the process selection and process design. An independent peer review was conducted at the request of Westinghouse Hanford Company to determine the technical adequacy of the technical approach for waste form development. The peer review panel provided comments and identified documents that it felt were needed in the Diagram as precedence for Title I design. The Diagram is a visual tool to identify traceable documentation of key activities, including those documents suggested by the peer review, and to show how they relate to each other. The Diagram is divided into three sections: (1) the Facility section, which contains documents pertaining to the facility design, (2) the Process Demonstration section, which contains documents pertaining to the process engineering/demonstration work, and 3) the Regulatory section, which contains documents describing the compliance strategy for each acceptance requirement for each feed type, and how this strategy will be implemented

  7. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  8. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  9. Waste immobilization process development at the Savannah River Plant

    International Nuclear Information System (INIS)

    Charlesworth, D.L.

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed

  10. Misapplication of the IAEA 1996 basic safety standards to the minerals industry. Impact on the NORM and TENORM issues

    Energy Technology Data Exchange (ETDEWEB)

    Koperski, J. [Iluka Resources Limited, Capel (Australia)

    2000-05-01

    Mining and processing of minerals results in increased concentrations of the naturally occurring radioactive materials (NORM) in products and/or process wastes, relative to the source materials. The technologically enhanced naturally occurring radioactive material (TENORM) phenomenon may bring minerals industry operations into the ream of regulatory concern worldwide. The IAEA 1996 International Basic Safety Standards (BSS) have become the de facto blueprint for a number of national radiation safety regulations. But verbatim adoption of the BSS would clearly result in the great majority of minerals industry operations becoming, for the first time ever, subject to the provisions of radiation protection legislation. Consequently, notification, registration, licensing, occupational and environmental monitoring, statutory reporting, appointment of radiation safety staff etc. would be required. This would not only constitute a major culture shock' but would result in ongoing logistics and economic burden to the affected operations. In some cases it could spell their end. The commensurate demand on regulatory authorities would also emerge. The exemption criteria from the requirements of the BSS are very restrictive. They are not suitable for mining and processing of NORM/TENORM bearing minerals. The criteria have been expressed in terms of numerical exemption levels for hundreds of radionuclides, including all those that occur naturally. The levels specify both, the maximum exempted Activity Concentration and the maximum exempted total Activity of each radionuclide in the host material. Even if an operation could comply with the Activity Concentration criterion, due to the sheer mass of the minerals a non-compliance with the total Activity would always occur. The maximum exempted mass is of the order of single kilograms for wastes from petroleum and gas production, tin smelting and bauxite ore processing; for phosphate rock, fertilisers and most mineral sands

  11. Misapplication of the IAEA 1996 basic safety standards to the minerals industry. Impact on the NORM and TENORM issues

    International Nuclear Information System (INIS)

    Koperski, J.

    2000-01-01

    Mining and processing of minerals results in increased concentrations of the naturally occurring radioactive materials (NORM) in products and/or process wastes, relative to the source materials. The technologically enhanced naturally occurring radioactive material (TENORM) phenomenon may bring minerals industry operations into the ream of regulatory concern worldwide. The IAEA 1996 International Basic Safety Standards (BSS) have become the de facto blueprint for a number of national radiation safety regulations. But verbatim adoption of the BSS would clearly result in the great majority of minerals industry operations becoming, for the first time ever, subject to the provisions of radiation protection legislation. Consequently, notification, registration, licensing, occupational and environmental monitoring, statutory reporting, appointment of radiation safety staff etc. would be required. This would not only constitute a major culture shock' but would result in ongoing logistics and economic burden to the affected operations. In some cases it could spell their end. The commensurate demand on regulatory authorities would also emerge. The exemption criteria from the requirements of the BSS are very restrictive. They are not suitable for mining and processing of NORM/TENORM bearing minerals. The criteria have been expressed in terms of numerical exemption levels for hundreds of radionuclides, including all those that occur naturally. The levels specify both, the maximum exempted Activity Concentration and the maximum exempted total Activity of each radionuclide in the host material. Even if an operation could comply with the Activity Concentration criterion, due to the sheer mass of the minerals a non-compliance with the total Activity would always occur. The maximum exempted mass is of the order of single kilograms for wastes from petroleum and gas production, tin smelting and bauxite ore processing; for phosphate rock, fertilisers and most mineral sands products

  12. Clean Air Act Standards and Guidelines for Mineral Processing

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the mineral processing industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  13. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  14. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  15. Isotopic evidence for the diverse origins of nitrate minerals

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1987-01-01

    Nitrate minerals are rare and, apart from their occasional value as economic deposits of fertilizer, not of general importance in geology. The mechanisms by which they are formed, however, are still the subject of considerable debate. This brief discussion indicates that the study of the 15 N/ 14 N ratios of nitrate minerals can yield useful information on their origins. The low 15 N/ 14 N ratios for nitrate in desert environments indicate that soil or animal waste sources of nitrogen are unlikely. Derivation from atmospheric precipitation is consistent with the presently limited knowledge of the isotopic characteristics of atmospheric compounds, but can only be confirmed when data for these compounds in desert areas become available. For nitrates in wetter environments the 15 N/ 14 N ratios indicate that atmospheric sources are not important, and that the formation of nitrate from gaseous ammonia emanating from animal waste is probably not a significant mechanism. The nitrate appears to be chiefly derived either by direct solution of animal waste nitrate (Lydenburg cave and Prieskapoort) or from soil-derived nitrate brought in by groundwater (Autana and possibly Abjaterskop caves). In the case of Sveite special conditions involving bacterial processes are also implied

  16. Nuclear waste immobilisation in SYNROC

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1984-04-01

    SYNROC is a crystalline titanate ceramic designed to immobilise the elements occurring in high level wastes. It has been demonstrated that the great majority of elements present in high level wastes can be incorporated within the crystalline lattices of the SYNROC minerals. In this state they are extremely resistant to attack by aqueous solutions. Extensive experimental data demonstrates that SYNROC is 1,000 to 10,000 times more resistant to leaching than borosilicate glass wasteforms at 100 - 200 deg C. SYNROC displays exceptional stability at higher temperatures where glasses disintegrate rapidly. The essential minerals of SYNROC occur in nature where they have demonstrated their capacity to survive in a wide range of geological and geochemical environments for periods of 10 8 - 10 9 years. These characteristics, in combination with the experimental studies, demonstrate that SYNROC offers important advantages over borosilicate glass as a wasteform, both in terms of performance and capacity to achieve public acceptability. Studies of the properties of ancient naturally occurring SYNROC minerals containing uranium and thorium which have received very large cumulative radiation doses demonstrate that the capacity of these minerals to retain waste elements is not substantially retarded by radiation damage. Process technology for the production of SYNROC on a large scale is now under development. A novel method employing uniaxial hot pressing of SYNROC powder contained in free sanding steel bellows at 1150 deg C yields a fully dense product. Production costs are estimated to be in the same range as for borosilicate glass

  17. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  18. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  19. Management and deposition of nuclear, toxic and hazardous wastes

    International Nuclear Information System (INIS)

    Dalston, Regina Celia Reboucas; Montalvao, Renata; Nascimento, Igor; Oliveira, Maristela Aparecida de; Motta, Rondineli; Morais, Magda de; Dantas, Alberto Pinheiro

    2005-01-01

    the main guidelines of the management program of toxic, radioactive and hazardous wastes which are applicable to the graduation laboratories at the Catholic University of Brasilia (UCB) are presented. The main advantages and possibilities of applications of processes for inertization of salts of heavy metals by precipitation with sodium metasilicate solution and methods of adsorption of toxic wastes in minerals such as bentonites and silicates are discussed. In the treatment of waste, the use of effective technologies enables solid wastes to be processed and prepared in accordance with the existing rules and resolutions. The applicability of supports of polymeric resins catalyzed for moulding and final disposal of toxic wastes, previously treated and converted in the form of insoluble salts is presented. It is also suggested the use of polymeric supports for the containment of radioactive wastes

  20. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  1. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  2. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    International Nuclear Information System (INIS)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon

    2016-01-01

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  3. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  4. Thermal denitration and mineralization of waste constituents

    Energy Technology Data Exchange (ETDEWEB)

    Nenni, J.A.; Boardman, R.D.

    1997-08-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.

  5. Thermal denitration and mineralization of waste constituents

    International Nuclear Information System (INIS)

    Nenni, J.A.; Boardman, R.D.

    1997-01-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions

  6. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  7. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    Science.gov (United States)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  8. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  9. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  10. Radiological issues in monazite processing for rare earth extraction: regulatory approach

    International Nuclear Information System (INIS)

    Mohandas, P.V.; Sinha, Soumen; Bhattacharya, R.

    2014-01-01

    Rare earth minerals quite often contain Naturally Occurring Radioactive Materials (NORM) in varying concentrations resulting in occupational and environmental radiation exposures during their mining, milling and chemical processing for the extraction of rare earth elements and their compounds. NORMs such as Uranium, Thorium and their decay products in the mineral result in enhanced natural background radiation fields in their areas of occurrence. The mining of the mineral ores and further processing results in concentration/redistribution of the NORM in the process streams, product intermediaries, products and effluents. Monazite which is available in plenty in India is one of the most important resources for Rare Earths (RE). Monazite is chemically processed by subjecting it to alkali digestion and selective extraction with hydrochloric acid. During the above process radium ( 228 Ra) and lead present in the monazite appear in the RE composite chloride (RECl3) fraction. These are removed from the product by a process known as 'deactivation' and 'lead elimination' to obtain deactivated and lead free composite RE chloride. The solid waste obtained from the deactivation and lead elimination, referred to as 'mixed cake' is suitably contained and disposed off as radioactive waste. Radioactive wastes/effluents generated during the processing of monazite is another source of concern with respect to occupational and public exposure. This requires adequate attention from the waste management considerations

  11. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  13. New process of co-coking of waste plastics and blend coal

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Yu, G.; Zhao, P. (and others) [Shougang Technical Research Institute, Beijing (China)

    2006-07-01

    To recycle and reuse waste plastics, as well as to get a new resource of coking, co-coking process of waste plastics and blend coal has been developed by Nippon Steel. However, the ratio of waste plastics in blend coal should be limited in the range of 1% to maintain the coke strength. This paper suggested a new process of co-coking of waste plastics and blend coal. The new process can add the waste plastics ratio up to 2-4%; when the waste plastics ratio is 2%, the coke strength after reaction with CO{sub 2} (CSR) increased 8%. 8 refs., 2 figs., 3 tabs.

  14. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  15. Status on the regulatory aspects in NORM/TENORM activities and waste in Malaysia

    International Nuclear Information System (INIS)

    Hassan, Hasmadi

    2005-01-01

    In Malaysia, waste associated with TENORM are generated mostly in the tin mining and smelting, processing of minerals, and oil and gas industry. As one of a major tin producer in the world and the country current activities in oil production, the amount of waste generated in this kind of activities is quite substantial. Currently the government of Malaysia did not provide any provision in the law specifically for the exclusion of TENORM waste, however, the government did imposed the criteria for exclusion of this waste by adopting the guideline limit established by the IAEA safety series 26, which is very vital for the regulatory body i.e. Atomic Energy Licensing Board (AELB) to overcome the problems in managing some of waste related to TENORM industries. As one example, this guideline has been applied to one of the mineral processing industries in the country on decommissioning and disposing of their waste. Furthermore, due to economic reason and price of tin and its by-product is not viable and profitable so much, making this industry not significant in business and trade industries, several practices have been exempted from the regulatory control under the Atomic Energy Licensing Act, 1984. (author)

  16. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  17. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  18. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  19. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    International Nuclear Information System (INIS)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-01-01

    This report describes the scientific basis underlying the approach being followed to design and develop ''advanced'' glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na_2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl- in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  20. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  1. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  2. The use of tomographic techniques in the mineral processing Industry. A review

    International Nuclear Information System (INIS)

    Witika, L.K.; Jere, E.H.

    2002-01-01

    Process tomographic techniques may be used to analyse the internal state of most of the multiphase process engineering systems such as material segregation in a reactor multiphase flow in pipes and the spatial resolution of mineral grains in multiphase particles. These techniques include radiation computed tomography (X-ray or ray), electrical methods(capacitance, impedance and inductive tomography) positron emission tomography,optical tomography, microwave tomography, acoustic tomographical methods and many more. Many potential applications exist for process tomographic instrumentation for quantitative analysis and fault-detection purposes. Amongst these, electrical methods are widely used for those mineral processes deserving particular attention such as dense-medium separation, hydro cyclones, flotation cells and columns, gas-liquid absorbers, solvent extraction and other liquid-liquid processes, filtration and other solid-liquid processes, grinding mills (both dry and wet, conveyors and hoppers). Development in on-line measurement instrumentation now allow direct observation of the behaviour of fluids inside mineral separation equipment. This offers the possibility to acquire process data to enable models to be devised, to verify theoretical computational fluid dynamics predictions and control of various unit processes. In this review, the most important tomographic sensing methods are reviewed. Examples of the implementation of some electrical methods are illustrated. (authors)

  3. Agronomic potential of mineral concentrate from processed manure as fertiliser

    NARCIS (Netherlands)

    Velthof, G.L.; Hoeksma, P.; Schröder, J.J.; Middelkoop, van J.C.; Geel, van W.C.A.; Ehlert, P.A.I.; Holshof, G.; Klop, G.; Lesschen, J.P.

    2012-01-01

    Processing of manure intends to increase the use efficiency of nutrients. A concentrated solution of nitrogen (N) and potassium (K) (‘mineral concentrate’) is one of the possible products resulting from manure processing. A study is carried out in the Netherlands to determine the agronomic and

  4. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  5. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  6. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    International Nuclear Information System (INIS)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-01-01

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment ''systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs

  7. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs

  8. Quality assurance in processing radioactive waste for land disposal

    International Nuclear Information System (INIS)

    1984-01-01

    To provide the appropriate assurances as to the quality of processed radioactive waste it is necessary to consider the complete range of activities involved in the formation and operation of a radioactive waste processing facility. To this end, an outline has been given to the individual elements which should be addressed in quality assurance proposals to the authorising Departments. In general terms, the quality checks on product material should be aimed at demonstrating that the radioactive waste product is what was agreed at the time of process approval. In addition, at the discretion of the authorising Departments, the waste processor will be required to confirm that the product meets any specific acceptance criteria such as the capability to retain the immobilised radionuclides when in contact with water. (author)

  9. Trace element geochemistry of self-burning and weathering of a mineralized coal waste dump: The Novátor mine, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kříbek, B.; Sýkorová, Ivana; Veselovský, F.; Laufek, F.; Malec, J.; Knésl, I.; Majer, V.

    2017-01-01

    Roč. 173, MAR 15 (2017), s. 158-175 ISSN 0166-5162 R&D Projects: GA ČR(CZ) GA15-11674S Institutional support: RVO:67985891 Keywords : coal wastes * organic matter * uranium * mineralization * self-heating * biomarkers Subject RIV: DD - Geochemistry OBOR OECD: Geology Impact factor: 4.783, year: 2016

  10. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  11. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  12. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  13. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  14. The immobilization of organic liquid wastes

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1986-01-01

    This report describes a portland cement immobilization process for the disposal treatment of radioactive organic liquid wastes which would be generated in a FFTF fuels reprocessing line. An incineration system already on-hand was determined to be too costly to operate for the 100 to 400 gallons per year organic liquid. Organic test liquids were dispersed into an aqueous phosphate liquid using an emulsifier. A total of 109 gallons of potential and radioactive aqueous immiscible organic liquid wastes from Hanford 300 Area operations were solidified with portland cement and disposed of as solid waste during a 3 month test program with in-drum mixers. Waste packing efficiencies varied from 32 to 40% and included pump oils, mineral spirits, and TBP-NPH type solvents

  15. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  16. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  17. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  18. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  19. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  20. Radioactive wastes processing device

    International Nuclear Information System (INIS)

    Takamura, Yoshiyuki; Fukujoji, Seiya.

    1986-01-01

    Purpose: To exactly recognize the deposition state of mists into conduits thereby effectively conduct cleaning. Constitution: A drier for performing drying treatment of liquid wastes, a steam decontaminating tower for decontaminating the steams generated from the drier and a condenser for condensating the decontaminating steams are connected with each other by means of conduits to constitute a radioactive wastes processing apparatus. A plurality of pressure detectors are disposed to the conduits, the pressure loss within the conduits is determined based on the detector output and the clogged state in the conduits due to the deposition of mists is detected by the magnitude of the pressure loss. If the clogging exceeds a certain level, cleaning water is supplied to clean-up the conduits thereby keep the operation to continue always under sound conditions. (Sekiya, K.)

  1. Processing the THOREX waste at the West Valley demonstration project

    International Nuclear Information System (INIS)

    Barnes, S.M.; Schiffhauer, M.A.

    1994-01-01

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins

  2. Method of processing liquid wastes

    International Nuclear Information System (INIS)

    Naba, Katsumi; Oohashi, Takeshi; Kawakatsu, Ryu; Kuribayashi, Kotaro.

    1980-01-01

    Purpose: To process radioactive liquid wastes with safety by distillating radioactive liquid wastes while passing gases, properly treating the distillation fractions, adding combustible and liquid synthetic resin material to the distillation residues, polymerizing to solidify and then burning them. Method: Radioactive substance - containing liquid wastes are distillated while passing gases and the distillation fractions containing no substantial radioactive substances are treated in an adequate method. Synthetic resin material, which may be a mixture of polymer and monomer, is added together with a catalyst to the distillation residues containing almost of the radioactive substances to polymerize and solidify. Water or solvent in such an extent as not hindering the solidification may be allowed if remained. The solidification products are burnt for facilitating the treatment of the radioactive substances. The resin material can be selected suitably, methacrylate syrup (mainly solution of polymethylmethacrylate and methylmethacrylate) being preferred. (Seki, T.)

  3. Nuclear and toxic waste recycling process

    International Nuclear Information System (INIS)

    Bottillo, T.V.

    1988-01-01

    This patent describes the process for the safe and convenient disposal of nuclear and/or toxic wastes which comprises the steps of (a) collecting nuclear and/or toxic wastes which pose a danger to health; (b) packaging the wastes within containers for the safe containment thereof to provide filled containers having a weight sufficient to sink into the molten lava present within an active volcano; and (c) depositing the filled containers directly into the molten lava present within a volcano containing same to cause the containers to sink therein end to be dissolved or consumed by the heat, whereby the contents thereof are consumed to become a part of the mass of molten lava present within the volcano

  4. Feed Basis for Processing Relatively Low Radioactivity Waste Tanks

    International Nuclear Information System (INIS)

    Pike, J.A.

    2002-01-01

    This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41

  5. Process and apparatus for emissions reduction from waste incineration

    International Nuclear Information System (INIS)

    Khinkis, M.J.; Abbasi, H.A.; Lisauskas, R.A.; Itse, D.C.

    1991-01-01

    This paper describes a process for waste combustion. It comprises: introducing the waste into a drying zone within a combustion chamber; supplying air to the drying zone for preheating, drying, and partially combusting the waste; advancing the waste to a combustion zone within the combustion chamber; supplying air to the combustion zone for further advancing the waste to a burnout zone with the combustion chamber; supplying air to the burnout zone for final burnout of organics in the waste; and injecting fuel and recirculated glue gases into the combustion chamber above the waste to create a reducing secondary combustion zone

  6. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  7. Nutrition and growth of potted gerbera according to mineral and organic fertilizer

    Directory of Open Access Journals (Sweden)

    Francielly Torres Santos

    2015-08-01

    Full Text Available In order to meet the growing market of gerbera, it is necessary to develop studies that maximize its production, especially using organic fertilizer. In order to assess the nutrition and growth of potted gerbera conducted with mineral and organic fertilization, an experiment in a greenhouse was done, located at Western Paraná State University, Brazil. The experimental design was made in randomized blocks, with four replications and five treatments. The treatments were defined according to the source of fertilization, mineral (NPK or organic. The organic fertilization were obtained by diluting in water four organic compost of poultry slaughter waste, obtained from in the composting process, in order to adjust electrical conductivity. The solution of the compost was used as organic fertigation, making the organic treatments. The liquid organic fertilizer, as well as irrigation of mineral treatment, was performed manually once a day. At the end of vegetative and reproductive periods, the levels of N, P, K, Ca, Mg and Fe were quantified in the plant tissue. At the same time, biometric parameters were assessed (number of leaves, plant diameter, leaf area, dry matter of aerial parts, number of heads, inflorescence dry matter, stem height, head diameter and diameter stem. The liquid organic fertilizers, obtained by composting procession of poultry slaughter waste, can be used as alternative source for potted gerbera nutrition, since they provide better or higher culture growth than the mineral fertilizer.

  8. Processing biodegradable waste by applying aerobic digester EWA

    Directory of Open Access Journals (Sweden)

    Đokić Dragoslav

    2014-01-01

    Full Text Available The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of biodegradable waste, including sewage sludge and animal products produced in accordance with European Union regulations. Fermenter is intended to be used for combustion in boilers for solid fuels with humidity of biomaterials below 30%.

  9. Principles of development of the industry of technogenic waste processing

    Directory of Open Access Journals (Sweden)

    Maria A. Bayeva

    2014-01-01

    Full Text Available Objective to identify and substantiate the principles of development of the industry of technogenic waste processing. Methods systemic analysis and synthesis method of analogy. Results basing on the analysis of the Russian and foreign experience in the field of waste management and environmental protection the basic principles of development activities on technogenic waste processing are formulated the principle of legal regulation the principle of efficiency technologies the principle of ecological safety the principle of economic support. The importance of each principle is substantiated by the description of the situation in this area identifying the main problems and ways of their solution. Scientific novelty the fundamental principles of development of the industry of the industrial wastes processing are revealed the measures of state support are proposed. Practical value the presented theoretical conclusions and proposals are aimed primarily on theoretical and methodological substantiation and practical solutions to modern problems in the sphere of development of the industry of technogenic waste processing.

  10. Improved process control through real-time measurement of mineral content

    Energy Technology Data Exchange (ETDEWEB)

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  11. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  12. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  13. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  14. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  15. Recovery of heavy metals from intractable wastes: A thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.W. [Univ. of Toronto (Canada)

    1996-12-31

    The generation of industrial solid wastes containing leachable species of environmental concern is a problem for developing and developed nations alike. These materials arise from direct processing of mineral ores, from production of metals and minerals, from manufacturing operations, and from air and water pollution treatment processes. The general characteristics that make these wastes intractable is that their content of hazardous species is not easily liberated from the waste yet is not bound so tightly that they are safe for landfill disposal or industrial use. The approach taken in this work is a thermal treatment that separates the inorganic contaminants from the wastes. The objective is to provide recovery and reuse of both the residual solids and liberated contaminants. The results from operating this technique using two very different types of waste are described. The reasons that the process will work for a wide variety of wastes are explored. By using the knowledge of the thermodynamic stability of the phases found from the characterization analyses, a thermal regime was found that allowed separation of the contaminants without capturing the matrix materials. Bench scale studies were carried out using a tube furnace. Samples of the wastes were heated in crucible boats from 750 to 1150{degrees}C in the presence of various chlorinating agents. The offgas contained 90{sup +}% of the targeted contaminants despite their complex matrix form. The residue was free of contamination. As a result of the efficient concentrating mechanism of the process, the contaminants in the offgas solids are attractive for reuse in metallurgical industries. As an additional benefit, the organic contaminants of the residues were eliminated. Dioxin traces in the solids before treatment were absent after treatment. 15 refs., 4 figs., 4 tabs.

  16. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  17. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  18. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  19. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  20. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  1. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  2. TRUEX process: a new dimension in management of liquid TRU wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1986-01-01

    The TRUEX process is one of the, if not the, most exciting and potentially useful nuclear separations processes to be developed since the PUREX process was developed and applied in the 1950s. Attesting to its potential widespread use, Rockwell Hanford and ANL investigators, in a joint effort, are developing and testing TRUEX process flow sheets for removal of TRU elements from several Hanford Site wastes including the Plutonium Finishing Plant and complexed concentrate wastes. The TRUEX process also appears to be well suited to removal of plutonium and Am from aqueous chloride wastes generated during plutonium processing operations at the Los Alamos National Lab. (LANL); collaborative efforts between LANL and ANL scientists to develop and demonstrate TRUEX process flow sheets for treatment of LANL site chloride wastes are currently under way

  3. Practical utilization of modeling and simulation in laboratory process waste assessments

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Weinrach, J.B.; Burns, M.L.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is difficult in part due to a lack of tools to assist the waste generators in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This process waste assessment (PWA) system is an application constructed within the process modeling system. The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation using the common LISP object system (CLOS). Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Anticipated development activities include provisions for a best available technologies (BAT) database and integration with the LANL facilities management Geographic Information System (GIS). The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  4. Processing method and device for radioactive liquid waste

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi; Matsuda, Masami; Yukita, Atsushi.

    1997-01-01

    When only suspended particulate ingredients are contained as COD components in radioactive washing liquid wastes, the liquid wastes are heated by a first process, for example, an adsorption step to adsorb the suspended particulate ingredients to an activated carbon, and then separating and removing the suspended particulate ingredients by filtration. When both of the floating particle ingredients and soluble organic ingredients are contained, the suspended particulate ingredients are separated and removed by the first process, and then soluble organic ingredients are removed by other process, or both of the suspended particulate ingredients and the soluble organic ingredients are removed by the first process. In an existent method of adding an activated carbon and then filtering them at a normal temperature, the floating particle ingredients cover the layer of activated carbon formed on a filter paper or fabric to sometimes cause clogging. However, according to the method of the present invention, since disturbance by the floating particle ingredients does not occur, the COD components can be separated and removed sufficiently without lowering liquid waste processing speed. (T.M.)

  5. Membrane preparation and process development for radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kim, G. W.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil.

  6. Membrane preparation and process development for radioactive waste treatment

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, G. W.; Kim, S. K.

    2012-01-01

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil

  7. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  8. Carbon dynamics in no-till soil due to the use of industrial organic waste and mineral fertilizer

    Directory of Open Access Journals (Sweden)

    Jucimare Romaniw

    Full Text Available ABSTRACTThe use of organic waste from industrial processes in agriculture is a strategy not only for improving soil properties but also for promoting the utilization of recycled nutrients by market crops and for reducing environmental impact. The aim of this study was to evaluate the effects of using organic waste from pork and poultry slaughterhouses (OWS applied alone or in combination with mineral fertilizer (MF on the dynamics of soil organic matter (SOM compartments. The experimental design adopted was that of completely randomized blocks with six treatments and three replicates. The treatments consisted of a general control (T1 without the addition of MF and OWS, the application of MF alone at 100% of the recommended fertilizer levels for the crops (T2,the application of OWS alone at a fixed dose of 2 Mg ha-1 (T3, and the following three combinations of MF and OWS: 75% MF + 25% OWS (T4; 50% MF + 50% OWS (T5; and 25% MF + 75% OWS (T6. The application of OWS promoted increase in the labile fractions extracted by potassium permanganate (C-OXP and hot water (C-HW compared with using MF alone. Using OWS in the combination of 50% MF + 50% OWS increased the content and stock of total organic carbon (TOC in the 0-20 cm layer and of particulate organic C (POC and C-OXP in the 0-5 cm layer.

  9. Flotation process of lead-, copper-, uranium-, and rare earth minerals

    International Nuclear Information System (INIS)

    Broman, P.G.; Kihlstedt, P.G.; Du Rietz, C.

    1977-01-01

    This invention relates to a flotation process of oxide or sulfide ores containing lead-, copper-, uranium-, and rare earth minerals applicating a new collector. Flotation is in the presence of a tertiary amine

  10. Mineralization of Nitrogen in Hydromorphic Soils Amended with ...

    African Journals Online (AJOL)

    ... to 320.00 mg kg-1 for Mangrove soil (mangal acid sulphate soils). The order of cumulative nitrogen released in the waste amended soil followed the order: sewage sludge>kitchen waste> poultry manure> oil palm waste> cow manure. Total mineralized N indicated negative correlation with total organic N and C:N ratio ...

  11. Processing of radioactive waste solutions in a vacuum evaporator-crystallizer

    International Nuclear Information System (INIS)

    Petrie, J.C.; Donovan, R.I.; Van der Cook, R.E.; Christensen, W.R.

    1975-01-01

    Results of the first 18 months' operation of Hanford's vacuum evaporator-crystallizer are reported. This process reduces the volume of radioactive waste solutions and simultaneously converts the waste to a less mobile salt cake. The evaporator-crystallizer is operating at better than design production rates and has reduced the volume of radioactive wastes by more than 15 million gallons. A process description, plant performance data, mechanical difficulties, and future operating plans are discussed. Also discussed is a computer model of the evaporator-crystallizer process

  12. Radiotracer techniques in mineral processing

    International Nuclear Information System (INIS)

    Przewlocki, K.

    1991-01-01

    The value of the smelter metal content in currently exploited polymetallic ores mostly does not exceed 2%. Before metallurgical treatment, ore must pass through the concentration process. The benefication process usually starts from the comminution of excavated material and terminates at the flotation and drying of the concentrate. These operations consume vast quantities of energy. To be economically justified, the process requires optimization and, if possible, automatic control. Radioactive tracers were found to be useful in the identification of particular technological subsystems and their subsequent optimization. A great deal of experience has been gathered in this field so far. The industrial radiotracer test (RTT) is carried out using very sensitive multidetector recording systems which have digital data acquisition capabilities. The optimization strategy consists of periodically adjusting technological process and set points of controlled variables according to certain improvement procedures. If computer facilities are available, data interpretation and calibration of the mathematical models describing the technical process itself can be performed on the spot. This significantly accelerates the whole procedure as RTT may be repeated for particular system configurations. The procedure of plant optimization by means of RTT is illustrated in the paper using the example of the copper ore enrichment process, assuming that it is representative of the whole mineral industry. Identification by RTT of the three main operations involved in the ore enrichment process, such as comminution, flotation and granular classification, is discussed in detail as particular case studies. In reference to this, it is also shown how the technological process can be adjusted to be most efficient. (author). 14 refs, 7 figs

  13. Processing biodegradable waste by applying aerobic digester EWA

    OpenAIRE

    Đokić, Dragoslav; Lugić, Zoran; Terzić, Dragan; Jevtić, Goran; Milenković, Jasmina; Húrka, Miroslav; Stanisavljević, Rade

    2014-01-01

    The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac) was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of bi...

  14. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  15. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  16. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  17. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  18. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    1996-10-01

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  19. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  20. Immobilisation of high level nuclear reactor wastes in SYNROC

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W; Major, A [Australian National Univ., Canberra. Inst. of Advanced Studies

    1979-03-15

    It is stated that the elements occurring in high-level nuclear reactor wastes can be safely immobilised by incorporating them within the crystal lattices of the constituent minerals of a synthetic rock (SYNROC). The preferred form of SYNROC can accept up to 20% of high level waste calcine to form dilute solid solutions. The constituent minerals, or close structural analogues, have survived in a wide range of geochemical environments for periods of 20 to 2,000 Myr whilst immobilising the same elements present in nuclear wastes. SYNROC is unaffected by leaching for 24 hours in pure water or 10 wt % NaCl solution at high temperatures and pressure whereas borosilicate glasses completely decompose in a few hours in much less severe hydrothermal conditions. The combination of these leaching results with the geological evidence of long-term stability indicates that SYNROC would be vastly superior to glass in its capacity to safely immobilise nuclear wastes, when buried in a suitable geological repository. A dense, compact, mechanically strong form of SYNROC suitable for geological disposal can be produced by a process as economical as that which incorporates radioactive waste in borosilicate glasses.