WorldWideScience

Sample records for mineral processing facilities

  1. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  2. Mineral facilities of Africa and the Middle East

    Science.gov (United States)

    Eros, J.M.; Candelario-Quintana, Luissette

    2006-01-01

    This map displays over 1,500 mineral facilities in Africa and the Middle East. The mineral facilities include mines, plants, mills, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. The data used in this poster were compiled from multiple sources, including the 2004 USGS Minerals Yearbook (Africa and Middle East volume), Minerals Statistics and Information from the USGS Web site (http://minerals.usgs.gov/minerals/), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists. See Table 1 for general information about each mineral facility site including country, location and facility name, facility type, latitude, longitude, mineral commodity, mining method, main operating company, status, capacity, and units.

  3. Mineral Facilities of Latin America and Canada

    Science.gov (United States)

    Bernstein, Rachel; Eros, Mike; Quintana-Velazquez, Meliany

    2006-01-01

    This data set consists of records for over 900 mineral facilities in Latin America and Canada. The mineral facilities include mines, plants, smelters, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. Records include attributes such as commodity, country, location, company name, facility type and capacity if applicable, and generalized coordinates. The data were compiled from multiple sources, including the 2003 and 2004 USGS Minerals Yearbooks (Latin America and Candada volume), data to be published in the 2005 Minerals Yearbook Latin America and Canada Volume, minerals statistics and information from the USGS minerals information Web site (minerals.usgs.gov/minerals), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies,and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists.

  4. Mineral facilities of Northern and Central Eurasia

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays almost 900 records of mineral facilities within the countries that formerly constituted the Union of Soviet Socialist Republics (USSR). Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recent published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2

  5. Mineral facilities of Asia and the Pacific

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays over 1,500 records of mineral facilities throughout the continent of Asia and the countries of the Pacific Ocean. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the 2008 U.S. Geological Survey Minerals Yearbook (Asia and the Pacific volume), (2) minerals statistics and information from the U.S. Geological Survey Minerals Information Web site (http://minerals.usgs.gov/minerals/), and (3) data collected by U.S. Geological Survey minerals information country specialists. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information is available from the country specialists listed in table 2.

  6. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    Science.gov (United States)

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  7. Facility certification program for coal miners pneumoconiosis

    International Nuclear Information System (INIS)

    Trout, E.D.; Kelley, J.P.; Larson, V.L.; Herbert, G.L.

    1976-01-01

    Public Law 91-173, often referred to as the Black Lung Law, called for a chest radiograph of all active coal miners at stated intervals. The National Institute for Occupational Safety and Health was responsible for carrying out the provisions of the law. Among other requirements was a provision for certification of radiological facilities where radiological examinations would be provide. A test object to be radiographed by each such facility was designed and sent to those facilities applying for certification. To date, 284 facilities have applied for certification of which 215 have been approved. A record has been kept of the number of times any approved facility submitted radiographs before approval. A complete listing of the types of equipment used, personnel qualifications and other pertinent data will be reported

  8. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  9. Proceedings of XXIV international mineral processing congress

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dianzuo; Sun Chuan Yao; Wang Fu Liang; Zhang Li Cheng; Han Long (eds.)

    2008-07-01

    Topics covered in volume 1 include applied mineralogy, comminution, classification, physical separation, flotation chemistry, sulphide flotation, non-sulphide flotation and reagent in mineral industry. Volume 2 covers processing of complex ores, processing of industrial minerals and coal, solid liquid separation, dispersion and aggregation, process simulation, expert systems and control of mineral processing, biohydrometallurgy, and mineral chemical processing. Volume 3 contains powder technology, mineral materials, treatment and recycling for solid wastes, waste water treatment, secondary resource recovery, soil remediation, concentrator engineering and process design, and application of mineral processing in related industry. It includes a CD-ROM of the proceedings.

  10. Hydrometalurgical processes for mineral complexes

    International Nuclear Information System (INIS)

    Barskij, L.A.; Danil'chenko, L.M.

    1977-01-01

    Requirements for the technology of the processing of ores including uranium ores and principal stages of the working out of technological schemes are described in brief. There are reference data on commercial minerals and ores including uranium-thorium ores, their classification with due regard for physical, chemical and superficial properties which form the basis for ore-concentrating processes. There are also presented the classification of minerals including uranium minerals by their flotation ability, flotation regimes of minerals, structural-textural characteristics of ores, genetic types of ore formations and their concentrating ability, algorithmization of the apriori evaluation of the concentration and technological diagnostics of the processing of ores. The classification of ore concentration technique is suggested

  11. A facile in vitro model to study rapid mineralization in bone tissues.

    Science.gov (United States)

    Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying

    2014-09-16

    Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate

  12. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  13. Third party testing : new pilot facility for mining processes opens in Fort McKay

    International Nuclear Information System (INIS)

    Jaremko, D.

    2007-01-01

    Fort McKay lies 65 kilometres north of Fort McMurray, Alberta and is the centre of operational oilsands mining activity. As such, it was chosen for a pilot testing facility created by the Geneva-based SGS Group. The reputable facility provides an opportunity for mining producers to advance their processes, including environmental performance, by allowing them to test different processes on their own oilsands. The Northern Lights partnership, led by Synenco Energy, was the first client at the facility. Due to outsourcing, clients are not obligated to make substantial capital investment into in-house research. The Northern Lights partnership will be using the facility to test extraction processes on bitumen from its leases. Although the Fort McKay facility is SGS's first venture into the oilsands industry, it operates in more than 140 companies globally, including the mineral industry, and specializes in inspection, verification, testing and certification. SGS took the experience from its minerals extraction business to identify what could be done to help the oilsands industry by using best practices developed from global operations. The facility lies on the Fort McKay industrial park owned by the Fort McKay First Nation. An existing testing facility called McMurray Resources Research and Testing was expanded by the SGS Group to include environmental analysis capabilities. The modular units that lie on 6 acres include refrigerated ore storage to maintain ore integrity; modular ore and materials handling systems; extraction equipment; and, zero discharge process water and waste disposal systems. Froth treatment will be added in the near future to cover the entire upstream side of the mining processing business. A micro-upgrader might be added in the future to manufacture synthetic crude. 3 figs

  14. Third party testing : new pilot facility for mining processes opens in Fort McKay

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2007-12-15

    Fort McKay lies 65 kilometres north of Fort McMurray, Alberta and is the centre of operational oilsands mining activity. As such, it was chosen for a pilot testing facility created by the Geneva-based SGS Group. The reputable facility provides an opportunity for mining producers to advance their processes, including environmental performance, by allowing them to test different processes on their own oilsands. The Northern Lights partnership, led by Synenco Energy, was the first client at the facility. Due to outsourcing, clients are not obligated to make substantial capital investment into in-house research. The Northern Lights partnership will be using the facility to test extraction processes on bitumen from its leases. Although the Fort McKay facility is SGS's first venture into the oilsands industry, it operates in more than 140 companies globally, including the mineral industry, and specializes in inspection, verification, testing and certification. SGS took the experience from its minerals extraction business to identify what could be done to help the oilsands industry by using best practices developed from global operations. The facility lies on the Fort McKay industrial park owned by the Fort McKay First Nation. An existing testing facility called McMurray Resources Research and Testing was expanded by the SGS Group to include environmental analysis capabilities. The modular units that lie on 6 acres include refrigerated ore storage to maintain ore integrity; modular ore and materials handling systems; extraction equipment; and, zero discharge process water and waste disposal systems. Froth treatment will be added in the near future to cover the entire upstream side of the mining processing business. A micro-upgrader might be added in the future to manufacture synthetic crude. 3 figs.

  15. 30 CFR 210.204 - How do I submit facility data?

    Science.gov (United States)

    2010-07-01

    ... 210.204 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT FORMS AND REPORTS Production and Royalty Reports-Solid Minerals § 210.204 How do I submit facility... stockpile inventory. (3) You must include in your facility data all production processed in the facility...

  16. Radiotracer techniques in mineral processing

    International Nuclear Information System (INIS)

    Przewlocki, K.

    1991-01-01

    The value of the smelter metal content in currently exploited polymetallic ores mostly does not exceed 2%. Before metallurgical treatment, ore must pass through the concentration process. The benefication process usually starts from the comminution of excavated material and terminates at the flotation and drying of the concentrate. These operations consume vast quantities of energy. To be economically justified, the process requires optimization and, if possible, automatic control. Radioactive tracers were found to be useful in the identification of particular technological subsystems and their subsequent optimization. A great deal of experience has been gathered in this field so far. The industrial radiotracer test (RTT) is carried out using very sensitive multidetector recording systems which have digital data acquisition capabilities. The optimization strategy consists of periodically adjusting technological process and set points of controlled variables according to certain improvement procedures. If computer facilities are available, data interpretation and calibration of the mathematical models describing the technical process itself can be performed on the spot. This significantly accelerates the whole procedure as RTT may be repeated for particular system configurations. The procedure of plant optimization by means of RTT is illustrated in the paper using the example of the copper ore enrichment process, assuming that it is representative of the whole mineral industry. Identification by RTT of the three main operations involved in the ore enrichment process, such as comminution, flotation and granular classification, is discussed in detail as particular case studies. In reference to this, it is also shown how the technological process can be adjusted to be most efficient. (author). 14 refs, 7 figs

  17. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  18. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  19. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    International Nuclear Information System (INIS)

    Boris, G.F.; Bamberger, J.A.

    1999-01-01

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove approximately98% of the waste, approximately3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing borehole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team

  20. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  1. A novel mineral flotation process using Thiobacillus ferrooxidans.

    Science.gov (United States)

    Nagaoka, T; Ohmura, N; Saiki, H

    1999-08-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.

  2. From mineral processing to waste treatment: an open-mind process simulator

    International Nuclear Information System (INIS)

    Guillaneau, J.C.; Brochot, S.; Durance, M.V.; Villeneuve, J.; Fourniguet, G.; Vedrine, H.; Sandvik, K.; Reuter, M.

    1999-01-01

    More than two hundred companies are using the USIM PAC process simulator within the mineral industry world-wide. Either for design or plant adaptation, simulation is increasingly supporting the process Engineer in his activities. From the mineral field, new domains have been concerned by this model-based approach as new models are developed and new applications involving solid waste appears. Examples are presented in bio-processing, steel-making flue dust treatment for zinc valorisation, soil decontamination or urban waste valorisation (sorting, composting and incineration). (author)

  3. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  4. Microbes, Minerals and Electrodes at the Sanford Underground Research Facility (SURF): Electrochemistry 4100 ft below the surface.

    Science.gov (United States)

    Rowe, A. R.; Abuyen, K.; Casar, C. P.; Osburn, M. R.; Kruger, B.; El-Naggar, M.; Amend, J.

    2017-12-01

    Little is known about the importance of mineral oxidation processes in subsurface environments. This stems, in part from our limited insight into the biochemistry of many of these metabolisms, especially where redox interactions with solid surfaces is concerned. To this aim, we have been developing electrochemical cultivation techniques, to target enrichment and isolation of microbes capable of oxidative extracellular electron transfer (oxEET)—transfer of electrons from the exterior of the cell to the interior. Our previous worked focused on marine sediments; using an electrode poised at a given redox potential to isolate mineral-oxidizing microbes. Electrode oxidizing microbes isolated from these enrichments belong to the genera Thioclava, Marinobacter, Halomonas, Idiomarina, Thalassospira, and Pseudamonas; organisms commonly detected in marine and deep sea sediments but not generally associated with mineral, sulfur and/or iron oxidation. At the Sanford Underground Research Facility (SURF) in Leed, South Dakota, we have been utilizing similar electrocultivation techniques to understand: 1) the potential for mineral oxidation by subsurface microbes, 2) their selective colonization on mineral vs. electrode surfaces, as well as 3) the community composition of microbes capable of these metabolic interactions. An electrochemical and mineral enrichment scheme was designed and installed into a sulfidic groundwater flow, located at the 4100 ft level of the former gold mine. The communities enriched on electrodes (graphite and indium tin oxide coated glass) and minerals (sulfur, pyrite, and schists from the location) were compared to the long-term ground water microbial community observed. Ultimately, these observations will help inform the potential activity of a lithotrophic microbes in situ and will in turn guide our culturing efforts.

  5. Intrinsic mineral labeling of edible plants: methods and uses

    International Nuclear Information System (INIS)

    Weaver, C.M.

    1985-01-01

    The fate of minerals can be conveniently studied through intrinsic labeling techniques. The mineral of interest is biologically incorporated into the food in a form that can be distinguished analytically from the natural form of the element. Radiolabels have traditionally been used to study such problems as the uptake of minerals by plants, the gross and subcellular mineral distribution in plant tissues, the form and associations of the deposited mineral, and the bioavailability of minerals to animals and humans. The use of stable (nonradioactive) isotopes as a label offers the potential of safely studying bioavailability of minerals from individual foods in human population groups of all ages using foods processed in normal food handling and processing facilities. 114 references

  6. The diesel exhaust in miners study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    NARCIS (Netherlands)

    Vermeulen, R.; Coble, J.B.; Lubin, J.H.; Portengen, L.; Blair, A.; Attfield, M.D.; Silverman, D.T.; Stewart, P.A.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no

  7. 30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Science.gov (United States)

    2010-07-01

    ... mining and reclamation operations which include the operation of coal processing plants and support... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 947.827 Section 947.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...

  8. 30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Science.gov (United States)

    2010-07-01

    ... mining and reclamation operations which includes the operation of coal processing plants and support... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 912.827 Section 912.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...

  9. 30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Science.gov (United States)

    2010-07-01

    ... mining and reclamation operations which include the operation of coal processing plants and support... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 922.827 Section 922.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...

  10. 30 CFR 937.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Science.gov (United States)

    2010-07-01

    ... mining and reclamation operations which include the operation of coal processing plants and support... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 937.827 Section 937.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...

  11. 30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Science.gov (United States)

    2010-07-01

    ... mining and reclamation operations which includes the operation of coal processing plants and support... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 910.827 Section 910.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...

  12. Rock geochemistry related to mineralization processes in geothermal areas

    Science.gov (United States)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  13. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    International Nuclear Information System (INIS)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert

    2015-01-01

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  14. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)

    2015-08-15

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  15. Emerging industrial processes for low grade rare earth mineral concentrates

    International Nuclear Information System (INIS)

    Soldenhoff, Karin; Ho, Elizabeth

    2015-01-01

    Historically rare earth recovery has mainly been derived from the processing of monazite, bastnasite and xenotime containing ores amenable to beneficiation, yielding high grade mineral concentrates. A notable exception is the recovery of heavy rare earths from ionic clays in Southern China. Recently, projects are being proposed to treat a range of mineral concentrates which tend to be lower grade with wide ranging modal mineralogy for rare earths and associated gangue minerals. This has a significant impact on processing routes. This paper discusses processes proposed for emerging rare earth producers and how different projects have responded to particular challenges including: Control of phosphorous due to the presence of xenotime or monazite type minerals; Control of phosphorous due to the presence of rare earth containing apatite; Rare earth recovery from polymetallic ores; Control of radionuclides in rare earth processing, etc.

  16. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  17. The Diesel Exhaust in Miners Study: I. Overview of the Exposure Assessment Process

    Science.gov (United States)

    Stewart, Patricia A.; Coble, Joseph B.; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998–2001, the average

  18. Tannins in Mineral Processing and Extractive Metallurgy

    Directory of Open Access Journals (Sweden)

    Jordan Rutledge

    2015-08-01

    Full Text Available This study provides an up to date review of tannins, specifically quebracho, in mineral processing and metallurgical processes. Quebracho is a highly useful reagent in many flotation applications, acting as both a depressant and a dispersant. Three different types of quebracho are mentioned in this study; quebracho “S” or Tupasol ATO, quebracho “O” or Tupafin ATO, and quebracho “A” or Silvafloc. It should be noted that literature often refers simply to “quebracho” without distinguishing a specific type. Quebracho is most commonly used in industry as a method to separate fluorite from calcite, which is traditionally quite challenging as both minerals share a common ion—calcium. Other applications for quebracho in flotation with calcite minerals as the main gangue source include barite and scheelite. In sulfide systems, quebracho is a key reagent in differential flotation of copper, lead, zinc circuits. The use of quebracho in the precipitation of germanium from zinc ores and for the recovery of ultrafine gold is also detailed in this work. This analysis explores the wide range of uses and methodology of quebracho in the extractive metallurgy field and expands on previous research by Iskra and Kitchener at Imperial College entitled, “Quebracho in Mineral Processing”.

  19. Conflict minerals from the Democratic Republic of the Congo: global tungsten processing plants, a critical part of the tungsten supply chain

    Science.gov (United States)

    Bermúdez-Lugo, Omayra

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.

  20. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    International Nuclear Information System (INIS)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin

    2010-05-01

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  1. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin [Yongin University, Yongin (Korea, Republic of)

    2010-05-15

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  2. Automation in a material processing/storage facility

    International Nuclear Information System (INIS)

    Peterson, K.; Gordon, J.

    1997-01-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper

  3. Innovation processes in technologies for the processing of refractory mineral raw materials

    Science.gov (United States)

    Chanturiya, V. A.

    2008-12-01

    Analysis of the grade of mineral resources of Russia and other countries shows that end products that are competitive in terms of both technological and environmental criteria in the world market can only be obtained by the development and implementation of progressive technologies based on the up-to-date achievements of fundamental sciences. The essence of modern innovation processes in technologies developed in Russia for the complex and comprehensive processing of refractory raw materials with a complex composition is ascertained. These processes include (i) radiometric methods of concentration of valuable components, (ii) high-energy methods of disintegration of highly dispersed mineral components, and (iii) electrochemical methods of water conditioning to obtain target products for solving specific technological problems.

  4. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    Science.gov (United States)

    Papp, John F.

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes mineral and metal supply chains to identify and describe major components of mineral and metal material flows from ore extraction, through intermediate forms, to a final product. Supply chain analyses may be used (1) to identify risks to the United States associated with the supply of critical and strategic minerals and metals and (2) to provide greater supply chain transparency so that policymakers have the fact-based information needed to formulate public policy. This fact sheet focuses on the post-mining/pre-consumer-product part of the tantalum supply chain. The USGS National Minerals Information Center (NMIC) has been asked by governmental and non-governmental organizations to provide information about tantalum, tin, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at identifying and removing the supply chain links between the trade in these minerals and civil unrest in the Democratic Republic of the Congo and adjacent countries.

  5. Process and apparatus for distilling bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Veyrier, J A

    1922-03-27

    This process of distillation of bituminous minerals and particularly bituminous limestone is characterized by the fact that the minerals are introduced into the retort where they stand only the temperature necessary to distill the water and lighter oils that they contain and then are drawn out into the hearth and serve for heating the retort. The apparatus is characterized by the fact that the retort has a screw conveyor, placed in the flue of the hearth, supplied with a chamber for evacuation below this hearth.

  6. Model Predictive Control of Mineral Column Flotation Process

    Directory of Open Access Journals (Sweden)

    Yahui Tian

    2018-06-01

    Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.

  7. Principles of image processing in machine vision systems for the color analysis of minerals

    Science.gov (United States)

    Petukhova, Daria B.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2014-09-01

    At the moment color sorting method is one of promising methods of mineral raw materials enrichment. This method is based on registration of color differences between images of analyzed objects. As is generally known the problem with delimitation of close color tints when sorting low-contrast minerals is one of the main disadvantages of color sorting method. It is can be related with wrong choice of a color model and incomplete image processing in machine vision system for realizing color sorting algorithm. Another problem is a necessity of image processing features reconfiguration when changing the type of analyzed minerals. This is due to the fact that optical properties of mineral samples vary from one mineral deposit to another. Therefore searching for values of image processing features is non-trivial task. And this task doesn't always have an acceptable solution. In addition there are no uniform guidelines for determining criteria of mineral samples separation. It is assumed that the process of image processing features reconfiguration had to be made by machine learning. But in practice it's carried out by adjusting the operating parameters which are satisfactory for one specific enrichment task. This approach usually leads to the fact that machine vision system unable to estimate rapidly the concentration rate of analyzed mineral ore by using color sorting method. This paper presents the results of research aimed at addressing mentioned shortcomings in image processing organization for machine vision systems which are used to color sorting of mineral samples. The principles of color analysis for low-contrast minerals by using machine vision systems are also studied. In addition, a special processing algorithm for color images of mineral samples is developed. Mentioned algorithm allows you to determine automatically the criteria of mineral samples separation based on an analysis of representative mineral samples. Experimental studies of the proposed algorithm

  8. 15 CFR 923.13 - Energy facility planning process.

    Science.gov (United States)

    2010-01-01

    ... facility planning process. The management program must contain a planning process for energy facilities... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... affected public and private parties will be involved in the planning process. [61 FR 33806, June 28, 1996...

  9. Determination of mineral abundances in samples from the exploratory studies facility using x-ray diffraction

    International Nuclear Information System (INIS)

    Roberts, S.; Viani, R.

    1998-01-01

    Tuff samples collected from the Exploratory Studies Facility (ESF) were X-rayed to estimate relative mineral abundances. X-ray analysis was performed on sub-samples of specimens collected from both the Single Heater Test (SHT) and Drift Scale Heater Test (DST) that were used for thermomechanical measurements, as well as samples collected from cores retrieved from boreholes in the Drift Scale Test Area. The abundance of minerals that could affect the behavior of the host rock at repository relevant temperatures is of particular interest. These minerals include crystobalite, which undergoes a phase transition and volume change at elevated temperature (-250 'C), and smectite and clinoptilolite that can dehydrate at elevated temperature with accompanying volume reduction. In addition, the spatial distribution of SiO, polymorphs and secondary minerals may provide evidence for deducing past fluid pathways. The mineral abundances tabulated here include data reported previously in three milestone reports (Roberts and Viani, 1997a,b; Viani and Roberts, 1996) but re-analyzed (see below), as well as previously unreported data. Previous X-ray diffraction analyses of samples from the ESF (Roberts and Viani, 1997a; Viani and Roberts, 1996) utilized the matrix flushing method of Chung (1974) and an internal intensity standard (corundum) to quantify the abundances of the phases present. Although the method is adequate for obtaining relative abundances, its accuracy and precision is limited by the inherent differences between the external standards used to compute the reference intensity ratio and the mineral phases in the sample. In a subsequent report (Roberts and Viani, 1997b) mineral abundances were obtained using the Rietveld method of whole X-ray pattern fitting (Snyder and Bish, 1989; Young, 1993). The Rietveld technique has the potential to be both more accurate and more precise for estimating mineral abundances (Snyder and Bish, 1989)

  10. Recent Progress on Data-Based Optimization for Mineral Processing Plants

    Directory of Open Access Journals (Sweden)

    Jinliang Ding

    2017-04-01

    Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.

  11. Poultry Slaughtering and Processing Facilities

    Data.gov (United States)

    Department of Homeland Security — Agriculture Production Poultry Slaughtering and Processing in the United States This dataset consists of facilities which engage in slaughtering, processing, and/or...

  12. Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation

    Directory of Open Access Journals (Sweden)

    L. Yao

    2011-03-01

    Full Text Available Relations between mineralization and certain geological processes are established mostly by geologist's knowledge of field observations. However, these relations are descriptive and a quantitative model of how certain geological processes strengthen or hinder mineralization is not clear, that is to say, the mechanism of the interactions between mineralization and the geological framework has not been thoroughly studied. The dynamics behind these interactions are key in the understanding of fractal or multifractal formations caused by mineralization, among which singularities arise due to anomalous concentration of metals in narrow space. From a statistical point of view, we think that cascade dynamics play an important role in mineralization and studying them can reveal the nature of the various interactions throughout the process. We have constructed a multiplicative cascade model to simulate these dynamics. The probabilities of mineral deposit occurrences are used to represent direct results of mineralization. Multifractal simulation of probabilities of mineral potential based on our model is exemplified by a case study dealing with hydrothermal gold deposits in southern Nova Scotia, Canada. The extent of the impacts of certain geological processes on gold mineralization is related to the scale of the cascade process, especially to the maximum cascade division number nmax. Our research helps to understand how the singularity occurs during mineralization, which remains unanswered up to now, and the simulation may provide a more accurate distribution of mineral deposit occurrences that can be used to improve the results of the weights of evidence model in mapping mineral potential.

  13. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  14. Process for continuous distillation of bituminous minerals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Marie, J J

    1923-01-26

    An apparatus is described for operating the process, in which the petroleum-bearing asphaltic or bituminous minerals are charged to the upper part of a vertical furnace with a lining of refractory material and varying sections; air is necessary for combustion and inert gas is necessary to regulate this combustion and to remove the hydrocarbons being blown into the lower part of the furnace; the hydrocarbons in vapor state or gases being removed are received in the condensers where they are deposited in the liquid state; the liquid from the condensers is next centrifuged to give oils essentially like natural petroleum, leaving as residue solid hydrocarbons and entrained mineral; the minerals treated are removed by gravity at the bottom of the furnace.

  15. 9 CFR 590.540 - Spray process drying facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying facilities. 590.540 Section 590.540 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF..., Processing, and Facility Requirements § 590.540 Spray process drying facilities. (a) Driers shall be of a...

  16. Saltstone studies using the scaled continuous processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Facility since its conception with bench-scale laboratory experiments, mid-scale testing at vendor facilities, and consultations and testing at the Saltstone Facility. There have been minimal opportunities for the measurement of rheological properties of the grout slurry at the Saltstone Production Facility (SPF); thus, the Scaled Continuous Processing Facility (SCPF), constructed to provide processing data related to mixing, transfer, and other operations conducted in the SPF, is the most representative process data for determining the expected rheological properties in the SPF. These results can be used to verify the laboratory scale experiments that support the SPF using conventional mixing processes that appropriately represent the shear imparted to the slurry in the SPF.

  17. Tracer investigations of macroprocesses in mineral processing. 1

    International Nuclear Information System (INIS)

    Koch, P.

    1981-01-01

    Results obtained from tracer studies in mineral processing have been evaluated with regard to the effects of hydrodynamic and design parameters of the single cell on flotation kinetics, to the residence time in single and in series-connected cells, and to the possibility of designing process control models. An algorithm is given for technological interpretation of results obtained from residence time and process kinetics studies

  18. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Hubbard, Alexander; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Ebel, Denton S. [Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192 (United States); D' Alessio, Paola, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org, E-mail: mordecai@amnh.org, E-mail: debel@amnh.org, E-mail: p.dalessio@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, MICH (Mexico)

    2013-04-10

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  19. Review on chemical processes around the facilities in deep underground and study on numerical approach to evaluate them

    International Nuclear Information System (INIS)

    Sawada, Masataka

    2003-01-01

    The facilities for radioactive waste repositories are constructed in deep underground. Various chemical reactions including microbial activities may affect the long-term performance of the barrier system. An advancement of the evaluation method for the long-term behavior of barrier materials is desired. One of the efficient approaches is numerical simulation based on modeling of chemical processes. In the first part of this report, chemical processes and microbial reactions that can affect the performance of facilities in deep underground are reviewed. For example, dissolution and precipitation of minerals composing bentonite and rock are caused by highly alkaline water from cementitious materials. Numerical approaches to the chemical processes are also studied. Most chemical processes are reactions between groundwater (or solutes in it) and minerals composing barrier materials. So they can be simulated by coupled reaction rate transport analyses. Some analysis codes are developed and applied to problems in radioactive waste disposal. Microbial reaction rate can be modeled using the growth equation of microorganisms. In order to evaluate the performance of the barrier system after altered by chemical processes, not only the change in composition but also properties of altered materials is required to be obtained as output of numerical simulation. If the relationships between reaction rate and material properties are obtained, time history and spatial distribution of material properties can also be obtained by the coupled reaction rate transport analysis. At present, modeling study on the relationships between them is not sufficient, and obtaining such relationships using both theoretical and experimental approaches are also an important research target. (author)

  20. The review of recent carbonate minerals processing technology

    Science.gov (United States)

    Solihin

    2018-02-01

    Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is

  1. Design of plutonium processing facilities

    International Nuclear Information System (INIS)

    Derbyshire, W.; Sills, R.J.

    1982-01-01

    Five considerations for the design of plutonium processing facilities are identified. These are: Toxicity, Radiation, Criticality, Containment and Remote Operation. They are examined with reference to reprocessing spent nuclear fuel and application is detailed both for liquid and dry processes. (author)

  2. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  3. Posibility for application of froth separation process in beneficiation of raw minerals

    Directory of Open Access Journals (Sweden)

    František Tichánek

    2005-11-01

    Full Text Available Froth separation belongs to newer flotation methods that are suitable for the separation of fine-grained raw materials whose size is too big for regular flotation. The technology of coarse-grained flotation has a significant economical effect because it allows a decrease in the costs for mineral processing. The article concerneds the posibility of using the froth separation process during the mineral processing of bituminous coal.

  4. 40 CFR 52.279 - Food processing facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Food processing facilities. 52.279 Section 52.279 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved...

  5. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  6. Springfield Processing Plant (SPP) Facility Information

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  7. Microprobe to closely examine minerals

    International Nuclear Information System (INIS)

    2006-01-01

    The University of South Australia will develop synchrotron-based technology that can determine the structure and chemical composition of mineral samples at microscopic levels. The planned multi-analysis synchrotron X-ray facility Beam-line 11 is for implementing on the Australian Synchrotron. UniSA's Applied Centre for Structural and Synchrotron Studies (ACeSSS) will use Beamline 11 to shed new light on factors that constrain recoveries of copper and gold from typical copper ores. ACeSSS director Professor Andrea Gerson is working with an international team and the Australian Synchrotron on the design of Beamline 11. According to Gerson, there is scope to improve processing and/or increase recoveries in copper, gold and valueless pyrite either through separation, smelting, leaching or electro-processing. Using synchrotron technology, researchers will determine the structure and chemical composition of mineral samples to understand the fundamental behaviour of these materials in order to identify process and : environmental benefits. Three different strategies will be employed: tracing the movement of gold through the mineral processing chain to optimise and increase gold recovery; examining the surface layers formed when copper is leached from the mineral, chalcopyrite, to enhance the understanding of this surface layer formation and ultimately maximise cop-per recovery; and improving environmental remediation by understanding the mineralisation process during acid-rock drainage. ACeSSS will work with the minerals and environmental remediation sectors, building on the I establishment of the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, and cementing close collaboration with UniSA's Ian Wark Research Institute. Contributions from the SA Premier's Science and Research Fund, BHP Billiton and Rio Tinto, synchrotron partners Advanced Light Source (USA) and the Canadian Light Source Funding totalling $1.38m are available for

  8. Case studies: Mining and milling activities - South African facilities

    International Nuclear Information System (INIS)

    Metcalf, P.E.; Woude, S. van der

    2000-01-01

    The mining and milling of minerals is a very important industry in South Africa that employs more than 300,000 people. South Africa extracts minerals with naturally occurring radionuclides, amongst which uranium, monazite and zircon. Two case studies involving environmental restoration activities that are typically associated with mining and minerals processing are discussed. The first case study, Katdoringbos, describes the restoration of a contaminated site where scrap material originating from the mining and minerals processing facilities had been recycled. The other case study, Crown 4, deals with the restoration of a contaminated site where a mine tailings dam had been removed and the owner of the land wished to develop it for commercial exploitation. (author)

  9. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  10. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  11. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  12. The new MAW scrap processing facility

    International Nuclear Information System (INIS)

    Kueppers, L.

    1994-01-01

    The shielded bunker for heat-generating waste attached to the MAW scrap processing cell will be modified and extended to comprise several MAW scrap processing cells of enhanced throughput capacity, and a new building to serve as an airlock and port for acceptance of large shipping casks (shipping cask airlock, TBS). The new facility is to process scrap from decommissioned nuclear installations, and in addition radwaste accrued at operating plants of utilities. This will allow efficient and steady use of the new MAW scrap processing facility. The planning activities for modification and extension are based on close coordination between KfK and the GNS mbH, in order to put structural dimensioning and capacity planning on a realistic basis in line with expected amounts of radwaste from operating nuclear installations of utilities. The paper indicates the currently available waste amount assessments covering solid radwaste (MAW) from the decommissioning of the WAK, MZFR, and KNK II, and existing waste amounts consisting of core internals of German nuclear power plant. The figures show that the MAW scrap processing facility will have to process an overall bulk of about 1100 Mg of solid waste over the next ten years to come. (orig./HP) [de

  13. Clean Air Act Standards and Guidelines for Mineral Processing

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the mineral processing industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  14. A graded approach to safety documentation at processing facilities

    International Nuclear Information System (INIS)

    Cowen, M.L.

    1992-01-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities

  15. The use of tomographic techniques in the mineral processing Industry. A review

    International Nuclear Information System (INIS)

    Witika, L.K.; Jere, E.H.

    2002-01-01

    Process tomographic techniques may be used to analyse the internal state of most of the multiphase process engineering systems such as material segregation in a reactor multiphase flow in pipes and the spatial resolution of mineral grains in multiphase particles. These techniques include radiation computed tomography (X-ray or ray), electrical methods(capacitance, impedance and inductive tomography) positron emission tomography,optical tomography, microwave tomography, acoustic tomographical methods and many more. Many potential applications exist for process tomographic instrumentation for quantitative analysis and fault-detection purposes. Amongst these, electrical methods are widely used for those mineral processes deserving particular attention such as dense-medium separation, hydro cyclones, flotation cells and columns, gas-liquid absorbers, solvent extraction and other liquid-liquid processes, filtration and other solid-liquid processes, grinding mills (both dry and wet, conveyors and hoppers). Development in on-line measurement instrumentation now allow direct observation of the behaviour of fluids inside mineral separation equipment. This offers the possibility to acquire process data to enable models to be devised, to verify theoretical computational fluid dynamics predictions and control of various unit processes. In this review, the most important tomographic sensing methods are reviewed. Examples of the implementation of some electrical methods are illustrated. (authors)

  16. Agronomic potential of mineral concentrate from processed manure as fertiliser

    NARCIS (Netherlands)

    Velthof, G.L.; Hoeksma, P.; Schröder, J.J.; Middelkoop, van J.C.; Geel, van W.C.A.; Ehlert, P.A.I.; Holshof, G.; Klop, G.; Lesschen, J.P.

    2012-01-01

    Processing of manure intends to increase the use efficiency of nutrients. A concentrated solution of nitrogen (N) and potassium (K) (‘mineral concentrate’) is one of the possible products resulting from manure processing. A study is carried out in the Netherlands to determine the agronomic and

  17. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Science.gov (United States)

    2010-01-01

    ... postulated accidents that could lead to loss of safety functions. (5) Chemical protection. The design must... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for new facilities or new processes at... Critical Mass of Special Nuclear Material § 70.64 Requirements for new facilities or new processes at...

  18. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  19. Outline of the Chemical Processing Facility (CPF)

    International Nuclear Information System (INIS)

    Arita, Katsuhiko

    1978-01-01

    Concerning the Chemical Processing Facility (CPF), a high level radioactive material research facility, to be installed in Tokai Works of Power Reactor and Nuclear Fuel Development Corporation (PNC), the detailed design and the governmental safety inspection were finished. The construction has been already started, and it will be completed in 1980. Under the national policy of establishing a nuclear fuel cycle, PNC is now carrying out the development of its downstream technology. The objects of the Chemical Processing Facility are the researches of the treatment techniques of high level radioactive liquid wastes from fuel reprocessing and of the reprocessing of fast reactor fuel. The following matters are described: purpose of the CPF, i.e. fast reactor fuel reprocessing and high-level liquid waste treatment; construction of the CPF, i.e. buildings, cells and an exhaust stack; test systems, i.e. fuel reprocessing and liquid waste vitrification; and facility safety. (Mori, K.)

  20. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  1. 9 CFR 590.546 - Albumen flake process drying facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Albumen flake process drying facilities. 590.546 Section 590.546 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.546 Albumen flake process drying...

  2. Process Technical Basis Documentation Diagram for a solid-waste processing facility

    International Nuclear Information System (INIS)

    Benar, C.J.; Petersen, C.A.

    1994-02-01

    The Process Technical Basis Documentation Diagram is for a solid-waste processing facility that could be designed to treat, package, and certify contact-handled mixed low-level waste for permanent disposal. The treatment processes include stabilization using cementitious materials and immobilization using a polymer material. The Diagram identifies several engineering/demonstration activities that would confirm the process selection and process design. An independent peer review was conducted at the request of Westinghouse Hanford Company to determine the technical adequacy of the technical approach for waste form development. The peer review panel provided comments and identified documents that it felt were needed in the Diagram as precedence for Title I design. The Diagram is a visual tool to identify traceable documentation of key activities, including those documents suggested by the peer review, and to show how they relate to each other. The Diagram is divided into three sections: (1) the Facility section, which contains documents pertaining to the facility design, (2) the Process Demonstration section, which contains documents pertaining to the process engineering/demonstration work, and 3) the Regulatory section, which contains documents describing the compliance strategy for each acceptance requirement for each feed type, and how this strategy will be implemented

  3. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  4. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1998-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  5. Food irradiation: Gamma processing facilities

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1997-01-01

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  6. Improved process control through real-time measurement of mineral content

    Energy Technology Data Exchange (ETDEWEB)

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  7. An Application of Business Process Management to Health Care Facilities.

    Science.gov (United States)

    Hassan, Mohsen M D

    The purpose of this article is to help health care facility managers and personnel identify significant elements of their facilities to address, and steps and actions to follow, when applying business process management to them. The ABPMP (Association of Business Process Management Professionals) life-cycle model of business process management is adopted, and steps from Lean, business process reengineering, and Six Sigma, and actions from operations management are presented to implement it. Managers of health care facilities can find in business process management a more comprehensive approach to improving their facilities than Lean, Six Sigma, business process reengineering, and ad hoc approaches that does not conflict with them because many of their elements can be included under its umbrella. Furthermore, the suggested application of business process management can guide and relieve them from selecting among these approaches, as well as provide them with specific steps and actions that they can follow. This article fills a gap in the literature by presenting a much needed comprehensive application of business process management to health care facilities that has specific steps and actions for implementation.

  8. Waste Receiving and Processing Facility (WRAP) Drawing List

    International Nuclear Information System (INIS)

    WEIDERT, J.R.

    1999-01-01

    This supporting document delineates the process of identification, categorization, and/or classification of the WRAP facility drawings used to support facility operations and maintenance. This document provides a listing of those essential or safety related drawings which have been identified to date. All other WRAP facility drawings have been classified as general

  9. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  10. Flotation process of lead-, copper-, uranium-, and rare earth minerals

    International Nuclear Information System (INIS)

    Broman, P.G.; Kihlstedt, P.G.; Du Rietz, C.

    1977-01-01

    This invention relates to a flotation process of oxide or sulfide ores containing lead-, copper-, uranium-, and rare earth minerals applicating a new collector. Flotation is in the presence of a tertiary amine

  11. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  12. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  13. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  14. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  15. Bioprocessing of coal - 10 - an application of microbial flotation to mineral processing

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, T. [and others] [CRIEPI, Abiko-shi (Japan). Abiko Research Lab.

    1996-09-01

    Microbial flotation for coal desulfurization is being developed. Pyrite in coal is removed by bacterial adhesion by changing the surface property of pyrite. The bacterial adhesion of Thiobacillus ferrooxidans to sulfide minerals (pyrite, galena, molybdenite, chalcocite and millerite), and pyrite removal from the mixture of these sulfide minerals by microbial flotation was investigated. To compare the adhesion of T. ferrooxidans to pyrite with that to the other four minerals mentioned, the surface areas of the minerals, where the bacterium could adhere, was measured. It was observed that the roughness on the mineral surfaces was much smaller than the size of the bacterial cells. Hence, it was suggested that the roughness did not affect the bacterial adhesion to mineral surfaces. Bacterial adhesion to pyrite was compared with that to the other minerals. The amount of adhering bacterium was estimated on the basis of the adherable surface area measured with microscopic method. The amount of adhering cells to pyrite was 421.6 x 10{sup 8} cells/cm{sup 2}. On the other hand, the amounts of adhering cells to the minerals, except for pyrite were in a range of 77.1 to 160.8 x 10{sup 8} cells/cm{sup 2}. The bacterium adheres more to pyrite than to the other minerals, and only adheres to pyrite even if the pyrite is mixed with other minerals. Hence, T. ferrooxidans could adhere selectively to pyrite. Pyrite removal from the mineral mixtures was investigated with microbial flotation. Pyrite removal was in a range of 83.7% to 95.1% and mineral recovery was 72.9% to 100%. The grade of recovered minerals was in a range of 79.2 to 86.0% and that of rejected pyrite was in a range of 78.7 to 90.0%. These results suggest that microbial flotation can be a novel technology for mineral processing.

  16. Directory of gamma processing facilities in Member States

    International Nuclear Information System (INIS)

    2004-02-01

    Ionizing radiation can modify physical, chemical and biological properties of materials. This characteristic of radiation was recognised very soon after the discovery of radioactivity. At present, the principal applications concern sterilisation of health care products, food irradiation and materials modification for polymers. Besides naturally occurring radioactive isotopes, artificial ones were produced using cyclotrons. A significant impetus, however, was given to the radiation processing industry with the advent of nuclear reactors, which were used to produce radioisotopes. Gamma ray emitters like cobalt-60 became popular radiation sources for medical and industrial applications. Many gamma ray irradiators have been built and it is estimated that less than 200 are currently in operation all over the world. In recent times, the use of electron accelerators as a radiation source (sometimes equipped with X ray converter) is increasing. However, gamma irradiators are difficult to replace, especially in the case of non-uniform and high-density products. The International Atomic Energy Agency (IAEA) has several programmes related to industrial irradiation applications for processing of various products including those related to health care, pharmaceuticals, food and polymers, and applications associated with plant design, dosimetry and safety. Through the technical co-operation programme, the IAEA supports these activities in developing countries and helps them to build local capacity to implement various industrial applications of radiation processing. The IAEA also organises and conducts training courses and workshops, provides individual training to personnel, and sends experts to the radiation facilities in Member States where help is needed. All these activities can be carried out much more efficiently and effectively if there were a comprehensive directory of radiation facilities operating in Member States. Also, such a compilation would be a valuable tool for

  17. 30 CFR 56.4430 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.4430 Section 56.4430 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for...

  18. 30 CFR 77.1608 - Dumping facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities. 77.1608 Section 77.1608 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Haulage § 77.1608 Dumping facilities. (a) Dumping locations and haulage roads shall be kept reasonably...

  19. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    International Nuclear Information System (INIS)

    Zhang Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu Yaqin

    2009-01-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3 O 4 ) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3 O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C=O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3 O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3 O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3 O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3 O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3 O 4 hybrids was discussed.

  20. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  1. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  2. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  3. SRS Process Facility Significance Fire Frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1995-10-01

    This report documents the method and assumptions of a study performed to determine a site generic process facility significant fire initiator frequency and explains the proper way this value should be used.

  4. SRS Process Facility Significance Fire Frequency

    International Nuclear Information System (INIS)

    Sarrack, A.G.

    1995-10-01

    This report documents the method and assumptions of a study performed to determine a site generic process facility significant fire initiator frequency and explains the proper way this value should be used

  5. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly

  6. Multi Blending Technology (MBT): mineral processing method for increasing added value of marginal reserve

    Science.gov (United States)

    Agustinus, E. T. S.

    2018-02-01

    Indonesia's position on the path of ring of fire makes it rich in mineral resources. Nevertheless, in the past, the exploitation of Indonesian mineral resources was uncontrolled resulting in environmental degradation and marginal reserves. Exploitation of excessive mineral resources is very detrimental to the state. Reflecting on the occasion, the management and utilization of Indonesia's mineral resources need to be good in mining practice. The problem is how to utilize the mineral reserve resources effectively and efficiently. Utilization of marginal reserves requires new technologies and processing methods because the old processing methods are inadequate. This paper gives a result of Multi Blending Technology (MBT) Method. The underlying concept is not to do the extraction or refinement but processing through the formulation of raw materials by adding an additive and produce a new material called functional materials. Application of this method becomes important to be summarized into a scientific paper in a book form, so that the information can spread across multiple print media and become focused on and optimized. This book is expected to be used as a reference for stakeholder providing added value to environmentally marginal reserves in Indonesia. The conclusions are that Multi Blending Technology (MBT) Method can be used as a strategy to increase added values effectively and efficiently to marginal reserve minerals and that Multi Blending Technology (MBT) method has been applied to forsterite, Atapulgite Synthesis, Zeoceramic, GEM, MPMO, SMAC and Geomaterial.

  7. Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization.

    Science.gov (United States)

    Liu, Pingsheng; Song, Jie

    2013-03-01

    Both positively and negatively charged residues play pivotal roles in recruiting precursor ions or ion clusters, and lowering interfacial energy in natural biomineralization process. Synergistic utilization of opposite charges, however, has rarely been implemented in the design of cytocompatible synthetic scaffolds promoting hydroxyapatite (HA)-mineralization and osteointegration. We report the use of cytocompatible zwitterionic sulfobetaine ligands to enable 3-dimensional in vitro mineralization of HA across covalently crosslinked hydrogels. The overall charge-neutral zwitterionic hydrogel effectively recruited oppositely charged precursor ions while overcame excessive swelling exhibited by anionic and cationic hydrogels under physiological conditions, resulting in denser and structurally well-integrated mineralized composites. Further controls over the size, content, and spatial distribution of the mineral domains within the zwitterionic hydrogel are accomplished by facile adjustments of hydrogel crosslinking densities and the supersaturation rate governing heterogeneous mineral nucleation and growth. These findings should inspire many creative uses of zwitterionic polymers and polymer coatings for skeletal tissue repair and regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Material Processing Facility - Skylab Experiment M512

    Science.gov (United States)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  9. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN; A

    International Nuclear Information System (INIS)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-01-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO(sub 2) emissions can be overcome. Permanent and safe methods for CO(sub 2) capture and disposal/storage need to be developed. Mineralization of stationary-source CO(sub 2) emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH)(sub 2) was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH)(sub 2) gas-solid carbonation as a potentially cost-effective CO(sub 2) mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO(sub 2) sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact

  10. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  11. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  12. Fabrication of Separator Demonstration Facility process vessel

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1985-01-01

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given

  13. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  14. Cognitive facilities of governance of transformations processes

    Directory of Open Access Journals (Sweden)

    A. V. Reshetnichenko

    2014-03-01

    For example, each of levels of organization of the both realized and subconscious, facilities of cognition includes the dependent numerical, voice, coloured and concept facilities correlative. As for the system of the realized and subconscious facilities of transformations, their basis is made by the ascending and descending forms of organization of motion of matter, energy, information and organization of elements of life. Fixed in basis of research of mul’timodal’na logician allowed to expose dialectical nature of mechanisms of bifurcations, synthesis, freymuvannya and clusterizations as main condition of forming on principle of new control system by processes development of man, state and society, on the way of mastering of space.

  15. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  16. Optimizing Location of Bulk Metallic Minerals Processing Based on Greenhouse Gas Avoidance

    Directory of Open Access Journals (Sweden)

    Benjamin C. McLellan

    2011-12-01

    Full Text Available The bulk minerals iron ore and bauxite cause significant greenhouse emissions in their processing to steel and aluminum respectively. The level of these emissions is highly dependent on the source of electrical and thermal energy. However, they also cause significant greenhouse gas emissions from their transportation across the globe for processing. This study examines these minerals from the perspective of greenhouse gas avoidance, examining the location of processing as an option for reducing transportation-based and process-based emissions. The analysis proposes a “radius of reduction” to define the potential for transporting ore to reduce emissions by offshore processing. Overall scenarios for localized steel production indicate potential for 85% reduction of transport emissions in the steel industry and 14% of overall industry emissions. Local high-carbon electricity grids and inefficient production mean that the benefit of reduced transportation is partially counteracted by increased processing emissions. The transportation of all global bauxite to Norway and other nations with low-emissions electricity for production of aluminum could result in an overall reduction of industry emissions of up to 44%.

  17. Mineral processing by short circuits in protoplanetary disks

    DEFF Research Database (Denmark)

    Mcnally, C.P.; Hubbard, A.; Mac Low, M.-M.

    2013-01-01

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks......, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate...... the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including...

  18. Low-level radioactive waste from rare metals processing facilities

    International Nuclear Information System (INIS)

    Eng, J.; Hendricks, D.W.; Feldman, J.; Giardina, P.A.

    1980-01-01

    This paper reviews the situations at the existing Teledyne Wah Chang Co., Inc. located at Albany, Oregon, and the former Carborundum Corp./Amax Specialty Metals, Inc., facilities located at Parkersburg, West Virginia, and Akron, New York, in order to show the extent of the radioactivity problem at rare metals processing facilities and the need to identify for radiological review other rare metal and rare earth processing sites

  19. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  20. Ninth Processing Campaign in the Waste Calcining Facility

    International Nuclear Information System (INIS)

    Childs, K.F.; Donovan, R.I.; Swenson, M.C.

    1982-04-01

    This report discusses the Ninth (and final) Processing Campaign at the Waste Calcining Facility. Several processing interruptions were experienced during this campaign and the emphasis of this report is on process and equipment performance with operating problems and corrective actions discussed in detail

  1. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  2. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  3. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1980-07-01

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing

  4. Mixed U/Pu oxide fuel fabrication facility co-processed feed, pelletized fuel

    International Nuclear Information System (INIS)

    1978-09-01

    Two conceptual MOX fuel fabrication facilities are discussed in this study. The first facility in the main body of the report is for the fabrication of LWR uranium dioxide - plutonium dioxide (MOX) fuel using co-processed feed. The second facility in the addendum is for the fabrication of co-processed MOX fuel spiked with 60 Co. Both facilities produce pellet fuel. The spiked facility uses the same basic fabrication process as the conventional MOX plant but the fuel feed incorporates a high energy gamma emitter as a safeguard measure against diversion; additional shielding is added to protect personnel from radiation exposure, all operations are automated and remote, and normal maintenance is performed remotely. The report describes the fuel fabrication process and plant layout including scrap and waste processing; and maintenance, ventilation and safety measures

  5. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  6. Usability Briefing - a process model for healthcare facilities

    DEFF Research Database (Denmark)

    Fronczek-Munter, Aneta

    2014-01-01

    Background: In complex buildings with many types of users it can be difficult to satisfy the numerous, often contradictory requirements. Research in usability mostly focuses on evaluating products or facilities with users, after they were built. This paper is part of a PhD project “Usability...... with various users/stakeholders, using creative boundary objects at workshops.  Practical Implications: The research results have relevance to researchers, client organisations, facility managers and architects planning new complex facilities.  Research limitations: The proposed model is theoretical and needs...... briefing for hospitals”, where methods for capturing user needs and experiences at hospital facilities are investigated in order to feed into design processes and satisfy the users’ needs and maximise the effectiveness of facilities. Purpose: This paper introduces the concept of usability briefing...

  7. [Analysis of changes in minerals contents during cider fermentation process by inductively coupled plasma mass spectrometry].

    Science.gov (United States)

    Ye, Meng-qi; Yue, Tian-li; Gao, Zhen-peng; Yuan, Ya-hong; Nie, Gang

    2015-01-01

    The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.

  8. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  9. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  10. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  11. Waste minimization at a plutonium processing facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    As part of Los Alamos National Laboratory's (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management

  12. Individual Learning Route as a Way of Highly Qualified Specialists Training for Extraction of Solid Commercial Minerals Enterprises

    Science.gov (United States)

    Oschepkova, Elena; Vasinskaya, Irina; Sockoluck, Irina

    2017-11-01

    In view of changing educational paradigm (adopting of two-tier system of higher education concept - undergraduate and graduate programs) a need of using of modern learning and information and communications technologies arises putting into practice learner-centered approaches in training of highly qualified specialists for extraction and processing of solid commercial minerals enterprises. In the unstable market demand situation and changeable institutional environment, from one side, and necessity of work balancing, supplying conditions and product quality when mining-and-geological parameters change, from the other side, mining enterprises have to introduce and develop the integrated management process of product and informative and logistic flows under united management system. One of the main limitations, which keeps down the developing process on Russian mining enterprises, is staff incompetence at all levels of logistic management. Under present-day conditions extraction and processing of solid commercial minerals enterprises need highly qualified specialists who can do self-directed researches, develop new and improve present arranging, planning and managing technologies of technical operation and commercial exploitation of transport and transportation and processing facilities based on logistics. Learner-centered approach and individualization of the learning process necessitate the designing of individual learning route (ILR), which can help the students to realize their professional facilities according to requirements for specialists for extraction and processing of solid commercial minerals enterprises.

  13. Exploring data with RapidMiner

    CERN Document Server

    Chisholm, Andrew

    2013-01-01

    A step-by-step tutorial style using examples so that users of different levels will benefit from the facilities offered by RapidMiner.If you are a computer scientist or an engineer who has real data from which you want to extract value, this book is ideal for you. You will need to have at least a basic awareness of data mining techniques and some exposure to RapidMiner.

  14. Pollution minimisation practices in the Australian mining and mineral processing industries

    Energy Technology Data Exchange (ETDEWEB)

    Catherine Driussi; Janis Jansz [Edith Cowan University, Joondalup, WA (Australia)

    2006-07-01

    Research was conducted to identify some of the current pollution minimisation practices adopted in Australia's mining and mineral processing industries. Initially, 84 mining and mineral processing companies were approached for inclusion in the study, with request only made for information that was available to the company stakeholders and the wider general community. Among the responses received, BHP Billiton, BlueScope Steel, Newmont Australia Limited and AngloGold Australia provided the information requested and/or a substantial quantity of information through reports on their company website. Analysis of the data collected for these companies indicated that improvements were made, and that policies had been implemented over the previous few years. The pollution minimisation and policy practices adopted at the operations of these companies include environmental management systems, advanced pollution control technologies, environmental awareness training for employees, and requirement - from company stakeholders - for increased accountability of environmental impacts.

  15. 30 CFR 57.20008 - Toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 57.20008 Section 57.20008....20008 Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be...

  16. 30 CFR 57.6161 - Auxiliary facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary facilities. 57.6161 Section 57.6161...-Underground Only § 57.6161 Auxiliary facilities. (a) Auxiliary facilities used to store explosive material near work places shall be wooden, box-type containers equipped with covers or doors, or facilities...

  17. Characterisation of radioactivity carrying aerosol in a mineral sand processing plant

    International Nuclear Information System (INIS)

    Jeffries, C.; Morawska, L.

    1998-01-01

    The techniques used to separate heavy mineral sand into mineral products produce a large amount of airborne particulate. Some of these particles are radioactive which is due to the thorium and, to a lesser extent, the uranium content of mineral sands. This study has investigated both the radioactive and respirable particle components (<10 μm) of the aerosol in a dry sand processing plant in Brisbane, Australia. A number of different measurement techniques have been used to characterise the aerosol in the plant. The mass, number and activity distributions have been determined by an eight stage cascade impactor and an Aerodynamic Particle Sizer (APS) with both instruments measuring 0.4 to 10 μm. Measurements of radon progeny concentrations and the extent of radon progeny attachment to micrometer sized particles has been investigated, as well as the extent of airborne thorium and uranium. The preliminary results from two sites are presented and comments are made on the relationship between total and radioactive aerosol

  18. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  19. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Science.gov (United States)

    2010-07-01

    ... application? 285.907 Section 285.907 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Decommissioning Applications § 285.907 How will MMS process my decommissioning application? (a...

  20. Progress in bioleaching: part B: applications of microbial processes by the minerals industries.

    Science.gov (United States)

    Brierley, Corale L; Brierley, James A

    2013-09-01

    This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249-257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation-reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation-heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.

  1. Study on the behavior of naturally occurring radioactivity originated from heavy minerals in weathering process of granite

    International Nuclear Information System (INIS)

    Nakano, M.; Nakashima, Y.

    1993-01-01

    Mass fraction of biotite and of heavy minerals originally in granite rocks at Naegi granite area are 3% and 1 x 10 -4 %, respectively. Though their values are very small, specific activities of 238 U is 1.3 Bq/g and 80 Bq/g, respectively. Their values are much higher than that of gross granite (0.1 Bq/g). Therefore, they play important roles in the weathering process. Authors separated biotite and heavy minerals from less-weathered and weathered (outcrop, plastic materials) granite samples by using heavy liquid, and determined each specific activities and activity ratios. Furthermore, the surface of heavy minerals were washed in 6 N HCl for 20 minutes. And lost fraction of activity in the heavy minerals was determined. The result suggested that activity around heavy mineral's surface was removed into surroundings or external environment through weathering process. (5 figs.)

  2. High Temperature Reactors for a proposed IAEA Coordinated Research Project on Energy Neutral Mineral Development Processes

    International Nuclear Information System (INIS)

    Haneklaus, Nils; Reitsma, Frederik; Tulsidas, Harikrishnan

    2014-01-01

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used to run the HTR for “energy neutral” processing of the primary ore shall be discussed according to the participants needs. This paper specifically focuses on the aspects that need to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project. (author)

  3. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  4. 30 CFR 816.181 - Support facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 816.181 Section 816.181... § 816.181 Support facilities. (a) Support facilities shall be operated in accordance with a permit... results. (b) In addition to the other provisions of this part, support facilities shall be located...

  5. 30 CFR 57.6160 - Main facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main facilities. 57.6160 Section 57.6160...-Underground Only § 57.6160 Main facilities. (a) Main facilities used to store explosive material underground... facilities will not prevent escape from the mine, or cause detonation of the contents of another storage...

  6. 30 CFR 56.20008 - Toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 56.20008 Section 56.20008... Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine operations and that are readily accessible to mine personnel. (b) The facilities shall be kept clean and...

  7. 30 CFR 817.181 - Support facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 817.181 Section 817.181... ACTIVITIES § 817.181 Support facilities. (a) Support facilities shall be operated in accordance with a permit.... (b) In addition to the other provisions of this part, support facilities shall be located, maintained...

  8. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE... installations and at the surface worksites of such mine. (Note: Sanitary facilities at surface work areas of...

  9. Materials evaluation for a transuranic processing facility

    International Nuclear Information System (INIS)

    Barker, S.A.; Schwenk, E.B.; Divine, J.R.

    1990-11-01

    The Westinghouse Hanford Company, with the assistance of the Pacific Northwest Laboratory, is developing a transuranium extraction process for preheating double-shell tank wastes at the Hanford Site to reduce the volume of transuranic waste being sent to a repository. The bench- scale transuranium extraction process development is reaching a stage where a pilot plant design has begun for the construction of a facility in the existing B Plant. Because of the potential corrosivity of neutralized cladding removal waste process streams, existing embedded piping alloys in B Plant are being evaluated and ''new'' alloys are being selected for the full-scale plant screening corrosion tests. Once the waste is acidified with HNO 3 , some of the process streams that are high in F - and low in Al and zr can produce corrosion rates exceeding 30,000 mil/yr in austenitic alloys. Initial results results are reported concerning the applicability of existing plant materials to withstand expected process solutions and conditions to help determine the feasibility of locating the plant at the selected facility. In addition, process changes are presented that should make the process solutions less corrosive to the existing materials. Experimental work confirms that Hastelloy B is unsatisfactory for the expected process solutions; type 304L, 347 and 309S stainless steels are satisfactory for service at room temperature and 60 degrees C, if process stream complexing is performed. Inconel 625 was satisfactory for all solutions. 17 refs., 5 figs., 8 tabs

  10. Mineralizer effects on mullite formation from kaolin processing wastes in Para-Brazil

    International Nuclear Information System (INIS)

    Martelli, Marlice Cruz; Angelica, Romulo Simoes; Neves, Roberto de Freitas

    2009-01-01

    Mullite is a relatively rare mineral in nature, formed under exceptional conditions of high temperature and pressure, which can be used to synthesize this mineral. Mullite presents good chemical and thermal stability among others properties that explain the importance of mullite in traditional and advanced ceramics. This research proposes the development of a process to synthesize mullite using the wastes from kaolin processing industries located in the Rio Jari (Monte Dourado-PA) and Rio Capim (Ipixuna-PA) districts. The synthesized materials will be studied for application as silicon-aluminum refractory bricks. The steps are mineralogical and chemical characterization, verifying the differences between the materials processing through firing of the wastes at increasing levels of temperature with 100 deg C increments, ranging from 600 to 1000 deg C and 1200 to 1500 deg C, during 3 hours at each level. Methods include the study of temperature and impurities effects through X-ray-powder and scanning electron microscopy. (author)

  11. An experimental facility for microwave induced plasma processing of materials

    International Nuclear Information System (INIS)

    Patil, D.S.; Ramachandran, K.; Bhide, A.L.; Venkatramani, N.

    1997-01-01

    Microwave induced plasma processing offers many advantages over conventional processes. However this technology is in the development stage. This report gives a detailed information about a microwave plasma processing facility (2.45 GHz, 700 W) set up in the Laser and Plasma Technology Division. The equipment details and the results obtained on deposition of diamond like carbon (DLC) thin films and surface modification of polymer PET (polyethylene terephthalate) using this facility are given in this report. (author)

  12. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  13. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  14. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  15. Biodegradation of CuTETA, an effluent by-product in mineral processing.

    Science.gov (United States)

    Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A

    2018-04-13

    Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.

  16. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    Science.gov (United States)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  17. Radiation protection and environmental surveillance programme in and around Nuclear Fuel Cycle Facilities in India

    International Nuclear Information System (INIS)

    Tripathi, R.M.

    2018-01-01

    Radiation safety is an integral part of the operation of the Indian nuclear fuel cycle facilities and safety culture has been inculcated in all the spheres of its operation. Nuclear fuel cycle comprises of mineral exploration, mining, ore processing, fuel fabrication, power plants, reprocessing, waste management and accelerator facilities. Health Physics Division of BARC is entrusted with the responsibility of radiation protection and environmental surveillance in all the nuclear fuel cycle facilities

  18. Innovation process and innovativeness of facility management organizations

    NARCIS (Netherlands)

    Mudrak, T.; Wagenberg, van A.F.; Wubben, E.F.M.

    2005-01-01

    Purpose - The innovation patterns and processes in facility management (FM) organizations are crucial for the development of FM as a discipline, but they are not yet fully explored and understood. This paper aims to clarify FM innovation from the perspective of innovation processes and the

  19. Production environment in mineral water plants; Mineral water kojo no seisan kankyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimatsu, A. [Morinaga Engineering Company, Tokyo (Japan)

    1996-01-05

    This paper summarizes mineral waters as commercial products, and the manufacturing facilities thereof. The most widely used pattern of packaging mineral waters is to use either PET bottle or back-in box. The manufacturing process consists generally of: rough filtration of natural water, storage, activated carbon filtration, filtration, sterilization, ultrafine filtration, warm water bottling, capping, cooling, cartoning, storage, and shipment. The rough filtration removes sands. The activated carbon filtration removes water soluble organics. The sterilization is carried out under conditions of retaining the water at 75{degree}C for 15 seconds or retaining at 120 to 140{degree}C for 2 seconds. The ultrafine filtration uses a ceramic filter with a thickness of 0.2{mu}m. Sterilizing harmful microorganisms uses heating operation and filters to remove bacteria. An example may be cited that uses a bio-clean room for the purpose of controlling the harmful microorganisms. Subject microorganisms include a variety of viruses, rickettsia, bacteria, and fungi. The super-high performance (HEPA) filter used in the sterilization is demanded of collecting dusts with sizes of 0.3{mu}m or larger at a collection efficiency of 99.97% or higher. 3 refs., 4 figs., 1 tab.

  20. A study on mineralization U,REE and related processes in anomaly No.6 Khoshomy area central Iran

    International Nuclear Information System (INIS)

    Heidaryan, F.

    2005-01-01

    Uranium mineralization in Khoshomy prospect, located in central. part of Iran, with 303-15000 (cps) and 14 to 4000 (ppm) released, The main rock types include: gneiss, granite, pegmatite and migmatite, that influenced by pegmatite-albitic vines (quartz-heldespatic). Acidic and basic dykes, granodioritic, units and dolomite and marble have been seen. The alteration associated with the mineralization is potassic, argillic, propylitic, carbonization, silisificaition and hematitizaition. Uranium mineralization occurred in a hydrothermal phase with Cu, Mo, Ni and Au elements. Uranium primary minerals include pitchblende, coffinite, uraninite; and uranium secondary minerals include uranophane and . boltwoodite. REE mineralization occurred by the potassic phase in peginatitization process

  1. Radiological hazards assessment at mineral processing plants in Malaysia

    International Nuclear Information System (INIS)

    Mohd Tadza Abdul Rahman; Shamsul Bahrin Ludin; Mohd Yusof Harun; Amran Kamaruddin; Abdul Hamid Latip; Mohd Azwar Hashim

    1994-01-01

    The estimated total dose due to radiation received by workers at the minerals processing plants in Malaysia based on area monitoring data. The dose was evaluated using three main parameters, namely exposures from external radiation, inhalation of airborne radioactive dusts and radon/thoron progenies. The study shows that workers at different location in the plants are potentially exposed to in excess of one tenth (1/10) and three tenth (3/10) of the annual dose limit. (author)

  2. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... nonirritating cleansing agent shall be provided for use at each shower. (2) Sanitary flush toilet facilities. (i..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY... Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.402 Minimum requirements for...

  3. Risk assessment of tailings facility dam failure

    OpenAIRE

    Hadzi-Nikolova, Marija; Mirakovski, Dejan; Stefanova, Violeta

    2011-01-01

    This paper presents the consequences of tailings facility dam failure and therefore the needs for its risk assessment. Tailings are fine-grained wastes of the mining industry, output as slurries, due to mixing with water during mineral processing. Tailings dams vary a lot as it is affected by: tailings characteristics and mill output, site characteristics as: topography, hydrology, geology, groundwater, seismicity and available material and disposal methods. The talings which accumulat...

  4. Methods of mineral potential assessment of uranium deposits: A mineral systems approach

    International Nuclear Information System (INIS)

    Jaireth, S.

    2014-01-01

    Mineral potential represents the likelihood (probability) that an economic mineral deposit could have formed in an area. Mineral potential assessment and prospectivity analysis use a probabilistic concepts to mineral deposits, where the probability of an event (formation of a mineral deposit) is conditional on two factors : i) geological processes occurring in the area, and ii) the presence of geological features indicative of those process. For instance, one of the geological processes critical for the formation of sandstone-hosted uranium deposits in an area is transport of uranium in groundwaters. Geological features indicative of this process in an area comprise, i) presence of leachable source rocks of uranium; ii) presence of highly permeable sandstone; and iii) suitable hydrogeological gradient driving flow groundwaters. Mineral deposits can also be conceptualised as mineral systems with more emphasis on mineralising processes. This concept has some clear parallels with the petroleum systems approach which has proven to be a useful in oil and gas exploration. Mineral systems are defined as ‘all geological factors that control the generation and preservation of mineral deposits’. Seven important geological factors are outlined to define the characteristics of a hydrothermal mineral system. These factors include: i) source of the mineralising fluids and transporting legends; ii) source of metals and other ore components; iii) migration pathways which may include inflow as well as outflow zones; iv) thermal gradients; v) source of energy to mobilised fluids; vi) mechanical and structural focusing mechanism at the trap site; and vii) chemical and/or physical cause for precipitation of ore minerals at the trap site. This approach, commonly known as the ‘source’, ‘transport’ and ‘trap’ paradigm has been redefined to introduce five questions as a basis to understand spatial and temporal evolution of a mineral system at all scales (regional to

  5. Design ampersand construction innovations of the defense waste processing facility

    International Nuclear Information System (INIS)

    McKibben, J.M.; Pair, C.R.; Bethmann, H.K.

    1990-01-01

    Construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is essentially complete. The facility is designed to convert high-level radioactive waste, now contained in large steel tanks as aqueous salts and sludge, into solid borosilicate glass in stainless steel canisters. All processing of the radioactive material and operations in a radioactive environment will be done remotely. The stringent requirements dictated by remote operation and new approaches to the glassification process led to the development of a number of first-of-a-kind pieces of equipment, new construction fabrication and erection techniques, and new applications of old techniques. The design features and construction methods used in the vitrification building and its equipment were to accomplish the objective of providing a state-of-the-art vitrification facility. 3 refs., 10 figs

  6. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  7. Neutron-activation analysis of routine mineral-processing samples

    International Nuclear Information System (INIS)

    Watterson, J.; Eddy, B.; Pearton, D.

    1974-01-01

    Instrumental neutron-activation analysis was applied to a suite of typical mineral-processing samples to establish which elements can be rapidly determined in them by this technique. A total of 35 elements can be determined with precisions (from the counting statistics) ranging from better than 1 per cent to approximately 20 per cent. The elements that can be determined have been tabulated together with the experimental conditions, the precision from the counting statistics, and the estimated number of analyses possible per day. With an automated system, this number can be as high as 150 in the most favourable cases [af

  8. Design Methodology of Process Layout considering Various Equipment Types for Large scale Pyro processing Facility

    International Nuclear Information System (INIS)

    Yu, Seung Nam; Lee, Jong Kwang; Lee, Hyo Jik

    2016-01-01

    At present, each item of process equipment required for integrated processing is being examined, based on experience acquired during the Pyropocess Integrated Inactive Demonstration Facility (PRIDE) project, and considering the requirements and desired performance enhancement of KAPF as a new facility beyond PRIDE. Essentially, KAPF will be required to handle hazardous materials such as spent nuclear fuel, which must be processed in an isolated and shielded area separate from the operator location. Moreover, an inert-gas atmosphere must be maintained, because of the radiation and deliquescence of the materials. KAPF must also achieve the goal of significantly increased yearly production beyond that of the previous facility; therefore, several parts of the production line must be automated. This article presents the method considered for the conceptual design of both the production line and the overall layout of the KAPF process equipment. This study has proposed a design methodology that can be utilized as a preliminary step for the design of a hot-cell-type, large-scale facility, in which the various types of processing equipment operated by the remote handling system are integrated. The proposed methodology applies to part of the overall design procedure and contains various weaknesses. However, if the designer is required to maximize the efficiency of the installed material-handling system while considering operation restrictions and maintenance conditions, this kind of design process can accommodate the essential components that must be employed simultaneously in a general hot-cell system

  9. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  10. High Temperature Reactors for a new IAEA Coordinated Research Project on energy neutral mineral development processes

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils, E-mail: n.haneklaus@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, 4118 Etcheverry Hall, MC 1730, Berkeley, CA 94720-1730 (United States); Reitsma, Frederik [IAEA, Division of Nuclear Power, Section of Nuclear Power Technology Development, VIC, PO Box 100, Vienna 1400 (Austria); Tulsidas, Harikrishnan [IAEA, Division of Nuclear Fuel Cycle and Waste Technology, Section of Nuclear Fuel Cycle and Materials, VIC, PO Box 100, Vienna 1400 (Austria)

    2016-09-15

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used as raw material for nuclear reactor fuel enabling “energy neutral” processing of the primary ore if the recovered uranium and/or thorium is sufficient to operate the greenhouse gas lean energy source used shall be discussed according to the participants needs. This paper specifically focuses on the aspects to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project.

  11. Continuous Material Balance Reconciliation for a Modern Plutonium Processing Facility

    International Nuclear Information System (INIS)

    CLARK, THOMASG.

    2004-01-01

    This paper describes a safeguards approach that can be deployed at any modern plutonium processing facility to increase the level of safeguards assurance and significantly reduce the impact of safeguards on process operations. One of the most perplexing problems facing the designers of plutonium processing facilities is the constraint placed upon the limit of error of the inventory difference (LEID). The current DOE manual constrains the LEID for Category I and II material balance areas to 2 per cent of active inventory up to a Category II quantity of the material being processed. For 239Pu a Category II quantity is two kilograms. Due to the large material throughput anticipated for some of the modern plutonium facilities, the required LEID cannot be achieved reliably during a nominal two month inventory period, even by using state-of-the-science non-destructive assay (NDA) methods. The most cost-effective and least disruptive solution appears to be increasing the frequency of material balance closure and thus reducing the throughput being measured during each inventory period. Current inventory accounting practices and systems can already provide the book inventory values at any point in time. However, closing the material balance with measured values has typically required the process to be cleaned out, and in-process materials packaged and measured. This process requires one to two weeks of facility down time every two months for each inventory, thus significantly reducing productivity. To provide a solution to this problem, a non-traditional approach is proposed that will include using in-line instruments to provide measurement of the process materials on a near real-time basis. A new software component will be developed that will operate with the standard LANMAS application to provide the running material balance reconciliation, including the calculation of the inventory difference and variance propagation. The combined measurement system and software

  12. Participative Facility Planning for Obstetrical and Neonatal Care Processes: Beginning of Life Process

    Directory of Open Access Journals (Sweden)

    Jori Reijula

    2016-01-01

    Full Text Available Introduction. Old hospitals may promote inefficient patient care processes and safety. A new, functionally planned hospital presents a chance to create an environment that supports streamlined, patient-centered healthcare processes and adapts to users’ needs. This study depicts the phases of a facility planning project for pregnant women and newborn care processes (beginning of life process at Turku University Hospital. Materials and Methods. Project design reports and meeting documents were utilized to assess the beginning of life process as well as the work processes of the Women’s and Children’s Hospital. Results. The main elements of the facility design (FD project included rigorous preparation for the FD phase, functional planning throughout the FD process, and setting key values: (1 family-centered care, (2 Lean thinking and Lean tools as the framework for the FD process, (3 safety, and (4 cooperation. Conclusions. A well-prepared FD project with sufficient insight into functional planning, Lean thinking, and user-centricity seemed to facilitate the actual FD process. Although challenges occurred, the key values were not forgone and were successfully incorporated into the new hospital building.

  13. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  14. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  15. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  16. 30 CFR 780.38 - Support facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 780.38 Section 780.38... Support facilities. Each applicant for a surface coal mining and reclamation permit shall submit a description, plans, and drawings for each support facility to be constructed, used, or maintained within the...

  17. 30 CFR 784.30 - Support facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Support facilities. 784.30 Section 784.30... Support facilities. Each applicant for an underground coal mining and reclamation permit shall submit a description, plans, and drawings for each support facility to be constructed, used, or maintained within the...

  18. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  19. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  20. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  1. A commercial multipurpose radiation processing facility for Hawaii

    International Nuclear Information System (INIS)

    Welt, M.A.

    1985-01-01

    The State of Hawaii offers a unique challenge for the designer of an economically feasible radiation processing system. Based on the prevailing agricultural export requirements, the radiation facility must be capable for handling a variety of bulky fruit and vegetable products for insect disinfestation purposes and, yet, provide proper economies for the users of the facility. A capability must exist for irradiating other types of products requiring higher doses, e.g., fish and shellfish products for shelf-life extension, which might require a dose approximately eight times higher than the disinfestation dose, or even medical product or a food sterilization dose, which would be approximately twelve times higher than the required shelf-life extension dose. The Radiation Technology Model RT 4l0l-4048 radiation processing facility provides the necessary versatility and operational reliability to meet the challenge. The technical features and economic analyses demonstrate the advantages of this computer-operated pallet irradiation system. Actual performance data from the Radiation Technology subsidiary operations in West Memphis, Arkasas, and Burlilngton, North Carolina, are presented along with photographs of the proposed system for Hawaii

  2. The defense waste processing facility: A status report

    International Nuclear Information System (INIS)

    Cowan, S.P.; Fulmer, D.C.

    1987-01-01

    The Defense Waste Processing Fascility (DWPF) will be the nation's first production scale facility for immobilizing high-level waste for disposal. It will also be the largest facility of its kind in the world. The technology, design, and construction efforts are on schedule for ''hot'' operation in fiscal year 1990. This paper provides a status report on the DWPF technology, design, and construction, and describes some of the challenges that have arisen during design and construction

  3. Calculation of MUF for the Pyro-processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yon Hong; Kim, Woo Jin; Han, Jae Jun; Chang, Sun Young; Hwang, Yong Soo

    2016-05-15

    The IAEA safeguards system is divided into DIQ (Design Information Questionnaire), nuclear material accountancy, and additional measure such as C/S (Containment and Surveillance). As the detailed requirements for judging the diversion of nuclear materials, the IAEA suggests SQ (Significant Quantity) about SNM (Special Nuclear Materials), such as U and Pu, and the timeliness goal of detection about the diversion of nuclear materials. To operate facilities, it is required to accomplish these goals. In particular, in the case of the treatment facilities of spent nuclear fuel that has a high Pu content, it is very important to meet the requirements to judge the diversion of nuclear materials. However, given that item counting is impossible in bulk facilities, MUF (Material Unaccounted For) occurs inevitably in the process of nuclear material accountancy. Therefore, to meet the requirements, it is necessary to make evaluation in advance. To reduce such a MUF, the effects on a total MUF were analyzed. As a result, the error arising in a particular process such as U/TRU ingot and Porous Pellets was significant. Therefore, it is necessary to reduce measurement error in the process. MUF is one of requirements to judge the diversion of nuclear materials, and the requirement should be met. Nevertheless, it is required to come up with additional measures to prevent the exclusive use and reduce MUF, such as containment, surveillance, or multi-channel based processing design.

  4. Plutonium production story at the Hanford site: processes and facilities history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  5. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    International Nuclear Information System (INIS)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric

    2015-01-01

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H 2 O 2 < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO 4 2− , ClO 4 − and NO 3 − media. • In Cl − medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH 4 + , NO 3 − and SO 4 2− ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L −1 of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H 2 O 2 . The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H 2 O 2 and added Fe 2+ . The oxidation ability increased in the sequence EO-H 2 O 2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO 4 2− , ClO 4 − and NO 3 − media, whereas in Cl − medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO 4 2− medium and three chloroaromatics in Cl − solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH 4 + , NO 3 − and SO 4 2− ions were released during the mineralization

  6. Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process

    International Nuclear Information System (INIS)

    Paul Guin, Jhimli; Bhardwaj, Y.K.; Varshney, Lalit

    2017-01-01

    An effective process for the oxidation of Methyl Orange dye (MO) was determined by comparing the mineralization efficiency between two advanced oxidation processes (AOPs) viz., ozonolysis and gamma radiolysis in presence and absence of an added inorganic salt potassium persulfate (K_2S_2O_8). The effects of various operating parameters such as ozone flow rate and reaction temperature were optimized to achieve the best possible mineralization extent of MO by ozonolysis. The mineralization efficiency of MO was significantly enhanced during gamma radiolysis in presence of K_2S_2O_8 (γ+K_2S_2O_8) compared to in absence of K_2S_2O_8. The presence of methyl group at the amine of phenyl ring assisted the mineralization of dye during γ+K_2S_2O_8. The oxygen-equivalent chemical-oxidation capacities (OCC) of ozonolysis and γ+K_2S_2O_8 for 75% mineralization of the dye solution were calculated as 7.008 and 0.0336 kg equiv. O_2 m"−"3, respectively which signifies that γ+K_2S_2O_8 can be explored as an effective AOP. The non-biodegradable MO dye solution became biodegradable even after the dose of 0.5 kGy during γ+K_2S_2O_8 compared to 1 kGy in absence of K_2S_2O_8. The study concludes that a lower dose γ+K_2S_2O_8 could be one of the efficient pretreatment steps before undergoing biological degradation of dye solution. - Highlights: • Systematic investigation was performed for the treatment of Methyl Orange dye solution. • AOPs investigated were ozonolysis and gamma radiolysis. • The OCC and % mineralizations of the AOPs were compared. • Gamma radiolysis in presence of K_2S_2O_8 was found as most effective AOP.

  7. Federal mineral policies, 1945 to 1975: a survey of federal activities that affected the Canadian mineral industry

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowski, M

    1979-01-01

    Direct participation and assistance by the government in the mineral industry are discussed. Assistance took the form of grants and subsidies, provision of support services, and provision of transportation and infrastructure facilities. Taxation and tax reform are considered. Regulation of the mineral industry was found to include both direct regulation, such as the Canadian Mining regulations, and indirect regulation, in areas such as manpower, environmental control, transportation and foreign ownership. (67 refs.)

  8. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    This report documents the quality process plan for the restart of a hot cell in the B Plant, originally a bismuth phosphate processing facility, but later converted to a waste fractionation plant. B-Cell is currently being cleaned out and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/1999. This report describes the major activities that remain for completion of the TPA milestone

  9. 30 CFR 56.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  10. Compilation of geospatial data for the mineral industries and related infrastructure of Latin America and the Caribbean

    Science.gov (United States)

    Baker, Michael S.; Buteyn, Spencer D.; Freeman, Philip A.; Trippi, Michael H.; Trimmer III, Loyd M.

    2017-07-31

    This report describes the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Latin America and the Caribbean. The report includes an overview of data sources and an explanation of the geospatial PDF map format.The geodatabase and geospatial data layers described in this report create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains additional data layers from USGS, foreign governmental, and open-source sources as follows: (1) coal occurrence areas, (2) electric power generating facilities, (3) electric power transmission lines, (4) hydrocarbon resource cumulative production data, (5) liquefied natural gas terminals, (6) oil and gas concession leasing areas, (7) oil and gas field center points, (8) oil and gas pipelines, (9) USGS petroleum provinces, (10) railroads, (11) recoverable proven plus probable hydrocarbon resources, (12) major cities, (13) major rivers, and (14) undiscovered porphyry copper tracts.

  11. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  12. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  13. Why does intermittent hydrostatic pressure enhance the mineralization process in fetal cartilage?

    NARCIS (Netherlands)

    Tanck, E.; van Driel, W. D.; Hagen, J. W.; Burger, E. H.; Blankevoort, L.; Huiskes, R.

    1999-01-01

    The purpose of this study was to determine which factor is the most likely one to have stimulated the mineralization process in the in vitro experiments of Klein-Nulend et al. (Arth. Rheum., 29, 1002-1009, 1986), in which fetal cartilaginous metatarsals were externally loaded with an intermittent

  14. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  15. Modern control of mineral wool production process

    Directory of Open Access Journals (Sweden)

    Stankov Stanko P.

    2013-01-01

    Full Text Available In this paper, the control of the plant for mineral wool production consisting of a number of the technological units of different sizes and complexity is considered. The application of modern equipment based on PLC (Programmable Logic Controller and SCADA (Supervisory Control And Data Acquisition configuration provides optimal control of technological process. Described supervisory and control system is consisting of a number of units doing decentralized distributed control of technological entities where all possible situation are considered during work of machines and devices, which are installed in electric drive and are protected from technological and electrical accident. Transformer station and diesel engine, raw materials transport and dosage, processes in dome oven, centrifuges, polycondensation (PC chamber, burners, compressor station, binder preparation and dosage, wool cutting, completed panel packing and their transport to storehouse are controlled. Process variables and parameters like as level, flow, velocity, temperature, pressure, etc. are controlled. Control system is doing identification of process states changes, diagnostic and prediction of errors and provides prediction of behavior of control objects when input flows of materials and generates optimal values of control variables due to decreasing downtime and technic - economical requires connected to wool quality to be achieved. Supervisory and control system either eliminates unwanted changes in the production line or restricts them within the allowable limits according to the technology. In this way, the optimization of energy and raw materials consumption and appropriate products quality is achieved, where requirements are satisfied in accordance with process safety and environmental standards. SCADA provides a visual representation of controlled and uncontrolled parts of the technological process, processing alarms and events, monitoring of the changes of relevant

  16. Uraniferous minerals heap leaching process by counter techique

    International Nuclear Information System (INIS)

    Fuentes G, D.A.

    1978-01-01

    An experimental study was made at laboratory level with respect to a process for the treatment of an uranium ore by counter current acid heap leaching with maturity periods and washing. This mineral with an average grade of 0.24% of U 3 O 8 from the levels zero-fourty of the El Nopal uraniferous deposit, located in the Sierra of Pena Blanca, State of Chihuahua (Mexico). The process which is proposed consist of 4 consecutive stages: a) The prehumectation with a fertile solution of a 0.0034 g U 3 O 8 /1 and 3 g H 2 SO 4 /l concentration, b) The counter current acid attack, c) The maturity or hardening, d) The washing with current water. The relaton liquid-solid in the stages of prehumectation, acid attack, as well as washing stage was of 0.3 m 3 /t. The average efficiency was of 77% of recovered *uranium. (author)

  17. Westinghouse integrated cementation facility. Smart process automation minimizing secondary waste

    International Nuclear Information System (INIS)

    Fehrmann, H.; Jacobs, T.; Aign, J.

    2015-01-01

    The Westinghouse Cementation Facility described in this paper is an example for a typical standardized turnkey project in the area of waste management. The facility is able to handle NPP waste such as evaporator concentrates, spent resins and filter cartridges. The facility scope covers all equipment required for a fully integrated system including all required auxiliary equipment for hydraulic, pneumatic and electric control system. The control system is based on actual PLC technology and the process is highly automated. The equipment is designed to be remotely operated, under radiation exposure conditions. 4 cementation facilities have been built for new CPR-1000 nuclear power stations in China

  18. Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase.

    Science.gov (United States)

    Sanchez-Segado, Sergio; Monti, Tamara; Katrib, Juliano; Kingman, Samuel; Dodds, Chris; Jha, Animesh

    2017-12-21

    Current methodologies for the extraction of tantalum and niobium pose a serious threat to human beings and the environment due to the use of hydrofluoric acid (HF). Niobium and tantalum metal powders and pentoxides are widely used for energy efficient devices and components. However, the current processing methods for niobium and tantalum metals and oxides are energy inefficient. This dichotomy between materials use for energy applications and their inefficient processing is the main motivation for exploring a new methodology for the extraction of these two oxides, investigating the microwave absorption properties of the reaction products formed during the alkali roasting of niobium-tantalum bearing minerals with sodium bicarbonate. The experimental findings from dielectric measurement at elevated temperatures demonstrate an exponential increase in the values of the dielectric properties as a result of the formation of NaNbO 3 -NaTaO 3 solid solutions at temperatures above 700 °C. The investigation of the evolution of the dielectric properties during the roasting reaction is a key feature in underpinning the mechanism for designing a new microwave assisted high-temperature process for the selective separation of niobium and tantalum oxides from the remainder mineral crystalline lattice.

  19. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  20. An investigation into mineral processing of north Semnan refractory earth

    International Nuclear Information System (INIS)

    Aslani, S.; Samin-Bani-Hashemi, H.R.; Taghi-Zadeh, O.

    2002-01-01

    This paper is dealing with refractory earth of North Semnan. Having an area of 2000 square kilometers, Semnan province is mainly formed by sedimentary rocks with a verity of refractory earth, red earth and kaolin containing heavy minerals. The refractory earth of this area contains a considerable rate of aluminum oxide in shape of dia spore minerals, behemoth and gybsite along with heavy minerals of iron and titanium. To improve the quality of refractory earth, in order to be used in related industries, these minerals have to be separated. To assess the quality of refractory earth of North Semnan as the raw materials of refractory industries, their genesis and mineralogy properties have been precisely studied. Based on the rate of aluminium oxide of the refractory earth of North Semnan mines, a suitable mineral deposit has been selected for more investigation. Using XRD and X RF methods along with electronic and photo microscopes, the refractory earth and heavy minerals of them have been assessed. The elementary laboratory experiments of fragmentation and magnetic separation have been performed. It has been proved that the iron minerals can be separated and, therefore, the quality of the refractory earth can be improved. The separation of titanium minerals has to be investigated with other methods

  1. Feed type based expert systems in mineral processing plants

    International Nuclear Information System (INIS)

    Jamsa-Jounela, S.-L.; Laine, S.; Laurila, H.

    1999-01-01

    Artificial Intelligence includes excellent tools for the control and supervision of industrial processes. Several thousand industrial applications have been reported worldwide. Recently, the designers of the AI systems have begun to hybridize the intelligent techniques, expert systems, fuzzy logic and neural networks, to enhance the capability of the AI systems. Expert systems have proved to be ideal candidates especially for the control of mineral processes. As successful case projects, expert system based on on-line classification of the feed type is described in this paper. The essential feature of this expert system is the classification of different feed types and their distinct control strategies at the plant. In addition to the classification, the expert system has a database containing information about how to handle the determined feed type. This self-learning database scans historical process data to suggest the best treatment for the ore type under processing. The system has been tested in two concentrators, the Outokumpu Finnmines Oy, Hitura mine and Outokumpu Chrome Oy, Kemi mine. (author)

  2. Certification of U.S. instrumentation in Russian nuclear processing facilities

    International Nuclear Information System (INIS)

    Powell, D.H.; Sumner, J.N.

    2000-01-01

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities

  3. The mineralization and mechanism of the endogenetic mineral deposit in China

    International Nuclear Information System (INIS)

    Jiang Yonghong

    2010-01-01

    In the process of mineralization, due to the difference in rank, scale and order of structures orebody, mine colomn or rich ore bag are often produced in the specific structural parts. Obviously, it is controlled by favourite structure. The important and direct control of the structure to metal endogenetic mineralization evolution are representative on the affect of pulse action of structure to the multi-stage of mineralization evolution. According to the formation environment of the mineralization, it can be classified as collision orogeny mineralization, release(extension)mineralization, slide draw-division basin mineralization and shear zone extension mineralization. Throng the discuss of endogenetic deposit in the geological evolution, structure and formation machenism, the metallogenic model was preliminary established,and the criteria for delineating favourable metallogenic area was identified. (authors)

  4. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluenttreatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume V, provides a comprehensive conceptual design level narrative description of the process, utility, ventilation, and plant control systems. The feeds and throughputs, design requirements, and basis for process selection are provided, as appropriate. Key DOE/WHC criteria and reference drawings are delineated

  5. Conceptual design for the Waste Receiving And Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. This volume provides the detailed cost estimate for the WRAP 2A facility. Included in this volume is the project construction schedule

  6. Process improvement of reconversion facilities

    International Nuclear Information System (INIS)

    Park, J. H.; Chang, I. S.; Kim, E. H.; Kim, T. J.; Jeong, K. C.; Woo, M. S.; Hong, S. B.; Choi, J. H.; Chung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. W.; Kim, Y. K.; Choi, C. S.

    1993-01-01

    The project is for the development of recovery and reusing process of ammonium carbonate(AC) which is generated as a waste liquid from the reconversion facilities to reduce the manufacturing cost and the quantity of the waste liquid, and also for the development of the continuous fludized bed reaction process to promote the economics and safeties of the calcination and reduction process. In this second year report, measured the properties of AC solution and analyzed the AC concentration quantitatively. Examined the properties of AUC to investigate the properties of UO 2 powder which was converted from AUC, prepared with AC solution. Designed and installed the 2 tons-U/year pilot plant. Experimented in powder properties to set up the range of operating conditions. Modeled CFB reactor to estimate the conversion of reactor and to analyze the change of fluorine concentration to carry out the defluorination reaction. Experimented out the optimum conditions of the major operating parameters : solid circulation rate, gas velocity, solid holdup and initial inventory in cold bed to get the referential design data for hot bed. (Author)

  7. Influence of oil and mineral characteristics on oil-mineral interaction

    International Nuclear Information System (INIS)

    Wood, P.A.; Lunel, T.; Daniel, F.; Swannell, R.; Lee, K.; Stoffyn-Egli, P.

    1998-01-01

    A laboratory study was conducted to simulate the process of oil-mineral interaction in seawater. Thirteen different crudes, emulsions and oil products were used in the study. The objective was to improve the fundamental understanding of the characteristics of oils and minerals that influence the process. The findings of an initial phase of studies based on the swirling flask and marine simulation procedures were also described. Oil content associated with flocs to oil and mineral characteristics were discussed. Emulsions were prepared at 10 degrees C by vigorously mixing the oil with excess artificial seawater in a Kilner jar using a high shear homogenizer. Topped oils were prepared by distillation to 250 degrees C. The biodegraded oil was prepared from the topped crude oil. Biodegradation was achieved over a 28 day period using natural seawater and naturally occurring hydrocarbon degraders. The relationships between oil concentration, oil density and mineral exchange capacity were determined. The study showed that greater oil concentrations in the water column could be expected with (1) the presence of mineral fines, (2) minerals with greater cation exchange rates, (3) minerals with finer sizes, and (4) oils of lower viscosity and density. It was determined that in coastal waters the viscosity of the oil/emulsion will likely be the main factor affecting oil-mineral interactions. The viscosity limit for allowing oil fines interaction is likely to be dependent on the energy in the coastal zone affected by the oil pollution. 18 refs., 5 tabs., 13 figs

  8. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  9. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  10. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    International Nuclear Information System (INIS)

    Leach, C.E.; Galbraith, J.D.; Grant, P.R.; Francuz, D.J.; Schroeder, P.J.

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs

  11. Design of remote handled process assemblies for the process facility modifications project

    International Nuclear Information System (INIS)

    Smets, J.L.; Ajifu, D.A.

    1987-01-01

    The modular design philosophy for the process facility modification project utilizes an integrated design of components to facilitate operations and maintenance of nuclear fuel reprocessing equipment in a hot cell environment. The utilization of a matrix of remoteable base frames combines with process equipment designed as remote assemblies and sub-assemblies has simplified the overall design. Modularity will allow future flexibility while providing advantages for construction and maintenance in the initial installation

  12. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  13. The diesel exhaust in miners study: I. Overview of the exposure assessment process.

    NARCIS (Netherlands)

    Stewart, P.A.; Coble, J.B.; Vermeulen, R.; Schleiff, P.; Blair, A.; Lubin, J.; Attfield, M.; Silverman, D.T.

    2010-01-01

    This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major

  14. The sodium process facility at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1997-01-01

    Argonne National Laboratory - West (ANL-W) has approximately 680,000 liters (180,000 gallons) of raw sodium stored in facilities on site. As mandated by the State of Idaho and the United States Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The SPF was designed to react elemental sodium to sodium carbonate through two-stages involving caustic process and carbonate process steps. The sodium is first reacted to sodium hydroxide in the caustic process step. The caustic process step involves the injection of sodium into a nickel reaction vessel filled with a 50 wt% solution of sodium hydroxide. Water is also injected, controlling the boiling point of the solution. In the carbonate process, the sodium hydroxide is reacted with carbon dioxide to form sodium carbonate. This dry powder, similar in consistency to baking soda, is a waste form acceptable for burial in the State of Idaho as a non-hazardous, radioactive waste. The caustic process was originally designed and built in the 1980s for reacting the 290,000 liters (77,000 gallons) of primary sodium from the Fermi-1 Reactor to sodium hydroxide. The hydroxide was slated to be used to neutralize acid products from the PUREX process at the Hanford site. However, changes in the DOE mission precluded the need for hydroxide and the caustic process was never operated. With the shutdown of the Experimental Breeder Reactor-II (EBR-II), the necessity for a facility to react sodium was identified. In order to comply with Resource Conservation and Recovery Act (RCRA) requirements, the sodium had to be converted into a waste form acceptable for disposal in a Sub-Title D low-level radioactive waste disposal facility. Sodium hydroxide is a RCRA

  15. Afterheat usage from cooling facilities in ORC processes

    International Nuclear Information System (INIS)

    Theede, Florian; Luke, Andrea

    2016-01-01

    In the course of the reduction of climate warming an energy-efficient lay-out of processes is necessary. A possibility for the efficiency increasement is the usage of afterheat currents for instance in ORC processes. Connected with the limitation of refrigerants with high greenhouse potential it comes to the increased application of transcritical cooling facilities with carbon dioxide (CO_2) as refrigerant. By the high pressures after the compression arise here new afterheat sources on a temperature level of about 100 C. An alternative for the simple back-cooling or the heating support and drinking-water heating represents the current production in an ORC process. Great challenges for the lay-out of such an ORC process are the selection of the working fluid as well as the lay-out of the heat exchangers. Established refrigerants in the low-temperature like R245fa for ORC facilities will be in forseeable future no more available. For the study of the possible replacement by alternative refrigerants a simulation model has been developed. By means of this model different refrigerants are analyzed regarding their performance and simultaneously the effects on process and other components studied. The results show that in the temperature range two hydrofluoroolefines R1233zd[E] and R1234ze[Z] as well as the hadron carbon butane can thermodynamically form an alternative.

  16. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    Energy Technology Data Exchange (ETDEWEB)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  17. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    International Nuclear Information System (INIS)

    TOMASZEWSKI, T.A.

    2000-01-01

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management

  18. Design of facilities for processing pyrophoric radioactive material

    International Nuclear Information System (INIS)

    Bristow, H.A.S.; Hunter, S.D.

    1976-01-01

    The safe processing of large quantities of plutonium-bearing material poses difficult problems the solution of which sometimes involves conflicting requirements. The difficulties are increased when plutonium of a high burnup is used and the position becomes considerably more complicated when the chemical nature of the material being handled is such that it is pyrophoric. This paper describes the design principles and methods used to establish a facility capable of manufacturing large quantities of mixed plutonium/uranium carbide. The facility which included process stages such as milling, granulation, pellet pressing, furnacing and pin filling, was largely a conversion of an existing processing line. The paper treats the major plant hazards individually and indicates the methods used to counter them, outlining the main design principles employed and describing their application to selected items of equipment. Examples of the problems encountered with typical items of equipment are discussed. Some guide-lines are listed which should be of general value to designers and developers working on equipment for processing plutonium-bearing solids. The methods described have been successfully employed to provide a plant for the manufacture of mixed plutonium/uranium carbide on a scale of many hundreds of kilograms with no serious incident.(author)

  19. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  20. Critical Protection Item classification for a waste processing facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Garrett, R.J.

    1993-01-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed

  1. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    Science.gov (United States)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  2. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  3. Remote process connectors for the new waste calcining facility

    International Nuclear Information System (INIS)

    Jacobs, R.T.; Carter, J.A.; Hohback, A.C.

    1978-01-01

    The remote process connectors developed, used, and tested at the Remote Maintenance Development Facility are described. These connectors, including the three-bolt kinematic-graphite flange and watertight electrical connectors, are assembled on master jigs (holding-welding fixture) to form interchangeable pump and valve loop assemblies. These assemblies, with their guide-in platforms, make possible a method of performing remote maintenance at the New Waste Calcining Facility which is a departure from methods that until now have been the standard of the industry

  4. Structural design considerations for a radwaste processing facility

    International Nuclear Information System (INIS)

    Foelber, S.C.; Sabbe, M.A.

    1985-01-01

    The structural engineer needs to consider several criteria when designing a radioactive-waste processing facility in order to properly balance the requirements of safety and economy. This paper addresses the design criteria and structural design of a vitrification building and the special equipment and supports associated with remote process operations. In addition, approaches to construction, and the role of scale models to aid in engineering design and construction are discussed. 5 figures

  5. Alternative Silver Production by Environmental Sound Processing of a Sulfo Salt Silver Mineral Found in Bolivia

    Directory of Open Access Journals (Sweden)

    Alexander Birich

    2018-02-01

    Full Text Available Very often, the production of silver causes devastating environmental issues, because of the use of toxic reagents like cyanide and mercury. Due to severe environmental damage caused by humans in the last decades, the social awareness regarding the sustainable production processes is on the rise. Terms like “sustainable” and “green” in product descriptions are becoming more and more popular and producers are forced to satisfy the rising environmental awareness of their customers. Within this work, an alternative environmental sound silver recovery process was developed for a vein type silver ore from Mina Porka, Bolivia. A foregoing characterization of the input material reveals its mineral composition. In the following mineral processing, around 92.9% silver was concentrated by separating 59.5 wt. % of non-silver minerals. Nitric acid leaching of the generated concentrate enabled a silver recovery of up to 98%. The dissolved silver was then separated via copper cementation to generate a metallic silver product of >99% purity. Summarizing all process steps, a silver yield of 87% was achieved in lab scale. A final upscaling trial was conducted to prove the process’ robustness. Within this trial, almost 4 kg of metallic silver with a purity of higher than 99.5 wt. % was produced.

  6. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin [Calera Corporation, Moss Landing, CA (United States); Gilliam, Ryan [Calera Corporation, Moss Landing, CA (United States); Seeker, Randy [Calera Corporation, Moss Landing, CA (United States)

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  7. Facilities for studying the double beta decay processes

    International Nuclear Information System (INIS)

    Zdesenko, Yu.G.

    1980-01-01

    Modern state, tendencies and perspectiVes of the development of experimental installations to study double β-decay are treated. The main peculiarities of direct recognition and full experiments on the study of double β-decay are considered. A simple ratio is obtained from statistical considerations which connects the life time limits of the nuclei with the facility parameters to conduct direct recognition experiments. Possibilities of different detectors are evaluated on the basis of the ratio. Requirements for the modern technique for complete investigation of double β-decay are formulated and two designs of facilities meeting the requirements are considered. It is shown that the facility with proportional chambers is more perspective. On the basis of the analysis of the facility development to study double β-decay, conclusion is made that the final and unambiguous proof of the existence of double β-decay process can be obtained only directly in the experiments with immediate recording of the decay acts. Possibilities of the existing and developed facilities to conduct recognition (direct) experiments are such, that with their help life time limits as to neutronless double β-decay at the level of 10 21 -10 22 years can be established. Counters on the basis of the condensed noble gases, semiconductor detectors made of TeCd, scintillators of big volume are the most perspective detectors. To conduct complete experiments it is necessary to develop a facility with sensitivity sufficient for the detection of two-neutrino double β-activeness when Tsub(1/2)=10sup(21) years [ru

  8. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    International Nuclear Information System (INIS)

    Jia, C.Q.; Pickles, C.A.; Brienne, S.; Rao, S.R.

    2008-01-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs

  9. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry; Pickles, C.A. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mining Engineering; Brienne, S. [Teck Cominco Metals Ltd., Trail, BC (Canada). Applied Research and Engineering; Rao, S.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Mining and Materials Engineering] (eds.)

    2008-07-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  10. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric, E-mail: brillas@ub.edu

    2015-06-15

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H{sub 2}O{sub 2} < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media. • In Cl{sup −} medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH{sub 4}{sup +}, NO{sub 3}{sup −} and SO{sub 4}{sup 2−} ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L{sup −1} of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H{sub 2}O{sub 2} (EO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H{sub 2}O{sub 2}. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H{sub 2}O{sub 2} and added Fe{sup 2+}. The oxidation ability increased in the sequence EO-H{sub 2}O{sub 2} < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media, whereas in Cl{sup −} medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO{sub 4}{sup 2−} medium and three chloroaromatics in Cl{sup −} solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH{sub 4

  11. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  12. Consenting process for radiation facilities. V. 4

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  13. Consenting process for radiation facilities. V. 3

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  14. Consenting process for radiation facilities. V. 1

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  15. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  16. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R.

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  17. Mineral industry in Australia

    International Nuclear Information System (INIS)

    Parbo, S.A.

    1982-01-01

    The paper reviews the history and growth of the mineral industry in Australia and its significance to the nation's economic growth and overseas trade, particularly over the last twenty years during which time production of coal, iron ore, manganese and mineral sands has increased greatly and new discoveries of petroleum, bauxite and nickel have given rise to major new industries. Australia ranks fourteenths in the value of world trade and is among the world's largest exporters of alumina, iron ore, mineral sands, coal, lead, zinc and nickel. Some details of production, processing and exports of the major minerals are given. Comment is made on the policies and roles of the six State Governments and the Federal Government in respect of ownership and control of the mining, processing and exporting of both energy and non-energy minerals. (orig.) [de

  18. Development of an integrated facility for processing transuranium solid wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.; Hootman, H.E.; Permar, P.H.

    1978-01-01

    An integrated facility is being designed for processing solid wastes contaminated with long-lived alpha emitting (TRU) nuclides; this waste has been stored retrievably at the Savannah River Plant since 1965. The stored waste, having a volume of 10 4 m 3 and containing 3x10 5 Ci of transuranics, consists of both mixed combustible trash and failed and obsolete equipment primarily from transuranic production and associated laboratory operations. The facility for processing solid transuranic waste will consist of five processing modules: 1) unpackaging, sorting, and assaying; 2) treatment of combustibles by controlled air incineration; 3) size reduction of noncombustibles by plasma-arc cutting followed by decontamination by electropolishing; 4) fixation of the processed waste in cement; and 5) packaging for shipment to a federal repository. The facility is projected for construction in the mid-1980's. Pilot facilities, sized to manage currently generated wastes, will also demonstrate the key process steps of incineration of combustibles and size reduction/decontamination of noncombustibles; these facilities are projected for 1980-81. Development programs leading to these extensive new facilities are described

  19. Development of an integrated facility for processing TRU solid wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.; Hootman, H.E.; Permar, P.H.

    1977-01-01

    An integrated facility is being designed for processing solid wastes contaminated with long-lived alpha emitting (TRU) nuclides; this waste has been stored retrievably at the Savannah River Plant since 1965. The stored waste, having a volume of 10 4 m 3 and containing 3 x 10 5 Ci of transuranics, consists of both mixed combustible trash and failed and obsolete equipment primarily from transuranic production and associated laboratory operations. The facility for processing solid transuranic waste will consist of five processing modules: (1) unpackaging, sorting, and assaying; (2) treatment of combustibles by controlled air incineration; (3) size reduction of noncombustibles by plasma-arc cutting followed by decontamination by electropolishing; (4) fixation of the processed waste in cement; and (5) packaging for shipment to a federal repository. The facility is projected for construction in the mid-1980's. Pilot facilities, sized to manage currently generated wastes, will also demonstrate the key process steps of incineration of combustibles and size reduction/decontamination of noncombustibles; these facilities are projected for 1980-81. Development programs leading to these extensive new facilities are described

  20. The suitability of Doppler flowmeters for use in the minerals-processing industry

    International Nuclear Information System (INIS)

    Ormrod, G.T.W.

    1983-01-01

    In this report, six commercially available Doppler flowmeters, which were operated under conditions likely to be encountered in the minerals-processing industry, are evaluated. The effects of the density and particle-size distribution of a flowing slurry and the optimum siting of the flowmeter probe are considered, and the results of tests on the response and linearity of the flowmeters are reported

  1. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  2. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  3. Design of the Waste Receiving and Processing (WRAP) 2A Facility

    International Nuclear Information System (INIS)

    Lamberd, D.L.; Weingardt, K.M.

    1994-07-01

    Radioactive and Hazardous Mixed Waste have accumulated at the US Department of Energy (DOE) Hanford Site in south-central Washington State. Future generated waste streams from planned facilities at the Hanford Site and off site will also generate solid wastes that contain both radiological and hazardous chemical components. Most of the low-level waste (LLW) in this category is generated in batches sized to be stored in smaller containers (mostly 55-gallon drums and boxes). To meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions, most of this waste will need to be treated to meet disposal requirements. In general this treatment must include stabilization/solidification either as a sole method or as part of a treatment train. A planned DOE facility, the Waste Receiving and Processing (WRAP) Module 2A, Building 2337-W, is scoped to provide this required treatment for containerized contact-handle at sign d (CH), mixed low-level waste (MLLW) at the Hanford Site. The core processes in WRAP Module 2A include cement stabilization of particulate waste, polyethylene encapsulation (via extrusion) of particulate waste, and cement encapsulation (via vibratory infilling) of hard and soft debris. A conceptual design was prepared and issued in July 1992. Since that time, process development test activities and further design iterations have evolved into the optimized process and facility design presented in this paper. This paper will discuss the revised processing scheme, equipment configuration, and facility layout. The WRAP Module 2A will begin construction in 1996 after a detailed design effort and pilot testing activities

  4. Process control and safeguards system plutonium inventory conrol for MOX fuel facility

    International Nuclear Information System (INIS)

    Mishima, T.; Aoki, M.; Muto, T.; Amanuma, T.

    1979-01-01

    The plutonium inventory control (PINC) system is a real-time material accountability control system that is expected to be applied to a new large-scale plutonium fuel production facility for both fast breeder reactor and heavy water reactor at the Power Reactor and Nuclear Development Corporation. The PINC is basically a system for material control but is expected to develop into a whole facility control system, including criticality control, process control, quality control, facility protection, and so forth. Under PINC, every process and storage area is divided into a unit area, which is the smallest unit for both accountability and process control. Item and material weight automatically are accounted for at every unit area, and data are simultaneously treated by a computer network system. Sensors necessary for the system are being developed. 9 figures

  5. Defense Waste Processing Facility staged operations: environmental information document

    International Nuclear Information System (INIS)

    1981-11-01

    Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document

  6. Methods of modeling and optimization of work effects for chosen mineral processing systems

    Directory of Open Access Journals (Sweden)

    Tomasz Niedoba

    2005-11-01

    Full Text Available The methods being used in the mineral processing modeling are reviewed in this paper. Particularly, the heuristic approach was presented. The new, modern techniques of modeling and optimization were proposed, including the least median squares method and genetic algorithms. The rules of the latter were described in details.

  7. 30 CFR 57.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  8. Process control and dosimetry in a multipurpose irradiation facility

    Science.gov (United States)

    Cabalfin, E. G.; Lanuza, L. G.; Solomon, H. M.

    1999-08-01

    Availability of the multipurpose irradiation facility at the Philippine Nuclear Research Institute has encouraged several local industries to use gamma radiation for sterilization or decontamination of various products. Prior to routine processing, dose distribution studies are undertaken for each product and product geometry. During routine irradiation, dosimeters are placed at the minimum and maximum dose positions of a process load.

  9. Non-Coal Mineral Production Mines in Iowa, 2000

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Registered noncoal mineral production sites within the State of Iowa, current to the year 2000. This shape file contains polygons representing the permitted...

  10. Solid radioactive waste processing facility of the NPP Leningrad

    International Nuclear Information System (INIS)

    Weichard, Swetlana

    2008-01-01

    On behalf of the Russian Company Rosenergoatom NUKEM Technologies GmbH is planning and constructing a complete facility for the processing of solid low- and medium-active radioactive wastes. The NPP Leningrad comprises 4 units of RBMK-1000 reactors, the plant life has been extended by 15 years, the first unit is to be decommissioned in 2018. The construction of four new units is planned. NUKEM is in charge of planning, manufacture, construction and startup of the following facilities: sorting, internal transport, combustion and waste gas cleaning, emission surveillance, compacting, packaging and radiological measurement.

  11. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  12. Practice for dosimetry in electron and bremsstrahlung irradiation facilities for food processing. 2. ed.

    International Nuclear Information System (INIS)

    2002-01-01

    This practice describes dosimetric procedures to be followed in facility characterization, process qualification, and routine processing for electron beam and bremsstrahlung irradiation facilities for food processing to ensure that product receives an acceptable range of absorbed doses. Other procedures related to facility characterization, process qualification, and routine product processing that may influence and be used to monitor absorbed dose in the product are also discussed. Information about effective or regulatory dose limits for food products is not within the scope of this practice (see ASTM Guides F 1355 and F 1356). The electron energy range covered in this practice is from 0.3 MeV to 10 MeV. Such electrons can be generated in continuous or pulse modes. The maximum electron energy of bremsstrahlung facilities covered in this practice is 10 MeV. A photon beam can be generated by inserting a bremsstrahlung converter in the electron beam path (See ISO/ASTM Practice 51608

  13. A process for reducing rocks and concentrating heavy minerals

    Science.gov (United States)

    Strong, Thomas R.; Driscoll, Rhonda L.

    2016-03-30

    To obtain minerals suitable for age-dating and other analyses, it is necessary to first reduce the mineral-bearing rock to a fine, sand-like consistency. Reducing whole rock requires crushing, grinding, and sieving. Ideally, the reduced material should range in size from 80- to 270-mesh (an opening between wires in a sieve). The openings in an 80-mesh sieve are equal to 0.007 inches, 0.177 millimeters, or 177 micrometers. This size range ensures that compound grains are mostly disaggregated and that grains, in general, are dimensionally similar. This range also improves the segregation rate of conspicuous to extremely small individual heavy mineral grains.

  14. Low-level wastewater treatment facility process control operational test report

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1996-01-01

    This test report documents the results obtained while conducting operational testing of a new TK 102 level controller and total outflow integrator added to the NHCON software that controls the Low-Level Wastewater Treatment Facility (LLWTF). The test was performed with WHC-SD-CP-OTP 154, PFP Low-Level Wastewater Treatment Facility Process Control Operational Test. A complete test copy is included in appendix A. The new TK 102 level controller provides a signal, hereafter referred to its cascade mode, to the treatment train flow controller which enables the water treatment process to run for long periods without continuous operator monitoring. The test successfully demonstrated the functionality of the new controller under standard and abnormal conditions expected from the LLWTF operation. In addition, a flow totalizer is now displayed on the LLWTF outlet MICON screen which tallies the process output in gallons. This feature substantially improves the ability to retrieve daily process volumes for maintaining accurate material balances

  15. 30 CFR 71.401 - Location of facilities.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.401...

  16. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  17. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  18. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  19. Effects of Medium-Term Amendment with Diversely Processed Sewage Sludge on Soil Humification—Mineralization Processes and on Cu, Pb, Ni, and Zn Bioavailability

    Directory of Open Access Journals (Sweden)

    Gabriella Rossi

    2018-03-01

    Full Text Available The organic fraction of sewage sludge administered to agricultural soil can contribute to slowing down the loss of soil’s organic carbon and, in some cases, can improve the physical and mechanical properties of the soil. One of the main constraints to the agricultural use of sewage sludge is its heavy metals content. In the long term, agricultural administration of sewage sludge to soil could enhance the concentration of soil heavy metals (as total and bioavailable fractions. The aim of this research was to evaluate the effects of medium-term fertilization with diversely processed sewage sludge on the soil’s organic carbon content and humification–mineralization processes, on the physical–mechanical properties of soil and their influence on the pool of potentially bioavailable heavy metals, in order to assess their effectiveness as soil organic amendments. After eight years of sludge administration; an increase in the concentrations of bioavailable form was evidenced in all the heavy metals analyzed; independently of the type of sludge administered. The form of sludge administration (liquid, dehydrated, composted has differently influenced the soil humification–mineralization processes and the physical–mechanical properties of soil. The prolonged amendment with composted sewage sludge contributed to keeping the soil humification–mineralization process in equilibrium and to improving the physical and mechanical qualities of the treated soil.

  20. Using the extended parallel process model to prevent noise-induced hearing loss among coal miners in Appalachia

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Johnson, L.; Witte, K.; Patel, D.; Orrego, V.; Zuckerman, C.; Maxfield, A.M.; Thimons, E.D. [Ohio State University, Columbus, OH (US)

    2004-12-15

    Occupational noise-induced hearing loss is the second most self-reported occupational illness or injury in the United States. Among coal miners, more than 90% of the population reports a hearing deficit by age 55. In this formative evaluation, focus groups were conducted with coal miners in Appalachia to ascertain whether miners perceive hearing loss as a major health risk and if so, what would motivate the consistent wearing of hearing protection devices (HPDs). The theoretical framework of the Extended Parallel Process Model was used to identify the miners' knowledge, attitudes, beliefs, and current behaviors regarding hearing protection. Focus group participants had strong perceived severity and varying levels of perceived susceptibility to hearing loss. Various barriers significantly reduced the self-efficacy and the response efficacy of using hearing protection.

  1. Application of the photo-fenton process to the mineralization of phthalic anhydride in aqueous medium

    International Nuclear Information System (INIS)

    Trabelsi Souissi, Souhaila; Oturan, N.; Oturan, M. A; Bellakhal, N.

    2009-01-01

    A photochemical method for the oxidation of persistent organic pollutants (POPs) present in liquid effluents of plastic industry is described. This method, called p hoto-Fenton , involves the generation of hydroxyl radicals by coupling the Fenton reaction and photochemistry, .OH radicals thus formed react rapidly with organic pollutants leading to their oxidation until their total mineralization. In this study, we applied the photo-Fenton process for the removal of phthalic anhydride (plasticizer). In this way, an optimization of experimental parameters (namely the ratio R = [H 2 O 2 ]/[Fe 3+ ] and Fe 3+ initial concentration) was performed. Under optimal conditions, the kinetic of mineralization of phthalic anhydride by .OH has been studied. All results confirm the efficiency of photo-Fenton process for the decontamination of liquid effluents loaded with plasticizers.

  2. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  3. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  4. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  5. The tin mining and heavy mineral processing industry in the Kinta Valley, Perak, Malaysia

    International Nuclear Information System (INIS)

    Lee Swee Ching

    1994-01-01

    Overview of the tin mining and heavy mineral processing in the Kinta Valley, Perak, Malaysia was presented. Amang, a mixture composed of tin ore, sand, ilmenite, monazite, zircon, xenotime, struvite, etc , as a product from tin mining activities was discussed too in this paper

  6. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  7. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other, miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume 1 provides a narrative of the project background, objective and justification. A description of the WRAP 2A mission, operations and project scope is also included. Significant project requirements such as security, health, safety, decontamination and decomissioning, maintenance, data processing, and quality are outlined. Environmental compliance issues and regulatory permits are identified, and a preliminary safety evaluation is provided

  8. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at the Hanford Reservation. The mission of the facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume III is a compilation of the outline specifications that will form the basis for development of the Title design construction specifications. This volume contains abbreviated CSI outline specifications for equipment as well as non-equipment related construction and material items. For process and mechanical equipment, data sheets are provided with the specifications which indicate the equipment overall design parameters. This volume also includes a major equipment list

  9. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins, originate in the chemical separations and high-level radioactive waste processing areas, known as F-Area and H-Area. The new facility will allow closure of the basins in order to meet the provisions of the Resource Conservation and Recovery Act by November 1988. A high degree of reliability is expected from this design as a result of extensive process development work that has been conducted at the Savannah River Laboratory. This work has included both bench scale testing of individual unit operations and pilot scale testing of an integrated facility, 150 to 285 L/min (40 to 75 gpm), that contains the major operations

  10. Radiological safety and environmental surveillance during the mining and milling of beach minerals and processing of monazite

    International Nuclear Information System (INIS)

    Pillai, P.M.B.; Khan, A.H.

    2003-01-01

    This paper highlights the occupational and environmental radiological safety aspects and surveillance activities associated with mining and milling of beach minerals and processing of monazite, based on the experience gained over more than three decades of operations of the plants of Indian Rare Earths Ltd, at Chavara (Kerala), Manavalakurichi (Tamilnadu) and Udyogamandal (Kerala). The mining of beach sands, mineral separation and chemical processing of monazite for the recovery of Th and U involve occupational radiation hazards and safety problems of varying magnitudes. This part of the front end of the nuclear fuel cycle involves average per-capita occupational exposures ranging from 1.0 mSv to 8 mSv per year. The collective doses involved work out to 4.5 to 5.4 Person Sieverts per year and involve nearly 1000 radiation workers. Internal exposure contributes to nearly half of the exposure. Mechanization of the operations, process modifications, administrative controls and constant safety surveillance have over the years helped to reduce the exposures and to maintain them at levels as low as reasonably achievable (ALARA). Environmental releases resulting from the operations are well within the limits stipulated by competent authorities and exposures to public from the mining, mineral separation and monazite processing are not significant. (author)

  11. Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charak, I; Pedersen, D.R.; Forrester, R.J.; Phipps, R.D.

    1993-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL's Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed

  12. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Mirro, G.A. [Growth Resources, Inc., Lafayette, LA (United States)

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  13. International mineral economics

    International Nuclear Information System (INIS)

    Gocht, W.R.; Eggert, R.G.

    1988-01-01

    International Mineral Economics provides an integrated overview of the important concepts. The treatment is interdisciplinary, drawing on the fields of economics, geology, business, and mining engineering. Part I examines the technical concepts important for understanding the geology of ore deposits, the methods of exploration and deposit evaluation, and the activities of mining and mineral processing. Part II focuses on the economic and related concepts important for understanding mineral development, the evaluation of exploration and mining projects, and mineral markets and market models. Finally, Part III reviews and traces the historical development of the policies of international organizations, the industrialized countries, and the developing countries. (orig.)

  14. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    Energy Technology Data Exchange (ETDEWEB)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  15. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    International Nuclear Information System (INIS)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO 3 ) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities

  16. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  17. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    Science.gov (United States)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  18. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.)

    Science.gov (United States)

    Xu, Yixiang; Ramirez, Elizabeth

    2013-01-01

    Stinging nettle (Urtica dioica L.) has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion) and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g) were washed and processed by blanching (1 min at 96–98°C) or cooking (7 min at 98-99°C) with or without salt (5 g·L−1). Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%–100% of vitamin A (including vitamin A as β-carotene) and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets. PMID:26904610

  19. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.

    Directory of Open Access Journals (Sweden)

    Laban K. Rutto

    2013-01-01

    Full Text Available Stinging nettle (Urtica dioica L. has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g were washed and processed by blanching (1 min at 96–98°C or cooking (7 min at 98-99°C with or without salt (5 g·. Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%–100% of vitamin A (including vitamin A as β-carotene and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets.

  20. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.).

    Science.gov (United States)

    Rutto, Laban K; Xu, Yixiang; Ramirez, Elizabeth; Brandt, Michael

    2013-01-01

    Stinging nettle (Urtica dioica L.) has a long history of usage and is currently receiving attention as a source of fiber and alternative medicine. In many cultures, nettle is also eaten as a leafy vegetable. In this study, we focused on nettle yield (edible portion) and processing effects on nutritive and dietary properties. Actively growing shoots were harvested from field plots and leaves separated from stems. Leaf portions (200 g) were washed and processed by blanching (1 min at 96-98°C) or cooking (7 min at 98-99°C) with or without salt (5 g·L(-1)). Samples were cooled immediately after cooking and kept in frozen storage before analysis. Proximate composition, mineral, amino acid, and vitamin contents were determined, and nutritive value was estimated based on 100 g serving portions in a 2000 calorie diet. Results show that processed nettle can supply 90%-100% of vitamin A (including vitamin A as β-carotene) and is a good source of dietary calcium, iron, and protein. We recommend fresh or processed nettle as a high-protein, low-calorie source of essential nutrients, minerals, and vitamins particularly in vegetarian, diabetic, or other specialized diets.

  1. CO2 fixation using magnesium silicate minerals part 1: Process description and performance

    International Nuclear Information System (INIS)

    Fagerlund, Johan; Nduagu, Experience; Romão, Inês; Zevenhoven, Ron

    2012-01-01

    This paper describes a staged carbonation process for magnesium silicate mineral carbonation. This carbon dioxide capture and storage (CCS) alternative involves the production of magnesium hydroxide, followed by its carbonation in a pressurised fluidised bed (PFB) reactor. The goal is to utilise the heat of the carbonation reaction to drive the Mg(OH) 2 production step. The results show that Mg(OH) 2 can be produced successfully (up to 78% Mg extraction extent achieved so far) and efficiently from different serpentinite minerals from locations worldwide (Finland, Lithuania, Australia, Portugal…). From the extraction step, ammonium sulphate is recovered while iron oxides (from the mineral) are obtained as by-products. The carbonation step, while still being developed, resulted in >50%-wt conversion in 10 min (500 °C, 20 bar) for > 300 μm serpentinite-derived Mg(OH) 2 particles. Thus the reaction rate achieved so far is much faster than what is currently being considered fast in the field of mineral carbonation. -- Highlights: ► Magnesium silicate-based rock can sequester CO 2 as stable magnesium carbonate. ► Abundance of rock material offers a larger capacity than other CCS methods. ► Mg(OH) 2 production is followed by its carbonation in a pressurised fluidised bed. ► Carbonation reaches >50% in around 10 min for >0.3 mm particles. ► Mg(OH) 2 produced from different rock material show the same performance.

  2. 30 CFR 75.1600-2 - Communication facilities; working sections; installation and maintenance requirements; audible or...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Communication facilities; working sections; installation and maintenance requirements; audible or visual alarms. 75.1600-2 Section 75.1600-2 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Communications § 75.1600-2 Communication facilities; working...

  3. Thermodynamic Evaluation of Floating Production Storage and Offloading Facilities with Liquefaction Processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing.They have gained interest because they are more flexible than conventional plants and can be used for producingoil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remotelocations. The present work investigates the possibility of integrating liquefaction processes on such facilities, consideringfour possible petroleum compositions, which differ in their contents of carbon dioxide, light and heavy hydrocarbons.The performance...

  4. The development of application technology for image processing in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woog Ki; Sohn, Surg Won; Kim, Seung Ho; Hwang, Suk Yeoung; Kim, Byung Soo

    1991-01-01

    The object of this project is to develop application technology of image processing in nuclear facilities where image signal are used for reliability and safety enhancement of operation, radiation exposure reduce of operator, and automation of operation processing. We has studied such application technology for image processing in nuclear facilities as non-tactile measurement, remote and automatic inspection, remote control, and enhanced analysis of visual information. On these bases, automation system and real-time image processing system are developed. Nuclear power consists in over 50% share of electic power supply of our country nowdays. So, it is required of technological support for top-notch technology in nuclear industry and its related fields. Especially, it is indispensable for image processing technology to enhance the reliabilty and safety of operation, to automate the process in a place like a nuclear power plant and radioactive envionment. It is important that image processing technology is linked to a nuclear engineering, and enhance the reliability abd safety of nuclear operation, as well as decrease the dose rate. (Author)

  5. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  6. Facility siting as a decision process at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    1995-01-01

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts

  7. Management of waste from mining and minerals processing

    International Nuclear Information System (INIS)

    Kraus, W.

    2000-01-01

    Growing attention has been paid to exposures to enhanced natural radiation in the last decade. One important problem is the management of waste from mining and minerals processing. The inconsistencies in the relevant approaches may partly be a consequence of the fact that feasible but too expensive measures to reduce doses may be unreasonable because of their socio-economic impacts. Although in principle airborne and liquid effluents belong to the definition of radioactive waste they are not discussed in this paper: There are three different basic waste types: -Waste rock piles and tailings from uranium mining and milling as practices. -Wastes created by mining and processing of minerals where the enhanced radioactivity is incidental to the work, e.g. phosphate industry, processing of metal ores and zircon sands, manufacture of rare earths, manufacture and use of thorium compounds, oil and gas extraction industry, combustion of coal. (Amounts of wastes and their activity concentrations are very different in different countries. Most of these 'practices' already exist, and they might be included in the radiation protection system like an intervention situation. In the European Basic Safety Standards they are called 'work activities'.) -Residues from former mining and processing, where radiation protection had not or inadequately been observed, as pure intervention situations. To solve radiation protection problems with regard to enhanced natural radioactivity a flexible approach is to be preferred. After an overview of the problems and their significance in a country work activities and intervention situations of concern should be identified. Compliance with established dose criteria should be achieved by simple intervention measures. Only if this is not possible a radiation protection system as for practices should be applied. At present efforts are focussed on occupational exposures. The management of wastes should analogously and simultaneously be included in new

  8. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  9. Methodology for Determining Increases in Radionuclide Inventories for the Effluent Treatment Facility Process

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    A study is currently underway to determine if the Effluent Treatment Facility can be downgraded from a Hazard Category 3 facility to a Radiological Facility per DOE STD-1027-92. This technical report provides a methodology to determine and monitor increases in the radionuclide inventories of the ETF process columns. It also provides guidelines to ensure that other potential increases to the ETF radionuclide inventory are evaluated as required to ensure that the ETF remains a Radiological Facility

  10. Influence of preferred orientation of minerals in the mineralogical identification process by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Fernandes, Maria Lourdes Souza, E-mail: lourdesfernandes@ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de GeoCiencias. Centro de Pesquisa Professor Manoel Teixeira da Costa

    2011-07-01

    The X-ray diffraction corresponds to one of the main techniques for characterization of microstructures in crystalline materials, widely used in the identification of minerals in samples of geological materials. Some minerals have a property called preferred orientation which corresponds to the orientation tendency of the crystals of ground minerals to orient themselves in certain directions according to a preferred crystallographic plane. This property affects the analysis by X-ray diffraction and this fact can generates erroneous results in the characterization. The purpose of this study is to identify the negative influence of the preferred orientation of a mineral in the generation of diffraction patterns obtained in the X-ray diffraction analysis. For this, a sample of muscovite, a mineral of mica group, was prepared by two different methods: the frontal method and the back loading method. In the analysis using the frontal method there was displacement of the XRD pattern in the abscissa axis, where it was observed changes in interplanar distance and angle 2{theta} values, which are essential information for characterization and identification of a mineral. In the analysis using the back loading method, the generated XRD pattern showed no displacement in the axis of abscissas and showed interplanar distance and angle 2{theta} values closer to the real values for the muscovite. The results showed that one can only make improvements to the process of sample preparation minimizing the effect of preferred orientation in the analysis. There is no need to change conditions of diffractometer measurements. (author)

  11. Influence of preferred orientation of minerals in the mineralogical identification process by X-ray diffraction

    International Nuclear Information System (INIS)

    Silva, Amanda Luzia da; Oliveira, Arno H. de; Fernandes, Maria Lourdes Souza

    2011-01-01

    The X-ray diffraction corresponds to one of the main techniques for characterization of microstructures in crystalline materials, widely used in the identification of minerals in samples of geological materials. Some minerals have a property called preferred orientation which corresponds to the orientation tendency of the crystals of ground minerals to orient themselves in certain directions according to a preferred crystallographic plane. This property affects the analysis by X-ray diffraction and this fact can generates erroneous results in the characterization. The purpose of this study is to identify the negative influence of the preferred orientation of a mineral in the generation of diffraction patterns obtained in the X-ray diffraction analysis. For this, a sample of muscovite, a mineral of mica group, was prepared by two different methods: the frontal method and the back loading method. In the analysis using the frontal method there was displacement of the XRD pattern in the abscissa axis, where it was observed changes in interplanar distance and angle 2θ values, which are essential information for characterization and identification of a mineral. In the analysis using the back loading method, the generated XRD pattern showed no displacement in the axis of abscissas and showed interplanar distance and angle 2θ values closer to the real values for the muscovite. The results showed that one can only make improvements to the process of sample preparation minimizing the effect of preferred orientation in the analysis. There is no need to change conditions of diffractometer measurements. (author)

  12. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-01-01

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  13. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoying; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Guo, Yuxi; Zhang, Yihe, E-mail: zyh@cugb.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  14. Flotation of sulphide minerals 1990

    Energy Technology Data Exchange (ETDEWEB)

    Forssberg, K S.E. [ed.; Luleaa University of Technology, Luleaa (Sweden). Division of Mineral Processing

    1991-01-01

    A total of 27 papers presented at the workshop on flotation of sulphide minerals, reprinted from the International Journal of Mineral Processing, vol. 33, nos. 1-4, are included in this book. They cover various aspects of flotation of such minerals as chalcopyrite, pyrrhotite, galena, malachite and pyrite.

  15. 36 CFR 331.17 - Minerals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Minerals. 331.17 Section 331..., KENTUCKY AND INDIANA § 331.17 Minerals. All activities in connection with prospecting, exploration, development, mining or other removal or the processing of mineral resources and all uses reasonably incident...

  16. An instrumentation and control philosophy for high-level nuclear waste processing facilities

    International Nuclear Information System (INIS)

    Weigle, D.H.

    1990-01-01

    The purpose of this paper is to present an instrumentation and control philosophy which may be applied to high-level nuclear waste processing facilities. This philosophy describes the recommended criteria for automatic/manual control, remote/local control, remote/local display, diagnostic instrumentation, interlocks, alarm levels, and redundancy. Due to the hazardous nature of the process constituents of a high-level nuclear waste processing facility, it is imperative that safety and control features required for accident-free operation and maintenance be incorporated. A well-instrumented and controlled process, while initially more expensive in capital and design costs, is generally safer and less expensive to operate. When the long term cost savings of a well designed process is coupled with the high savings enjoyed by accident avoidance, the benefits far outweigh the initial capital and design costs

  17. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  18. NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)

    Science.gov (United States)

    Hoover, Jay C.

    2004-01-01

    Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

  19. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    Science.gov (United States)

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  1. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  2. Platinum-group element mineralization

    International Nuclear Information System (INIS)

    Gruenewaldt, G.

    1985-01-01

    The purpose of this investigation is to determine the geological processes responsible for the abnormal enrichment of the platinum-group elements (PGE) in the mineralized layers of the Bushveld Complex. Questions asked are: what processes caused enrichment of the Bushveld magma in the PGE ; by what processes were these PGE concentrated in the mineralized layers ; was contamination of the Bushveld magma from external sources important in the formation of the PGE enriched layers ; what are the effects of fractional crystallization on the PGE ratios

  3. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  4. Evaluation of mercury in the liquid waste processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vijay [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, Hasmukh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Occhipinti, John E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, Richard E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  5. Waste Receiving and Processing Facility, Module 1: Volume 7, Project design criteria

    International Nuclear Information System (INIS)

    1992-03-01

    This Project Design Criteria document for the WRAP facility at the Hanford Site is presented within a systems format. The WRAP Module 1 facility has been categorized into eight (8) engineering systems for design purposes. These systems include: receiving, shipping and storage, nondestructive assay/nondestructive examination (NDA/NDE), waste process, internal transportation, building, heating ventilation and air conditioning (HVAC), process control, and utilities. Within each system section of this document, the system-specific requirements are identified. The scope of the system is defined, the design goals are identified and the functional requirements are detailed

  6. Monitoring System with Two Central Facilities Protocol

    Directory of Open Access Journals (Sweden)

    Caesar Firdaus

    2017-03-01

    Full Text Available The security of data and information on government’s information system required proper way of defending against threat. Security aspect can be achieved by using cryptography algorithm, applying information hiding concept, and implementing security protocol. In this research, two central facilities protocol was implemented on Research and Development Center of Mineral and Coal Technology’s Cooperation Contract Monitoring System by utilizing AES and whitespace manipulation algorithm. Adjustment on the protocol by creating several rule of validation ID’s generation and checking processes could fulfill two of four cryptography objectives, consist of authentication and non-repudiation. The solid collaboration between central legitimization agency (CLA, central tabulating facility (CTF, and client is the main idea in two central facilities protocol. The utilization of AES algorithm could defend the data on transmission from man in the middle attack scenario. On the other hand, whitespace manipulation algorithm provided data integrity aspect of the document that is uploaded to the system itself. Both of the algorithm fulfill confidentiality, data integrity, and authentication.

  7. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2003-01-01

    The availability of isotope grade, Highly Enriched Uranium (HEU), from the United States for use in the manufacture of targets for molybdenum-99 production in AECL's NRU research reactor has been a key factor to enable MDS Nordion to develop a reliable, secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets is a proven and established method that has reliably produced medical isotopes for several decades. The HEU process provides predictable, consistent yields for our high-volume, molybdenum-99 production. Other medical isotopes such as I-131 and Xe-133, which play an important role in nuclear medicine applications, are also produced from irradiated HEU targets as a by-product of the molybdenum-99 process. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the commissioning of two MAPLE reactors and an associated isotope processing facility (the New Processing Facility). The new MAPLE facilities, which will be dedicated exclusively to medical isotope production, will provide an essential contribution to a secure, robust global healthcare system. Design and construction of these facilities has been based on a life cycle management philosophy for the isotope production process. This includes target irradiation, isotope extraction and waste management. The MAPLE reactors will operate with Low Enriched Uranium (LEU) fuel, a significant contribution to the objectives of the RERTR program. The design of the isotope production process in the MAPLE facilities is based on an established process - extraction of isotopes from HEU target material. This is a proven technology that has been demonstrated over more than three decades of operation. However, in support of the RERTR program and in compliance with U.S. legislation, MDS Nordion has undertaken a LEU Target Development and Conversion Program for the MAPLE facilities. This paper will provide an

  8. OPAQUE MINERAL CONTENT OF DUTLUCA VOLCANICS (BURHANİYE - BALIKESİR: THE EFFECT OF HYDROTHERMAL ALTERATION ON THESE MINERALS

    Directory of Open Access Journals (Sweden)

    Şükrü KOÇ

    2016-12-01

    Full Text Available Dutluca volcanics, which are known as Hallaçlar Formation in regional scale in the study area (Kurshens- ky, 1976, are composed of hydrothermally altered andesite and basaltic andesite. In these rocks, sulfidic minerals such as pyrite, enargite and chalcosine, and oxide and hydroxide minerals such as magnetite, hematite and goethite were detected as opaque minerals. The presence of enargite in opaque mineral para- genesis, and the changes observed in structures and textures of opaque and silicate minerals indicate that examined volcanics have been altered by highly sulfidic hydrothermal solutions. During the hydrothermal alteration process, which indicates at least in two phases, a diffuse pyritization rich in H S in reducing conditions and enargite mineral, which is known as pathfinder minerals in such processes, formed in the first phase. Later on; the extensive martitization developed in oxidizing conditions.

  9. Considerations in setting up and planning a graft processing facility.

    Science.gov (United States)

    Koh, Mickey B C

    2017-12-01

    The graft processing facility forms one of the core components of a clinical haematopoietic stem cell transplant program. The quality of a graft is instrumental in leading to consistent and reproducible outcomes of engraftment and other parameters. As such, meticulous planning and consideration is required and will include core elements including physical design and clinical correlates. The successful running of such a facility depends on an overarching quality program and adherence to local and international regulatory guidelines. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  10. Distribution of clay minerals in the process streams produced by the extraction of bitumen from Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W.; Etsell, T.H.; Ivey, D.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Omotoso, O. [Natural Resources Canada, Devon, AB (Canada). CETC

    2009-02-15

    The clay minerals present in the oil sands were studied with particular reference to how they are partitioned in bitumen ore during the extraction process. Bitumen production from surface-mined oil sands accounts for nearly two-thirds of the total bitumen production in Alberta. Every cubic meter of mined ore results in 1.3 cubic meters of mature fine tailings (MFT). The characteristic differences between the clay minerals that report to the froth versus the tailings streams were also examined to determine which minerals could impact different unit operations in the bitumen extraction process. X-ray diffraction and random powder samples were used to quantify the clay minerals. Particle size distribution and clay activity balances were also conducted. The degree of partitioning during the conditioning and flotation stages in a batch extractor was determined by the surface properties of the clay minerals. The water-continuous tailings stream was separated into fine and coarse tailings fractions through sedimentation. The study showed that bitumen-clay interactions may be dominated by kaolinite or iron oxides. Clays are responsible for the poor settling behaviour of MFTs. The clay minerals present in the oil sands include illite, illite-smectite, kaolinite, kaolinite-smectite, and chlorite. The close proximity of the tailings ponds to the Athabasca River and volatile organic compounds (VOCs) emission require that the ponds be reclaimed to a natural landscape before mine closure. In addition to its impact on fine tailings reclamation, clay mineralogy plays a role in extraction froth flotation and emulsion stability during froth treatment. The mineralogy of the froth solids was found to be different from the mineralogy of the middlings and tailings solids. 39 refs., 6 tabs., 6 figs.

  11. Minerals industry survey, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This is the seventh edition of the statistical survey commissioned by the Australian Mining Industry Council. It represents the most comprehensive review of the financial position of the Australian minerals industry and provides timely financial data on the minerals industry. The tables of this survey have been prepared for AMIC by Coopers and Lybrand, Chartered Accountants, based on information supplied to them in confidence by the respondent companies. For the purpose of the survey, the minerals industry has been defined as including exploration for, and extraction and primary processing of, minerals in Australia. The oil and gas industry is not included.

  12. Potential applications of fusion neutral beam facilities for advanced material processing

    International Nuclear Information System (INIS)

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m 2 . Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces

  13. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    Science.gov (United States)

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes 5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  15. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  16. Supplemental environmental impact statement - defense waste processing facility

    International Nuclear Information System (INIS)

    1994-11-01

    This document supplements the Final Environmental Impact Statement (EIS) DOE Issued in 1982 (DOE/EIS-0082) to construct and operate the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), a major DOE installation in southwestern South Carolina. That EIS supported the decision to construct and operate the DWPF to immobilize high-level waste generated as a result of nuclear materials processing at SRS. The DWPF would use a vitrification process to incorporate the radioactive waste into borosilicate glass and seal it in stainless steel canisters for eventual disposal at a permanent geologic repository. The DWPF is now mostly constructed and nearly ready for full operation. However, DOE has made design changes to the DWPF since the 1982 EIS to improve efficiency and safety of the facility. Each of these modifications was subjected to appropriate NEPA review. The purpose of this Supplemental EIS is to assist DOE in deciding whether and how to proceed with operation of the DWPF as modified since 1982 while ensuring appropriate consideration of potential environmental effects. In this document, DOE assesses the potential environmental impacts of completing and operating the DWPF in light of these design changes, examines the impact of alternatives, and identifies potential actions to be taken to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socioeconomics, and health and safety of onsite workers and the public are included in the assessment

  17. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)], E-mail: al-abed.souhail@epa.gov; Jegadeesan, G. [Pegasus Technical Services Inc., 46 East Hollister Street, Cincinnati, OH 45219 (United States); Purandare, J. [Englandgeosystem Inc., 15375 Barranca Pkwy, Suite F-106, Irvine, CA 92618 (United States); Allen, D. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2008-05-30

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste.

  18. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    International Nuclear Information System (INIS)

    Al-Abed, Souhail R.; Jegadeesan, G.; Purandare, J.; Allen, D.

    2008-01-01

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste

  19. Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments

    International Nuclear Information System (INIS)

    Syed, H.S.

    1999-01-01

    Adsorption studies of thorium and uranium radionuclides on 9 different pure clay minerals and 4 local Malaysian soil sediments were conducted. Solution containing dissolved thorium and uranium at pH 4.90 was prepared from concentrate sludges from a long term storage facility at a local mineral processing plant. The sludges are considered as low level radioactive wastes. The results indicated that the 9 clay minerals adsorbed more uranium than thorium at pH ranges from 3.74 to 5.74. Two local Malaysian soils were observed to adsorb relatively high concentration of both radionuclides at pH 3.79 to 3.91. The adsorption value 23.27 to 27.04 ppm for uranium and 33.1 to 50.18 ppm for thorium indicated that both soil sediments can be considered as potential enhanced barrier material for sites disposing conditioned wastes containing uranium and thorium. (author)

  20. Dosimetry. Standard practice for dosimetry in gamma irradiation facilities for food and non-food processing

    International Nuclear Information System (INIS)

    2008-01-01

    This Ghana Standard outlines the installation qualification program for an irradiator and the dosimetry procedures to be followed during operational qualification, performance qualification and routine processing in facilities that process food and non-food with gamma rays. This is to ensure that the product has been treated with predetermined range of absorbed dose. It is not intended for use in X-ray and electron beam facilities and therefore dosimetry systems in such facilities are not covered

  1. On-line measurement and control in sustainable mineral processing and energy production

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    2002-01-01

    Sustainable development can be defined as development that 'meets the needs of the present without compromising the ability of future generations to meet their own needs' (WCED, 1987). A sustainable minerals and energy industry will need to achieve a number of related objectives including greater energy efficiency, improved utilisation of ore deposits, improved utilisation of existing plant, improved product quality, reduction of waste material, reduction of pollution levels and improved safety margins. These objectives all relate in varying degrees to the triple bottom line of economic, social and environmental benefits. One critical component in achieving these objectives is to develop and apply improved control systems across the full range of industry applications from mining to processing and utilisation. However process control relies heavily on the availability of suitable on-line process instrumentation to provide the data and feedback necessary for its implementation. There is a lot of truth in the saying 'if you can't measure it you can't control it'. In the past measurement was achieved by manual sampling followed by sample preparation (such as drying, mixing, crushing and dividing) and off-line laboratory analysis. However this procedure is often subject to significant sampling errors and, most importantly, the measurements are too slow for control purposes. By contrast, on-line analysis can provide rapid and accurate measurement in real time thus opening up new possibilities for improved process control. As a result, there has been a rapid increase in the industrial application of on-line analysis instrumentation over the past few decades. The main purpose of this paper is to briefly review some past Australian developments of on-line analysis systems in the mineral and coal industries and to discuss present developments and future trends

  2. ASEAN Mineral Database and Information System (AMDIS)

    Science.gov (United States)

    Okubo, Y.; Ohno, T.; Bandibas, J. C.; Wakita, K.; Oki, Y.; Takahashi, Y.

    2014-12-01

    AMDIS has lunched officially since the Fourth ASEAN Ministerial Meeting on Minerals on 28 November 2013. In cooperation with Geological Survey of Japan, the web-based GIS was developed using Free and Open Source Software (FOSS) and the Open Geospatial Consortium (OGC) standards. The system is composed of the local databases and the centralized GIS. The local databases created and updated using the centralized GIS are accessible from the portal site. The system introduces distinct advantages over traditional GIS. Those are a global reach, a large number of users, better cross-platform capability, charge free for users, charge free for provider, easy to use, and unified updates. Raising transparency of mineral information to mining companies and to the public, AMDIS shows that mineral resources are abundant throughout the ASEAN region; however, there are many datum vacancies. We understand that such problems occur because of insufficient governance of mineral resources. Mineral governance we refer to is a concept that enforces and maximizes the capacity and systems of government institutions that manages minerals sector. The elements of mineral governance include a) strengthening of information infrastructure facility, b) technological and legal capacities of state-owned mining companies to fully-engage with mining sponsors, c) government-led management of mining projects by supporting the project implementation units, d) government capacity in mineral management such as the control and monitoring of mining operations, and e) facilitation of regional and local development plans and its implementation with the private sector.

  3. Radiation processing facilities and services in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    It is envisaged that radiation processing will continue to play an important role towards the progress and development of industry in Malaysia. Malaysian Government will continue to play an active role to support R and D in this field by providing the necessary infrastructure, facility, trained manpower and research funds. Additional e-beam accelerator is planned to be installed at Nuclear Malaysia in 2007. The medium energy electron beam accelerator (1 MeV, 50 mA) will be mainly use to evaluate the commercial viability for treating aqueous products such as wastewater. (author)

  4. Chemical process for recovery of uranium values contained in phosphoric mineral lixivia

    International Nuclear Information System (INIS)

    Conceicao, E.L.H. da; Awwal, M.A.; Coelho, S. V.

    1980-01-01

    A recovery process of uranium values from phosporic mineral lixivia for obtaining uranio oxide concentrate adjusted to specifications of purity for its commercialization the process consists of the adjustment of electromotive force of lixiviem to suitable values for uranium extraction, extraction with organic solvent containing phosphoric acid ester and oxidant reextraction from this solvent with phosphoric acid solution, suggesting a new solvent extraction containing synergetic mixture of di-2-ethyl hexyl phosphoric acid and tri-octyl phosphine, leaching this solvent with water and re-extraction/precipitation with ammonium carbonate solution, resulting in the formation of uranyl tricarbonate and ammonium, that by drying and calcination gives the uranium oxide with purity degree for commercialization. (M.C.K.) [pt

  5. Development of the Facility for Transformation of Magnetic Characteristics of Weakly Magnetic Oxidized Iron Ores Related to Improvement of Technologies for Iron Ore Concentrate Production

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.M.

    2016-01-01

    Full Text Available New facility for continuous registration of iron ore magnetization depending on temperature by heating of iron ores upon reducing conditions was created. Facility allows to register the processes of transformation of weakly magnetic minerals into strongly magnetic ones under the influence of reducing agents and temperature, as well as to determine the Curie temperature of the minerals. Using created facility it was shown, that heating of goethite and hematite in the presence of 4 % of starch in the temperature range of 300—650 °С leads to significant increase of magnetization of the samples. X-Ray diffraction confirmed that under indicated conditions the structure of hematite and goethite is transformed into magnetite structure. Obtained results open up new possibilities for the development of effective technologies for oxidized iron ore beneficiation.

  6. Accident simulation in a chemical process facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Hope, E.P.

    1993-01-01

    The US Department of Energy requires Westinghouse Savannah River Company to safely operate the chemical separations facilities at the Savannah River Site (SRS). As part of the safety analysis program, simulation of a proposed frame waste recovery (FWR) system is needed to determine the possible accident consequences that may affect public safety. This paper details the simulation process for the proposed frame waste recovery process and describes the analytical tools used in order to make estimates of accident consequences. Since the process in question has been operated, historical data and statistics about its operation are available. Software tools have been developed to allow analysis of the frame waste recovery system, including the generation of system specific dose conversion factors for a number of unique situations. Accident scenarios involving spilled liquid material are analyzed and account for the specific floor geometry of the facility. Confinement and filtration systems are considered. Analysis of source terms is a limiting factor which affects the entire evaluation process. In the past, facility source terms were generally constant with occasional variations from established patterns. As new site missions unfold, significant variations in source terms can be expected. The impact of these variations on the safety analysis is discussed

  7. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  8. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  9. A world of minerals in your mobile device

    Science.gov (United States)

    Jenness, Jane E.; Ober, Joyce A.; Wilkins, Aleeza M.; Gambogi, Joseph

    2016-09-15

    Mobile phones and other high-technology communications devices could not exist without mineral commodities. More than one-half of all components in a mobile device—including its electronics, display, battery, speakers, and more—are made from mined and semiprocessed materials (mineral commodities). Some mineral commodities can be recovered as byproducts during the production and processing of other commodities. As an example, bauxite is mined for its aluminum content, but gallium is recovered during the aluminum production process. The images show the ore minerals (sources) of some mineral commodities that are used to make components of a mobile device. On the reverse side, the map and table depict the major source countries producing these mineral commodities along with how these commodities are used in mobile devices. For more information on minerals, visit http://minerals.usgs.gov.

  10. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  11. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  12. Waste Receiving and Processing Facility, Module 1: Volume 5, Engineering studies

    International Nuclear Information System (INIS)

    1992-03-01

    The WRAP facility at Hanford will retrieve, process, certify transuranic, mixed, and low level radioactive wastes for disposal/either on-site or at the WIPP. The Conceptual Design Report for the Waste Receiving And Processing Facility, Module 1 (WRAP 1), established the technical benchmark. The UE ampersand C Engineering Proposal/Work Plan proposed twenty Evaluation/Optimization Engineering Studies to evaluate design alternatives and critically examine functional performance requirements prior to commencement of Preliminary Design. Of these twenty studies, one has been eliminated as unnecessary (The Use of Scintered Metal Filters) due mainly to the lack of National Standards and to the fact that standard HEPA type filters are totally adequate for WRAP application. This report presents an executive summary of the remaining nineteen studies

  13. Completely automated measurement facility (PAVICOM) for track-detector data processing

    CERN Document Server

    Aleksandrov, A B; Feinberg, E L; Goncharova, L A; Konovalova, N S; Martynov, A G; Polukhina, N G; Roussetski, A S; Starkov, NI; Tsarev, V A

    2004-01-01

    A review of technical capabilities and investigations performed using the completely automated measuring facility (PAVICOM) is presented. This very efficient facility for track-detector data processing in the field of nuclear and high-energy particle physics has been constructed in the Lebedev physical institute. PAVICOM is widely used in Russia for treatment of experimental data from track detectors (emulsion and solid-state trackers) in high- and low-energy physics, cosmic ray physics, etc. PAVICOM provides an essential improvement of the efficiency of experimental studies. In contrast to semi-automated microscopes widely used until now, PAVICOM is capable of performing completely automated measurements of charged particle tracks in nuclear emulsions and track detectors without employing hard visual work. In this case, track images are recorded by CCD cameras and then are digitized and converted into files. Thus, experimental data processing is accelerated by approximately a thousand times. Completely autom...

  14. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  15. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  16. The Sodium Process Facility at Argonne National Laboratory-West

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal

  17. The Sodium Process Facility at Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  18. Transient response and radiation dose estimates for breaches to a spent fuel processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Charles W., E-mail: soltechco@aol.com; Pope, Chad; Andrus, Jason

    2014-08-15

    Highlights: • We model doses received from a nuclear fuel facility from boundary leaks due to an earthquake. • The supplemental exhaust system (SES) starts after breach causing air to be sucked into the cell. • Exposed metal fuel burns increasing pressure and release of radioactive contamination. • Facility releases are small and much less than the limits showing costly refits are unnecessary. • The method presented can be used in other nuclear fuel processing facilities. - Abstract: This paper describes the analysis of the design basis accident for Idaho National Laboratory Fuel Conditioning Facility (FCF). The facility is used to process spent metallic nuclear fuel. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  19. Transient response and radiation dose estimates for breaches to a spent fuel processing facility

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Pope, Chad; Andrus, Jason

    2014-01-01

    Highlights: • We model doses received from a nuclear fuel facility from boundary leaks due to an earthquake. • The supplemental exhaust system (SES) starts after breach causing air to be sucked into the cell. • Exposed metal fuel burns increasing pressure and release of radioactive contamination. • Facility releases are small and much less than the limits showing costly refits are unnecessary. • The method presented can be used in other nuclear fuel processing facilities. - Abstract: This paper describes the analysis of the design basis accident for Idaho National Laboratory Fuel Conditioning Facility (FCF). The facility is used to process spent metallic nuclear fuel. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities

  20. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  1. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  2. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  3. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  4. The nature of innovation processes in Facility Management services

    DEFF Research Database (Denmark)

    Nardelli, Giulia

    Purpose: This work investigates the dynamics of interaction between stakeholders of Facilities Management (FM) innovation and improvement processes. The aim is to understand how the complex value chain of FM services influences innovation processes within this field. Theory: This study combines...... theories on innovation in services with research focused on the empirical field of FM. More specifically, the analytical framework for this study applies the differentiation between reactive and proactive innovation processes by Toivonen and Tuominen (2009) to the value chain identified by Coenen...... has a threefold impact on the nature of innovation processes within this field. Firstly, end-users of FM services are usually not involved in innovation processes, although they might sometimes play a role as initial drivers. Secondly, FM services are intangible but more easily reproducible than other...

  5. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish

    International Nuclear Information System (INIS)

    Yang, L; Zhang, Y; Cui, F Z

    2007-01-01

    Two types of mineral-related matrix vesicle, multivesicular body (MVB) and monovesicle, were detected in the skeletal bone of zebrafish. Transmission electron microscopy and energy dispersive spectroscopy (EDS) analyses of the vesicular inclusions reveal that both types of vesicles contain calcium and phosphorus, suggesting that these vesicles may be involved in mineral ion delivery for the bone mineralization of zebrafish. However, their size and substructure are quite different. Monovesicles, whose diameter ranges from 100 nm to 550 nm, are similar to the previously reported normal matrix vesicles, while MVBs have a larger size of 700-1000 nm in nominal diameter and possess a substructure that is composed of smaller vesicles with their average size around 100 nm. The presence of mineral-related MVBs, which is first identified in zebrafish bone, indicates that the mineralization-associated transportation process of mineral ions is more complicated than is ordinarily imagined

  6. Conceptual structure design of experimental facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Joo, J. S.; Koo, J. H.; Jung, W. M.; Jo, I. J.; Kook, D. H.; Yoo, K. S.

    2003-01-01

    A study on the advanced spent fuel conditioning process (ACP) is carring out for the effective management of spent fuels of domestic nuclear power plants. This study presents basic shielding design, modification of IMEF's reserve hot cell facility which reserved for future usage, conceptual and structural architecture design of ACP hot cell and its contents, etc. considering the characteristics of ACP. The results of this study will be used for the basic and detail design of ACP demonstration facility, and utilized as basic data for the safety evaluation as essential data for the licensing of the ACP facility

  7. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  8. Darlington tritium removal facility and station upgrading plant dynamic process simulation

    International Nuclear Information System (INIS)

    Busigin, A.; Williams, G. I. D.; Wong, T. C. W.; Kulczynski, D.; Reid, A.

    2008-01-01

    Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station has been operating a Tritium Removal Facility (TRF) and a D 2 O station Upgrading Plant (SUP) since 1989. Both facilities were designed with a Distributed Control System (DCS) and programmable logic controllers (PLC) for process control. This control system was replaced with a DCS only, in 1998. A dynamic plant simulator was developed for the Darlington TRF (DTRF) and the SUP, as part of the computer control system replacement. The simulator was used to test the new software, required to eliminate the PLCs. The simulator is now used for operator training and testing of process control software changes prior to field installation. Dynamic simulation will be essential for the ITER isotope separation system, where the process is more dynamic than the relatively steady-state DTRF process. This paper describes the development and application of the DTRF and SUP dynamic simulator, its benefits, architecture, and the operational experience with the simulator. (authors)

  9. Process component inventory in a large commercial reprocessing facility

    International Nuclear Information System (INIS)

    Canty, M.J.; Berliner, A.; Spannagel, G.

    1983-01-01

    Using a computer simulation program, the equilibrium operation of the Pu-extraction and purification processes of a reference commercial reprocessing facility was investigated. Particular attention was given to the long-term net fluctuations of Pu inventories in hard-to-measure components such as the solvent extraction contractors. Comparing the variance of these inventories with the measurement variance for Pu contained in feed, analysis and buffer tanks, it was concluded that direct or indirect periodic estimation of contactor inventories would not contribute significantly to improving the quality of closed material balances over the process MBA

  10. Application for approval to construct the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The following Application For Approval Of Construction is being submitted by the US Department of Energy, Richland Field Office pursuant to 40 CFR 61.07, ''Application for Approval of Construction or Modification,'' for the Waste Receiving and Processing (WRAP) Module 1 facility (also referred to as WRAP 1). The WRAP 1 facility will be a new source of radioactive emissions to the atmosphere. The WRAP 1 facility will be housed in the new 2336-W Building, which will be located in the 200 West Area south of 23rd Street and west of Dayton Avenue. The 200 West Area is located within the boundary of the Hanford Site. The mission of the WRAP 1 facility is to examine, assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the waste in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), Transuranic (TRU) waste, TRU mixed waste, and low-level mixed waste (LLMW). The WRAP 1 facility will only accept contact handled (CH) waste containers. CH waste is a waste category whose external surface dose rate does not exceed 200 mrem/h. These containers have a surface dose rate of less than 200 mrem/h

  11. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  12. Well-being, the Decision making process in residential care facilities and accommodation in Denmark

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann; Harder, Henrik

    process. 3. Alternatives to "the living environments”. In general a discussion about “the living environments” as the only and right solution for organising the residential care facilities and accommodation in Denmark is recommended. Maybe there should be a possibility given to create more private...... for assisted living residential care facilities and accommodation for senior citizens selected from different parts of Denmark. The case study will provide important knowledge on municipal activities in the area of residential care facilities, as well as discuss the different actors’ roles in the decision......-based knowledge is needed: There is a need for research-based knowledge manuals among the actors involved in the planning and project design process which describe systematically the importance of working with the different aspects on well-being in residential care facilities and accommodation in Denmark. 2. More...

  13. Application of remedy studies to the development of a soil washing pilot plant that uses mineral processing technology: a practical experience

    International Nuclear Information System (INIS)

    Richardson, W.S.; Phillips, C.R.; Hicks, R.; Luttrell, J.; Cox, C.

    1999-01-01

    Soil washing employing mineral processing technology to treat radionuclide-contaminated soils has been examined as a remedy alternative to the exclusive excavation, transportation, and disposal of the soil. Successful application depends on a thorough remedy study, employing a systematic tiered approach that is efficient, self-limiting, and cost effective. The study includes: (1) site and soil characterization to determine the basic mineral and physical properties of both the soil and contaminants and to identify their relative associations; (2) treatment studies to evaluate the performance of process units for contaminant separation; (3) conceptual process design to develop a treatment pilot plant; and (4) engineering design to construct, test, and optimize the actual full-scale plant. A pilot plant using soil washing technology for the treatment of radium-contaminated soil was developed, tested, and demonstrated. The plant used particle-size separation to produced a remediated product that represented approximately 50% of the contaminated soil. Subsequently, it was modified for more effective performance and application to soil with alternate characteristics; it awaits further testing. The economic analysis of soil washing using the pilot plant as a model indicates that a remedy plan based on mineral processing technology is very competitive with the traditional alternative employing excavation, transportation, and disposal exclusively, even when disposal costs are modest or when recovery of remediated soil during treatment is low. This paper reviews the tiered approach as it applies to mineral processing technology to treat radionuclide-contaminated soils and a pilot plant developed to test the soil washing process. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Formation of secondary minerals in a lysimeter approach - A mineral-microbe interaction

    Science.gov (United States)

    Schäffner, F.; Merten, D.; De Giudici, G.; Beyer, A.; Akob, D. M.; Ricci, P. C.; Küsel, K.; Büchel, G.

    2012-04-01

    Heavy metal contamination of large areas due to uranium mining operations poses a serious long-term environmental problem. In the Ronneburg district (eastern Thuringia, Germany), leaching of low grade uranium bearing ores (uranium content metals, especially Cd, Ni, Co, Cu and Zn due to a residual contamination even after remediation efforts. To reveal the processes of secondary mineral precipitation in the field a laboratory lysimeter approach was set up under in situ-like conditions. Homogenized soil from the field site and pure quartz sand were used as substrates. In general, in situ measurements of redox potentials in the substrates showed highly oxidizing conditions (200-750 mV). Water was supplied to the lysimeter from below via a mariottés bottle containing contaminated groundwater from the field. Evaporation processes were allowed, providing a continuous flow of water. This led to precipitation of epsomite and probably aplowite on the top layer of substrate, similar to what is observed in field investigations. After 4 weeks, the first iron and manganese bearing secondary minerals became visible. Soil water samples were used to monitor the behaviour of metals within the lysimeter. Saturation indices (SI) for different secondary minerals were calculated with PHREEQC. The SI of goethite showed oversaturation with respect to the soil solution. SEM-EDX analyses and IR spectroscopy confirmed the formation of goethite. Geochemical data revealed that goethite formation was mainly dominated by Eh/pH processes and that heavy metals, e.g. Zn and U, could be enriched in this phase. Although Eh/pH data does not support formation of manganese minerals, Mn(II)-oxidizing bacteria (MOB) could be isolated from field soil samples, supporting the fact that microorganisms may influence this natural attenuation process. Laser ablation ICP-MS data reveal accumulation of manganese in MOB biomass on Mn(II)-containing agar plates. Furthermore, it was possible to show the importance

  15. APET methodology for Defense Waste Processing Facility: Mode C operation

    International Nuclear Information System (INIS)

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF

  16. Mineralization and Transfer Processes of 14C-labeled Pesticides in Outdoor Lysimeters

    International Nuclear Information System (INIS)

    Grundmann, Sabine; Doerfler, Ulrike; Ruth, Bernhard; Loos, Christine; Wagner, Tobias; Karl, Heidrun; Munch, Jean Charles; Schroll, Reiner

    2008-01-01

    A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14 C-labeled substances in soil-plant-atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14 C-emissions from soil surfaces and 14 C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate - using the two-chamber-lysimeter-test-system - are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil-plant-systems. Mineralization of 14 C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14 C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules

  17. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Lu Zheng; Zhang Juan; Ma Yunzi; Song Siyue; Gu Wei

    2012-01-01

    Porous calcium carbonate/carboxymethylcellulose (CaCO 3 /CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO 3 /CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO 3 /CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO 3 /CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO 3 /CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO 3 /CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO 3 /CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  18. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-05-01

    A proposal has been made at LBL to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multilevel, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data through typical transformations and correlations in under 30 s. The throughput for such a facility, for five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600. 3 figures

  19. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-01-01

    A proposal has been made to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multi-level, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data, through typical transformations and correlations, in under 30 sec. The throughput for such a facility, assuming five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600

  20. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  1. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  2. Mineral resource of the month: vermiculite

    Science.gov (United States)

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  3. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N. [Pacific Northwest National Laboratory, Richland, WA, USA; Gallagher, Neal B. [Eigenvector Research, Inc., Manson, WA, USA; Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, WA, USA; Szecsody, James E. [Pacific Northwest National Laboratory, Richland, WA, USA; Tonkyn, Russell G. [Pacific Northwest National Laboratory, Richland, WA, USA; Su, Yin-Fong [Pacific Northwest National Laboratory, Richland, WA, USA; Sweet, Lucas E. [Pacific Northwest National Laboratory, Richland, WA, USA; Lewallen, Tricia A. [Pacific Northwest National Laboratory, Richland, WA, USA; Johnson, Timothy J. [Pacific Northwest National Laboratory, Richland, WA, USA

    2017-10-24

    The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species, including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the

  4. Modeling groundwater age using tritium and groundwater mineralization processes - Morondava sedimentary basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    RAMAROSON, V.

    2007-01-01

    The tritium method in the lumped parameter approach was used for groundwater dating in the Morondava sedimentary basin, Southwestern Madagascar. Tritium data were interpreted by the dispersion model. The modeling results, with P D values between 0.05 and 0.7, show that shallow groundwater age is ranging from 17 to 56 years. Different types of chemical composition were determined for these shallow ground waters, among others, Ca-HCO 3 , Ca-Na-HCO 3 , Ca-Na-Mg-HCO 3 , Ca-K-HCO 3 -NO 3 -SO 4 , Na-Cl, or Ca-Na-Mg-Cl. Likewise, deeper ground waters show various chemical type such as Ca-Na-HCO 3 , Ca-Mg-Na H CO 3 , Ca-Na-Mg-HCO 3 , Ca-Na-Mg-HCO 3 -Cl-SO 4 , Ca-Mg-HCO 3 , Na-Ca-Mg-HCO 3 -SO 4 -Cl, Na-Cl-HCO 3 or Na-HCO 3 -Cl. To evaluate the geochemical processes, the NETPATH inverse geochemical modeling type was implemented. The modeling results show that silicate minerals dissolution , including olivine, plagioclase, and pyroxene is more important than calcite or dolomite dissolution, for both shallow and deeper groundwater . In the Southern part of the study area, while halite dissolution is likely to be the source of shallow groundwater chloride concentration rise, the mineral precipitation seems to be responsible for less chloride content in deeper groundwater. Besides, ion exchange contributes to the variations of major cations concentrations in groundwater. The major difference between shallow and deep groundwater mineralization process lies in the leaching of marine aerosols deposits by local precipitation, rapidly infiltrated through the sandy formation and giving marine chemical signature to shallow groundwater [fr

  5. Preliminary design for the Waste Receiving And Processing Facility Module 1: Volume 3, Outline specifications

    International Nuclear Information System (INIS)

    1992-03-01

    This report presents specifications related to the buildings and equipment of the wrap facility. The facility will retrieve, process, and certify transuranic, mixed, and low-level radioactive wastes for disposal

  6. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  7. Note: Establishing α-particle radiation damage experiments using the Dalton Cumbrian Facility's 5 MV tandem pelletron

    Science.gov (United States)

    Bower, W. R.; Smith, A. D.; Pattrick, R. A. D.; Pimblott, S. M.

    2015-04-01

    Evaluating the radiation stability of mineral phases is a vital research challenge when assessing the performance of the materials employed in a Geological Disposal Facility for radioactive waste. This report outlines the setup and methodology for efficiently allowing the determination of the dose dependence of damage to a mineral from a single ion irradiated sample. The technique has been deployed using the Dalton Cumbrian Facility's 5 MV tandem pelletron to irradiate a suite of minerals with a controlled α-particle (4He2+) beam. Such minerals are proxies for near-field clay based buffer material surrounding radioactive canisters, as well as the sorbent components of the host rock.

  8. Legislative and Regulatory Control for the Safety of Radioactively Contaminated Scrap Metals Generated from Mining and Mineral Processing Facilities in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mohajane, E. P.; Shale, K., E-mail: PEMohajane@nnr.co.za [National Nuclear Regulator, Centurion, Gauteng (South Africa)

    2011-07-15

    In South Africa, enhanced levels of naturally occurring radioactive materials (NORM) are associated with many mining and industrial processes. Significant amounts of waste materials are involved which can result in radiation exposure of the workers and the public particularly through the diversion of materials into the public domain. The following operations have been regulated in South Africa for the past twenty years: operating metallurgical plants utilizing NORM, underground mining operations, scrap recyclers and smelters, and rehabilitation and remediation activities involving the above sites. The radioactively contaminated scrap metal generated from the above mentioned facilities is available for recycling in amounts of thousands of tons. The South African government has, to a certain extent, responded to the above-mentioned challenges by introducing regulatory controls to the affected industries. The existing regulatory controls have, however, not provided absolute answers to all issues associated with the management of scrap. (author)

  9. Supporting Facility Management Processes through End-Users’ Integration and Coordinated BIM-GIS Technologies

    Directory of Open Access Journals (Sweden)

    Claudio Mirarchi

    2018-05-01

    Full Text Available The integration of facility management and building information modelling (BIM is an innovative and critical undertaking process to support facility maintenance and management. Even though recent research has proposed various methods and performed an increasing number of case studies, there are still issues of communication processes to be addressed. This paper presents a theoretical framework for digital systems integration of virtual models and smart technologies. Based on the comprehensive analysis of existing technologies for indoor localization, a new workflow is defined and designed, and it is utilized in a practical case study to test the model performance. In the new workflow, a facility management supporting platform is proposed and characterized, featuring indoor positioning systems to allow end users to send geo-referenced reports to central virtual models. In addition, system requirements, information technology (IT architecture and application procedures are presented. Results show that the integration of end users in the maintenance processes through smart and easy tools can overcome the existing limits of barcode systems and building management systems for failure localization. The proposed framework offers several advantages. First, it allows the identification of every element of an asset including wide physical building elements (walls, floors, etc. without requiring a prior mapping. Second, the entire cycle of maintenance activities is managed through a unique integrated system including the territorial dimension. Third, data are collected in a standard structure for future uses. Furthermore, the integration of the process in a centralized BIM-GIS (geographical information system information management system admit a scalable representation of the information supporting facility management processes in terms of assets and supply chain management and monitoring from a spatial perspective.

  10. Investigating the Geochemical Model for Molybdenum Mineralization in the JEB Tailings Management Facility at McClean Lake, Saskatchewan: An X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Blanchard, Peter E R; Hayes, John R; Grosvenor, Andrew P; Rowson, John; Hughes, Kebbi; Brown, Caitlin

    2015-06-02

    The geochemical model for Mo mineralization in the JEB Tailings Management Facility (JEB TMF), operated by AREVA Resources Canada at McClean Lake, Saskatchewan, was investigated using X-ray Absorption Near-Edge Spectroscopy (XANES), an elemental-specific technique that is sensitive to low elemental concentrations. Twenty five samples collected during the 2013 sampling campaign from various locations and depths in the TMF were analyzed by XANES. Mo K-edge XANES analysis indicated that the tailings consisted primarily of Mo(6+) species: powellite (CaMoO4), ferrimolybdite (Fe2(MoO4)3·8H2O), and molybdate adsorbed on ferrihydrite (Fe(OH)3 - MoO4). A minor concentration of a Mo(4+) species in the form of molybdenite (MoS2) was also present. Changes in the Mo mineralization over time were inferred by comparing the relative amounts of the Mo species in the tailings to the independently measured aqueous Mo pore water concentration. It was found that ferrimolybdite and molybdate adsorbed on ferrihydrite initially dissolves in the TMF and precipitates as powellite.

  11. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  12. Process control and dosimetry in a multipurpose irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Solomon, H.M.

    1998-01-01

    Complete text of publication follows. To introduce and demonstrate radiation processing to the local industries, the Philippine Nuclear Research Institute (PNRI) with the technical assistance of the International Atomic Energy Agency (IAEA) has set up a pilot scale multipurpose gamma irradiation facility. Though on a limited scale, this has led to the commercial radiation sterilization and decontamination of various products, such as empty aluminum tubes, empty gelatin capsules, spices and fresh onions. Process control in this facility involves dose measurement to ensure that the products receive the required dose to get the desired beneficial effect. Prior to routine processing, dose distribution studies to determine the locations of minimum and maximum absorbed dose are undertaken for each product and product-source geometry. The product loading pattern, which meets the required dose uniformity ratio and which gives the optimum amount of product per loading is then chosen. During routine irradiation, dosimeters are placed at the minimum and maximum absorbed dose positions of a process load. If locations of minimum or maximum dose are not readily accessible, dosimeters are placed at reference positions. The relationship of the absorbed dose at these reference positions with the absorbed dose at the minimum or maximum position is established beforehand. Fricke and ethanol chlorobenzene (ECB) dosimeters are used to measure absorbed dose. PNRI participates in the International Dose Assurance Service (IDAS) of IAEA. Results show that absorbed dose as measured by alanine agreed with ECB within 5%, while that from Fricke agreed to within 2%

  13. Process control and dosimetry in a multipurpose irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Solomon, H M [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    1999-12-31

    Complete text of publication follows. To introduce and demonstrate radiation processing to the local industries, the Philippine Nuclear Research Institute (PNRI) with the technical assistance of the International Atomic Energy Agency (IAEA) has set up a pilot scale multipurpose gamma irradiation facility. Though on a limited scale, this has led to the commercial radiation sterilization and decontamination of various products, such as empty aluminum tubes, empty gelatin capsules, spices and fresh onions. Process control in this facility involves dose measurement to ensure that the products receive the required dose to get the desired beneficial effect. Prior to routine processing, dose distribution studies to determine the locations of minimum and maximum absorbed dose are undertaken for each product and product-source geometry. The product loading pattern, which meets the required dose uniformity ratio and which gives the optimum amount of product per loading is then chosen. During routine irradiation, dosimeters are placed at the minimum and maximum absorbed dose positions of a process load. If locations of minimum or maximum dose are not readily accessible, dosimeters are placed at reference positions. The relationship of the absorbed dose at these reference positions with the absorbed dose at the minimum or maximum position is established beforehand. Fricke and ethanol chlorobenzene (ECB) dosimeters are used to measure absorbed dose. PNRI participates in the International Dose Assurance Service (IDAS) of IAEA. Results show that absorbed dose as measured by alanine agreed with ECB within 5%, while that from Fricke agreed to within 2%.

  14. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.

  15. Recovery of rare earth minerals, with emphasis on flotation process

    International Nuclear Information System (INIS)

    Houot, R.; Cuif, J.P.; Mottot, Y.; Samama, J.C.

    1991-01-01

    Bastnasite and monazite are the two major minerals used commercially to supply most of the rare earths. Monazite is often a by-product of the concentration of heavy minerals of zirconium and titanium in beach sands. Thus, the methods of concentration are gravity (spirals, Reichert cones and shaking tables), ending with magnetism, electrostatic and in certain cases, flotation. The two main deposits of bastnasite are Mountain Pass (U.S.A.) and Bayan Obo (China). The rock bastnasite content is within 15% and the recovery of rare earth minerals is made through flotation. The flowsheets are complex enough because the existence of accompanying minerals such as quartz, iron components, barite, fluorite, calcite, etc. The conditioning is done by heating and the frequently employed collector is a fatty acid associated with selective agents, as sodium silicate or fluosilicate, lignin sulphonate, sodium carbonate, aluminium salts, etc. Recent studies tempt to introduce the use of phosphoric esters, dicarboxilic, sulphonic and/or sulphosuccinic acids. Concentrates with 60% REO are then treated with acidic solution to eliminate residual calcite. The possibility of obtaining products enriched with rare earths are also noted: these are ores of uranium (Elliot Lake), pyrochlore, apatite, and other complex ores with euxenite, fergusonite or loparite. (author) 10 figs., 6 tabs., 57 refs

  16. Safety and environmental process for the design and construction of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  17. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  18. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete

  19. Design criteria for the new waste calcining facility at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Anderson, F.H.; Bingham, G.E.; Buckham, J.A.; Dickey, B.R.; Slansky, C.M.; Wheeler, B.R.

    1976-01-01

    The New Waste Calcining Facility (NWCF) at the Idaho Chemical Processing Plant (ICPP) is being built to replace the existing fluidized-bed, high-level waste calcining facility (WCF). Performance of the WCF is reviewed, equipment failures in WCF operation are examined, and pilot-plant studies on calciner improvements are given in relation to NWCF design. Design features of the NWCF are given with emphasis on process and equipment improvements. A major feature of the NWCF is the use of remote maintenance facilities for equipment with high maintenance requirements, thereby reducing personnel exposures during maintenance and reducing downtime resulting from plant decontamination. The NWCF will have a design net processing rate of 11.36 m 3 of high-level waste per day, and will incorporate in-bed combustion of kerosene for heating the fluidized bed calciner. The off-gas cleaning system will be similar to that for the WCF

  20. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  1. Defense waste processing facility at Savannah River Plant. Instrument and power jumpers

    International Nuclear Information System (INIS)

    Heckendorm, F.M. II.

    1983-06-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of equipment interconnecting devices or jumpers for use within the remotely operated processing canyon is now complete. These devices provide for the specialized instrument and electrical requirements of the DWPF process for low-voltage, high-frequency, and high-power interconnections

  2. Effect of dietary phosphorus, phytase, and 25-hydroxycholecalciferol on broiler chicken bone mineralization, litter phosphorus, and processing yields.

    Science.gov (United States)

    Angel, R; Saylor, W W; Mitchell, A D; Powers, W; Applegate, T J

    2006-07-01

    Three floor pen experiments (Exp) were conducted to evaluate low nonphytin P (NPP) concentrations and the NPP sparing effect of phytase (PHY) and 25-hydroxycholecalciferol (25D) on bone mineralization, bone breaking during commercial processing, litter P, and water-soluble P (WSP) concentrations. Tested treatments (TRT) were control, National Research Council NPP; University of Maryland (UMD) NPP; UMD + PHY, UMD NPP reduced by 0.064% NPP + 600 U of PHY/kg; UMD + PHY + 25D, UMD NPP reduced by 0.090% NPP + 600 U of PHY and 70 microg of 25D/kg; control + PHY mimicked the industry practice of diets by 0.1% when PHY is added; and negative control with 90% UMD NPP concentrations. UMD + PHY and control + PHY diets contained 600 U of PHY/kg, and UMD + PHY + 25D contained 600 U of PHY + 70 microg of 25D/kg. Performance results were presented separately. After each Exp, litter P and WSP were determined, and bone measurements were obtained on 8 or 10 broilers per pen. Tested TRT did not affect broiler BW. Femur ash weight of broilers fed the UMD and UMD + PHY + 25D was lower in all Exp compared with that of broilers fed the control diet. Femur ash was similar for control and UMD + PHY broilers, yet averaged over all Exp, UMD + PHY broilers consumed 39% less NPP and required less NPP per gram of femur ash than those on the control (4.87 and 7.77 g of NPP/g of ash, Exp 3). At the end of Exp 3, broilers were processed in a commercial facility. Despite reductions in NPP intake and bone mineralization, no differences were observed in measurements of economic importance (parts lost, carcass yield, and incidence of broken bones). The P excretion per bird was lowest for birds fed the UMD + PHY + 25D diet followed by those fed the UMD + PHY and negative control diets (10.44, 12.00, and 13.78 g of P/bird, respectively) and were highest for those fed the control diet (19.55 g of P/bird). These results suggest that feeding diets low in P together with PHY and 25D will not affect

  3. Studies of neutron methods for process control and criticality surveillance of fissile material processing facilities

    International Nuclear Information System (INIS)

    Zoltowski, T.

    1988-01-01

    The development of radiochemical processes for fissile material processing and spent fuel handling need new control procedures enabling an improvement of plant throughput. This is strictly related to the implementation of continuous criticality control policy and developing reliable methods for monitoring the reactivity of radiochemical plant operations in presence of the process perturbations. Neutron methods seem to be applicable for fissile material control in some technological facilities. The measurement of epithermal neutron source multiplication with heuristic evaluation of measured data enables surveillance of anomalous reactivity enhancement leading to unsafe states. 80 refs., 47 figs., 33 tabs. (author)

  4. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    Science.gov (United States)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  5. The environmental impact assessment process for nuclear facilities: An examination of the Indian experience

    International Nuclear Information System (INIS)

    Ramana, M.V.; Rao, Divya Badami

    2010-01-01

    India plans to construct numerous nuclear plants and uranium mines across the country, which could have significant environmental, health, and social impacts. The national Environmental Impact Assessment process is supposed to regulate these impacts. This paper examines how effective this process has been, and the extent to which public inputs have been taken into account. In addition to generic problems associated with the EIA process for all kinds of projects in India, there are concerns that are specific to nuclear facilities. One is that some nuclear facilities are exempt from the environmental clearance process. The second is that data regarding radiation baseline levels and future releases, which is the principle environmental concern with respect to nuclear facilities, is controlled entirely by the nuclear establishment. The third is that members of the nuclear establishment take part in almost every level of the environmental clearance procedure. For these reasons and others, the EIA process with regard to nuclear projects in India is of dubious quality. We make a number of recommendations that could address these lacunae, and more generally the imbalance of power between the nuclear establishment on the one hand, and civil society and the regulatory agencies on the other.

  6. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  7. Significance and estimations of lifetime of natural fracture mineral buffers in the Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Luukkonen, A.; Pitkaenen, P.; Partamies, S.

    2004-03-01

    This study attempts to make scenarios what geochemical effects the future underground excavations in the Olkiluoto bedrock have on naturally occurring fracture mineral buffers. The excavations of underground research facilities, and final repository galleries will cause steep hydraulic gradients in the bedrock fractures. These gradients likely draw surficial waters within the fracture network and activate weathering processes deeper in rock fractures than in the natural undisturbed conditions. The studies are concentrated on the meteoric and seawater infiltration in the rock fractures, and on the selected minerals considered significant buffers against pH/redox variations in groundwater. Two approaches to calculate the scenarios are utilised. The equilibrium geochemical calculations consider variety of problems including several surficial water compositions, mixing cases between surficial water types, and couple buffer mineral assemblages. These equilibrium calculations indicate that meteoric water by far presents the most potential hazard for the Olkiluoto fracture minerals. In the calculated cases, seawater and the contamination of meteoric water with seawater during the water infiltration usually improved the performance of mineral buffers compared to the pure meteoric water cases. Of the Olkiluoto fracture minerals, calcite and pyrite turn out to be the most important buffer minerals against dissolved O 2 and low pH in groundwater. The kinetic geochemical approach concentrated on two meteoric water cases infiltrating into a narrow fracture channel. Calculations consider the possibilities that the infiltrating meteoric water is dissolved carbon containing soil water or almost 'distilled' rain water. Pyrite and calcite are taken into account as the buffering minerals. Several simulations are done by varying the recharge water compositions and the flow rates of water. It turns out that as long as volumetric flow rates within the 500-metre-channel considered are in

  8. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    reserves and reserve base information carried for years without alteration because no new information is available; historically reported reserves and reserve base reduced by the amount of historical production; and company reported reserves. International minerals availability studies conducted by the U.S. Bureau of Mines, before 1996, and estimates of identified resources by an international collaborative effort (the International Strategic Minerals Inventory) are the basis for some reserves and reserve base estimates. The USGS collects information about the quantity and quality of mineral resources but does not directly measure reserves, and companies or governments do not directly report reserves or reserve base to the USGS. Reassessment of reserves and reserve base is a continuing process, and the intensity of this process differs for mineral commodities, countries, and time period. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. A resource/reserve classification for minerals, based on USGS Circular 831 (published with the U.S. Bureau of Mines) is Appendix C, and a directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2009 are welcomed.

  9. Recovery of asphalt from bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Jossinet, J

    1881-12-31

    A process is disclosed for the recovery of asphalt from bituminous minerals, consisting in that the mineral is extracted with mineral oil, which is recovered by distilling the raw asphalt and distilling the solution to obtain on the one hand the liquid oil contained in the raw asphalt for use in the extraction and on the other hand distilled asphalt.

  10. Procedural justice in wind facility siting: Recommendations for state-led siting processes

    International Nuclear Information System (INIS)

    Ottinger, Gwen; Hargrave, Timothy J.; Hopson, Eric

    2014-01-01

    Evidence suggests that state control of wind facility siting decisions fosters new project development more effectively than local control, yet the literature suggests that affected citizens tend to be more fairly represented in local siting processes. We argue that successful renewable energy policy must satisfy both the need for new project development and the obligation to procedural justice. To suggest how it can do so, we analyze existing state- and county-level siting processes in Washington state, finding that both fall short on measures of procedural justice. To overcome this limitation and address the tension between procedural justice and project development, we then propose a collaborative governance approach to wind facility siting, in which state governments retain ultimate authority over permitting decisions but encourage and support local-level deliberations as the primary means of making those decisions. Such an approach, we argue, would be more just, facilitate wind development by addressing community concerns constructively and result in better projects through the input of diverse stakeholders. - Highlights: • States have made wind energy development a priority. • Local opposition to new projects could hinder future wind energy development. • Procedural justice is necessary to resolve local issues and ensure timely wind facility siting. • Both state- and county-led siting processes fall short with respect to criteria for procedural justice, though local processes have some advantages. • States could instead induce counties, developers to engage in deliberation

  11. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, J.M., E-mail: josemaria.monteagudo@uclm.es [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain); Duran, A.; Aguirre, M.; San Martin, I. [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain)

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H{sub 2}O{sub 2}, Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H{sub 2}O{sub 2} and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k{sub TOC}, increased as initial Fe(II) and H{sub 2}O{sub 2} concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. {center_dot}OH and O{sub 2}{center_dot}{sup -} radicals were the main oxidative intermediate species in the process, although singlet oxygen ({sup 1}O{sub 2}) also played a role in the mineralization reaction.

  13. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  15. 200 Area effluent treatment facility process control plan 98-02

    International Nuclear Information System (INIS)

    Le, E.Q.

    1998-01-01

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)

  16. Nuclear technology and mineral recovery

    International Nuclear Information System (INIS)

    Stewart, Richard M.; Niermeyer, Karl E.

    1970-01-01

    The particular aspect of nuclear technology most applicable to the mineral field, as has been pointed out by various authors, is nuclear blasting. The prime target for this nuclear blasting has usually been a large disseminated deposit of copper mineralization which, because of large dimensions, employs the nuclear devices most effectively. From the work of the AEC we know that the larger nuclear devices fragment rock for a lower energy cost per unit of ground broken than do smaller nuclear devices or chemical explosives. A mineralized deposit near the surface is usually not amenable to nuclear fragmentation, nor are the more deeply buried thin deposits. Also, one would not anticipate fragmenting a zone of excessively erratic mineralization with nuclear devices. Many of our mineralized areas would be eliminated using the above criteria, so at this point you are well aware that my self-imposed limitation is to nuclear blasting and large disseminated copper deposits. As with most other industries, copper mining faces rising costs and greater demands for its products. One of the rising cost features peculiar to extractive industries is the reliance placed on production from lower grade deposits as the higher grade deposits are depleted. As the grade or metal content of an orebody decreases more material must be handled to produce a given amount of metal. The increased volume of ore which must be handled as the grade declines requires expansion of facilities and higher capital expenditures. Expansion of facilities for mining, milling, and concentrating of the ore increases the per unit capital cost of the end product--copper. Increased copper consumption will aggravate this situation with demand for more metal, much of which will have to be obtained from lower grade deposits. As the higher grade deposits are depleted, future production will come from those deposits which cannot be exploited economically today. Most familiar of the proposed new methods for copper mining

  17. Nuclear technology and mineral recovery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Richard M; Niermeyer, Karl E [Anaconda Company, Salt Lake City, UT (United States)

    1970-05-15

    The particular aspect of nuclear technology most applicable to the mineral field, as has been pointed out by various authors, is nuclear blasting. The prime target for this nuclear blasting has usually been a large disseminated deposit of copper mineralization which, because of large dimensions, employs the nuclear devices most effectively. From the work of the AEC we know that the larger nuclear devices fragment rock for a lower energy cost per unit of ground broken than do smaller nuclear devices or chemical explosives. A mineralized deposit near the surface is usually not amenable to nuclear fragmentation, nor are the more deeply buried thin deposits. Also, one would not anticipate fragmenting a zone of excessively erratic mineralization with nuclear devices. Many of our mineralized areas would be eliminated using the above criteria, so at this point you are well aware that my self-imposed limitation is to nuclear blasting and large disseminated copper deposits. As with most other industries, copper mining faces rising costs and greater demands for its products. One of the rising cost features peculiar to extractive industries is the reliance placed on production from lower grade deposits as the higher grade deposits are depleted. As the grade or metal content of an orebody decreases more material must be handled to produce a given amount of metal. The increased volume of ore which must be handled as the grade declines requires expansion of facilities and higher capital expenditures. Expansion of facilities for mining, milling, and concentrating of the ore increases the per unit capital cost of the end product--copper. Increased copper consumption will aggravate this situation with demand for more metal, much of which will have to be obtained from lower grade deposits. As the higher grade deposits are depleted, future production will come from those deposits which cannot be exploited economically today. Most familiar of the proposed new methods for copper mining

  18. Australian mineral industry annual review 1977 (including information to June 1978)

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J

    1979-01-01

    This article records growth of the Australian mineral industry and reports production, consumption, treatment, trade, prices, new developments, exploration, and resources for all mineral commodities including fuels. Equivalent development abroad is summarized. Appendices include principal mineral producers, associations, etc. and royalties. Black coal is described under the headings: production, ex-mine value of output, employment, wages and salaries, production per manshift, interstate trade, port facilities, consumption, stock, prices, new developments, exploration, resources, world review, and coke. There are numerous tables of data and a flow chart of the Australian black coal industry, 1977. Brown coal includes production, consumption, new developments, exploration, resources, and world review.

  19. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    Science.gov (United States)

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  20. Coastal placer minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Gujar, A.R.

    to be processed and purified to extract the metal either by sulphate or chloride route. The economical aspects of placer mining would involve the cost to benefit ratio, which would encompass the money Selective sorting has resulted in two distinct sediments... or mineral at the national and international levels. Interestingly, though gold is the most sought metal and the prices per gram keep rising, there are others that are much more costly such as diamond and rare earth metals. Uses of Heavy Minerals...

  1. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  2. A review of radiological hazards associated with tin by-product mineral processing industry in the SEATRAD centre member countries

    International Nuclear Information System (INIS)

    Udompornwirat, S.

    1993-01-01

    Radiological hazards associated with the tin by-product mineral processing industry has recently become an issue of concern in the SEATRAD Centre member countries namely, Indonesia, Malaysia and Thailand. The SEATRAD Centre, with the assistance of a United Nations Development Program consultant, carried out an investigation on radioactivity problems at twelve tin by-product mineral processing plants in Malaysia and Thailand. The investigation included a survey of external gamma radiation levels and dust sampling for internal dose estimation as well as characterising the potential sources of radiation exposure in the plants. This paper reviews the nature of the tin by-product mineral processing industry and the general levels of associated radiological hazards. In addition, data provided by the government organisations in the member countries are reviewed. Typical annual effective doses experienced by the industry's workers are estimated on the basis of existing information, and possible measures to reduce exposure are discussed. It is concluded that the estimated median effective dose experienced by the workers is about 18 to 19 mSv per annum. Maximum exposures may exceed 200 mSv per annum. The important exposure pathways are external gamma radiation and internal radiation arising through intake of radioactive dust. 5 refs., 2 tabs., 4 figs

  3. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  4. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  5. Waste Receiving and Processing Facility, Module 1: Volume 6, Engineering assessments

    International Nuclear Information System (INIS)

    1992-03-01

    This report evaluates the ability of the WRAP Module 1 Facility to achieve the required material throughput by developing a time and motion simulation model of the facility using the WITNESS Simulation Program. Analysis of the simulation model indicated that the required throughput of 6825 drums per year based on working 5.5 hours in the Shipping ampersand Receiving and Waste Process areas and 7 hours in the NDA/NDE area for 175 days a year, as stated in the Functional Design Criteria (FDC) Rev. 1 and Supplemental Design Requirements Document (SDRD) Rev. 1, can be achieved

  6. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  7. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    Science.gov (United States)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution

  8. Proceedings of the 43. annual conference of metallurgists of CIM and the 5. UBC-McGill biennial international symposium on fundamentals of mineral processing : particle size enlargement in mineral processing

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, J.S. [British Columbia Univ., Vancouver, BC (Canada)] (ed.)

    2004-07-01

    This conference focused on the technological, economic and environmental challenges of increased quantities of fine particles that result from mineral processing operations such as crushing and grinding. The fine particles create problems in both concentration unit operations and solid/liquid separation unit operations. In addition to introductory lectures on fine particle aggregation, the conference included sessions dealing with hydrophobic aggregation in fine particle beneficiation/flotation, flocculation, pelletization and briquetting. The conference featured 32 presentations of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs.

  9. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); INCT de Energia e Ambiente, Universidade Federal da Bahia, 40.170-280, Salvador, Bahia (Brazil); Couto, Marcelo B.; Filho, Miguel Andrade; Assis, Julio C.R.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Almeida, Selmo Q. [Departamento de Engenharia e Arquitetura, Universidade Salvador - UNIFACS, Av. Cardeal da Silva 132, 40.220-141, Salvador, Bahia (Brazil); Souza, Giancarlos S. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA, Rua Emidio de Morais S/N, 40.625-650, Salvador, Bahia (Brazil)

    2010-04-15

    Tallow is a raw material for biodiesel production that, due to their highly centralized generation in slaughter/processing facilities and historically low prices, may have energy, environmental, and economic advantages that could be exploited. However beef tallow biodiesel have unfavorable properties due the presence of high concentration of saturated fatty esters. One way to overcome these inconveniences is using blending procedures. In this way, blends of beef tallow biodiesel with soybean biodiesel and with conventional mineral diesel fuel were prepared and the quality of the mixtures was monitored with the purpose to study ideal proportions of the fuels. By measurement of the viscosity, density, cold filter plugging point, and flash point, it was demonstrated that tallow biodiesel can be blended with both mineral diesel and soybean biodiesel to improve the characteristics of the blend fuels, over that of the tallow. (author)

  10. Development of Spectrophotometric Process Monitors for Aqueous Reprocessing Facilities

    International Nuclear Information System (INIS)

    Smith, N.; Krebs, J.; Hebden, A.

    2015-01-01

    The safeguards envelope of an aqueous reprocessing plant can be extended beyond traditional measures to include surveillance of the process chemistry itself. By observing the concentration of accountable species in solution directly, a measure of real time accountancy can be applied. Of equal importance, select information on the process chemistry can be determined that will allow the operator and inspectors to verify that the process is operating as intended. One of the process monitors that can be incorporated is molecular spectroscopy, such as UV-Visible absorption spectroscopy. Argonne National Laboratory has developed a process monitoring system that can be tailored to meet the specific chemistry requirements of a variety of processes. The Argonne Spectroscopic Process monitoring system (ASP) is composed of commercial-off-the-shelf (COTS) spectroscopic hardware, custom manufactured sample handling components (to meet end user requirements) and the custom Plutonium and Uranium Measurement and Acquisition System (PUMAS) software. Two versions of the system have been deployed at the Savannah River Site's H-Canyon facility, tailored for high and low concentration streams. (author)

  11. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl-, F- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.

  12. Data triggered data processing at the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Jackson, R.J.; Balch, T.R.; Preckshot, G.G.

    1986-01-01

    A primary characteristic of most batch systems is that the input data files must exist before jobs are scheduled. On the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory the authors schedule jobs to process experimental data to be collected during a five minute shot cycle. The data driven processing system emulates a coarsely granular data flow architecture. Processing jobs are scheduled before the experimental data is collected. Processing jobs ''fire'', or execute, as input data becomes available. Similar to UNIX ''pipes'', data produced by upstream processing nodes may be used as inputs by following nodes. Users, working on the networked SUN workstations, specify data processing templates which define processes and their data dependencies. Data specifications indicate the source of data; actual associations with specific data instantiations are made when the jobs are scheduled. The authors report here on details of diagnostic data processing and their experiences

  13. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  14. 30 CFR 71.404 - Application for waiver of surface facilities requirements.

    Science.gov (United States)

    2010-07-01

    ... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...

  15. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  16. Establishing a central waste processing and storage facility in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.; Darko, E.O.

    2001-01-01

    Radioactive waste and spent sealed sources in Ghana are generated from various nuclear applications - diagnostic and therapeutic procedures in medicine, measurement and processing techniques in industry, irradiation techniques for food preservation and sterilization of medical products and a research reactor for research and teaching. Statistics available indicate that over 15 institutions in Ghana are authorized to handle radiation sources. At present radioactive waste and spent sealed sources are collected and stored in the interim facility without conditioning. With the increasing use of radioactive sources in the industry, medicine for diagnostic and therapeutic purpose and research and teaching, the volume of waste is expected to increase. The radioactive waste expected include spent ion exchange resins from the nuclear reactor water purification system, incompactible solid waste from mechanical filter, liquid and organic waste and spent sealed sources. It is estimated that four 200L drums will be needed annually to condition the waste to be generated. The National Radioactive Waste Management Centre (NRWMC) was therefore established to carry radioactive waste safety operations in Ghana and research to ensure that each waste type is managed in the most appropriate manner. Its main task includes development and establishment of the radioactive waste management infrastructure with a capacity considering the future nuclear technology development in Ghana. The first phase covers the establishment of administrative structure, development of basic regulations and construction of the radioactive waste processing and storage facility. The Ghana Radioactive Waste Management regulation has been presented to the Parliament of Ghana for consideration. The initial draft was reviewed by the RPB. A 3-day national seminar on the Understanding and Implementation of the Regulation on Radioactive Waste Management in Ghana was held to discuss and educate the general public on the

  17. Process control through the incorporation of PLC networks in service radiation facilities

    International Nuclear Information System (INIS)

    Moehlmann, J.H.F.

    1990-01-01

    In order to ensure the smooth and safe running and operation of an irradiation facility, several regulations must be complied with, most of which are prescribed by the authorities. However, internal working regulations, based on years of practical experience, are of equal importance. The application of computers, micro-processors and PLCs, in combination with semi-conductor electronics, has improved process control considerably. Not only can every step in the process and even each detailed function be controlled, but also the combination of the different functions. By using PLC-systems in combination with computers, important data can be stored, recorded and presented in such a way that the technical staff can be warned in advance of breakdowns or undesirable deviations in the process parameters. Keeping a log of these data will help guarantee the correct functioning of the irradiation facility. It is even possible with these modern PLC techniques to monitor the control-console, so that each operation is recorded and accessible. (author)

  18. Practice for dosimetry in an X-ray (bremsstrahlung) facility for radiation processing. 2. ed.

    International Nuclear Information System (INIS)

    2002-01-01

    This practice covers dosimetric procedures to be followed in facility characterization, process qualification, and routine processing using X rays (bremsstrahlung) to ensure that the entire product has been treated within an acceptable range of absorbed doses. Other procedures related to facility characterization, process qualification, and routine processing that may influence absorbed dose in the product are also discussed. The establishment of effective or regulatory dose and X-ray energy limits are not within the scope of this practice. In contrast to monoenergetic gamma rays, the bremsstrahlung energy spectrum extends from low values up to the maximum energy of the electrons incident on the X-ray target (see Section 5 and Annex A1). Dosimetry is only one component of a total quality assurance program for an irradiation facility. Other controls besides dosimetry may be required for specific applications such as medical device sterilization and food preservation. For the irradiation of food and the radiation sterilization of health care products, other specific ISO standards exist. For food irradiation, see ISO/ASTM Practice 51431. For the radiation sterilization of health care products, see ISO 11137:1995. In those areas covered by ISO 11137, that standard takes precedence

  19. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  20. Overview of planning process at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Gadeken, A.D.

    1986-03-01

    The planning process at the Fast Flux Test Facility (FFTF) is controlled through a hierarchy of documents ranging from a ten-year strategic plan to a weekly schedule. Within the hierarchy are a Near-Term (three-year) Operating Plan, a Cycle (six-month) Plan, and an Outage/Operating Phase Schedule. Coordination of the planning process is accomplished by a dedicated preparation team that also provides an overview of the formal planning timetable which identifies key action items required to be completed before an outage/operating phase can begin

  1. Geochronological studies on some rocks and minerals from selected areas

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J N [Department of Atomic Energy, Hyderabad (India). Atomic Minerals Div.

    1979-01-01

    Ages obtained at the Atomic Minerals Division laboratory, Hyderabad on a number of rock and mineAal samples are presented. Rb-Sr mineral ages from Pungurthy (Tamil Nadu), Sarguja (Madhya Pradesh), Hazaribagh (Bihar) and whole rock isochron age of the granitic bodies surrounding the Kolar schist belt are reported. Discordant U-Pb ages obtained on the uraninites from Kulu (H.P.) and its interpretation in terms of episodic loss has been discussed. Further facilities that are being set up for undertaking other isotopic analysis work for various geoscientific investigations are outtined.

  2. Effect of tax laws on mineral exploration in Canada

    Energy Technology Data Exchange (ETDEWEB)

    DeYoung, Jr, J H

    1977-06-01

    It is concluded that tax law variations, rather than differences in commodity price changes, have been responsible for shifts in mineral exploration from one political region to another. This view is substantiated by the fact that decreasing mineral exploration in certain parts of Canada has coincided with increased mineral exploration in areas of the USA and in other parts of Canada, and with diversification by mining companies into non-mining activities. It is difficult to analyze separately the effect of all the different considerations facing the managers of the exploration budgets. These decision makers are concerned with the possibility of discovering ore deposits by using available methods; with the costs of finding, acquiring, developing, producing, and marketing mineral commodities; and with expected revenues from product sales. Budget-allocation decisions by those engaged in exploration are influenced by many characteristics of a region including: geology, topography, climate, population density, political structure, applicable legislation on zoning, taxation, and environmental controls, and transportation facilities. The decline in mineral exploration in Canada, particularly in British Columbia, which followed increases in taxes for mining companies has provided policymakers with several examples that should be considered in the development of future mineral policies. These examples are discussed.

  3. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  4. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remote locations. The present work investigates the possibility of integrating liquefaction processes on such facilities, considering two mixed-refrigerant and two expansion-based processes suitable for offshore applications. Two FPSO configurations are considered...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  5. Radiological and environmental safety in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Puranik, V.D.

    2011-01-01

    The front end nuclear fuel cycle comprises of mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad. The Health Physics Units (HPUs)/Environmental Survey Laboratories (ESLs) set up at each site from inception of operation to carry out regular in-plant, personnel monitoring and environmental surveillance to ensure safe working conditions, evaluate radiation exposure of workers, ensure compliance with statutory norms, help in keeping the environmental releases well within the limits and advise appropriate control measures. This paper describes the occupational and environmental radiological safety measures associated with the operations of front end of nuclear fuel cycle. Radiological monitoring in these facilities is important to ensure safe working environment, protection of workers against exposure to radiation and comply with regulatory limits of exposure. The radiation exposure of workers in different units of the front end nuclear fuels cycle facilities operated by IREL, UCIL and NFC and environmental monitoring results are summarised in this paper

  6. Radio nuclides in mineral rocks and beach sand minerals in south east coast, Odisha

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Sahoo, S.K.; Essakki, Chinna; Tripathy, S.K.; Ravi, P.M.; Tripathi, R.M.; Mohanty, D.

    2014-01-01

    The primordial and metamorphic mineral rocks of the Eastern Ghats host minerals such as rutile, ilmenite, Silmenite, zircon, garnet and monazite in quartz matrix. The weathered material is transported down to the sea by run-off through Rivers and deposited back in coastal beach as heavy mineral concentrates. The minerals are mined by M/S Indian Rare Earths Ltd at the Chatrapur plant in Odisha coast to separate the individual minerals. Some of these minerals have low level radioactivity and may pose external and internal radiation hazard. The present paper deals with natural Thorium and Uranium in the source rocks with those observed in the coastal deposits. The study correlates the nuclide activity ratios in environmental samples in an attempt to understand the ecology of the natural radio nuclides of 238 U, 232 Th, 40 K and 226 Ra in environmental context. Further work is in progress to understand the geological process associated with the migration and reconcentration of natural radio-nuclides in the natural high background radiation areas

  7. Health Effects Due to Radionuclides Content of Solid Minerals within Port of Richards Bay, South Africa

    Directory of Open Access Journals (Sweden)

    Felix B. Masok

    2016-11-01

    Full Text Available This study assessed the radiological health hazards to various body organs of workers working within Transnet Precinct in Richards Bay in Kwazulu-Natal, South Africa due to radionuclide content of mineral ores often stored within the facility. Thirty samples were collected from five mineral ores (rock phosphate, rutile, zircon, coal and hematite and analyzed for 238U, 234U, 226Ra, 210Pb, 235U, 232Th, 228Ra, 228Th and 40K using delayed neutron activation analysis and low energy gamma spectroscopy. Rutile was found to be the most radioactive mineral ore within the facility with 210Pb concentration of 759.00 ± 106.00 Bq·kg−1. Effective annual dose rate in (mSv·y−1 delivered to different organs of the body: testes, bone marrow, whole body, lungs and ovaries from mineral ores were such that dose from mineral ores decreased in the order coal > rutile > rock phosphate > hematite > zircon. The organs with the highest received dose rate were the testes and this received dose was from coal. However, all of the calculated absorbed dose rates to organs of the body were below the maximum permissible safety limits.

  8. Preliminary technical data summary defense waste processing facility stage 2

    International Nuclear Information System (INIS)

    1980-12-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 2 of the Staged Defense Waste Processing Facility (DWPF). Process changes incorporated in the staged DWPF relative to the Alternative DWPF described in PTDS No. 3 (DPSTD-77-13-3) are the result of ongoing research and development and are aimed at reducing initial capital investment and developing a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it is filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material and curie balances, material and curie balance bases, and other technical data for design of Stage 2 of the DWPF. Stage 1 technical data are presented in DPSTD-80-38

  9. Investigation of the synergistic effects for p-nitrophenol mineralization by a combined process of ozonation and electrolysis using a boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Cuicui [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Yuan, Shi [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Xiang; Wang, Huijiao; Bakheet, Belal [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Komarneni, Sridhar [Department of Ecosystem Science and Management and Material Research Institute, 205 MRL Building, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Yujue, E-mail: wangyujue@tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2014-09-15

    Graphical abstract: - Highlights: • Combining electrolysis with ozonation greatly enhances nitrophenol mineralization. • O{sub 3} can rapidly degrade nitrophenol to carboxylic acids in the bulk solution. • Carboxylic acids can be mineralized by ·OH generated from multiple sources in the electrolysis-O{sub 3} process. • Electrolysis and ozonation can compensate for each other's weakness on pollutant degradation. - Abstract: Electrolysis and ozonation are two commonly used technologies for treating wastewaters contaminated with nitrophenol pollutants. However, they are often handicapped by their slow kinetics and low yields of total organic carbon (TOC) mineralization. To improve TOC mineralization efficiency, we combined electrolysis using a boron-doped diamond (BDD) anode with ozonation (electrolysis-O{sub 3}) to treat a p-nitrophenol (PNP) aqueous solution. Up to 91% TOC was removed after 60 min of the electrolysis-O{sub 3} process. In comparison, only 20 and 44% TOC was respectively removed by individual electrolysis and ozonation treatment conducted under similar reaction conditions. The result indicates that when electrolysis and ozonation are applied simultaneously, they have a significant synergy for PNP mineralization. This synergy can be mainly attributed to (i) the rapid degradation of PNP to carboxylic acids (e.g., oxalic acid and acetic acid) by O{sub 3}, which would otherwise take a much longer time by electrolysis alone, and (ii) the effective mineralization of the ozone-refractory carboxylic acids to CO{sub 2} by ·OH generated from multiple sources in the electrolysis-O{sub 3} system. The result suggests that combining electrolysis with ozonation can provide a simple and effective way to mutually compensate the limitations of the two processes for degradation of phenolic pollutants.

  10. A novel property of DNA - as a bioflotation reagent in mineral processing.

    Science.gov (United States)

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  11. A novel property of DNA - as a bioflotation reagent in mineral processing.

    Directory of Open Access Journals (Sweden)

    Balasubramanian Vasanthakumar

    Full Text Available Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  12. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  13. The influence of filtration process on the content of minerals in the functional beverage of adaptogenic action

    Directory of Open Access Journals (Sweden)

    A. R. Khasanov

    2018-01-01

    Full Text Available The market of functional nutrition in Russia has been analyzed. The level of diseases associated with the nervous system and brain is actively growing in Russian Federation. World Health Organization (WHO predicted, brain diseases and mental disorders will enter the five diseases leading to disability in 2020 year. The market of non-alcoholic and functional beverages (FB, which can help for solving this health’s problem, is negligible. A functional bevarage with adaptogenic action based on fruit and berry raw materials and dry plant extracts for the prevention of brain diseases, in particular, the limbic system, as well as the nervous system, has been developed. The functional beveragewas examined in scientific work for the content of macro elements and trace elements. The filtration process is necessary to improve the microbiological stability of FB of adaptogenic action and consumer properties. During the experiment, the effects of the filtration process (one of the most important technological process on the content of mineral elements were studied. As the most appropriate and rational type of filtration for the drink, microfiltration was chosen.The filters were selected in accordance with the regimes and requirements characteristic of microfiltration process. The content of macro elements and trace elements was determined by atomic absorption spectroscopy using flame atomization on a Shimadzu AA 6300 spectrophotometer, (Japan. The values of the concentration of mineral substances in the functional beverage were compared before and after the microfiltration process. According to the results of measurements, the content of potassium remained unchanged and the content of copper and iron fell by 19.5 and 79.6 percent, respectively. Reducing the concentrations of magnesium, calcium, sodium and manganese are included in the measurement error intervals. The results obtained make it possible to analyze the losses of mineral substances and

  14. Conception of a modular HTR-process heat facility with optimization of the pressure level

    International Nuclear Information System (INIS)

    Bousack, H.

    1984-11-01

    The operation of a steam reformer heated by nuclear power with a process pressure of about 20 bar provides advantages with respect to process engineering due to the improved conversion and simplified product gas treatment for the follow-on process. The effects of a reduction in pressure on the components of the primary circuit in a modular HTR facility, as well as various process engineering possibilities for producing methanol in the follow-on process are discussed in this paper. Studies cover the influence of core geometry and power density, as well as possibilities of increasing the modular power at a maximum accident temperature of 1600 0 C. An inherently functioning area cooling system is proposed for afterheat removal outside the primary circuit. Based on the optimized pressure, a modular HTR process heat facility is conceived to produce methanol from natural gas and carbon dioxide basically satisfying the requirement of zero emission. (orig.) [de

  15. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  16. Direct observations of the atmospheric processing of Asian mineral dust

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2007-01-01

    Full Text Available The accumulation of secondary acids and ammonium on individual mineral dust particles during ACE-Asia has been measured with an online single-particle mass spectrometer, the ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles correlate with air masses from different source regions. The uptake of secondary acids depended on the individual dust particle mineralogy; high amounts of nitrate accumulated on calcium-rich dust while high amounts of sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV to S(VI by iron in the aluminosilicate dust is a possible explanation for this enrichment of sulphate, which has important consequences for the fertilization of remote oceans by soluble iron. This study shows the segregation of sulphate from nitrate and chloride in individual aged dust particles for the first time. A transport and aging timeline provides an explanation for the observed segregation. Our data suggests that sulphate became mixed with the dust first. This implies that the transport pathway is more important than the reaction kinetics in determining which species accumulate on mineral dust. Early in the study, dust particles in volcanically influenced air masses were mixed predominately with sulphate. Dust mixed with chloride then dominated over sulphate and nitrate when a major dust front reached the R. V. Ronald Brown. We hypothesize that the rapid increase in chloride on dust was due to mixing with HCl(g released from acidified sea salt particles induced by heterogeneous reaction with volcanic SO2(g, prior to the arrival of the dust front. The amount of ammonium mixed with dust correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent reports that they exist as external mixtures. The size distribution of the mixing state of dust with these secondary species validates previous

  17. Mineral CO2 sequestration in alkaline solid residues

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2004-12-01

    Mineral carbonation is a promising sequestration route for the permanent and safe storage of carbon dioxide. In addition to calcium- or magnesium-containing primary minerals, suitable alkaline solid residues can be used as feedstock. The use of alkaline residues has several advantages, such as their availability close to CO2 sources and their higher reactivity for carbonation than primary minerals. In addition, the environmental quality of residues can potentially be improved by carbonation. In this study, key factors of the mineral CO2 sequestration process are identified, their influence on the carbonation process is examined, and environmental properties of the reaction products with regard to their possible beneficial utilization are investigated. The use of alkaline solid residues forms a potentially attractive alternative for the first mineral sequestration plants

  18. An overview of hydrodynamic studies of mineralization

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2011-07-01

    Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.

  19. Evaluation of mercury in liquid waste processing facilities - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. E. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. E. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  20. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  1. 30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sanitary toilet facilities at surface work sites; installation requirements. 71.500 Section 71.500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND...

  2. Using high temperature gas-cooled reactors for energy neutral mineral development processes – A proposed IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Haneklaus, N.; Reitsma, F.; Tulsidas, H.; Dyck, G.; Koshy, T.; Tyobeka, B.; Schnug, E.; Allelein, H-J.; Birky, B.

    2014-01-01

    Today, uranium mined from various regions is the predominant reactor fuel of the present generation of nuclear power plants. The anticipated growth in nuclear energy may require introducing uranium/thorium from unconventional resources (e.g. phosphates, coal ash or sea water) as a future nuclear reactor fuel. The demand for mineral commodities is growing exponentially and high-grade, easily-extractable resources are being depleted rapidly. This shifts the global production to low-grade, or in certain cases unconventional mineral resources, the production of which is constrained by the availability of large amounts of energy. Numerous mining processes can benefit from the use of so-called “thermal processing”. This is in particular beneficial for (1) low grade deposits that cannot be treated using the presently dominant chemical processing techniques; (2) the extraction of high purity end products; and (3) the separation of high value or unwanted impurities (e.g. uranium, thorium, rare earths, etc.) that could be used/sold, when extracted, which will result in cleaner final products. The considerably lower waste products also make it attractive compared to chemical processing. In the future, we may need to extract nuclear fuel and minerals from the same unconventional resources to make nuclear fuel- and low grade ore processing feasible and cost-effective. These processes could be sustainable only if low-cost, carbon free, reliable energy is available for comprehensive extraction of all valuable commodities, for the entire life of the project. Nuclear power plants and specifically High Temperature Gas-cooled Reactors (HTGRs) can produce this energy and heat in a sustainable way, especially if enough uranium/thorium can be extracted to fuel these reactors.

  3. Design of a hot pilot plant facility for demonstration of the pot calcination process

    Energy Technology Data Exchange (ETDEWEB)

    Buckham, J A

    1962-01-01

    A facility was designed for demonstration of the pot calcination process with wastes from processing aluminum alloy fuels, Darex or electrolytic processing of stainless-steel fuels, and Purex processes. This facility will also permit determination of procedures required for economical production of low-porosity, relatively nonleachable materials by addition of suitable reagents to the wastes fed to the calciner. The process consists of concentration by evaporation and thermal decomposition in situ in pots which also serve as the final disposal containers. This unit permits determination of pot loading and density, leachability, melting point, volatile material content, heat release, and thermal conductivity of the calcine. Also to be determined are transient calcine temperature distributions, fission product behavior during calcination, deentrainment obtained in the various parts of the system, decontamination achieved on all liquid and gaseous effluent streams, need for venting of stored pots, optimum means of remotely sealing the pots, and methods required for production of a minimum volume of noncondensable off-gas. This facility will employ nominal full-scale pots 8 and 12 in. in diameter and 8 ft long. A unique evaporator design was evolved to permit operation either with close-coupled continuous feed preparation or with bath feed preparation. Provisions were made to circumvent possible explosions due to organic material in feed solutions and other suspected hazards.

  4. The behaviour of radionuclides in the processing of rare earth minerals

    International Nuclear Information System (INIS)

    Hart, K.P.; Brown, S.A.; Levins, D.M.

    1993-01-01

    In recent years the presence of thorium in monazites has been seen as significant economic obstacle to utilisation of this resource. In particular, the environmental problems encountered with disposal of the radioactive wastes in France, China and Malaysia have led to a decline in the use of monazite as rare earth feed stock. The price of monazite has consequently fallen from $800 per tonne to the present price of $250 per tonne and significant quantities of monazite are now being ploughed back into the tailings from mineral sands processing. The environmental problems experienced overseas with disposal of monazite wastes have resulted mainly from poor waste disposal practices and/or inappropriate siting of plants rather than an insoluble waste management problem. Nevertheless, it is important to understand the behaviour of radionuclides during the processing of monazite so that appropriate measures can be undertaken to minimise the environmental impact. This paper discusses the potential hazards associated with radionuclides in the thorium and uranium decay chain. The partitioning of radioactivity during the processing of monazite is described and results of experimental work are presented on the behaviour of radionuclides during the chemical processing of beach sand monazite and the supergene monazite from Mt Weld which contains far lower levels of thorium and uranium. 5 refs., 7 tabs., 2 figs

  5. Minerals From the Marine Environment

    Science.gov (United States)

    Cruickshank, Michael J.

    The current interest in minerals centering on, among other things, potential shortages, long-term needs, and deep seabed nodules, accentuates the usefulness and timeliness of this little book authored by a former chairman of the British National Environmental Research Council.In less than 100 pages, the author puts into perspective the potential for producing minerals from offshore areas of the world. After introducing the reader to the ocean environment and the extraordinary variety of the nature of the seabed, the author describes in some detail the variety of minerals found there. This is done in seven separate chapters entitled ‘Bulk and Non-Metallic Minerals From the Seas’ ‘Metals From the Shallow Seas’ ‘Metals From the Deep Oceans’ ‘Minerals From Solution’ ‘Oil and Gas from the Shallow Seas’ ‘Oil and Gas From Deep Waters’ and ‘Coal Beneath the Sea.’ The remaining chapters give a brief regional review of marine minerals distribution for eight areas of significant socioeconomic structure, and a short recapitulation of special problems of mineral recovery in the marine environment including such matters as the effect of water motion on mineral processing and of international law on investments. Glossaries of geological periods and technical terms, a short list of references, and an index complete the work.

  6. Effects of pollution and bioleaching process on the mineral composition and texture of contaminated sediments of the Reconquista River, Argentina.

    Science.gov (United States)

    Tufo, Ana E; Porzionato, Natalia F; Curutchet, Gustavo

    2017-10-31

    In this work, we report on the structural and textural changes in fluvial sediments from Reconquista River´s basin, Argentina, due to processes of contamination with organic matter and remediation by bioleaching. The original uncontaminated matrix showed quartz and phyllosilicates as the main primary mineral constituents and phases of interstratified illite-montmorillonite as secondary minerals. It was found that in contaminated sediments, the presence of organic matter in high concentration causes changes in the specific surface area, particle size distribution, size and distribution of micro and meso, and the morphology of the particles with respect to the uncontaminated sediment. After the bioleaching process, there were even greater changes in these parameters at the level of secondary mineral formation and the appearance of nanoparticles, which were confirmed by SEM. Especially, we found the formation of cementing substances such as gypsum, promoting the formation of macroporous aggregates and the weathering of clay components. Our results indicate that the bioleaching not only decreases the content of metals but also favors the formation of a material with improved characteristics for potential future applications.

  7. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  8. Accident Management ampersand Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Taylor, R.P. Jr.; Ashbaugh, S.G.

    1995-01-01

    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency's proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities

  9. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  10. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  11. Master slave manipulator maintenance at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Lethco, A.J.; Beasley, K.M.

    1991-01-01

    Equipment has been developed and tested to provide transport, installation, removal, decontamination, and repair for the master slave manipulators that are required for thirty-five discrete work locations in the 221-S Vitrification Building of the Defense Waste Processing Facility at the Westinghouse Savannah River Company. This specialized equipment provides a standardized scheme for work locations at different elevations with two types of manipulators

  12. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  13. Role of Sports Facilities in the Process of Revitalization of Brownfields

    Science.gov (United States)

    Taraszkiewicz, Karolina; Nyka, Lucyna

    2017-10-01

    The paper gives an evidence that building a large sports facility can generate beneficial urban space transformation and a significant improvement in the dilapidated urban areas. On the basis of theoretical investigations and case studies it can be proved that sports facilities introduced to urban brownfields could be considered one of the best known large scale revitalization methods. Large urban spaces surrounding sport facilities such as stadiums and other sports arenas create excellent conditions for designing additional recreational function, such as parks and other green areas. Since sports venues are very often located on brownfields and post-industrial spaces, there are usually well related with canals, rivers and other water routes or reservoirs. Such spaces become attractors for large groups of people. This, in effect initiate the process of introducing housing estates to the area and gradually the development of multifunctional urban structure. As research shows such process of favourable urban transformation could be based on implementing several important preconditions. One of the most significant one is the formation of the new communication infrastructure, which links newly formed territories with the well-structured urban core. Well planned program of the new sports facilities is also a very important factor. As research shows multifunctional large sports venues may function in the city as a new kind of public space that stimulates new genres of social relations, offers entertainment and free time activities, not necessarily related with sport. This finally leads to the creation of new jobs and more general improvement of a widely understood image of the district, growing appreciation for the emerging new location and consequently new investments in the neighbouring areas. The research gives new evidence to the ongoing discussion on the drawbacks and benefits of placing stadiums and sports arenas in the urban core.

  14. Radiation protection at radioisotope processing facilities

    International Nuclear Information System (INIS)

    Hillier, L.R.; Decaire, R.

    2002-01-01

    MDS Inc. is Canada's largest diversified health and life sciences company and provides health care services and products to prevent, diagnose and treat disease. MDS Nordion Inc. is a subsidiary of MDS Inc. and is located in Ottawa, Ontario. It provides much of the world's supply of radioisotopes used in nuclear medicine primarily to diagnose, but also to treat disease. MDS Nordion is composed of three major production divisions at its Ottawa location and serves customers in three major markets. These are primarily: radioisotopes used in nuclear medicine (Nuclear Medicine Division), radiation processing for sterilization of medical equipment and supplies, and food (Ion Technologies Division), and teletherapy equipment used in cancer treatment (Therapy Systems Division). MDS Nordion supplies customers in over 100 countries, exporting more than 95 percent of its product processed in Canada. Every year, 15 to 20 million diagnostic imaging tests are carried out in hospitals around the world, using radioisotopes supplied by MDS Nordion. In addition, 150 to 200 million cubic feet (that's enough to cover an entire CFL field - including the end zones - stacked over half a kilometer high) of single use medical products are sterilized using MDS Nordion supplied equipment. MDS Nordion receives medical isotopes from AECL, Chalk River Laboratories and processes the material to purify and quantify the radioisotope product. Sealed sources, comprised of cobalt 60, are supplied from CANDU reactors. Production processes include ventilated shielded cells with remote manipulators, gloveboxes and fumehoods, to effectively control the safety of the workplace and the environment, and to prevent contamination of the products. The facilities are highly regulated by the Canadian Nuclear Safety Commission (CNSC) for safety and environmental protection. Products are also regulated by Health Canada and the US-Food and Drug Administration (FDA). (author)

  15. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K 2 CO 3 on the heat exchange surface are also included

  16. Australian mineral industry annual review for 1986

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This volume of the Australian Mineral Industry Annual Review records the development and performance of the industry during the calendar year 1986. It reports production, consumption, treatment, trade, prices, new developments, exploration, and resources for mineral commodities including fuels, and summarises equivalent developments abroad. Part 1, 'General Review', after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole. Part 2, 'Commodity Review', covers individual mineral commodities and commodity groups including brown coal, black coal and peat. Part 3, 'Mining Census', tabulates statistics extracted from the Mining Census, together with some mineral processing statistics from the Manufacturing Census. Part 4, tabulates quantity and value data on mineral output provided by the State departments of mines and their equivalents. The commodity review of black coal has been abstracted separately.

  17. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  18. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  19. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  20. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    International Nuclear Information System (INIS)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-01-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization. The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2-5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  1. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  2. Nuclear facility projects in Finland: quality of environmental impact assessment (EIA) processes

    International Nuclear Information System (INIS)

    Vaatainen, A.

    2001-01-01

    In Finland, three public EIA hearings arranged by the contact authority concerning nuclear facilities were organised in 1999: the EIAs of two reactors planned to be constructed in Eurajoki (Olkiluoto) and in Loviisa, and the EIA of a final disposal facility of spent nuclear fuel, to be situated either in Olkiluoto, Loviisa, Romuvaara or Kivetty. Additionally, an application for a decision-in-principle concerning a final disposal facility to be constructed in Olkiluoto was submitted. The Ministry of Trade and Industry is the contact authority in all nuclear projects in Finland. Probably due to the simultaneity of the processes and the great importance of nuclear facility projects to the whole of society, the public opinions did not include only views about environmental impacts of each project, but also opposing and overall views about the use of nuclear energy and its safety. As for the final disposal project, alternative methods were introduced and opposition to the project itself was expressed instead of or in addition to the environmental impacts. (author)

  3. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  4. Mineralization and Transfer Processes of {sup 14}C-labeled Pesticides in Outdoor Lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Sabine; Doerfler, Ulrike, E-mail: doerfler@gsf.de; Ruth, Bernhard; Loos, Christine [GSF - National Research Center for Environment and Health, Institute of Soil Ecology (Germany); Wagner, Tobias [GSF - National Research Center for Environment and Health, Institute of Biochemical Plant Pathology (Germany); Karl, Heidrun; Munch, Jean Charles; Schroll, Reiner [GSF - National Research Center for Environment and Health, Institute of Soil Ecology (Germany)

    2008-04-15

    A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of {sup 14}C-labeled substances in soil-plant-atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between {sup 14}C-emissions from soil surfaces and {sup 14}C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate - using the two-chamber-lysimeter-test-system - are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil-plant-systems. Mineralization of {sup 14}C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide {sup 14}C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.

  5. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  6. Proceedings of the international symposium on control and optimization in minerals, metals and materials processing

    International Nuclear Information System (INIS)

    Hodouin, D.; Bazin, C.; Desbiens, A.

    1999-01-01

    This is the first symposium on Process optimization and Control in Ore Processing, Extractive Metallurgy and Material Science ever sponsored by Metsoc. Sure enough, papers dealing with these topics are regularly presented at the Annual Conference of Metallurgists, but they have always been, so far, scattered through different symposia dealing with specific mineral or metallurgical processes. The novelty, at this symposium, is that our central theme reflects the methods rather than the processes, a change of focus that should foster interdisciplinary exchanges in Metallurgical Engineering. The various methods reviewed in the symposium proceedings are presented in four chapters covering the following topics: data acquisition and filtering, process monitoring; process modelling; process control; and process optimization. We hope that the 41 papers collected in this volume can sensitize the reader to the importance of modern data processing techniques for the valorization of available process data to improve the metallurgical and economic efficiency of industrial processes. They should also incite production managers, research directors and educational leaders to expand their efforts in the field

  7. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-01-01

    The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility

  8. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility

  9. DOE final report phase one startup, Waste Receiving and Processing Facility (WRAP)

    International Nuclear Information System (INIS)

    Jasen, W.G.

    1998-01-01

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented

  10. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I ampersand C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility

  11. Alternatives to improve technological and environmentally the miner-metallurgic processes of recovery of gold in Vetas and California (Santander, Colombia)

    International Nuclear Information System (INIS)

    Pedraza Rosas, Julio Elias; Yanez Traslavina, Jose Julian

    2004-01-01

    With the purpose of improving the recovery of gold, to eliminate the use of the mercury and to diminish the contamination with cyanide in the Mining District of Vetas and Californian, the concentration processes were studied in a machine knelson and the intensive cyanidation of the concentrate. As fundamental part of this work, it was carried out the characterization of the samples, determining and quantifying the most influential characteristics in the processes of gravimetric concentration and of cyanidation, as well as the necessary for the design of plants. Of the mineralogical characterization it concluded that the ore of the two municipalities present significant differences that bear to think of the necessity of using different extractive processes. In general, the ore of California, bigger tenors of gold contain and of silver and they are poly-sulphurated; while those of Vetas are of pyritic type, except for that of the Golden Mine that presents similarity with those of California. The minerals of California presented a high percentage of gold (40-60%), fine coming from the alteration of the mineral; a high lixiviability in bottle; especially the samples of the Sinues Mine, with dissolutions of gold of the order of 95%, while of the Vetas was of the order of 60%. The experimental results in the knelson equipment, allowed to check the applicability of this concentration type for the case of the minerals of Vetas, obtaining under controlled operative conditions, concentrated with high tenors of gold, 421.16 g/t; significant enrichment reasons, 29.5 (tenor of the concentrate / tenor of the mineral head), with recoveries of gold notables, bigger to 80%. On the contrary, with those of Californian ores, satisfactory results were not obtained, accountable for the presence of the high percentage of gold in the fines. The application of the intensive cyanidation to the obtained concentrates, it was evaluated in presence and absence of the catalytic Leachwell and Pb

  12. Zinc Isotopes as Tracers of Crust-Mantle Interactions and Mineralization Processes in Layered Intrusions

    Science.gov (United States)

    Day, J. M.; Moynier, F.

    2016-12-01

    Zinc isotopes are a powerful tool for studying igneous processes and may be useful for distinguishing between mantle or crustal origins for mineralization and for examining crystallization processes. Restricted ranges in δ66Zn for mantle-derived rocks (δ66Zn = 0.28±0.05‰; [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000] all uncertainties reported are 2SD) contrast the large δ66Zn variations in sedimentary rocks ( 0 to 1‰), or in volcanic and sedimentary hosted ore deposits (e.g., SEDEX; VHMS; MVT = -0.6 to 1.3‰). Here, we use Zn isotopes to investigate magmatic processes in the 1.27 Ga Muskox Intrusion (Canada) and 2.7 Ga Stillwater Intrusion (Montana). The Muskox main chromitite horizon has between 270-330 ppm Zn with δ66Zn ranging from 0.16 to 0.31‰. Zinc isotope compositions negatively correlate with Os isotopes. Chromitite (40a) with the lowest 187Os/188Os (0.132) has δ66Zn of 0.31±0.03‰; indistinguishable from the mantle value. CM19 glass from the co-eval Coppermine Volcanics, which has crust-like O and Nd isotopes but low 187Os/188Os (0.131), has been interpreted as the extrusive manifestation of chromitite genesis. The value of δ66Zn (0.27±0.07‰) for CM19 is within uncertainty of 40A, and permissive of formation during silicic-mafic melt mixing and large-scale chromitite crystallization. Stillwater chromitite seams exhibit a larger range in Zn (166-448 ppm), but generally lower δ66Zn (0.13±0.04‰) than Muskox chromitites, or to a JM Reef bulk sample (69 ppm Zn, δ66Zn = 0.22±0.03‰). These results suggest different sources of Zn for Ultramafic series chromitites versus the JM Reef (Banded series). Correspondingly, variations occur in Os isotopes for PGE poor chromitites (γOs = -2 to +4) versus the PGE-rich JM Reef (γOs = +12 to +34). Zinc isotope variations may be explained by either a mantle source with low δ66Zn that was subsequently contaminated by high δ66Zn crust, or from contamination of the ultramafic series by low δ66Zn

  13. Canadian minerals yearbook : 2004 review and outlook

    International Nuclear Information System (INIS)

    2004-01-01

    The main focus of the CMY publication is the non-fuel mineral industry, together with uranium, although all mineral fuels are normally included when the total value of Canada's mineral production is reported. The Yearbook includes chapters devoted to each major mineral commodity produced in Canada: aluminum, coal, copper, diamonds, gold, iron ore, magnesium, nickel, potash, salt, silica, and uranium. The subject matter spans all stages of mineral industry activity from geoscience and exploration, through mining and processing, to markets and use. Although domestic issues receive the greatest attention in each chapter, international developments may also be reviewed because of the global nature of the mineral industry and the significant impact that such developments could have on the Canadian industry

  14. Organizing the promotion of radiation processing at Multipurpose Irradiation Facility IRASM

    International Nuclear Information System (INIS)

    Ponta, C.C.; Moise, I.V.

    1999-01-01

    IRASM will be the first Romanian industrial irradiation facility. International Atomic Energy Agency - Vienna supports the project financing the main equipment and a 100 kCi Co-60 demonstration source. The facility will be commissioned in March 2000. Construction and commissioning of this important nuclear objective are difficult tasks. Promotion of radiation processing in Romanian industry is even more difficult. The Project IRASM is a complex contest for IFIN-HH. The management took into consideration all aspects of the project promotion: technical, legal, R and D. The institute identified the need for an appropriate internal structure. For this reason a Radiation Processing Team (GRIT) was nominated and charged to co-ordinate the internal activity and to co-operate with the external partner. Investment Department and Quality Assurance Department strengthened. The operation team was chosen, instructed and engaged in covering the main directions of the management plans: project correlation, construction supervising, commissioning, promotion of the appropriate legal frame, public acceptance and R and D for the association of the industry to the radiation processing technologies. R and D engaged many researchers from different IFIN-HH departments. This paper presents the management of the project and details the steps already undertaken onto each particular direction. (authors)

  15. Geophysical aspects of underground fluid dynamics and mineral transformation process

    Science.gov (United States)

    Khramchenkov, Maxim; Khramchenkov, Eduard

    2014-05-01

    The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid

  16. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  17. Significance, mechanisms and environmental implications of microbial bio-mineralization

    International Nuclear Information System (INIS)

    Benzerara, K.; Miot, J.; Morin, G.; Ona-Nguema, G.; Skouri-Panet, F.; Ferard, C.

    2011-01-01

    Microorganisms can mediate the formation of minerals by a process called bio-mineralization. This process offers an efficient way to sequester inorganic pollutants within relatively stable solid phases. Here we review some of the main mechanisms involved in the mediation of mineral precipitation by microorganisms. This includes supersaturation caused by metabolic activity, the triggering of nucleation by production of more or less specific organic molecules, and the impact of mineral growth. While these processes have been widely studied in the laboratory, assessment of their importance in the environment is more difficult. We illustrate this difficulty using a case study on an As-contaminated acid mine drainage located in the South of France (Carnoules, Gard). In particular, we explore the potential relationships that might exist between microbial diversity and mineral precipitation. The present review, far from being exhaustive, highlights some recent advances in the field of bio-mineralogy and provides non-specialists an introduction to some of the main approaches and some questions that remain unanswered. (authors)

  18. Mineralogy in the Waste Isolation Pilot Plant (WIPP) facility stratigraphic horizon

    International Nuclear Information System (INIS)

    Stein, C.L.

    1985-09-01

    Forty-six samples were selected for this study from two cores, one extending 50 ft up through the roof of the WIPP facility and the other penetrating 50 ft below the facility floor. These samples, selected from approximately every other foot of core length, represent the major lithologies present in the immediate vicinity of the WIPP facility horizon: ''clean'' halite, polyhalitic halite, argillaceous halite, and mixed polyhalitic-argillaceous halite. Samples were analyzed for non-NaCl mineralogy by determining weight percents of water- and EDTA-insoluble residues, which were then identified by x-ray diffraction. In general, WIPP halite contains at most 5 wt % non-NaCl residue. The major mineral constituents are quartz, magnesite, anhydrite, gypsum, polyhalite, and clays. Results of this study confirm that, in previous descriptions of WIPP core, trace mineral quantities have been visually overestimated by approximately an order of magnitude. 9 refs., 5 figs., 5 tabs

  19. Listeria monocytogenes contamination of the environment and surfaces of the equipment in the meat processing facilities in republic of Macedonia

    OpenAIRE

    Dean Jankuloski; Pavle Sekulovski; Risto Prodanov; Zehra Hajrulai Musliu; Biljana Stojanovska Dimzovska

    2007-01-01

    Listeria monocytogenes contamination of the environment and surfaces of the equipment was examined in seven meat processing facilities. Up to date prevalence of this foodborn pathogen in meat processing facilities facilities in Republic of Macedonia was unknown. Biofilms are composed from food spoilage microorganisms and food born pathogens. They are located on the surfaces of the equipment that come in contact with food and in facilities environment. Microorganisms in biofilm presenting micr...

  20. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  1. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  2. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    Energy Technology Data Exchange (ETDEWEB)

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  3. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    International Nuclear Information System (INIS)

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy

  4. Environmental aspects in the processing of rare earth ores and minerals

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2011-01-01

    In India, rare earths are extracted from the mineral monazite which occurs abundantly along with other heavy minerals in the coastal beach sands. Monazite, apart from rare earths, also contains uranium and thorium. Rare earths can be obtained from monazite either by acid digestion route or by alkaline digestion route. In India, although pilot scale studies have been carried out extraction of rare earths by acid digestion route, however, alkali digestion route has been predominantly followed for commercial extraction of rare earths

  5. Australian mineral industry annual review for 1984

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This volume of the Australian Mineral Industry Annual Review records development and performance of the Australian mineral industry during the calendar year 1984. It reports production, consumption, treatment, trade, prices, new developments, exploration, and resources for mineral commodities including fuels, and summarises equivalent developments abroad. Part 1. 'general review' after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole, under the headings: the industry in the national economy, prices, exploration expenditure, investment, income tax, royalties, structural data, wages and salaries, industrial disputes, and government assistance, legislation, and controls. Part 2. 'commodity review' covers individual mineral commodity groups, from abrasives to zirconium. Part 3, 'mining census', tabulates statistics extracted from the mining census, together with some mineral processing statistics from the manufacturing census. Part 4 tabulates quantity and value data on mineral output provided by state departments of mines and their equivalents. Listed in appendices are: principal mineral producers; ore buyers and mineral dealers; government mining services; analytical laboratories; state mines departments and equivalents; industry, professional and development organisations and associations, etc; summary of mineral royalties payable in the states and territories; and summary of income tax provisions and federal government levies.

  6. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  7. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  8. Australian mineral industry annual review for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Australian mineral industry annual review records the activities and development of the Australian mineral industry and reports production, consumption, treatment, trade, prices, new developments, exploration and resources for mineral commodities including fuels, and summarises equivalent developments abroad. The present volume reviews activities and developments in 1982. Part 1 (General Review) - after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole, under the headings: the industry in the national economy; important recent developments; production; overseas trade; prices; exploration expenditure; investment; income tax; royalties; structural data; wages and salaries; industrial disputes; and government assistance, legislation and controls. Part 2 (Commodity Review) - covers industrial mineral commodities, from abrasives to zirconium. Part 3 (Mining Census) - tabulates statistics extracted from the mining census, together with some mineral processing statistics from the manufacturing census. Part 4 (Miscellaneous) - tabulates quantum and value data on mineral output provided by State departments of mines and their equivalents.

  9. Process pump operating problems and equipment failures, F-Canyon Reprocessing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.; Starks, J.B.; Galloway, W.D.

    1987-02-01

    A compilation of operating problems and equipment failures associated with the process pumps in the Savannah River Plant F-Canyon Fuel Reprocessing Facility is presented. These data have been collected over the 30-year operation of the facility. An analysis of the failure rates of the pumps is also presented. A brief description of the pumps and the data bank from which the information was sorted is also included

  10. Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1992-01-01

    Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...

  11. March 2016 Memo: Planning for Removal and Remedial Activities at Hardrock Mining and Mineral Processing Sites with Fluid Hazards

    Science.gov (United States)

    Memo from EPA Assistant Administrator Mathy Stanislaus, regarding planning for removal and remedial activities at hardrock mining and mineral processing sites with fluid hazards, and to share the Agency’s expectations for the work that is done at these sit

  12. Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.

    Science.gov (United States)

    Jhaveri, Ankur; Walsh, Stephen J; Wang, Yatzen; McCarthy, MaryBeth; Gronowicz, Gloria

    2008-11-01

    Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line. (c) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Automation of a cryogenic facility by commercial process-control computer

    International Nuclear Information System (INIS)

    Sondericker, J.H.; Campbell, D.; Zantopp, D.

    1983-01-01

    To insure that Brookhaven's superconducting magnets are reliable and their field quality meets accelerator requirements, each magnet is pre-tested at operating conditions after construction. MAGCOOL, the production magnet test facility, was designed to perform these tests, having the capacity to test ten magnets per five day week. This paper describes the control aspects of MAGCOOL and the advantages afforded the designers by the implementation of a commercial process control computer system

  14. Automatic methods for processing track-detector data at the PAVICOM facility

    International Nuclear Information System (INIS)

    Aleksandrov, A.B.; Goncharova, L.A.; Polukhina, N.G.; Fejnberg, E.L.; Davydov, D.A.; Publichenko, P.A.; Roganova, T.M.

    2007-01-01

    New automatic methods essentially simplify and hasten the data treatment of tracking detectors. It allows handling big data files and appreciably improves their statistics; this fact predetermines an elaboration of new experiments, which suppose to use large volume targets, emulsive and solid-state large square tracking detectors. Thereupon the problem of training competent physicists able to work on modern automatic equipment is very relevant. About ten Moscow students working in LPI at PAVICOM facility master new methods every year. Most of the students working in high-energy physics take the print only about archaic hand methods of data handling from tracking detectors. In 2005 on the base of the PAVICOM facility and physics training of the MSU a new educational work for determination of the energy of neutrons passing through nuclear emulsion, which lets students acquire a base habit of data handling from tracking detectors using an automatic facility, was prepared; it can be included in the training process for students of any physical faculty. Specialists mastering methods of an automatic handling by the simple and obvious example of tracking detectors will be able to use their knowledge in various areas of science and techniques. The organization of upper division courses is a new additional aspect of using the PAVICOM facility described in an earlier paper [4

  15. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1)