WorldWideScience

Sample records for mineral materials types

  1. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, K V R, E-mail: drmurthykvr@yahoo.com [Display Materials Laboratory Applied Physics Department Faculty of Technology and Engineering M.S. University of Baroda, Baroda-390 001 (India)

    2009-07-15

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  2. Thermoluminescence study of materials (natural minerals) used in ceramic tiles industry

    International Nuclear Information System (INIS)

    Murthy, K V R

    2009-01-01

    Mother earth is giving many materials in the natural form as well as in mineral form. Among them the marbles, granites and other variety of slabs for house hold flooring purposes. The people demand for variety of flooring materials leads to develop various types of ceramic tile. In India ceramic tiles industry is one of the fast growing one. More than two hundred units are manufacturing the ceramic tiles situated around Morbi, Rajkot, Gujarat, India. The basic raw materials required for manufacturing the various types of ceramic tiles are natural minerals. The following are the minerals used to manufacture the ceramic tiles i.e. quartz, feldspar, zircon, china clay, talc, grok, Aluminum oxide etc.,

  3. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  4. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  5. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  6. Characterization of minerals, metals and materials

    CERN Document Server

    Hwang, Jiann-Yang; Bai, Chengguang; Carpenter, John; Cai, Mingdong; Firrao, Donato; Kim, Byoung-Gon

    2012-01-01

    This state-of-the-art reference contains chapters on all aspects of the characterization of minerals, metals, and materials. The title presents papers from one of the largest yearly gatherings of materials scientists in the world and thoroughly discusses the characterization of minerals, metals, and materials The scope includes current industrial applications and research and developments in the following areas:  Characterization of Ferrous Metals Characterization of Non-Ferrous Materials Characterization of Minerals and Ceramics Character

  7. XRF analysis of ceramics, minerals and allied materials

    International Nuclear Information System (INIS)

    Bennett, H.; Oliver, G.J.

    1992-01-01

    This book is a compilation of practical information on the X-ray fluorescence analysis by the fused, cast bead method of mineral type materials and products. A range of general information about equipment and apparatus and its use and care is given and particular attention is devoted to the spectrometer and the topic of line selection. Experimental details of the method, including calibration, are presented. In the final section of the book, analytical procedures for a wide range of materials are described. This includes sampling, drying, weighing, loss on ignition, fusion, casting, constituents to be determined, calibration ranges and reporting of results. The materials covered are silica/alumina range materials, calcium-rich materials, magnesium rich materials, zircon-bearing materials, various oxides and titanates, reduced materials and samples of unknown composition. The appendices contain data on loss on ignition techniques, specific fusion techniques, problem elements or oxides, certified references materials and details on laboratory accreditation. (UK)

  8. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  9. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish

    International Nuclear Information System (INIS)

    Yang, L; Zhang, Y; Cui, F Z

    2007-01-01

    Two types of mineral-related matrix vesicle, multivesicular body (MVB) and monovesicle, were detected in the skeletal bone of zebrafish. Transmission electron microscopy and energy dispersive spectroscopy (EDS) analyses of the vesicular inclusions reveal that both types of vesicles contain calcium and phosphorus, suggesting that these vesicles may be involved in mineral ion delivery for the bone mineralization of zebrafish. However, their size and substructure are quite different. Monovesicles, whose diameter ranges from 100 nm to 550 nm, are similar to the previously reported normal matrix vesicles, while MVBs have a larger size of 700-1000 nm in nominal diameter and possess a substructure that is composed of smaller vesicles with their average size around 100 nm. The presence of mineral-related MVBs, which is first identified in zebrafish bone, indicates that the mineralization-associated transportation process of mineral ions is more complicated than is ordinarily imagined

  10. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    Science.gov (United States)

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  11. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, Pamela S [ORNL

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  12. Geology and potential of the formation of sandstone type uranium mineralization at Hatapang region, North Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Study based on geological setting of Hatapang region, North Sumatera, identified as a favourable area to the formation of sandstone type uranium mineralization. This characterized by the occurred of anomalous radioactivity, uranium contents of the upper cretaceous granite intrusions and radioactivity anomalous of tertiary sedimentary rocks deposited in terrestrial environments. The study is objective to find out the potential formation of sandstone type-uranium mineralization within tertiary sedimentary rocks based on data’s studies of geological, geochemical, mineralogy, radioactivity of rocks. Stratigraphy of Hatapang area of the oldest to youngest are quartz units (permian-carboniferous), sandstone units (upper Triassic), granite (upper cretaceous), conglomerate units (Lower –middle Miocene) and tuff units (Pleistocene). Hatapang’s granite is S type granite which is not only potential as source of radioactive minerals, particularly placer type monazite, but also potential as source rocks of sandstone type-uranium mineralization on lighter sedimentary rocks. Sedimentary rock of conglomerate units has potential as host rock, even though uranium did not accumulated in its rocks since the lack number of carbon as precipitant material and dissolved U"+"6 in water did not reduced into U"+"4 caused the uranium mineralization did not deposited. (author)

  13. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    Science.gov (United States)

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The effect of sedimentation background of depression target stratum containing mineral in Erlian basin, Ulanqab to uranium mineralization type

    International Nuclear Information System (INIS)

    Kang Shihu; Jiao Yangquan; Men Hong; Kuang Wenzhan

    2012-01-01

    The ore bearing stratum in depression of Ulanqab contains target stratum of lower cretaceous Saihan formation, upper cretaceous Erlian formation, paleogene system etc. The uranium mineralization type which have found by now contains sandstone type, mudstone type and coal petrography. The genetic type of mineral deposit contains paleovalley-type, reformed type after superposition with sedimentation and diagenesis by sedimentation. Uranium mineralization of both the natural type and genetic type have close relationship with its ore bearing stratum. Different geological background forms different sedimentary system combination, and different sedimentary system combination forms different uranium mineralization type. (authors)

  15. VEIN-TYPE URANIUM MINERALIZATION IN THE EASTERN DESERT OF EGYPT

    Directory of Open Access Journals (Sweden)

    M. M. Ghoneim

    2018-03-01

    Full Text Available Vein type uranium deposits where uranium minerals fill cavities veins, fractures, fissures, pore spaces, shear zone, breccia and stockworks in igneous, meta-sediments and metamorphic rocks are common source of uranium mineralization all over the wold. In Egypt, El-Erediya, El-Missikat and El Sela uranium mineralization occur in younger granite plutons in the Eastern Desert of Egypt. These plutons are considered as good examples of intra-granitic vein-type uranium mineralization. The goal of this review article is to study the characteristics of granites and Th-U vein mineralization El Sela area. Main tasks are characteristics of vein type uranium mineralization in the world and Egypt, characteristics of ore-bearing intrusive rocks in the El Sela area, mineralogy of Th-U vein-type mineralization in El Sela area and secondary U and Th minerals in granites. Results. The article revealed that El Sela granite is a peraluminous, high-K Calc-Alkaline (HKCA granite. Two-mica leucogranitic pluton is considered the source rock of U-mineralization at El-Sela area, while the altered microgranite and dolerite dikes are good traps for these mineralizations. The reactivated faults system trending ENE-WSW and NNW-SSE make favorable condition to form uranium mineralization associated with polymetallic mineralization that are redeposited in the two mica granite, microgranite and dolerite dikes. The metallic mineral assemblages in the veins mainly consist of pyrite, chalcopyrite, galena, sphalerite and fluorite that are associated with primary (uraninite, coffinite and secondary U-mineralization (uranophane and autunite that occur either as disseminated clusters or as microfracture filling and coating joint surface. Five types of thorite-group minerals can be distinguished: thorite, Zr-rich thorite, phosphothorite, uranothorite and Zr-rich uranothorite. ThO2 content of uraninite vary from (1.1 to 3 wt.%, for PbO contents from 1.16 to 2.35 wt.%, P2O5 contents from

  16. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  17. Preliminary Mineral Resource Assessment of Selected Mineral Deposit Types in Afghanistan

    Science.gov (United States)

    Ludington, Steve; Orris, Greta J.; Bolm, Karen S.; Peters, Stephen G.; ,

    2007-01-01

    this information remains in the libraries of the Afghanistan Ministry of Mines and Industry (MMI) and the Afghanistan Geological Survey (AGS), but much of these data and materials were shipped to the Soviet Union, Eastern European countries, or elsewhere. These materials have been acquired within Afghanistan and outside the country and compiled to form the foundation for this Preliminary Assessment of Non Fuel Mineral Resources.

  18. National symposium on raw materials and energy management of mineral based industries

    International Nuclear Information System (INIS)

    2009-09-01

    Mineral Resources are very essential for industrialization and hence facilitating socioeconomic developments. Resources like coal, iron ore, Bauxite, chromite, limestone, ilmenite and many other ores and minerals are the raw materials for development of various thermal, metallurgical, chemical and refractory industries. The mineral resources are being harnessed from their respective mines and the mining industries have expanded rapidly to meet their growing demands of various 'mineral based industries. The energy and reductants required for these industries are met from both - coking and non coking coal. Nearly 70% of the energy requirement of India is met from coal. In recent years, with the increasing demand of metals, alloys, refractories and thermal energy, most of the high-grade ores and minerals have been consumed. Unfortunately most of the low grade ores and minerals are left at the mine sites as wastes. As a matter of fact, these low grade ores are much larger in quantities compared to the high grade ones. Therefore, it has been essential to mine and beneficiate the low grade ores which can be suitably-utilized in the respective industries. It has also been necessary to develop more efficient technology to utilize these raw materials more effectively producing minimum amount of wastes and also conserving the energy resources as far as possible. Time has come to develop environment friendly most suitable technology to utilize all types of low grade and complex ores and minerals in order to meet the requirements of rapidly expanding mineral based industries of India. Unless effective programmes are made in this regard and implement those in time, India is bound to face a disastrous situation both in industrial and economic sectors. The conference is organised keeping these in view to take a stock of new and economically viable processes for mining and beneficiating low and complex ores and minerals and utilizing these judiciously in the industries. Papers

  19. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review.

    Science.gov (United States)

    Moraes, Jemima Daniela Dias; Bertolino, Silvana Raquel Alina; Cuffini, Silvia Lucia; Ducart, Diego Fernando; Bretzke, Pedro Eriberto; Leonardi, Gislaine Ricci

    2017-12-20

    Clay minerals are layered materials with a number of peculiar properties, which find many relevant applications in various industries. Since they are easily found everywhere, they are particularly attractive due to their economic viability. In the cosmetic industry, clay minerals are often used as excipients to stabilize emulsions or suspensions and to modify the rheological behavior of these systems. They also play an important role as adsorbents or absorbents, not only in cosmetics but also in other industries, such as pharmaceuticals. This reviewer believes that since this manuscript is presented as covering topical applications that include pharmaceuticals, some types of clay minerals should be considered as a potential material to be used as drug delivery systems. We review several applications of clay minerals to dermocosmetic products, relating them to the underlying properties of these materials and exemplifying with a number of clay minerals available in the market. We also discuss the use of clay minerals in topically-applied products for therapeutic purposes, specially for skin treatment and protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  1. Mineral raw materials for power production in legislation of the Republic of Croatia

    International Nuclear Information System (INIS)

    Matisa, Z.

    1999-01-01

    According to the Constitution of the Republic of Croatia, mineral wealth is a public good of legal interest to the Republic of Croatia and enjoys its special protection. The Mining Law establishes that mineral wealth (including mineral resources that are used for power production) is the property of the Republic of Croatia. Among other mineral raw materials, this refers to mineral raw materials that are used for power production: coal, oil, natural gas, radioactive mineral raw materials and geothermal waters. These mineral resources are as almost all other mineral raw materials with the exception of geothermal waters, an unrecoverable natural resource. The right to use that natural resource may be granted only by a concession. The mining legislation provides for exploration and exploitation of mineral raw materials. Exploration of oil and gas is considered to comprise operations and testing with the aim to establish the existence, position and form of oil and natural gas deposits, their quality and quantity, as well as exploitation conditions. Exploitation of oil and natural gas is considered to comprise extraction from deposits, refining and transport, as well as disposal in geological structures. Mineral raw materials used in power production amount to 63% of national total primary energy production, and they cover 33% of total power consumption in the country. Legislation in the Republic of Croatia, which refers to exploration and exploitation of oil and natural gas, allows economic utilization of that unrecoverable natural wealth to run smoothly and in compliance with practices in our European environment. (author)

  2. The characteristics of soda metasomatite type uranium mineralization for proterozoic strata in the central-southern part of Kang-Dian earth's axis

    International Nuclear Information System (INIS)

    Qian Farong

    1995-12-01

    The uranium mineralization for Proterozoic strata in the central-southern part of Kang-Dian earth's axis can be divided into four typy (sandstone, soda metasomatite, proterozoic epimetamorphics and quartzite). The soda metasomatite type is the dominant type of uranium mineralization and has the prospecting potential in the area. The characteristics of this type uranium mineralization and the problems of metallogenesis are discussed. Soda metasomatite type uranium mineralization is controlled by soda metasomatite and structure. Uranium exists mainly in the forms of minerals (pitchblende, uranate). Its cell parameter is high and oxygenated coefficient is low, belonging to moderate-low temperature hydrothermal origin. The metallogenetic materials originated from deep-seated crust and country rocks. The metallogenetic solution includes a great quantity of atmospheric water, besides hydrothermal solution from deep-seated crust. The metallogene underwent the two stages i.e. Jinnin and Chengjiang. (4 tabs., 3 figs.)

  3. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  4. Study on Strength and Microstructure of Cement-Based Materials Containing Combination Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Meijuan Rao

    2016-01-01

    Full Text Available The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP, limestone powder (LP, and steel slag powder (SP was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of complex binder hydration products were also studied by microscopic analysis methods, such as XRD, TG-DTA, and SEM. The mechanical properties of the cement-based materials were analyzed to reveal the most appropriate mineral admixture type and content. The early sample strength development with GP was very slow, but it rapidly grew at later stages. The micro aggregate effect and pozzolanic reaction mutually occurred in the mineral admixture. In the early stage, the micro aggregate effect reduced paste porosity and the small particles connected with the cement hydration products to enhance its strength. In the later stage, the pozzolanic reaction of some components in the complex powder occurred and consumed part of the calcium hydroxide to form C-S-H gel, thus improving the hydration environment. Also, the produced C-S-H gel made the structure more compact, which improved the structure’s strength.

  5. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  6. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples

    International Nuclear Information System (INIS)

    Williamson, Aimee Lynn; Caron, François; Spiers, Graeme

    2014-01-01

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 ( 226 Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 ( 235 U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the 226 Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and 226 Ra leaching. Pacified samples resist the release of 226 Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. - Highlights: • Gamma counting showed an 84% decrease in 235 U after biogeochemical mineral leaching. • Chemical digestion/ICP-MS analysis also showed an 84% decrease in total U. • Over

  7. Fine grinding of brittle minerals and materials by jet mill

    Directory of Open Access Journals (Sweden)

    Lek Sikong

    2008-05-01

    Full Text Available Various variables affecting grinding, such as air pressure, minerals or materials hardness, feed size were investigated.The limitations of grinding of gypsum, barite, ilmenite, quartz and ferrosilicon were also elucidated by means of particlefineness size distribution and morphology of ground products. It was found that:1 The density of particles, which are in the grinding zone affects the product fineness, i.e. higher feed rate resultsin a larger product size. The appropriate feed rate is suggested to be 0.2~0.5 g/s. Moreover, the density and hardness ofminerals or materials tend to have an effect on the product fineness. Heavy minerals, such as barite or ilmenite, exhibit afiner product size than lighter minerals, like quartz. However, for quartz, the higher hardness also results in a larger d50.2 Air pressure is the most vital variable which affects the grinding by a jet mill. The d50 seems to relate to theapplied air pressure as a power law equation expressed as following:d50 = aP b ; as P 0The a-value and b-value have been found to correlate to the feed size. The higher the air pressure applied the finerthe product size attained. Moreover, air pressure has a greater effect on hard minerals than on softer ones.3 Feed size seems to have a small effect on ground the product fineness of soft materials, such as gypsum andbarite, but a significant effect on that of hard materials, such as ferrosilicon and quartz, in particularly by milling at low airpressures of 2~3 kg/cm2.4 For the breakage behavior and morphology of ground materials, it was also found that the minerals having cleavages,such as gypsum and barite, tend to be broken along their cleavage planes. Thus, the particle size distribution of theseproducts becomes narrower. While quartz, ilmenite, and ferrosilicon have shattering and chipping breakage mechanisms,grinding results in angular shapes of the ground products and a wider size distribution. Blocks or platelets and

  8. New and non-traditional mineral raw materials deposits, perspectives of use

    International Nuclear Information System (INIS)

    Beyseev, O.; Beyseev, A.; Baichigasov, I.; Sergev, E.; Shakirova, G.

    1996-01-01

    Deposits of new and non-traditional kinds of mineral raw material are revealed, explored and prepared to industrial recovery in Kazakstan, that can be used in frames of conversion process to create new materials with unique properties, to prepare base for new technologies elaboration, and to achieve appreciable economic benefit. These deposits are located mostly in geographic and economic conditions of advanced infrastructure and mining works network, favorable for recovery.On the tests results the following is of heaviest interest: RHODUCITE, NEMALITE-CONTAINING CHRYSOTILE-ASBESTOS, NICKEL-CONTAINING SILICATE-ASBOLAN ORES, MEDICINAL MINERALS, SHUNGITES, FULLERENES, RAW QUARTZ MINERALS - the group of deposits containing 5 min tons of high quality quartz good for manufacture of cut-glass and fibre-optical articles, is explored in details. There are also deposits of other kinds of non-traditional strategic mineral raw material in the Republic of Kazakstan - natural fillers, that can be used in the national economy of the country and bring considerable economic benefit: chrysotile-asbestos, amphibole-asbestos, talk, vollastonite, tremolite, actinolite, vermiculite, zeolite, etc

  9. Phosphated minerals to be used as radioactive reference materials

    International Nuclear Information System (INIS)

    Braganca, M.J.C.S.; Tauhata, L.; Clain, A.F.; Moreira, I.

    2003-01-01

    The production and the supplying of certified reference materials, or deliberated contaminated materials containing natural radionuclides for laboratories which analyses environmental samples are fundamentals for the correct measurements of their radioactive levels. This analysis quality represents a important step for the safeguards of the population health, and quality control of the imported and exported products, such as minerals, agricultural and raw materials. The phosphate rocks, containing significant concentrations of thorium, and used as raw material and fertilizers justified a study for better characterization and distinction to be used cas certified reference radioactive materials. Therefore, samples from the two carboanalytical-alkaline chimneys (Araxa and Catalao), and one from metasedimentar origin (Patos de Minas), distant 100 km from each other, were collected and chemical and cholecystographic characterized by optical emission, X-ray diffraction and fluorescence. The element concentrations were determined by neutron activation analysis, ICP-MS and ICP-AES. The results, after multivariate statistical analysis and study of correlations among elements, have shown geochemical similarities of the phosphates from Araxa and Catalao, and differences from Patos de Minas, despite of the geographic proximity. The concentration of thorium between 200 and 500 (mg/g) allows to use such minerals as reference materials

  10. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  11. Age of mineralization of the Nansatsu type gold deposits, Kagoshima, Japan

    International Nuclear Information System (INIS)

    Izawa, Eiji; Urashima, Yukitoshi; Okubo, Yoshikazu.

    1984-01-01

    Gold-bearing massive silicified rocks occur in the volcanic piles of the Neogene Tertiary age in the Makurazaki district, southern Kyushu and are termed as the Nansatsu type gold deposits. Currently three mines, Kasuga, Iwato and Akeshi, are operating. The argillized zones consisting mainly of quartz, kaolinite and minor goethite surround the silicified rocks. Alunite series minerals occur in and around the silicified rocks. Ages of mineralization have been discussed for many years but were unanswered. K-Ar dating of selected alunite and alunite-bearing rocks from three mines yields ages of 5.5 - 3.7 m.y. K-Ar ages at Mt. Sonomi of the Kasuga mine (5.5 +- 0.4 m.y.) and at the Arabira orebody of the Iwato mine (4.7 +- 1.0 m.y.) probably represent the ages of gold mineralization. Slightly younger ages at Mt. Iwato of the Iwato mine (4.4 +- 0.7 m.y.) and at the No. 1 orebody of the Akeshi mine (3.7 +- 1.1 m.y.) might reflect possible changes in chemical composition of alunite during weathering after mineralization. Gold-silver mineralization in southern Kyushu took place in the Pliocene to early Pleistocene, except minor silver-rich vein type deposits in the middle Miocene time. This study shows that four values are concordant with each other and indicate the latest Miocene to early Pliocene ages for mineralization of the Nansatsu type gold deposits in the Makurazaki district. The ages are comparable with the vein type gold deposits of the early Pliocene time such as Kushikino (4.0 +- 0.3 m.y.) and Hanakago (4.8 +- 2.9 m.y.). Another gold mineralization were known in the early Pleistocene time such as Hishikari (1.5 +- 0.3 m.y.) and Ora (1.8 +- 0.2 m.y.). At present there seems to be only minor gold mineralization between 4 and 2 m.y. (author)

  12. Radiation types and their influence on thermoluminescence of materials

    International Nuclear Information System (INIS)

    Soika, C.; Delincee, H.

    1999-01-01

    The paper reports experiments investigating pure minerals (quartz and potash feldspar) and a mixture (sand) and their luminescence under the impact of various types of radiation. The materials were exposed to the radiation types commonly used for radiation treatment of food: 5 and 10 MeV electron radiation, 6 0Co-γ radiation with applied doses of 0.2 and 5.0 kGy. After measurements, the samples were normalized by re-irradiation with 2, 5, and 10 MeV electrons as well as β radiation ( 9 0Sr), γ radiation ( 6 0Co), and UV-C light (200-280 nm), applying radiation doses of 0.25 kGy and 1.0 kGy, or 0.5 J/cm 2 , respectively. The analysis of the first and second glow curves of each material showed that the radiation type determines the glow curve. UV light was found to be inappropriate for normalisation of those samples containing only quartz as a luminescent constituent. (orig./CB) [de

  13. Nondestructive neutron activation analysis of mineral materials. III

    International Nuclear Information System (INIS)

    Randa, Z.; Benada, J.; Kuncir, J.; Vobecky, M.

    1979-01-01

    A description is presented of sampling, calibration standards, the method of activation and measurement, activation product identification, the respective nuclear reactions, interfering admixtures, and pre-activation operations. The analysis is described of sulphides, halogenides, oxides, sulphates, carbonates, phosphates, silicates, aluminosilicates, composite minerals containing lanthanides, rocks, tektites, meteors, and plant materials. The method allows determining mainly F, Mg, Al, Ti, V, Nb, Rh, and I which cannot be determined by long-term activation (LTA). It is more sensitive than LTA in determining Ca, Cu, In, and Dy. The analysis takes less time, irradiation and measurement are less costly. The main mineral components are quickly found. (M.K.)

  14. The key numbers of the mineral raw materials

    International Nuclear Information System (INIS)

    Mandil, C.

    1996-01-01

    Mineral raw materials come from fossil reserves or ores resulting from the geologic and climatic history of the Earth. The access to economic development for 80% of the worldwide population and the high rate of demographic growth (probably 8 billions of inhabitants in 2025) are important factors that can greatly multiply the worldwide consumption of ores. In parallel, environmental concerns and the increasing need for a better equilibrium between wildlife preservation and the supply of economic needs, lead to a more reasonable and mastered use of natural resources. The aim of this book is to shade light and give global elements of thoughts on mineral resources, and for the main of those (about 30 metals and mineral substances), to review the most useful data and references about their production and consumption. For each question, chapters are devoted to the situation of France in its worldwide context. One chapter concerns the uranium ores (reserves, production, prices evolution, consumption, economic flux and companies involved). (J.S.)

  15. New quantitative methods for mineral and porosity mapping in clayey materials: application to the compacted bentonites of engineered barriers

    International Nuclear Information System (INIS)

    Pret, D.

    2003-12-01

    Clayey materials are well known for their non permeable properties and their textural changes between the dry and hydrated states. Their porous network is classically investigated in the dry state using bulk measurements. However, the relationship between porosity and mineral spatial heterogeneities in the hydrated state is poorly understood. The textural analysis limits induce some difficulties to understand the migration of solute species into compacted bentonites (as for nuclear waste repository). The goal of this work is to improve the analysis techniques for hydrated clayey materials in order to provide a multi-scale quantitative petrography. The bentonite samples are impregnated using a resin whose properties are close to water ones. The classical petrographic study reveals strong heterogeneities of spatial and size distributions of porosity and minerals. SEM images analysis allows a quantification and a simple mapping of pores and minerals into unaltered bentonites. Nevertheless, as alterations are suspected to happen in the repository context, two methods for the analysis of all types of materials have been also developed. Two specific softwares permits the treatments of autoradiographs and chemical element maps obtained using electron microprobe. The results are quantitative maps highlighting the spatial porosity heterogeneities from the decimetric to the micrometric scales. All pore sizes are taken into account including clay interlayer spaces. Moreover, an accurate mineral mapping is also supplied on millimetric areas with a spatial resolution close to the micrometer. In a widely point of view, this work provides new complementary tools for the textural analysis of fine grained materials and the improvement of migration modelling of solute species. (author)

  16. Main types of rare-metal mineralization in Karelia

    Science.gov (United States)

    Ivashchenko, V. I.

    2016-03-01

    Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite-greisen, hydrothermal-metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce-La specialization. The perspective of HREE is related to the Eletozero-Tiksheozero alkaline and Salmi anorthosite-rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu-Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20-70 and 50-246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (˜100 ppm) and metallogenic potential of indium (˜2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

  17. Discussion on several problems on the mineralization of paleo-channel sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Huang Shijie

    1997-01-01

    On the basis of comprehensively analyzing paleo-channel sandstone type uranium deposits at home and abroad, the author discusses the division of mineralization types of paleo-channel sandstone type uranium deposits, and analyzes the metallogenic geologic conditions such as regional geologic background, climatic and geomorphological conditions, basement and sedimentary cover, characteristics of paleo-valley and paleo-channel, mineralization features as well as epigenetic metallogenic process. Future prospecting direction is also proposed

  18. Characteristics and geneses of rossing type uranium mineralization in Chenjiazhuang granite, Danfeng, Shanxi

    International Nuclear Information System (INIS)

    Xu Zhan; Du Letian.

    1988-01-01

    According to the study of field geology and Rb-Sr isotopic system (initial 87 Sr/ 86 Sr = 0.7130, isochron age = 378Ma), oxygen isotope (δ 18 O = 12.772/1000), rare earth elements (ΣREE = 370ppm, δEu = 0.14-0.67) and the structure state of K-feldspar (t 1 = 0.93-0.98, t 10 = 0.90-0.97) of Chenjiazhuang granite, it is recognized that Chenjiazhuang granite is a continental crust-transformation type granite, mainly derived from terrigenous clastic sediment rather than intermediate-basic volcanic rocks in Qinling group. Uranium mineralization occurs as disseminated within the granite. Uraninite is the only ore mineral. U-Pb isotopic system of uraninite gives a mineralization age of 407 Ma ±, this is similar to the whole-rock isochron age of Rb-Sr. These, combined with the observation of thin sections and the study of other aspects, come to the conclusion that this uranium mineralization is a syngenetic one, that is ,Rossing type U-mineralization The study of genesis and mineralization of Chenjiazhuang granite is of significance not only to the exploration of uranium in this area, but also to the regional geology of Qinling area

  19. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 2: Flotability

    Directory of Open Access Journals (Sweden)

    Milanović Dragan B.

    2009-01-01

    Full Text Available The aim of this work was to study floatability of the mineral sheelite from mine 'Rudnik', central Serbia. Flotation tests of the mineral in a Hallimond tube cell were carried out in four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the flotability of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. Also, it was found the floatability of mineral depends on the scheelite particle size fraction used in microflotation experiments. Presented results may be useful for proper selection of type of water, as well of the type of reagents used in flotation processes.

  20. Technological changes, new materials, and their impact on the demand for minerals

    International Nuclear Information System (INIS)

    Rogich, D.G.

    1991-01-01

    Almost all mineral commodities compete in an international market, and changing technologies and preferences can impact this materials market to either increase or decrease the demand for specific minerals. This paper presents information on the changes we are seeing in materials usage in the United States, some specific examples of market penetration and methods to evaluate this, and some preliminary data on worldwide trends. Traditionally, evaluating the viability of a mineral venture involves the estimation of anticipated costs, production rates, mine life, and discount rates. These estimated costs are then compared with current and expected future prices to see if the necessary return on investment is likely to be generated. Additionally, an examination of the current, and expected future competition in the market is certainly of interest since an assessment of where the operation's costs fall in relation to the total world supply determines how far demand/prices can fall before stronger operations can supply the whole market. Feedstock price has been the traditional measure in the minerals community, and most producers think of themselves as suppliers of particular commodities in competition with other similar suppliers. However, this approach must be altered when we seek to evaluate how individual commodities compete in a market where substitution is expanding

  1. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  2. Radiation situation during underground mineral raw materials mining

    International Nuclear Information System (INIS)

    Ogorodnikov, B.I.

    2007-01-01

    One studied the content and the ratio of 4 0 K, 226 Ra, 232 Th and 238 U natural radionuclides in the ores mined in Egypt, Iran, China and Turkey. It is shown that in some ores, for example, in the carbonaceous shale mined in China, in the Iranian bauxite and turquoise Ra eq is higher than 370 Bq/kg, that is, it is higher than the value recommended by the International Scientific Committee on Radiation Effect. The Chinese bituminous shale shows high content of 226 Ra, while 226 Ra/ 232 Th concentration ratio varies between 10 and 60 in contrast to that of other numerous mineral raw materials being close to 1-3. In a number of mines one recorded high concentrations of radon (higher than 300 Bq/m 3 ). Inhalation of such an air results in the essential internal irradiation. The average annual dose equivalents for miners may be higher than the maximum permissible value equal to 20 mSv/g [ru

  3. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru)

    Science.gov (United States)

    Rottier, Bertrand; Kouzmanov, Kalin; Casanova, Vincent; Bouvier, Anne-Sophie; Baumgartner, Lukas P.; Wälle, Markus; Fontboté, Lluís

    2018-01-01

    Cerro de Pasco (Peru) is known for its large epithermal polymetallic (Zn-Pb-Ag-Cu-Bi) mineralization emplaced at shallow level, a few hundred meters below the paleo-surface, at the border of a large diatreme-dome complex. Porphyry-style veins crosscutting hornfels and magmatic rock clasts are found in the diatreme breccia and in quartz-monzonite porphyry dikes. Such mineralized veins in clasts allow investigation of high-temperature porphyry-style mineralization developed in the deep portions of magmatic-hydrothermal systems. Quartz in porphyry-style veins contains silicate melt inclusions as well as fluid and solid mineral inclusions. Two types of high-temperature (> 600 °C) quartz-molybdenite-(chalcopyrite)-(pyrite) veins are found in the clasts. Early, thin (1-2 mm), and sinuous HT1 veins are crosscut by slightly thicker (up to 2 cm) and more regular HT2 veins. The HT1 vein quartz hosts CO2- and sulfur-rich high-density vapor inclusions. Two subtypes of the HT1 veins have been defined, based on the nature of mineral inclusions hosted in quartz: (i) HT1bt veins with inclusions of K-feldspar, biotite, rutile, and minor titanite and (ii) HT1px veins with inclusions of actinolite, augite, titanite, apatite, and minor rutile. Using an emplacement depth of the veins of between 2 and 3 km (500 to 800 bar), derived from the diatreme breccia architecture and the supposed erosion preceding the diatreme formation, multiple mineral thermobarometers are applied. The data indicate that HT1 veins were formed at temperatures > 700 °C. HT2 veins host assemblages of polyphase brine inclusions, generally coexisting with low-density vapor-rich inclusions, trapped at temperatures around 600 °C. Rhyolitic silicate melt inclusions found in both HT1 and HT2 veins represent melt droplets transported by the ascending hydrothermal fluids. LA-ICP-MS analyses reveal a chemical evolution coherent with the crystallization of an evolved rhyolitic melt. Quartz from both HT1 and HT2 veins

  13. Hercynian Pb-Zn mineralization types in the Alcudia Valley mining district (Spain) and their reflect in Pb isotopic signatures

    Science.gov (United States)

    García de Madinabeitia, S.; Santos Zalduegui, J. F.; Palero, F.; Gil Ibarguchi, J. I.; Carracedo, M.

    2003-04-01

    More than 450 ore deposits indexed within the Alcudia Valley of the Central-Iberian Zone (Spain) may be grouped by their tectonic and lithologic characteristics (1,2) as follows: type A of rare stratabound mineralizations, and types B, C, D and E represented by abundant Hercynian veins (post-Namurian). 86 new Pb isotope analyses of galenas from the four vein types reveal that types B and C have similar isotopic ratios with values of μ_2 = 10.07, ω_2 = 40.6 and a mean model age of 564 Ma. Types D and E have μ_2 and ω_2 values of 9.79 and 38.5, respectively, but differ each other with respect to their model ages, 600 Ma (type D) and 335 Ma (type E). The observed variations appear to be related to the geochemical features of the metasedimentary host-rocks of the mineralizations where two distinct types of Pb isotopic ratios have been reported (3): one with μ_2 and ω_2 comparable to those of the D and E types and another with a more radiogenic composition, close to those of the B and C types of galenas. Nägler et al. have suggested partial rehomogeneization of Pb isotopic composition within the metasediments at ca. 330 Ma, that is, prior to the mineralization events, but the extent of this process and its effects on the ore bodies isotopic features is not evident. The origin of the more abundant E type ore bodies has been related to the Hercynian granitic rocks in the area (2, and references therein). Other plutons within this sector of the Central Iberian Zone (e.g., Linares, etc.; cf. accompanying Abstract) associate ore bodies whose Pb isotopic composition is very similar to that of the E type galenas from the Alcudia Valley. The isotopic data obtained thus point to a related or common source material for the various types of granites within the area studied. Yet, the Pb isotopic composition of other mineralizations (B, C, D), likewise located in Hercynian veins, allow to consider different types of Pb-Zn ore bodies and point therefore to different sources of

  14. Basalt fiber insulating material with a mineral binding agent for industrial use

    Science.gov (United States)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  15. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Study on the Analysis of Minerals and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun-Han; Shim, Sang-Kwon; Lee, Kil-Yong [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This study is concerned with the analysis of rare earth group elements especially (Lanthanum, Cerium, Praseodymium and Neodymium) in minerals and materials. Rare elements are widely used as electric, electronics, catalysts, optics, materials of super conductors. They are found wide applications in metallurgy and alloy, glass industry. Cerium, the dominant member of often-overlooked lanthanide series, is essential to many industries. Its metallurgical applications alone include use as an alloying agent or as an ingredient in coatings for iron and steel, superalloys, aluminum alloys, aluminum electrowinning, chrome plating and in welding electrodes and lighter flints. Other applications range the gamut from optical coating and radiation detection to fluorescent lighting and chemotherapy. They are found in many items of electronics industry and serve to an increasing extent as a form of investment. Rare earth elements occurs in traces in most minerals and materials. They are extracted in minute quantities from a limited number of ores. They are concentrated and separated from each other by elaborate chemical processes. In this survey, effects of various acid concentration, diverse interfering elements, various decomposition methods were observed for the determination of Lanthanum, Cerium. Praseodymium and Neodymium using standard reference materials by ICP-AES. As the results, for the determination of these elements should be separated form matrix elements by separated concentration method. Also in order to confirm specification of samples, major, minor and trace elements in samples should be analyzed by ICP-AES and XRF. All analytical results of Lanthanum, Cerium, Praseodymium and Neodymium in standard reference sample and real samples compare with the NAA. Finally the relative standard deviations of approximately 1% S are found from the precision study using standard reference sample for Lanthanum, Cerium, Praseodymium and Neodymium. (author). 22 refs., 33 tabs., 10

  17. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Certified reference materials for the determination of mineral oil hydrocarbons in water, soil and waste

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Liebich, A.; Win, T.; Nehls, I.

    2005-07-01

    The international research project HYCREF, funded by the European Commission in the 5{sup th} Framework programme, aimed to develop methods to prepare homogeneous and stable water-, soil- and waste reference materials contaminated with mineral oil hydrocarbons and to test certify the mineral oil content by gas chromatographic methods. As mineral oil products are important sources for environmental contaminations a high need exists for certified reference materials for their determination using the new gas chromatographic methods (soil: ISO/FDIS 16703, waste: ENpr 14039, water: ISO 9377-2). The experimental conditions and results for preparation and characterisation of a total of nine reference materials (3 water, 3 soil- and 3 waste materials) are described and discussed. Target values for the reference materials were defined at the beginning of the project in order to have clear quality criteria, which could be compared with the achieved results at the end of the project. These target specifications were related to the maximum uncertainty from test certification exercises (<5% for soil/waste and <10% for water), the maximum inhomogeneity between bottles (<3%) and minimum requirements for stability (>5 years for soil/waste and >2 years for water). The feasibility studies showed that solid materials (soil, waste) could be prepared sufficiently homogeneous and stable. The test certified values of the 6 solid materials comprise a wide range of mineral oil content from about 200-9000 mg/kg with expanded uncertainties between 5.7-13.1% using a coverage factor k (k=2). The development of new water reference materials - the so-called ''spiking pills'' for an offshore- and a land-based discharge water represents one of the most innovative aspects of the project. The spiking pill technology facilitates the application and storage and improves the material stability compared with aqueous materials. Additional to the preparation and test certification of

  4. Time influence in chemical treatment of Brazilian raw materials type

    International Nuclear Information System (INIS)

    Argolo, F.; Dias, C.; Machado, A.; Volzone, C.; Ortiga, J.; Valenzuela Diaz, F.

    2012-01-01

    Clays are part of raw materials in different industries. The mineralogical composition and purity greatly influence the application thereof. Chemical treatments applied, such as acid attack, modify their properties and thus their possible uses. Taking in to account that, clay minerals, may differ by more or less resistance to chemical attacks, two types of clay were studied with different mineralogical composition to assess the degree of resistance to chemical attack treatment such as acid. Acid treatments that were applied, differ mainly in the contact time between the solid and the liquid. The solids were studied by X-ray diffraction analysis, chemical analysis and infrared analysis

  5. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.

    Science.gov (United States)

    Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi

    2015-11-01

    Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.

  6. Fluorimetric determination of uranium in certain refractory minerals, environmental samples and industrial waste materials

    International Nuclear Information System (INIS)

    Premadas, A.; Saravanakumar, G.

    2005-01-01

    A simple sample decomposition and laser fluorimetric determination of uranium at trace level is reported in certain refractory minerals, like ilmenite, rutile, zircon and monazite; environmental samples viz. soil and sediments; industrial waste materials, such as, coal fly ash and red mud. Ilmenite sample is decomposed by heating with ammonium fluoride. Rutile, zircon and monazite minerals are decomposed by fusion using a mixture of potassium bifluoride and sodium fluoride. Environmental and industrial waste materials are brought into solution by treating with a mixture of hydrofluoric and nitric acids. The laser induced fluorimetric determination of uranium is carried out directly in rutile, zircon and in monazite minerals and after separation in other samples. The determination limit was 1 μg x g -1 for ilmenite, soil, sediment, coal fly ash and red mud samples, and it is 5 μg x g -1 for rutile, zircon and monazite. The method is also developed for the optical fluorimetric determination of uranium (determination limit 10 μg x g -1 ) in ilmenite, rutile, zircon and monazite minerals. The methods are simple, accurate, and precise and they require small quantity of sample and can be applied for the routine analysis. (author)

  7. Preliminary report about minerals raw materials

    International Nuclear Information System (INIS)

    Bossi, J.

    1965-01-01

    The group of experts entrusted to construct the bases to study the mineral matters has established priorities for the development of mineral resources during the next ten years: 1) aerial photography, 2) geological map, 3) mechanisms for the exploitation, 4) budget

  8. Mineral Surface Reactivity in teaching of Science Materials

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    which enables him to continuous innovation. Different materials are used in the adsorption and improvement and design of new adsorbents, most of whom remain under patent, so they do not know the procedures and products used, but in all cases the safety and / or biodegradability of materials used is an important issue in their choice for environmental applications. In regard to materials, safe and low cost must be mentioned clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for adsorption chemical contaminants. We proposed to use these materials to show the different aspects for the study of the Science Materials. References -del Hoyo, C. (2007b). Layered Double Hydroxides and human health: An overview. Applied Clay Science. 36, 103-121. -Konta, J. (1995). Clay and man: Clay raw materials in the service of man. Applied Clay Science. 10, 275-335. -Volzone, C. (2007). Retention of pollutant gases: Comparison between clay minerals and their modified products. Applied Clay Science. 36, 191-196.

  9. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  10. Thermoluminescence analysis for detection of irradiated food - luminescence characteristics of minerals for different types of radiation and radiation doses

    International Nuclear Information System (INIS)

    Soika, C.; Delincée, H.

    2000-01-01

    Federal Research Centre for Nutrition, Institute of Nutritional Physiology, Haid-und-Neu-Straße 9, 76131 Karlsruhe (Germany) Thermoluminescence analysis is used to detect radiation processing of foods which are contaminated with sand or dust. Silicate minerals are isolated, their radiation-induced luminescence is measured and compared to the thermoluminescence from a second measurement after exposure to a dexned radiation dose (normalization). In the present study, the mineral mixture *sand+ and its main components feldspar and quartz were investigated for their thermoluminescence behaviour using different types of radiation, in order to determine adequate radiation sources for the purpose of normalization. The material was irradiated with types of ionizing radiation commonly used for commercial food irradiation, i.e. accelerated electrons with beam energies of 5 MeV as well as 10 MeV, and 60 Co--rays. After thermoluminescence measurements, samples were re-irradiated using either accelerated electrons with beam energies of 2 MeV, 5 MeV or 10 MeV, or 60 Co--rays, 90 Sr--rays or ultraviolet rays (200}280 nm). Evaluation of the xrst and corresponding second glow curve revealed that their shapes depend on the type of minerals in the mixture. The second radiation treatment (normalization) is satisfactory when accelerated electrons (2, 5 and 10 MeV) as well as 60 Co--rays and 90 Sr--rays are employed. Normalization with ultraviolet rays, however, has only a limited range of use

  11. Mineral content in French type bread with sodium replacement using ...

    African Journals Online (AJOL)

    Mineral content in French type bread with sodium replacement using fluorescence spectrometry X-rays by energy dispersive. Thaisa A. Souza Gusmão, Rennan P. De Gusmão, Severina De Sousa, Mário Eduardo R. Moreira Cavalcanti Mata, Maria Elita M Duarte, Rossana Maria F. De Figuereido, Ricardo T Moreira ...

  12. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  17. 78 FR 50135 - CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order...

    Science.gov (United States)

    2013-08-16

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order of Suspension of Trading August 14, 2013. It... securities of South American Minerals, Inc. because it has not filed any periodic reports since it filed a...

  18. Prospect analysis for sandstone-type uranium mineralization in the northern margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei; Song Zhe; Li Wei

    2010-01-01

    Affected by the regional geological structural evolution, a set of sedimentary structure, i.e. the construction of coal-bearing classic rocks which is in favor of the sandstone-type uranium mineralization has deposited in the northern margin of Qaidam Basin since Meso-Cenozoic. A NWW thrust nappe tectonic belt, i.e. the ancient tectonic belt which is the basis for the development of ancient interlayer oxidation zone formed by the tectonic reverse in late Jurassic and Cretaceous. The Mid and late Jurassic layer was buried by the weak extension in Paleogene and the depression in early Neogene. The extrusion reversal from late Neogene to Quaternary made the basin into the development era of the modern interlayer oxidation zone. It can be concluded that the layer of the northern margin of Qaidam Basin has the premise for the formation of sandstone-type uranium ore. Based on the analysis of the characteristics of the thrust belt, the structure of the purpose layer, the sand body, the hydrogeology, the interlayer oxidation zone and uranium mineralization, the results indicated that the ancient interlayer oxidation zone is the prospecting type of sandstone-type uranium ore. Beidatan and the east of Yuqia are the favorable prospective area of sandstone-type uranium mineralization. (authors)

  19. Evaluation of mineral oil saturated hydrocarbons (MOSH and mineral oil aromatic hydrocarbons (MOAH in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using 1H NMR spectroscopy [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Dirk W. Lachenmeier

    2017-08-01

    Full Text Available Mineral hydrocarbons consist of two fractions, mineral oil saturated hydrocarbons (MOSH and mineral oil aromatic hydrocarbons (MOAH. MOAH is a potential public health hazard because it may include carcinogenic polycyclic compounds. In the present study, 400 MHz nuclear magnetic resonance (NMR spectroscopy was introduced, in the context of official controls, to measure MOSH and MOAH in raw materials or pure mineral hydrocarbon final products (cosmetics and medicinal products. Quantitative determination (qNMR has been established using the ERETIC methodology (electronic reference to access in vivo concentrations based on the PULCON principle (pulse length based concentration determination. Various mineral hydrocarbons (e.g., white oils, paraffins or petroleum jelly were dissolved in deuterated chloroform. The ERETIC factor was established using a quantification reference sample containing ethylbenzene and tetrachloronitrobenzene. The following spectral regions were integrated: MOSH δ 3.0 – 0.2 ppm and MOAH δ 9.2 - 6.5, excluding solvent signals. Validation showed a sufficient precision of the method with a coefficient of variation <6% and a limit of detection <0.1 g/100 g. The applicability of the method was proven by analysing 27 authentic samples with MOSH and MOAH contents in the range of 90-109 g/100 g and 0.02-1.10 g/100 g, respectively. It is important to distinguish this new NMR-approach from the hyphenated liquid chromatography-gas chromatography methodology previously used to characterize MOSH/MOAH amounts in cosmetic products. For mineral hydrocarbon raw materials or pure mineral hydrocarbon-based cosmetic products, NMR delivers higher specificity without any sample preparation besides dilution. Our sample survey shows that previous methods may have overestimated the MOAH amount in mineral oil products and opens new paths to characterize this fraction. Therefore, the developed method can be applied for routine monitoring of consumer

  20. Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada

    Science.gov (United States)

    Yigit, O.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district contains five Carlin-type gold deposits and four resources for a combined gold endowment of 1.6 M oz [50 t]. The gold deposits are hosted in Devonian carbonate rocks below parautochthonous and allochthonous Paleozoic siliciclastic rocks emplaced during the Early Mississippian Antler orogeny. The district is in the Battle Mountain-Eureka trend, a long-lived structural feature that localized intrusions and ore deposits of different types and ages. The whole-rock geochemistry of four different mineralized and unmineralized Devonian carbonate rock units (two favorable and two unfavorable) were determined and interpreted in the context of the regional geology. A combination of basic statistics, R-mode factor analysis, isocon plots, and alteration diagrams were utilized to (1) identify favorable geochemical attributes of the host rocks, (2) characterize alteration and associated element enrichments and depletions, and (3) identify the mechanism of gold precipitation. This approach also led to the recognition of other types of alteration and mineralization in host rocks previously thought to be solely affected by Carlin-type mineralization. Unit 2 of the Upper Member of the Denay Formation, with the highest Al2O3, Fe2O3 and SiO2 contents and the lowest CaO content, is the most favorable host rock. Based on the high regression coefficients of data arrays on X-Y plots that project toward the origin, Al2O3 and TiO2 were immobile and K2O and Fe2O3 were relatively immobile during alteration and mineralization. Specific element associations identified by factor analysis are also prominent on isocon diagrams that compare the composition of fresh and altered equivalents of the same rock units. The most prominent associations are: Au, As, Sb, SiO2, TI, -CaO and -LOI, the main gold mineralizing event and related silicification and decalcification; Cd, Zn, Ag, P, Ni and Tl, an early base metal event; and MgO, early dolomitization. Alteration diagrams

  1. Branding Raw Material to Improve Human Rights: Intel’s Ban on Conflict Minerals

    Directory of Open Access Journals (Sweden)

    Osburg Thomas

    2016-05-01

    Full Text Available Many companies seek to take over more responsibility for their supply chain and their raw materials. Intel was one of the first companies investigating the origin of conflict minerals like tin, tantalum, gold or tungsten, which are used in many electronic products. Their path to ultimately offering conflict-free microprocessors took more than five years of consistent preparation and intensive reengineering of the business process. They identified smelters as a bottleneck in the supply chain and started cooperating closely with them to trace their minerals’ supply. By developing a bag-and-tag system the company is now able to ensure that their minerals are not sourced from illegal mines, which often finance illegal warlords, for example, in the eastern Democratic Republic of Congo. The cooperation with the smelters brings about higher demand and in consequence higher prices for the legally sourced minerals. Many small miners and their families in the region directly benefit from the higher earnings.

  2. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; van der Pluijm, B.A. (Univ. of Michigan, Ann Arbor (USA))

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  3. Formation of accessory mineral bed layers during erosion of bentonite buffer material

    International Nuclear Information System (INIS)

    Schatz, Timothy; Kanerva, Noora

    2012-01-01

    Document available in extended abstract form only. dilute groundwater at a transmissive fracture interface, accessory phases within bentonite, such as quartz, feldspar, etc., might remain behind and form a filter bed or cake. As more and more montmorillonite is lost, the thickness of the accessory mineral bed increases and the continued transport of montmorillonite slows and possibly stops if the porosity of the filter bed is sufficiently compressed. Alternatively or concurrently, as the accessory mineral filter bed retains montmorillonite colloids, a filter cake composed of montmorillonite itself may be formed. Ultimately, depending on their extent, properties, and durability, such processes may provide the bentonite buffer system with an inherent, self-filtration mechanism which serves to limit the effects of colloidal erosion. A conceptual view of bentonite buffer extrusion and erosion in an intersecting fracture with formation of an accessory mineral filter bed and montmorillonite filter cake is presented in Figure 1. Due to the swelling pressure of the bentonite buffer, the situation described in Figure 1 may be analogous to that of the case of pressure filtration where a filter cake is formed by pressing a suspension through a filter medium and, by a mechanism known as expression, the filter cake is compressed by direct contact with a solid surface resulting in a reduction of its porosity. In order to examine whether the erosion of bentonite material through contact with dilute groundwater at a transmissive fracture interface could intrinsically result in 1) the formation of an accessory mineral filter bed and cake and/or 2) filter caking of montmorillonite itself, a series of laboratory tests were performed in a flow-through, horizontal, 1 mm aperture, artificial fracture system. Bentonite buffer material was simulated by using mixtures (75/25 weight percent ratio) of purified sodium montmorillonite and various additives serving as accessory mineral proxies

  4. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  5. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2015-03-01

    Full Text Available Aim. To determine the relationship between bone mineral density (BMD and total body composition in postmenopausal women with type 2 diabetes. Materials and Methods. The study included 78 women, from 50 to 70 years of age (median 63 years. Twenty women had normal body mass index (BMI, 29 ones were overweight and 29 had obesity. The body composition and BMD was studied by dual-energy X-ray absorptiometry. Results. Women with normal BMD had higher BMI, total and truncal fat mass, as well lean mass as compared to women with osteoporosis and osteopenia (all p

  6. Amino acid derivative-mediated detoxification and functionalization of dual cure dental restorative material for dental pulp cell mineralization.

    Science.gov (United States)

    Minamikawa, Hajime; Yamada, Masahiro; Iwasa, Fuminori; Ueno, Takeshi; Deyama, Yoshiaki; Suzuki, Kuniaki; Yawaka, Yasutaka; Ogawa, Takahiro

    2010-10-01

    Current dental restorative materials are only used to fill the defect of hard tissues, such as dentin and enamel, because of their cytotoxicity. Therefore, exposed dental pulp tissues in deep cavities must be first covered by a pulp capping material like calcium hydroxide to form a layer of mineralized tissue. However, this tissue mineralization is based on pathological reaction and triggers long-lasting inflammation, often causing clinical problems. This study tested the ability of N-acetyl cysteine (NAC), amino acid derivative, to reduce cytotoxicity and induce mineralized tissue conductivity in resin-modified glass ionomer (RMGI), a widely used dental restorative material having dual cure mechanism. Rat dental pulp cells were cultured on untreated or NAC-supplemented RMGI. NAC supplementation substantially increased the percentage of viable cells from 46.7 to 73.3% after 24-h incubation. Cell attachment, spreading, proliferative activity, and odontoblast-related gene and protein expressions increased significantly on NAC-supplemented RMGI. The mineralization capability of cells, which was nearly suppressed on untreated RMGI, was induced on NAC-supplemented RMGI. These improved behaviors and functions of dental pulp cells on NAC-supplemented RMGI were associated with a considerable reduction in the production of intracellular reactive oxygen species and with the increased level of intracellular glutathione reserves. These results demonstrated that NAC could detoxify and functionalize RMGIs via two different mechanisms involving in situ material detoxification and antioxidant cell protection. We believe that this study provides a new approach for developing dental restorative materials that enables mineralized tissue regeneration.

  7. Electronic microscopy application in artificial minerals

    International Nuclear Information System (INIS)

    Gomez, L E.

    1995-07-01

    One of the uses of electronic microscopy in combination with the analysis microprobe EDAX is to characterize the properties of the minerals. The technique consist of studying the chemical composition by elements or by oxides of particles which can be enlarged successfully up to 100000x. With the help of the optical microscope one is able to determine the textual characteristics, the form, cleavage and other cristallographic properties which, combined with microprobe analysis enable one to determine its classification. The industrial processes which use ovens usually have problems due to the formation of impurities, spots and abnormal aspects which are reflected in a lower quality of the final material produced. These types of defects appear in minerals which are made in laboratories; knowing the natural minerals one can exercise a better quality control since this permits to know the behaviour of the raw material at a particular temperature and its reactions depending on the additives used

  8. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Fine grinding of brittle minerals and materials by jet mill

    OpenAIRE

    Lek Sikong; Kalayanee Kooptanond; Noparit Morasut; Thammasak Pongprasert

    2008-01-01

    Various variables affecting grinding, such as air pressure, minerals or materials hardness, feed size were investigated.The limitations of grinding of gypsum, barite, ilmenite, quartz and ferrosilicon were also elucidated by means of particlefineness size distribution and morphology of ground products. It was found that:1) The density of particles, which are in the grinding zone affects the product fineness, i.e. higher feed rate resultsin a larger product size. The appropriate feed rate is s...

  13. Kinetics and Efficiency of H2O2 Activation by Iron-Containing Minerals and Aquifer Materials

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2014-01-01

    To gain insight into factors that control H2O2 persistence and ˙OH yield in H2O2-based in situ chemical oxidation systems, the decomposition of H2O2 and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H2O2 decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2 to 10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H2O2 decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H2O2 on manganese oxides does not produce ˙OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H2O2 decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO2 slowed the rate of H2O2 decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. PMID:23047055

  14. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa

    Science.gov (United States)

    Dewaele, S.; De Clercq, F.; Hulsbosch, N.; Piessens, K.; Boyce, A.; Burgess, R.; Muchez, Ph.

    2016-02-01

    The vein-type tungsten deposit at Nyakabingo in the central Tungsten belt of Rwanda is located in the eastern flank of the complex Bumbogo anticlinal structure. The host rock is composed of alternating sequences of sandstones, quartzites, and black pyritiferous metapelitic rocks. Two types of W-mineralized quartz veins have been observed: bedding-parallel and quartz veins that are at high angle to the bedding, which are termed crosscutting veins. Both vein types have been interpreted to have been formed in a late stage of a compressional deformation event. Both vein types are associated with small alteration zones, comprising silicification, tourmalinization, and muscovitization. Dating of muscovite crystals at the border of the veins resulted in a maximum age of 992.4 ± 1.5 Ma. This age is within error similar to the ages obtained for the specialized G4 granites (i.e., 986 ± 10 Ma). The W-bearing minerals formed during two different phases. The first phase is characterized by scheelite and massive wolframite, while the second phase is formed by ferberite pseudomorphs after scheelite. These minerals occur late in the evolution of the massive quartz veins, sometimes even in fractures that crosscut the veins. The ore minerals precipitated from a H2O-CO2-CH4-N2-NaCl-(KCl) fluid with low to moderate salinity (0.6-13.8 eq. wt% NaCl), and minimal trapping temperatures between 247 and 344 °C. The quartz veins have been crosscut by sulfide-rich veins. Based on the similar setting, mineralogy, stable isotope, and fluid composition, it is considered that both types of W-mineralized quartz veins formed during the same mineralizing event. Given the overlap in age between the G4 granites and the mineralized quartz veins, and the typical association of the W deposits in Rwanda, but also worldwide, with granite intrusions, W originated from the geochemically specialized G4 granites. Intense water-rock interaction and mixing with metamorphic fluids largely overprinted the

  15. Innovation processes in technologies for the processing of refractory mineral raw materials

    Science.gov (United States)

    Chanturiya, V. A.

    2008-12-01

    Analysis of the grade of mineral resources of Russia and other countries shows that end products that are competitive in terms of both technological and environmental criteria in the world market can only be obtained by the development and implementation of progressive technologies based on the up-to-date achievements of fundamental sciences. The essence of modern innovation processes in technologies developed in Russia for the complex and comprehensive processing of refractory raw materials with a complex composition is ascertained. These processes include (i) radiometric methods of concentration of valuable components, (ii) high-energy methods of disintegration of highly dispersed mineral components, and (iii) electrochemical methods of water conditioning to obtain target products for solving specific technological problems.

  16. Silver-bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China

    Science.gov (United States)

    Wang, Minfang; Zhang, Xubo; Guo, Xiaonan; Pi, Daohui; Yang, Meijun

    2018-02-01

    Electron probe microanalysis (EPMA) results are reported for newly identified silver-bearing minerals from the Xinhua deposit, Yunkaidashan area, South China. The Xinhua deposit is a hydrothermal vein-type Pb-Zn deposit and is hosted in the Pubei Complex, which consists of a cordierite-biotite granite with a U-Pb zircon age of 244.3 ± 1.8-251.9 ± 2.2 Ma. The mineralization process is subdivided into four mineralization stages, characterized by the following mineral associations: mineralization stage I with quartz, pyrite, and sphalerite; mineralization stage II with siderite, galena, and tetrahedrite; mineralization stage III with quartz and galena; and mineralization stage IV with quartz, calcite, and baryte. Tetrahedrite series minerals, such as freibergite, argentotetrahedrite, and tennantite are the main Ag-bearing minerals in the Xinhua deposit. The greatest concentration of silver occurs in phases from mineralization stage II. Microscopic observations reveal close relationship between galena and tetrahedrite series minerals that mostly occur as irregular inclusions within galena. The negative correlation between Cu and Ag in the lattices of tetrahedrite series minerals suggests that Cu sites are occupied by Ag atoms. Zn substitution for Fe in argentotetrahedrite and Cd substitution for Pb in tetrahedrite are also observed. Micro-thermometric data reveal that both homogenization temperatures and calculated salinities of hydrothermal fluids decrease progressively from the early to the later mineralization stages. The metal ions, such as Ag+, Cu+, Pb2+, and Zn2+, are transported as chlorine complex ions in the early mineralization stage and as bisulfide complex ions in the late mineralization stage, caused by changes in oxygen fugacity, temperature, and pH of the hydrothermal fluids. Because of the varying solubility of different metal ions, Pb2+, Zn2+, and Cu2+ ions are initially precipitated as galena, sphalerite, and chalcopyrite, respectively. With

  17. Uranium in soil, forest litter and living plant material above three uranium mineralizations in Northern Sweden

    International Nuclear Information System (INIS)

    Ek, John

    1982-01-01

    In order to investigate the feasibility of biogeochemical sampling media in uranium exploration, samples from the most common trees and low bushes together with forest litter were collected over the areas of three uranium mineralizations in Northern Sweden and analyzed for uranium. The results were compared with uranium content of the till and its radioactivity. The average uranium content was low for all sample types and considerably lower in the ash of the organic sample types compared to that of the till. No sample type showed any tendency of having higher uranium concentration above mineralizations compared to background areas. These results suggest that, under conditions prevailing in Sweden, the investigated sample types are not suitable for uranium exploration

  18. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Large-area, long-term monitoring of mineral barrier materials

    International Nuclear Information System (INIS)

    Brandelik, A.; Huebner, C.

    1997-01-01

    Clay-type mineral layers are used for bottom and surface barriers in environmental containment, such as landfill designs. Their performance in terms of isolation depends on the water content and its variation with the time. Sensitive long-term areal mapping of the moisture content can detect in time drying or shearing failures that will have a negative impact on the performance of the barrier. Based on the measurement of the dielectric coefficient (not of the unpredictable electric conductivity as proposed by others), we use the combination of two sensors; the cryo-moisture sensor and the cable network sensor in the clay-type mineral layer. The cryo-moisture sensor measures the depth profile of the absolute water content and the change of density on a small area (diameter approx. 0.2 m). It is selfcalibrating and very accurate. The cable network sensor is a net of moisture sensitive radiofrequency cables. It is buried in the barrier layer and determines variations of the water content of approximately 3% (by volume) with a spatial accuracy of approx. 4 meters. We have used the cryo-sensor since 1992 and already started installing the cable network on an area of approx. 2000 m 2 within a waste disposal surface barrier at Karlsruhe. This system is non-destructive and allows long-term monitoring. It is predicted to operate for longer than 20 years. The calculated costs of acquisition, installation and operation are $ 4.-/m 2 in the first year

  20. Simulation of the decomposition and nitrogen mineralization of aboveground plant material in two unfertilized grassland ecosystems.

    NARCIS (Netherlands)

    Bloemhof, H.S.; Berendse, F.

    1995-01-01

    A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data.

  1. Metallogenic geologic conditions and prospecting direction of sandstone type uranium mineralizations in Yili basin of Xinjiang

    International Nuclear Information System (INIS)

    Chen Daisheng; Wang Ruiying; Li Shengxiang; Zhang Kefang

    1994-09-01

    Yili basin is a Mesozoic down-warped basin superimposed on the late Paleozoic volcanic taphrogenic basin. Uranium mineralizations are hosted in the Middle-Lower Jurassic coal-bearing series. The depositions environment in the basin is turbulent in the east and relatively stable in the west. It is characterized by coarse-grained sequence with thin thickness in the eastern part and fine-grained with thick thickness in the western part. On the analytical basis of sedimentary facies indices, it is the first time to present a sedimentary model of 'alluvial fan-braided stream-(narrow) lakeshore delta-lacustrine facies and marsh facies' for the coal-bearing series. The authors have summarized the basic geologic features of U-mineralizations in the interlayer oxidation zone, analyzed the difference and cause of U-mineralizations between the south and north, as well as the east and west. The genetic mechanism of U-mineralizations in the basin is discussed. Finally, seven items of geologic prerequisites for the formation of in-situ leachable sandstone type uranium deposits have been suggested and the potential of sandstone type U-mineralizations in the basin has been evaluated. Four promising target areas are selected

  2. Mining Pribram in science and technology. Proceedings of Session U - Mineral raw materials treatment

    International Nuclear Information System (INIS)

    Tomasek, J.; Vetejska, K.

    1987-01-01

    The proceedings of session ''Mineral raw materials treatment'' contain 27 papers of which only one deals with the application of nuclear technology, namely, the effect of fast electrons on the magnetic properties of the polymetallic Rudniany ore. (J.B.)

  3. Applications of transmission electron microscopy in the materials and mineral sciences

    International Nuclear Information System (INIS)

    Murr, L.E.

    1975-01-01

    Unique capabilities of transmission electron microscopy in characterizing the structure and properties of metals, minerals, and other crystaline materials are illustrated and compared with observations in the scanning electron and field-ion microscopes. Contrast mechanisms involving both mass-thickness and diffraction processes are illustrated, and examples presented of applications of bright and dark-field techiques. Applications of the electron microscope in the investigation of metallurgical and mineralogical problems are outlined with representative examples [pt

  4. Feed type based expert systems in mineral processing plants

    International Nuclear Information System (INIS)

    Jamsa-Jounela, S.-L.; Laine, S.; Laurila, H.

    1999-01-01

    Artificial Intelligence includes excellent tools for the control and supervision of industrial processes. Several thousand industrial applications have been reported worldwide. Recently, the designers of the AI systems have begun to hybridize the intelligent techniques, expert systems, fuzzy logic and neural networks, to enhance the capability of the AI systems. Expert systems have proved to be ideal candidates especially for the control of mineral processes. As successful case projects, expert system based on on-line classification of the feed type is described in this paper. The essential feature of this expert system is the classification of different feed types and their distinct control strategies at the plant. In addition to the classification, the expert system has a database containing information about how to handle the determined feed type. This self-learning database scans historical process data to suggest the best treatment for the ore type under processing. The system has been tested in two concentrators, the Outokumpu Finnmines Oy, Hitura mine and Outokumpu Chrome Oy, Kemi mine. (author)

  5. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  6. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Importance and possibilities of secondary cycles (recycling), substitution and innovation in mineral raw and primary material supply

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Part 1-4 of the series ''The basis of raw materials supply'' is intended to bring about a better understanding of the ''Concept for the supply of Austria with mineral raw- and primary materials''. Part 3 deals with recovery of raw material from old- and waste material as an important contribution to an extension of the supply's basis and to an improvement of raw material utilization.

  8. Characterization of sialon-type materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Paul Newman [Univ. of California, Berkeley, CA (United States)

    1977-06-01

    Four sialon-type materials using volcanic ash as a raw material were characterized and some of their properties were determined. The M3 and M4 materials were identified as β1--Si3N4 sialons; their principal constituent is silicon. The M2 material was identified as a 15R-A1N polytype sialon whose principal constituent is aluminum. The M1 material is a mixture of the two types. An overview of results showing the general structural formulae and the relative order of the materials with respect to various properties as determined by the investigation is presented. It is concluded that of the materials tested, the M2 material shows the most promise as a candidate for meeting some of the current needs for high-temperature materials. It is also concluded that more research is needed in order to explain the low resistance of these materials to thermal shock since their coefficients of thermal expansion are relatively low.

  9. Reagan issues mineral policy

    Science.gov (United States)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  10. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    International Nuclear Information System (INIS)

    Gadikota, Greeshma; Natali, Claudio; Boschi, Chiara; Park, Ah-Hyung Alissa

    2014-01-01

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe) 3 Si 2 O 5 (OH) 4 )) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO 2 emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P CO2 of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO 2 via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO 3 ) 2 ), whewellite (CaC 2 O 4 ·H 2 O) and glushinskite (MgC 2 O 4 ·2H 2 O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation

  11. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 1: Zeta-potential

    Directory of Open Access Journals (Sweden)

    Milanović Dragan B.

    2009-01-01

    Full Text Available The aim of this work is the investigation of zeta-potential of the mineral scheelite from mine 'Rudnik', located in central Serbia. Electrophoresis measurements using zeta-meter were carried out on four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the zeta-potential of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. The results obtained reveal the importance of proper choice of water as well as the type of reagents for flotation processes.

  12. Uranium mineralization of the Witwatersrand and Dominion Reef systems

    International Nuclear Information System (INIS)

    Simpson, P.R.; Bowles, J.F.W.

    1977-01-01

    Uranium-bearing minerals in the Witwatersrand and Dominion Reef sediments have been studied by ore microscopic, electron microprobe, fission track and neutron activation analytical methods to determine the controls of uranium mineralization. In the Dominion Reef, which represents a high-energy banket type of depositional environment, allogenic thorian uraninite occurs in hydraulic equivalence with allogenic pyrite, quartz and possibly also gold in the sediments which have uranium-thorium ratios between 3.1 and 5.6 indicating substantial amounts of thorium-rich resistate minerals. The Witwatersrand sediments have uranium-thorium ratios ranging between 7.1 and 19.6 indicating lesser amounts of resistates which is consistent with the lower-energy depositional environment. The proximal or nearshore deposits are of banket type but are distinguished from the Dominion Reef by the abundance of concretionary pyrite formed within the Basin and the presence of carbonaceous matter. The distal deposits formed at greater distance from the shoreline contain decaying organic material which has precipitated both uranium and gold from solution. Subsequent metamorphism has resulted in the formation of carbonaceous material bearing finely disseminated low-thorium pitchblende and a fine dissemination of gold associated with sulphides and arsenides. (author)

  13. PIXE analysis of nephrite minerals from different deposits

    Science.gov (United States)

    Zhang, Z. W.; Gan, F. X.; Cheng, H. S.

    2011-02-01

    External-beam PIXE was used to determine the major, minor and trace elements of 45 nephrite minerals from 14 different deposits, including China and other countries. Depending on the R∗ value (mole percent of Mg 2+/(Mg 2+ + Fe 2+(3+))) and content of Cr, Co and Ni, two types of nephrite minerals from dolomite and serpentinized ultramafic deposits can be more accurately distinguished. Besides, the nephrite minerals from Xiaomeiling and Wenchuan deposit can be distinguished with others from dolomite deposits, through the content of Sr and Mn/Fe value, respectively. Moreover, depending on the Sr content, clear evidence was given to prove that the raw materials of ancient nephrite artifacts from Liangzhu culture ruins are not from Xiaomeiling nephrite deposit. Furthermore, PIXE as a non-destructive method will be more used to study ancient nephrite artifacts, so these results can provide scientific basis for seeking the provenance of nephrite raw materials.

  14. OPTICAL-ELECTRONIC SYSTEM FOR EXPRESS ANALYSIS OF ORE DRESSABILITY FOR MINERAL RAW MATERIALS BY OPTICAL METHOD

    Directory of Open Access Journals (Sweden)

    A. A. Alekhin

    2013-05-01

    Full Text Available The article deals with creation results of experimental prototype of optical-electronic complex, designed to assess ore dressability of mineral raw materials by optical sorting method.

  15. U-Pb age for some base-metal sulfide deposits in Ireland: genetic implications for Mississippi Valley-type mineralization

    International Nuclear Information System (INIS)

    Duane, M.J.; Welke, H.J.; Allsopp, H.L.

    1986-01-01

    Evidence is presented that links the timing of vein-type (Cu-Ag(U)) to stratiform Mississippi Valley-type (MVT, Pb-Zn) ore events in Ireland. The rare occurrence of pitchblende, coffinite(?), and brannerite mineralization, which is regarded as a precursor component to the sulfide mineralization in the Gortdrum deposit (Ireland), provides the first direct radiometric dating tool for these carbonate-hosted deposits. The U-Pb (340 +25/-20 Ma) and Pb-Pb (359 +/- 26 Ma) whole-rock ages constrain the uranium and base-metal mineralizing events to the Early Carboniferous. The data support a model according to which MVT and earlier uranium mineralization stages of some major ore bodies resulted from fracturing coincident with large basin-dewatering events. The Pb-Pb and concordia data are consistent with an Early Carboniferous age for the mineralization at Gortdrum and agree closely with a previously published Rb-Sr age of 359 +/- 22 Ma, obtained for Missouri glauconites. Furthermore, other comparative geologic data from Ireland and from North American MVT mineral provinces support a model of Pb-Zn-Cu(U) mobilization on a regional scale that implicates the later closing stages of the proto-Atlantic. 40 references, 3 figures, 1 table

  16. [Balneotherapeutics of non-alcoholic fatty liver disease with the use of the Essentuki-type drinking mineral waters].

    Science.gov (United States)

    Fedorova, T E; Efimenko, N V; Kaĭsinova, A S

    2012-01-01

    The objective of the present work was to estimate the effectiveness of combined spa-and-resort treatment with the use of the Essentuki-type drinking mineral waters for the patients presenting with non-alcoholic fatty liver disease. A total of 40 patients presening with non-alcoholic fatty liver disease (NOFLD) were available for the examination. The study has demonstrated positive dynamics of clinical symptoms and results of liver functional tests, characteristics of intrahepatic dynamics, lipid metabolism, antioxidant hemostais, and the hormonal status of the patients with non-alcoholic fatty liver disease. The intake of the Essentuki-type drinking mineral waters promoted normalization of adiponectin and leptin levels in conjunction with the reduction in the degree of insulin resistance, i.e., the key pathogenetic factors responsible for hepatic steatosis and non-alcoholic steatohepatitis. It is concluded that the Essentuki-type drinking mineral waters may be recommended for the inclusion in the combined treatment and prevention of the progression of non-alcoholic fatty liver disease.

  17. Kinetics of mineral condensation in the solar nebula

    International Nuclear Information System (INIS)

    Grove, T.L.

    1987-01-01

    A natural extension of the type of gas-mineral-melt condensation experiments is to study the gas-mineral-melt reaction process by controlling the reaction times of appropriate gas compositions with silicate materials. In a condensing and vaporizing gas-solid system, important processes that could influence the composition of and speciation in the gas phase are the kinetics of vaporization of components from silicate crystals and melts. The high vacuum attainable in the space station would provide an environment for studying these processes at gas pressures much lower than those obtainable in experimental devices operated at terrestrial conditions in which the gas phase and mineral or melt would be allowed to come to exchange equilibrium. Further experiments would be performed at variable gas flow rates to simulate disequilibrium vapor fractionation. In this type of experiment it is desirable to analyze directly the species in the gas phase in equilibrium with the condensed silicate material. This analytical method would provide a direct determination of the species present in the gas phase. Currently, the notion of gas speciation is based on calculations from thermodynamic data. The proposed experiments require similar furnace designs and use similar experimental starting compositions, pressures, and temperatures as those described by Mysen

  18. Selected scientific articles. (Investigations in the field of hydrides chemistry and mineral raw materials processing)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    Articles, included in the present book are covering period 1977-2013 y. The main scientific articles in the field of power-consuming substances, mineral raw-materials and wastes reprocessing, including uranium industry wastes are collected. Scientific works on hydrogen chemistry which carried out basically bu U.M. Mirsaidov without co-authors are considered. These works are on aluminium hydrides and borohydrides lanthanides. Besides, author's popular-science articles on research carried out by Academy of Sciences during the period when he was the President of Academy of Sciences of the Republic of Tajikistan (1995-2005) are included. Mineral raw materials and wastes reprocessing results are given as well. The book is intended for engineer and technical staff, those working in the field of hydrogen chemistry, hydrometallurgy workers, engineering chemists as well as for PhD, post graduate students and students of appropriate profiles.

  19. The relations between hydrodynamic characteristics and interbedding oxidation zone type uranium mineralization

    International Nuclear Information System (INIS)

    Bai Jingping

    2001-01-01

    Infiltrating type hydrodynamic way controls the formation of interbedding oxidation zone type uranium deposit. The author analyzes hydrodynamic condition of Songliao basin and concludes that during evolution and development of Songliao basin, Water-bearing petrofabric of Mingshui Formation and above inherit completely infiltrating hydrodynamic way as they were deposited and that Sifangtai Formation inherit the way to some extent, that below Sifangtai Formation water bearing petrofabric were completely reformed in northern part of Songliao watershed. The contact line between infiltrating and out filtrating type hydrodynamic way, e.g. underground water dividing lines formed in different geological period, restricts development of interbedding oxidation zone in this period and controls uranium mineralization

  20. Influence of diabetes mellitus on the mineralization ability of two endodontic materials

    Directory of Open Access Journals (Sweden)

    João Eduardo GOMES FILHO

    2016-01-01

    Full Text Available Abstract The aim of this study was to evaluate the influence of diabetes mellituson tissue response and mineralization ability of Sealapex®and MTA Fillapex® sealers. Twenty-four Wistar rats were divided into two groups: diabetic and non-diabetic. The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of rats for 7 and 30 days. Six animals from each group received injection of calcein, alizarin, and oxytetracycline on days 7, 14, and 21, respectively. The animals were killed after 7 and 30 days and specimens were prepared for histologic analysis by staining with hematoxylin and eosin or Von Kossa or left unstained for polarized light or fluorescence microscopy. On day 7, inflammatory reactions were characterized. Moderate inflammatory responses were observed for all groups and on day 30, a mild inflammatory response against MTA Fillapex® and a moderate inflammatory response against Sealapex® were observed. Von Kossa-positive structures were observed in response to both materials and birefringent structures were observed upon polarized light analysis; these had no relation to the diabetic condition (p > 0.05. The fluorescence intensity was unaffected in diabetic rats (p > 0.05. In conclusion, diabetes mellitus did not influence the tissue response or mineralization stimulated by Sealapex® or MTA Fillapex®.

  1. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  2. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gadikota, Greeshma [Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Natali, Claudio; Boschi, Chiara [Institute of Geosciences and Earth Resources – National Research Council, Pisa (Italy); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Lenfest Center for Sustainable Energy, Columbia University, 500 West 120th Street, New York, NY 10027 (United States)

    2014-01-15

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe){sub 3}Si{sub 2}O{sub 5}(OH){sub 4})) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO{sub 2} emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P{sub CO2} of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO{sub 2} via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO{sub 3}){sub 2}), whewellite (CaC{sub 2}O{sub 4}·H{sub 2}O) and glushinskite (MgC{sub 2}O{sub 4}·2H{sub 2}O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation.

  3. Titanium minerals of placer deposits as a source for new materials

    Science.gov (United States)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The

  4. Quantification of mineral matter in commercial cokes and their parent coals

    Energy Technology Data Exchange (ETDEWEB)

    Sakurovs, Richard; French, David; Grigore, Mihaela [CRC for Coal in Sustainable Development, CSIRO Energy Technology, PO Box 330 Newcastle 2300 (Australia)

    2007-10-01

    The nature of mineral matter in coke is an important factor in determining the behaviour of coke in the blast furnace. However, there have been few quantitative determinations of the types of mineral matter in coke and the feed coal. Here we use a technique of quantitative X-ray diffraction - SIROQUANT trademark - to determine the nature and quantity of mineral matter in eleven cokes and their parent materials, using samples of coals and their cokes utilised commercially in blast furnaces around the world. In some of these coals a considerable proportion of the phosphorus was present as goyazite, an aluminium phosphate. In the cokes, most of the iron was incorporated into amorphous aluminosilicate material; metallic iron accounted for about 15% of the iron present, and a similar amount was present as sulfides. Potassium and sodium were largely present as amorphous aluminosilicate material. Most of the quartz in the coal was unaffected by the coking, but a small fraction was transformed into other minerals. Quartz is not completely inert during coking. The amount of the catalytic forms of iron in the coke - iron, iron oxides and iron sulfides - was not related to the amount of pyrite and siderite in the starting coal, indicating that estimation of catalytic iron requires investigation of the mineral matter in coke directly and cannot be estimated from the minerals in the coal. (author)

  5. Microbial mineralization processes in Antarctic soils and on plant material

    International Nuclear Information System (INIS)

    Boelter, M.

    1991-01-01

    Soil samples and different plant material from the maritime and continental Antarctic were analyzed for their actual and potential respiration by different methods: total CO 2 -evolution, biological oxygen demand and use of 14C-labeled glucose which may serve as a model for dissolved organic carbohydrates. Since these methods are argued to indicate the mineralization of different fractions of the total organic material by different actual populations, a comparison between the data from these techniques is carried out with regard to their contributions of the total organic matter debris in these environments. The part of respired material calculated from 14C-studies may contribute to nearly 90% of the metabolized material. Results show that the individual fractions differ significantly with respect to the parent material. There are several aspects which have to be taken into account when looking at these data: the original content of water; the contents of dissolved and particulate carbohydrates; and, other edaphic factors. Of special interest is the overall respiration of plant material (mainly lichens) which is strongly influenced by the bacterial respiration of dissolved carbohydrates, probably by ongrowing organisms due to their efficiency in using dissolved organic matter. In terms of respiratory activity, the (bacterial) respiration of glucose may contribute to more than 50% of the total CO 2 -evolution. This influences considerably the modeling of overall respiration of plant material in those environments where close interactions between different parts of the system are very important for their life strategy. Further, the bacterial part may be an overlooked part of metabolic rates in Antarctic lichens

  6. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Radiological safety and environmental implications in beach mineral industry due to naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Pillai, P.M.B.; Haridasan, P.P.; Maniyan, C.G.; Khan, A.H.

    2002-01-01

    The presence of monazite (primary ore of Thorium) along with ilmenite and other minerals in the beach sand deposits of coastal regions of South India has made some of these coastal areas prominent among Natural High Background Radiation Areas (NHBRA) in the world. The beach mineral industries are situated in populated areas in these NHBRAs. The radiation background prevailing in these areas due to the presence of the Naturally Occurring Radioactive Materials (NORM) Thorium with traces of Uranium and their decay products had been found to result in estimated percaput annual external exposures ranging from 3 to 25 mSv to the population at NHBRA depending on the monazite content of the soil in the area. The internal exposures estimated are of the order of 1 to 2 mSv per year. The mining of minerals and refilling of the mined out areas with mineral free sand and rehabilitation of the area is found to reduce the external radiation fields by a factor of 3. The notional environmental external radiation exposures to the population occupying this modified NHBRA also reduce correspondingly. (author)

  8. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  9. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  10. Determination of Au, Pt, Pd in gold ore mineral raw materials by stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Kolpakova N.A.

    2016-01-01

    Full Text Available The paper considers the possibilities of use of the method of stripping voltammetry for finding platinum metals in mineral gold and ore raw material. A review of new options of electro-concentration of platinum metals on the surface of graphite electrode with the following sediment electro-oxidation and receipt of an analytical signal is presented: platinum finding was carried out by picks of selective electro-oxidation of iridium from intermetallic compound with platinum; gold finding was carried out by picks of gold electro-oxidation on the surface of graphite electrode modified by bismuth; palladium finding was performed by picks of palladium electro-oxidation on the surface of graphite electrode. 1M HCL solution was selected as a supporting electrolyte. Gold and hydrogen elimination on the process of palladium electro-oxidation was performed by means of UV irradiation of solution in the process of electro-concentration of palladium sediment. Gold, platinum and palladium determination was carried out in mineral gold and ore raw material of Verkhneamylskiy gold and ore district.

  11. Effects of dietary lipid composition and inulin-type fructans on mineral bioavailability in growing rats.

    Science.gov (United States)

    Lobo, Alexandre Rodrigues; Filho, Jorge Mancini; Alvares, Eliana Parisi; Cocato, Maria Lucia; Colli, Célia

    2009-02-01

    This study reports the effects of feeding with a combination of inulin-type fructans (ITF) and fish oil (FO) on mineral absorption and bioavailability as part of a semipurified diet offered to rats. Male Wistar rats (n = 24) were fed a 15% lipid diet (soybean oil [SO] or a 1:0.3 fish:soybean oil mixture [FSO]) and diets containing the same sources of lipids supplemented with 10% ITF (Raftilose Synergy 1) ad libitum for 15 d. Feces and urine were collected for mineral analyses during the last 5 d of the test period. Fatty acid composition was determined in liver and cecal mucosa homogenates. Liver and bone mineral analyses were performed by atomic absorption spectrophotometry. Bone biomechanical analyses were evaluated by a 3-point bending test. Compared with the controls, ITF-fed rats had enlarged ceca and a significant decrease in cecal content pH (P mineral absorption was improved in these rats, and this effect was enhanced by dietary combination with FO for all minerals except for magnesium. Addition of ITF to the diet resulted in higher bone mineral content (calcium and zinc) and bone strength, but increased bone mineral content was only statistically significant in FO-fed animals. A decrease in liver iron stores (P = 0.015) was observed in rats fed FO, considering that ITF consumption returned to levels comparable to the SO control group. These findings confirm the positive influence of ITF on mineral bioavailability, which was potentiated by addition of FO to the diet.

  12. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Economic drivers of mineral supply

    Science.gov (United States)

    Wagner, Lorie A.; Sullivan, Daniel E.; Sznopek, John L.

    2003-01-01

    The debate over the adequacy of future supplies of mineral resources continues in light of the growing use of mineral-based materials in the United States. According to the U.S. Geological Survey, the quantity of new materials utilized each year has dramatically increased from 161 million tons2 in 1900 to 3.2 billion tons in 2000. Of all the materials used during the 20th century in the United States, more than half were used in the last 25 years. With the Earth?s endowment of natural resources remaining constant, and increased demand for resources, economic theory states that as depletion approaches, prices rise. This study shows that many economic drivers (conditions that create an economic incentive for producers to act in a particular way) such as the impact of globalization, technological improvements, productivity increases, and efficient materials usage are at work simultaneously to impact minerals markets and supply. As a result of these economic drivers, the historical price trend of mineral prices3 in constant dollars has declined as demand has risen. When price is measured by the cost in human effort, the price trend also has been almost steadily downward. Although the United States economy continues its increasing mineral consumption trend, the supply of minerals has been able to keep pace. This study shows that in general supply has grown faster than demand, causing a declining trend in mineral prices.

  15. Rich mineralized boulders of the Rirang River, west Kalimantan

    International Nuclear Information System (INIS)

    Tjokrokardono, S.; Sastratenaya, A.S.

    1988-01-01

    The Rirang River is a small tributary of the Kalan River. It is 1.5 km long and flows in a N60 deg. E direction. To the west it is separated from the Sampurno Valley by an asymmetric pass with a relatively gentle slope on the Rirang side and a very steep slope down to the Sampurno River. The Rirang Valley lacks outcrops because of a high degree of alteration. It is known to contain mineralized boulders, most of which are of centimetric to decimetric size, but some may exceed 1 m. The uranium content in these boulders varies between 0.6 and 6.67%. Two types of mineralized boulders exist: banded and non-banded types. The former usually have a rounded shape due to erosion on their angles. They are composed of dark centimetric fragments of breccia, roughly aligned, giving a banded aspect, and are cemented by lighter coloured materials of monazite. The mineral composition of the fragments is of fine brown monazite, molybdenite, pyrite, rutile and tourmaline. Uranium minerals are located at the edges of the dark components. Most of the non-banded type boulders are of metasiltstone containing mineralized stringers of uraninite, molybdenite, pyrite, and a little monazite and tourmaline. Some investigations have been carried out, but the geological context and the origin of the boulders are, as yet, not fully understood. (author). 2 refs, 10 figs, 2 tabs

  16. THE ENVIRONMENTAL IMPACT OF THE DELIVERY OF MINERAL RAW MATERIALS USED FOR BUILDING MATERIALS PRODUCTION TO THE CITY OF ZAGREB AND THE ZAGREB COUNTY

    Directory of Open Access Journals (Sweden)

    Karolina Novak

    2011-12-01

    Full Text Available Mineral raw material transport directly affects a product’s unit price and exhaust gases amounts. Transportation length is proportional to raw material price; its low price enables short transportation distances only. Taking into account stone aggregates delivered to Zagreb, the consequence of exploitation fields closure in the Zagreb area, particularly within the Medvednica Nature Park, we tried to answer the question of the impact of transport distances on the greenhouse gas emissions. Certain models will present environmental impact of the stone aggregate transportation and of nearby city quarries. The generally accepted public opinion on the closure of nearby city quarries as the best solution to environmental pollution will have to be reviewed. Mining works are predestined by mineral resources sites and limited by real possibilities and intentions of the community, therefore the experts, i.e. miners, geologists and other geoscientists, should be actively involved in spatial planning. During the years of intensive construction, millions of tons have been delivered from distances up to 100 km. The question arises whether some more rational solutions could be generated by more appropriate spatial planning? (the paper is published in Croatian

  17. OPERATING STABILITY OF MINERAL WOOL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Perfilov Vladimir Aleksandrovich

    2016-03-01

    Full Text Available Creating an effective insulation envelope of the building is possible only using high-quality materials, preserving their characteristics both in the early stages of operation, and for the whole billing period. It is an important opportunity to assess the thermal insulation properties and predict its changes over time directly in the conditions of the construction site. The products based on mineral fibers (rock and glass wool, basalt fiber are the most widely used type of insulating materials in the domestic construction. Therefore, the operational stability valuation methods must be primarily created for this group of products. The methodology for assessing the thermal insulation properties includes two main components: testing equipment and methodology for assessing the operational stability. The authors tested the methodology of the accelerated testing and prediction of durability for mineral wool products of laminated, corrugated and volume-oriented structures. The test results give good convergence with the methods recommended by the building regulations. Application of thermal insulation materials are an effective way to form the thermal envelope of the building, reducing energy costs and increasing the durability of building structures. The material properties are determined by their structure, which is formed during the technological impacts.

  18. Characterization and modelling of the mechanical properties of mineral wool

    DEFF Research Database (Denmark)

    Chapelle, Lucie

    2016-01-01

    and as a consequence focus on the mechanical properties of mineral wool has intensified. Also understanding the deformation mechanisms during compression of low density mineral wool is crucial since better thickness recovery after compression will result in significant savings on transport costs. The mechanical...... properties of mineral wool relate closely to the arrangement and characteristics of the fibres inside the material. Because of the complex architecture of mineral wool, the characterization and the understanding of the mechanism of deformations require a new methodology. In this PhD thesis, a methodology...... of the structure on mechanical properties can be explored. The size of the representative volume elements for the prediction of the elastic properties is determined for two types of applied boundary conditions. For sufficiently large volumes, the predicted elastic properties are consistent with results from...

  19. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  20. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    Science.gov (United States)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  1. Evaluation of Acid Digestion Procedures to Estimate Mineral Contents in Materials from Animal Trials

    Directory of Open Access Journals (Sweden)

    M. N. N. Palma

    2015-11-01

    Full Text Available Rigorously standardized laboratory protocols are essential for meaningful comparison of data from multiple sites. Considering that interactions of minerals with organic matrices may vary depending on the material nature, there could be peculiar demands for each material with respect to digestion procedure. Acid digestion procedures were evaluated using different nitric to perchloric acid ratios and one- or two-step digestion to estimate the concentration of calcium, phosphorus, magnesium, and zinc in samples of carcass, bone, excreta, concentrate, forage, and feces. Six procedures were evaluated: ratio of nitric to perchloric acid at 2:1, 3:1, and 4:1 v/v in a one- or two-step digestion. There were no direct or interaction effects (p>0.01 of nitric to perchloric acid ratio or number of digestion steps on magnesium and zinc contents. Calcium and phosphorus contents presented a significant (p0.01 calcium or phosphorus contents in carcass, excreta, concentrate, forage, and feces. Number of digestion steps did not affect mineral content (p>0.01. Estimated concentration of calcium, phosphorus, magnesium, and zinc in carcass, excreta, concentrated, forage, and feces samples can be performed using digestion solution of nitric to perchloric acid 4:1 v/v in a one-step digestion. However, samples of bones demand a stronger digestion solution to analyze the mineral contents, which is represented by an increased proportion of perchloric acid, being recommended a digestion solution of nitric to perchloric acid 2:1 v/v in a one-step digestion.

  2. The key numbers of the mineral raw materials; Les chiffres cles des matieres premieres minerales

    Energy Technology Data Exchange (ETDEWEB)

    Mandil, C. [Directeur General de l`Energie et des Matieres Premieres, France (France)]|[Ministere de l`Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France)

    1996-12-31

    Mineral raw materials come from fossil reserves or ores resulting from the geologic and climatic history of the Earth. The access to economic development for 80% of the worldwide population and the high rate of demographic growth (probably 8 billions of inhabitants in 2025) are important factors that can greatly multiply the worldwide consumption of ores. In parallel, environmental concerns and the increasing need for a better equilibrium between wildlife preservation and the supply of economic needs, lead to a more reasonable and mastered use of natural resources. The aim of this book is to shade light and give global elements of thoughts on mineral resources, and for the main of those (about 30 metals and mineral substances), to review the most useful data and references about their production and consumption. For each question, chapters are devoted to the situation of France in its worldwide context. One chapter concerns the uranium ores (reserves, production, prices evolution, consumption, economic flux and companies involved). (J.S.).

  3. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Directory of Open Access Journals (Sweden)

    N. Dijkstra

    2018-02-01

    Full Text Available Phosphorus (P concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish–marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS and synchrotron-based X-ray absorption spectroscopy (XAS, we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish–marine sediments (at 11.5 to 12 m sediment depth. In this depth interval, phosphate that diffuses down from the organic-rich, brackish–marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II phosphate. Results from a reactive transport model suggest that the peak in iron(II phosphate originally occurred at the lake–marine transition (9 to 10 m and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake–marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II phosphates such as vivianite has

  5. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Science.gov (United States)

    Dijkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.

    2018-02-01

    Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II)-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish-marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption spectroscopy (XAS), we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish-marine sediments (at 11.5 to 12 m sediment depth). In this depth interval, phosphate that diffuses down from the organic-rich, brackish-marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II) phosphate. Results from a reactive transport model suggest that the peak in iron(II) phosphate originally occurred at the lake-marine transition (9 to 10 m) and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake-marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II) phosphates such as vivianite has the potential to strongly

  6. Lulak Abad Iron Occurrence, Northwest of Zanjan: Metamorphosed and Deformed Volcano-Sedimentary Type of Mineralization in Central Iran

    Directory of Open Access Journals (Sweden)

    Mehri Karami

    2016-07-01

    Full Text Available Keywords: Iron mineralization, hydrothermal vein, alteration, Lulak Abad, Zanjan, Central Iran Introduction The Lulak Abad iron occurrence is located in the northwestern part of the Central Iran, 55 km west of Zanjan. Mineralization at the Lulak Abad area was originally identified by Zamin Gostar Company (2007, during a geophysical exploration. The present paper provides an overview of the geological framework, the mineralization characteristics, and the results of a geochemical study of the Lulak Abad iron occurrence with an application to the ore genesis. Identification of these characteristics can be used as a model for exploration of this type of iron mineralization in the Central Iran and elsewhere. Materials and methods Detailed field work was carried out at different scales (give scales in parentheses in the Lulak Abad area. About 16 polished thin and thin sections from host rocks and mineralized and altered zones were studied by conventional petrographic and mineralogical methods at the Department of Geology, University of Zanjan. In addition, a total of 7 samples from ore zones at the Lulak Abad occurrence were analyzed by ICP-OES for minor and trace elements and REE compositions at Geological Survey of Iran, Tehran, Iran. Result Rock units exposed in the Lulak Abad area consist of schists and metavolcanic units the Kahar Formation; Lotfi, 2001 that were intruded by granite and microdiorite bodies. The schist units consist of chlorite-biotite-muscovite schist and muscovite schist that show granolepidoblastic texture with foliation-parallel disseminated magnetite. The metavolcanic units consist of metadacite, rhyolitic metatuff and meta-andesite with porphyritic textures. They are marked by dominant mylonitic foliation surrounding feldspar and quartz porphyroclasts. Alkali feldspar and quartz are the principal minerals of the granite. The intrusion is characterized by intense deformation features and is highly mylonitized. Based on field

  7. Increasing strategic role for SA's minerals

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The strategic importance of South Africa's vast mineral resources has been strongly underlined by the Minister of Defence, Mr P.W. Botha. It was pointed out that South Africa ranked among the world's five biggest suppliers of nonfuel minerals and that she has demonstrated her potential as the West's most important source of minerals and strategic raw materials. South Africa therefore exercise a very important stabilising influence on the supply and prices of critical, strategic minerals and raw materials, regarded as of the greatest importance to the Western economy

  8. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    Science.gov (United States)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.

  9. Mineral commodity summaries 2015

    Science.gov (United States)

    ,

    2015-01-01

    Each chapter of the 2015 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2014 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses.

  10. Neutron activation determination of gold in technogenic raw materials with different mineral composition

    Directory of Open Access Journals (Sweden)

    Yudakov Aleksandr A.

    2015-01-01

    Full Text Available The methods used to determine the gold content in the technogenic objects of gold mining were analyzed regarding their non-homogeneity and complexity of chemical and mineral compositions. A possible application of the neutron activation analysis with the use of the californium source of neutrons for determining the content of fine-grained and extra-fine-grained gold in the technogenic objects, including the bottom-ash waste of energy providers, is considered. It was demonstrated that the chemical composition of the sample affects the neuron flux distribution in the sample, which can essentially distort the results of the neutron activation analysis. In order to eliminate possible systematic errors investigations of the effect of the sample mineral composition on the results of the gold determination using the neutron activation analysis were carried out. Namely, a large mass of rock (3-5 kg was loaded into an activation zone using four matrix types such as silicate, carbon-containing, iron-containing, and titanium magnetite. It was shown that there wereno significant difference between the dispersal of the fluxes of thermal and resonance neutrons emitted from 252Cf during activation of the gold-containing technogenic samples with different mineral compositions.

  11. Sorption of pesticides to aquifer minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    This paper summarizes results from a work were the sorption of five pesticides on seven minerals were studied in order to quantify the adsorption to different mineral surfaces. Investigated mineral phases are: quartz, calcite, kaolinite, a-alumina, and three iron oxides (2-line ferrihydrite......, goethite, lepidocrocite). Selected pesticides are: atrazine, isoproturon, mecoprop, 2,4-D, and bentazone. The results demonstrate that pesticides adsorb to pure mineral surfaces. However, the size of the adsorption depends on the type of pesticide and the type of mineral....

  12. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  13. Textile-reinforced concrete using composite binder based on new types of mineral raw materials

    Science.gov (United States)

    Lesovik, V. S.; Glagolev, E. S.; Popov, D. Y.; Lesovik, G. A.; Ageeva, M. S.

    2018-03-01

    To determine the level of development of science, it is necessary to start with a particular stage in the development of society. At present, the purpose of building materials science is to create composites, which ensure safety of buildings and structures, including their protection against certain natural and man-made impacts. A new stage in construction materials science envisages the development of a technology for creating composites comfortable for a particular person. To implement this, a new paradigm for designing and synthesizing building materials with a new raw material base is needed. The optimization of the “human-material-habitat” system is a complex task, for the solution of which transdisciplinary approaches are required.

  14. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  15. Evaluation of mineral kaolinite present in portuguese clays for use in porcelain stoneware; Avaliacao do mineral caulinita presente em argilas portuguesas para uso em gres porcelanato

    Energy Technology Data Exchange (ETDEWEB)

    Luna da Silveira, G.C. [Instituto Federal do Rio Grande do Norte (IFRN), RN (Brazil); Acchar, W.; Gomes, U.U.; Luna da Silveira, R.V. [Universidade Federal do Rio Grnde do Norte (UFRN), RN (Brazil); Labrincha, A.; Miranda, C.M.P., E-mail: glebacoelli@hotmail.com [Universidade de Aveiro (Portugal)

    2016-07-01

    Kaolinite is a mineral from the kaolin, product resulting from transformation in depth of alumino silicate mineral type, such as feldspars, plagioclase and feldspars contained in the rocks. Clays are raw materials that have as main characteristic the plasticity property, which gives the product, after applying a certain pressure, a defined shape and an increase in the mechanical resistance when they become from green to dry and then to sintered. Given these characteristics, this paper analyzes the presence of the existing mineral kaolinite in two portuguese clays who are used in the preparation of formulations of porcelain stoneware tiles. The analyzes of the two clays were made by fluorescence x-ray diffraction of x-rays, thermal analysis, particle size and scanning electron microscopy, to better use of this mineral in the formulations. In both clays were found aluminum oxide, as well as mineral quartz, kaolinite and illite. (author)

  16. Investigation on type and origin of iron mineralization at Mesgar occurrence, south of Zanjan, using petrological, mineralogical and geochemical data

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahimi

    2015-04-01

    Full Text Available Introduction Mesgar iron occurrence is located in northwestern part of the Central Iran, 115 km south of Zanjan. Although there is a sequence of volcanic-pyroclastic rocks accompanied by iron mineralization, no detailed works had been conducted in the area. The present paper provides an overview of the geological framework, the mineralization characteristics, and the results of geochemical study of the Mesgar iron occurrence with an application to the ore genesis. Identification of these characteristics can be used as a model for exploration of this type of iron mineralization in the Central Iran and elsewhere. Materials and methods Detailed field work has been carried out at different scales in the Mesgar area. About 16 polished thin and thin sections from host rocks and mineralized and altered zones were studied by conventional petrographic and mineralogic methods at the Department of Geology, University of Zanjan. In addition, a total of 3 samples from least-altered volcanic host rocks and 2 samples from ore zones from the Mesgar occurrence were analyzed by ICP-MS and ICP-OES for whole-rock major and trace elements and REE compositions at the Zarazma Laboratories, Tehran, Iran. Results and Discussion Based on field observation, rock units exposed in the Mesgar area consist of Miocene sedimentary rocks and volcanic-pyroclastic units (Rādfar et al., 2005. The pyroclastic units consist of volcanic breccia and agglomerate. They lie concordantly on the Miocene sedimentary units, and are in turn concordantly overlain by andesitic basalt lavas. The lavas show porphyritic texture consisting of plagioclase (up to 3 mm in size and pyroxene phenocrysts set in a fine-grained to glassy groundmass. Seriate, cumulophyric, glomeroporphyritic and trachytic textures are also observed. Iron mineralization occurs as vein and lens-shaped bodies within and along the contacts of pyroclastic (footwall and andesitic basalt lavas (hanging wall. The veins reach up to

  17. Magmatism and polymetallic mineralization in southwestern Qinzhou-Hangzhou metallogenic belt, South China

    Science.gov (United States)

    Huang, Xudong; Lu, Jianjun; Wang, Rucheng; Ma, Dongsheng

    2016-04-01

    As Neoproterozoic suture zone between the Yangtze Block and Cathaysia Block, Qinzhou-Hangzhou metallogenic belt is one of the 21 key metallogenic belts in China. Intensive multiple-aged felsic magmatism and related polymetallic mineralization take place in this belt. Although Neoproterozoic, Paleozoic, Triassic granites and associated deposits have been found in southwestern Qinzhou-Hangzhou metallogenic belt, Middle-Late Jurassic (150-165 Ma) magmatism and related mineralization is of the most importance. Three major kinds of Middle-Late Jurassic granitoids have been distinguished. (Cu)-Pb-Zn-bearing granitoids are slightly differentiated, calc-alkaline and metaluminous dioritic to granodioritic rocks. Sn-(W)-bearing granites contain dark microgranular enclaves and have high contents of REE and HFSE, suggesting affinities of aluminous A-type (A2) granites. W-bearing granites are highly differentiated and peraluminous rocks. (Cu)-Pb-Zn-bearing granitoids have ɛNd(t) values of -11 ˜ -4 and ɛHf(t) values of -12 ˜ -7, corresponding to TDMC(Nd) from 1.4 to 1.8 Ga and TDMC(Hf) from 1.6 to 2.0 Ga, respectively. The ɛNd(t) values of W-bearing granites vary from -11 to -8 with TDMC(Nd) of 1.6 ˜ 1.9 Ga and ɛHf(t) values change from -16 to -7 with TDMC(Hf) of 1.5 ˜ 2.0 Ga. Compared with (Cu)-Pb-Zn-bearing granitoids and W-bearing granites, the Sn-(W)-bearing granites have higher ɛNd(t) (-8 ˜ -2) and ɛHf(t) (-8 ˜ -2) values and younger TDMC(Nd) (1.1 ˜ 1.6 Ga) and TDMC(Hf) (1.2 ˜ 1.8 Ga) values, showing a more juvenile isotopic character. Sn-(W)-bearing granites originate from partial melting of granulitized lower crust involved with some mantle-derived materials. W-bearing granites are derived from partial melting of crust. (Cu)-Pb-Zn-bearing granitoids are also derived from crust but may be influenced by more mantle-derived materials. For (Cu)-Pb-Zn deposits, skarn and carbonate replacement are the most important mineralization types. Cu ore bodies mainly

  18. DELINEATION OF BOUNDARY CONTOURS OF MINERAL RAW MATERIALS WITHIN THE DEPOSIT SPACE CONSIDERING THE QUALITY

    Directory of Open Access Journals (Sweden)

    Ivan Tomašić

    1990-12-01

    Full Text Available On the basis of performed explorations, in the phase of deposit preparation and development for exploitation the obtained results regarding the raw material quality were transfered to the surface. The results served both for the development and planning of deposit excavation dynamics and for the delineation of boundary contours by mineral raw materials within the deposit space considering the quality, The case presented in the article refers to the marl and limestone open pit for the cement industry, the »Partizan« near Split (the paper is published in Croatian.

  19. Outlook 96: Minerals and Energy

    International Nuclear Information System (INIS)

    1996-01-01

    Papers discussing the future of Australia's minerals and energy are presented under the following headings: Australia in the global minerals and energy markets; minerals exploration; steelmaking raw materials; aluminium and alumina; gold; nickel; base metals; titanium minerals; energy for a sustainable future; electricity; electricity in Asia; crude oil; coal trade; natural gas in Australia and uranium. Relevant papers are individually indexed/abstracted. Tabs., figs., refs

  20. Potential of Technogenic Mineral Raw Materials in Russia and the Issues of its Rational Use

    Directory of Open Access Journals (Sweden)

    Larisa Ivanovna Goncharova

    2015-11-01

    Full Text Available The increasing negative impact of mining waste on natural ecosystems often leads to their irreversible destruction, a trend that is gradually becoming global. The particular relevance of the research is explained, on the one hand, by the possibilities of minimization of specific volumes of formation of mining waste in all types of industries; on the other hand, by the possibilities of maximization of comp rehensive use of their valuable components as secondary material resources on an economically rational basis and the possibilities of restoring the disturbed natural environment. The rational use of natural and technogenic mineral raw materials is greatly facilitated by the geological exploration and geological-economic evaluation of the resources, which requires the development of specific methodological approaches to the economic justification of resource estimation parameters for outlining and calculating the multicomponent commercial reserves of raw materials and separate valuable components in them. Analysis shows that researchers’ opinions on a number of methodological principles of sustainable mining, complex processing of multicomponent materials are often contradictory. Scientific publications do not consider the issue of the price valuation of mining waste as secondary material resources. Mining waste processing should be considered as an important part of the overall socio-ecological-economic system for rational nature management. The analysis of the existing practice of using the mining waste should be based on the system approach and take into consideration geological, technological, economic, environmental and social characteristics throughout the cycle of production, combined processing and treatment of secondary waste according to the principle “from the earth to the earth”. The article identifies the main barriers to the recycling of mining wastes, proposes several methodological guidelines for the sustainable mining and

  1. Preserved microstructure and mineral distribution in tooth and periodontal tissues in early fossil hominin material from Koobi Fora, Kenya.

    Science.gov (United States)

    Klinge, R Furseth; Dean, M C; Risnes, S; Erambert, M; Gunnaes, A E

    2009-01-01

    The aim of this study was to explore further the preservation of tissues and the mineral distribution in 1.6 million-year-old fossil hominin material from Koobi Fora, Kenya attributed to Paranthropus boisei (KNM-ER 1817). Bone, dentine and cementum microstructure were well preserved. Electron microprobe analysis of dentine and bone revealed an F-bearing apatite. Calcite now filled the original soft tissue spaces. The average Ca/P atomic ratio was 1.93, as compared to 1.67 in biological hydroxyapatite, indicating that the Ca-content had increased during fossilization. Analytical sums for mineral content were approximately 90 wt%. Some of the remaining 10 wt% may be preserved organic material. Demineralized dentine fragments showed irregularly distributed tubules encircled with a fibrous-like electron-dense material. A similar material was observed in demineralized dentine. Within this, structures resembling bacteria were seen. In demineralized bone an electron-dense material with a fibrous appearance and a banding pattern that repeated every 64 nm, similar to that of collagen, was noted. SEM of an enamel fragment (KNM-ER 6081) showed signs of demineralization/remineralization. Retzius lines, Hunter-Schreger bands and prism cross-striations spaced 3.7-7.1.microm apart were noted. Prisms were arranged in a pattern 3 configuration and deeper areas containing aprismatic enamel were occasionally observed. We conclude that a great deal of informative microstructure and ultrastructure remains preserved in this fossil material. We also hypothesize that the high mineral content of the tissues may 'protect' parts of the organic matrix from degradation, since our findings indicate that some organic matrix may still be present. Copyright (c) 2009 S. Karger AG, Basel.

  2. Mineral commodity summaries 2018

    Science.gov (United States)

    Ober, Joyce A.

    2018-01-31

    This report is the earliest Government publication to furnish estimates covering 2017 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.

  3. Phosphated minerals to be used as radioactive reference materials; Minerais fosfatados para serem utilizados como materiais de referencia radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, M.J.C.S.; Tauhata, L. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI); Clain, A.F. [Universidade Severino Sombra, Vassouras, RJ (Brazil); Moreira, I. [Pontificia Univ. Catolica do Rio de Janeiro (PUC/Rio), RJ (Brazil). Dept. de Quimica

    2003-07-01

    The production and the supplying of certified reference materials, or deliberated contaminated materials containing natural radionuclides for laboratories which analyses environmental samples are fundamentals for the correct measurements of their radioactive levels. This analysis quality represents a important step for the safeguards of the population health, and quality control of the imported and exported products, such as minerals, agricultural and raw materials. The phosphate rocks, containing significant concentrations of thorium, and used as raw material and fertilizers justified a study for better characterization and distinction to be used cas certified reference radioactive materials. Therefore, samples from the two carboanalytical-alkaline chimneys (Araxa and Catalao), and one from metasedimentar origin (Patos de Minas), distant 100 km from each other, were collected and chemical and cholecystographic characterized by optical emission, X-ray diffraction and fluorescence. The element concentrations were determined by neutron activation analysis, ICP-MS and ICP-AES. The results, after multivariate statistical analysis and study of correlations among elements, have shown geochemical similarities of the phosphates from Araxa and Catalao, and differences from Patos de Minas, despite of the geographic proximity. The concentration of thorium between 200 and 500 (mg/g) allows to use such minerals as reference materials.

  4. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds.

    Science.gov (United States)

    Khan, Eakalak; Wirojanagud, Wanpen; Sermsai, Nawarat

    2009-01-30

    The mineralization and biodegradability increase and their combination of two traditional and two relatively new organic contaminants by Fenton reagents with three different types of iron, Fe(2+), Fe(3+), and Fe(0) were investigated. The traditional contaminants examined were trichloroethene (TCE) and 2,4-dichlorophenol (2,4-DCP) while 1,4-dioxane (1,4-D) and 1,2,3-trichloropropane (TCP) were studied for the relatively new contaminants. The mineralization and biodegradability were represented by dissolved organic carbon (DOC) reduction and the ratio of biodegradable dissolved organic carbon and DOC, respectively. For all four contaminants, Fenton reagent using Fe(2+) was more effective in the DOC reduction than Fenton reagents using Fe(3+) and Fe(0) in most cases. The types of Fe that provided maximum biodegradability increase were not the same for all four compounds, Fe(3+) for TCE, Fe(0) for 2,4-DCP, Fe(2+) for 1,4-D, and Fe(3+) for TCP. When the combination of DOC elimination and biodegradability increase (least refractory fraction) was considered, Fe(2+) was the best choice except for 2,4-DCP which was susceptible to Fe(0) catalyzed Fenton reagent the most. The least refractory fractions remaining after 120 min of reaction were 20-25% for TCE, 2,4-DCP, and TCP and 30-40% for 1,4-D. The iron type in Fenton reaction also affected the type of mineralization kinetics of TCE, 2,4-DCP, and TCP as well as the types of degradation by-products of these contaminants. Some of the by-products found, such as isopropanol and propionic aldehyde, which were produced from Fe(0) catalyzed Fenton degradation of TCP, have not been previously reported.

  5. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  6. Do gamma rays and alpha particles cause different types of lung cancer? A comparison between atomic bomb survivors and uranium miners

    International Nuclear Information System (INIS)

    Land, C.E.

    1995-01-01

    Excess lung cancer risk has been associated with exposure to alpha particle radiation from inhaled radon daughter products among uranium miners in Czechoslovakia, Canada, the United States, and elsewhere, and with exposure to gamma rays and neutrons from the atomic bombings of Hiroshima and Nagasaki, Japan. Differences in distribution by histological type, as well as certain epidemiological differences, suggest the possibility of differences in the causation of radiation-induced lung cancer. An epidemiological analysis is summarised of results from a blind pathology panel review of tissue slides from lung cancer cases diagnosed in 108 Japanese A bomb survivors and 92 American uranium miners selected on the basis of radiation exposure, smoking history, sex, age, and source and quality of pathology material. Consensus diagnoses were obtained with respect to principal sub-type, including squamous cell cancer, small cell cancer, adenocarcinoma, and less frequent sub-types. The results were analysed in terms of population, radiation dose, and smoking history. As expected, the proportion of squamous cell cancer was positively related to smoking history in both populations. The relative frequencies of small cell cancer and adenocarcinoma were very different in the two populations, but this difference was adequately accounted for by differences in radiation dose (more specifically, dose-based relative risk estimates based on published risk coefficients). Data for the two populations conformed to a common pattern, in which radiation-induced cancers appeared more likely to be of the small-cell sub-type, and less likely to be adenocarcinomas. No additional explanation in terms of radiation quality (alpha particles or gamma rays), uniform or local irradiation, inhaled as against external radiation source, or other population differences, appeared to be required. (author)

  7. Application of Synthetic Mineral Alloys as Materials for Bulletproof Vests and Products for Different Objects Protection

    Directory of Open Access Journals (Sweden)

    Anna Ignatova.

    2015-11-01

    Full Text Available Authors study ballistic properties of the material which has never been used for impact protection and the presented results prove that synthetic mineral alloys belong to the field of bulletproof ballistic protection and particularly to the means of objects’ protection from kinetic threats. Although the material has been described in connection with such specific embodiments as SVD and a cumulative jet, it is evident that many alternatives and modifications of their application for various protective articles are possible.

  8. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    Li Yuxiang; Qian Guangren; Yi Facheng; Shi Rongming; Fu Yibei; Li Lihua; Zhang Jun

    1999-01-01

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr 2+ , Cs + leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  9. A review of zinc oxide mineral beneficiation using flotation method.

    Science.gov (United States)

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. 36 CFR 228.57 - Types of disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Types of disposal. 228.57... Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided... qualified bidder after formal advertising and other appropriate public notice; (b) Sale by negotiated...

  11. Development of a technology for obtaining flotation reagent oxane-3 for carbon mineral raw materials of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Sergey Kalugin

    2014-12-01

    Full Text Available The paper represents the results of development of a technology for obtaining oxane-3 and its application for enrichment of carbon mineral raw materials. Studies on enrichment of a shungite rock showed that the increase of a pulp temperature to 30°C significantly improves the characteristics and rate of the flotation process. Measured indicators of a shungite rock enrichment using Flotol B were lower in comparison with an enrichment by oxane-3. For schungite mineral, it was established that the obtained heterocyclic compound can replace existing industrial flotation reagents in enrichment processes.

  12. Preliminary Assessment of Non-Fuel Mineral Resources of Afghanistan, 2007

    Science.gov (United States)

    ,

    2007-01-01

    Introduction Afghanistan has abundant mineral resources, including known deposits of copper, iron, barite, sulfur, talc, chromium, magnesium, salt, mica, marble, rubies, emeralds, lapis lazuli, asbestos, nickel, mercury, gold and silver, lead, zinc, fluorspar, bauxite, beryllium, and lithium (fig. 1). Between 2005 and 2007, the U.S. Agency for International Development (USAID) funded a cooperative study by the U.S. Geological Survey (USGS) and the Afghanistan Geological Survey (AGS) to assess the non-fuel mineral resources of Afghanistan as part of the effort to aid in the reconstruction of that country. An assessment is an estimation or evaluation, in this instance of undiscovered non-fuel mineral resources. Mineral resources are materials that are in such form that economic extraction of a commodity is currently or potentially feasible. In this assessment, teams of scientists from the USGS and the AGS compiled information about known mineral deposits and then evaluated the possible occurrence of undiscovered deposits of all types. Quantitative probabilistic estimates were made for undiscovered deposits of copper, mercury, rare-earth elements, sulfur, chromite, asbestos, potash, graphite, and sand and gravel. These estimates were made for undiscovered deposits at depths less than a kilometer. Other deposit types were considered and discussed in the assessment, but quantitative estimates of numbers of undiscovered deposits were not made. In addition, the assessment resulted in the delineation of 20 mineralized areas for further study, of which several may contain resources amenable to rapid development.

  13. A study on the analysis of minerals and materials

    Energy Technology Data Exchange (ETDEWEB)

    Son, Yong O; Lee, Kil Yong; Yoon, Woo Yual; Park, Jin Tai; Yang, Myeong Kwon; Chun, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Sample homogeneity is the attribute of a sample that assures the same result will be obtained within measurement uncertainty for all subsamples taken for analysis. Generally, all mineral samples are inhomogeneous to some degree. The fundamental question is whether or not the existing inhomogeneity is detectable under typical measurement conditions. Inhomogeneity varies from one element to another in a given sample, and its detection depends on the analytical sample size and the particle size taken for each measurement. The aim of this study is to measure the homogeneity of the samples and to develop the analytical method of gold and silver in minerals. For these two purposes, three kind of minerals of sulfide, oxide, copper ores which are known to be have gold in them were selected as the target minerals. At first, the sample homogeneity was measured for sample size and its particle size by Fire Assay, NAA, ICP-AES and PIXE. In case of the PIXE, not the elemental content but the relative intensity ratio of emitted x-ray from a pellet({phi}=40 mm, t = 2 mm) was used to measure precisely the sample homogeneity. New analytical methods researched in the study for the precise analysis of gold and silver, ICP-AES, NAA and XRF which are major analysis tool in our group were used. The result was that sample homogeneity increased with increasing the sample size and decreasing the particle size. And trace amount of gold in mineral samples could be analysed accurately by large sample size-short irradiation technique by NAA. ICP-AES was also capable to analysis of ppm grade gold in mineral samples by aqua-regia acid digestion technique. In case of silver, XRF can be used to analysis of tens ppm grade silver but its detection limit was about 10 ppm. ICP-AES can be also used to analysis of silver less than hundreds ppm grade, if the amount of silver over this range, the precipitation of silver chloride formed in the sample solution. So, the analytical methods of silver in

  14. INFLUENCE OF THE CEMENT TYPE ON THE CHARACTERISTICS OF THE MINERAL FOAM APPLICABLE IN FOAMED CERAMIC TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2012-10-01

    Full Text Available The subject of the research is the influence of the type of Portland cement, as well as the nature and concentration of additives that represent electrolytes and polymers, onto the foam stability. The project is implemented within the framework of the research of foamed ceramic. Detailed explanation of the influence pattern is provided. The research performed by the authors has generated the following findings. Besides the rheological properties of the solution, chemical interaction between the mix components must be taken into account in the course of development of the best foamed ceramic mix composition, as chemical processes produce a substantial influence onto the foam stability. Polymer additives based on liquid carbamyde-formaldehyde and polyacrylamide substantially improve the quality of the foam mineralized by the particles of the cement binder. They also assure the foam stability rate sufficient for the formation of a high-quality foamed material.

  15. Granite-related hypothermal uranium mineralization in South China

    International Nuclear Information System (INIS)

    Liu, X.; Wu, J.; Pan, J.; Zhu, M.

    2014-01-01

    As one of the important geological types, granite-related uranium deposits account for about 29% of the total discovered natural uranium resources in China. Most of the granite-related uranium deposits located in Taoshan - Zhuguang uranium metallogenic belt, South China. In addition to the typical pitchblende vein-type uranium mineralization of epithermal metallogenic system, a new type of granite-related uranium mineralization with characteristics of hypothermal matallogenic system was discovered in South China by current studies. However, hypothermal is contact thermal to epithermal mineralization, and not the conventional intrusive high temperature mineralization. Hypothermal uranium mineralization is presented by disseminated uraninite or pitchblende stockwork in fissures in granites normally with extensive alkaline alteration. The high temperature mineral assemblage of uraninite associate with scheelite and tourmaline was identified in hypothermal uranium mineralization. Fluid inclusion studies on this type mineralization indicated the middle to high temperature (>250℃) mineralization with the mixing evidence of ore forming solution derived from deep level, and the boiling and mixing of ore forming solution are regarded as the dominant mineralization mechanism for the precipitating of uranium. In contrast to the mineralization ages of 67 Ma to 87 Ma for typical pitchblende vein mineralization of epithermal metallogenic system, the mineralization age is older than 100 Ma for hypothermal uranium mineralization in granite. In the Shituling deposit, Xiazhuang uranium ore field, uraninite and pitchblende micro veins with extensive potassic alteration, chloritization and sericitization are hosted in fissures of Indo-Chinese epoch granites with the uranium mineralization age of 130 Ma to 138 Ma with a mineralization temperature of 290℃ to 330℃ indicated. Other examples sharing the similar characters of hypothermal uranium mineralization have been recognized in

  16. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2015-03-01

    Full Text Available AimTo determine the relationship between bone mineral density (BMD and total body composition in postmenopausal women with type 2 diabetes.Materials and MethodsThe study included 78 women, from 50 to 70 years of age (median 63 years. Twenty women had normal body mass index (BMI, 29 ones were overweight and 29 had obesity. The body composition and BMD was studied by dual-energy X-ray absorptiometry.ResultsWomen with normal BMD had higher BMI, total and truncal fat mass, as well lean mass as compared to women with osteoporosis and osteopenia (all p <0.05. Patients with osteoporosis had a lower fat mass at the hips, compared with those with normal BMD. Total and truncal fat mass, as well as lean mass were positively correlated with BMD in the lumbar spine and proximal femur, femoral neck and radius. In multivariate regression analysis fat mass was an independent predictor for total BMD, after adjusting for age, BMI, duration of menopause, HbA1c, glomerular filtration rate and other total body composition parameters.ConclusionsIn postmenopausal type 2 diabetic women BMI and fat mass is associated positively with BMD.

  17. Petrogenesis of Karamaili alkaline A-type granites from East Junggar, Xinjiang (NW China) and their relationship with tin mineralization

    International Nuclear Information System (INIS)

    Su Yuping; Tang Hongfeng; Liu Congqiang; Hou Guangshun; Cong Feng; Sylvester, Paul J.; Qu Wenjun

    2007-01-01

    Several types of granites including alkaline granites and alkali feldspar granites are distributed in the Karamaili tectonic belt of East Junggar, Xinjiang, China. Some medium-small tin deposits are located within or near the contact zones of the granitic intrusions. The alkaline granites share all the features commonly observed in peralkaline A-type granites. They contain alkalic mafic minerals such as riebeckite and aegirine; have high contents of SiO 2 , alkalis, Rb, Th, Zr, Hf, REE (except Eu), and high ratios of FeO/MgO and Ga/Al; and show strong depletions in Ba, Sr, Eu in the spidergrams. Laser ablation-ICPMS U-Pb zircon geochronology indicates a crystallization age of ca. 305 Ma for the granites; TIMS analyses of the granites found high ε Nd (T) values of +5.9 to +6.5. Considering their geochemical features, alkaline granites most likely formed by fractional crystallization of graodioritic magmas, which were probably produced by partial melting of lower crustal basaltic to andesitic rocks formed from oceanic crustal materials that were deeply buried during late Palezoic subduction and accretion. Six molybdenite samples from the Sareshike tin deposit in East Junggar yielded an isochron age of 307±11 Ma (2σ) and a weighted mean model age of 306.5±3.4 Ma, consistent with zircon U-Pb ages of the alkaline granites. Low Re contents (0.323-0.961 ppm) in the molybdenite suggest that they originated from crustal sources related to the alkaline granites. Considering their identical ages, close spatial distribution, and similar sources, we argue that the A-type granites have a genetic relationship with the tin mineralization, and that the same association may be important elsewhere. (author)

  18. Application of Sm/Eu/, Rb/Sr, Ce/Yb and F-Rb ratios to discriminate between Tin mineralized and non-mineralized S-type granites

    International Nuclear Information System (INIS)

    Karimpour, M.H.

    1998-01-01

    Mash had granites and Gran diorites are divided into three groups bas sed on their ages and composition: (1) Deh Now-Vakilabad-Kuhsangi Granodiorites and Quartz monzodiorites, (2) Sang bast Granite and (3) Khalaj- Gheshlagh Biotite-muscovite Granite. All these intrusive s belong to S-type granite, The oldest are in the range of intermediate and the youngest are acidic in composition. Intrusive rocks in the area of Deh now to Kuhsangi show trend of differentiation. Major, trace and rare earth elements within the source rocks of porphyry Sn, Mo, and Cu deposits were compared and very distinct differences were noticed. Differentiation index, Rb/Sr, Ce/Yb, and (Sr 87 /Sr 86 ) ratios can be used to identify the source rocks for porphyry Sn, Mo, or Cu. Major, as well as trace and rare earth elements of Mash had Granites and Granodiorites were compared with tin mineralized granites of the world. As a result, four diagrams were presented to be utilized in order to discriminate between Sn mineralized and non-mineralized granites. Such as Rb to the ratio of Sm/Eu, F to Rb and the three angle of F, Rb, Sr + Ba

  19. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  20. Principles of image processing in machine vision systems for the color analysis of minerals

    Science.gov (United States)

    Petukhova, Daria B.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2014-09-01

    At the moment color sorting method is one of promising methods of mineral raw materials enrichment. This method is based on registration of color differences between images of analyzed objects. As is generally known the problem with delimitation of close color tints when sorting low-contrast minerals is one of the main disadvantages of color sorting method. It is can be related with wrong choice of a color model and incomplete image processing in machine vision system for realizing color sorting algorithm. Another problem is a necessity of image processing features reconfiguration when changing the type of analyzed minerals. This is due to the fact that optical properties of mineral samples vary from one mineral deposit to another. Therefore searching for values of image processing features is non-trivial task. And this task doesn't always have an acceptable solution. In addition there are no uniform guidelines for determining criteria of mineral samples separation. It is assumed that the process of image processing features reconfiguration had to be made by machine learning. But in practice it's carried out by adjusting the operating parameters which are satisfactory for one specific enrichment task. This approach usually leads to the fact that machine vision system unable to estimate rapidly the concentration rate of analyzed mineral ore by using color sorting method. This paper presents the results of research aimed at addressing mentioned shortcomings in image processing organization for machine vision systems which are used to color sorting of mineral samples. The principles of color analysis for low-contrast minerals by using machine vision systems are also studied. In addition, a special processing algorithm for color images of mineral samples is developed. Mentioned algorithm allows you to determine automatically the criteria of mineral samples separation based on an analysis of representative mineral samples. Experimental studies of the proposed algorithm

  1. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Preparation of calibration materials for microanalysis of Ti minerals by direct fusion of synthetic and natural materials: experience with LA-ICP-MS analysis of some important minor and trace elements in ilmenite and rutile.

    Science.gov (United States)

    Odegård, M; Mansfeld, J; Dundas, S H

    2001-08-01

    Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.

  3. Structure and fluid evolution of Yili basin and their relation to sandstone type uranium mineralization

    International Nuclear Information System (INIS)

    Wang Juntang; Wang Chengwei; Feng Shirong

    2008-01-01

    Based on the summary of strata and structure distribution of Yili basin, the relation of structure and fluid evolution to sandstone type ur alum mineraliation are analyzed. It is found that uranium mineralization in Yili basin experienced ore hosting space forming, pre-alteration of hosting space, hosting space alteration and uranium formation stages. (authors)

  4. Bone mineral density and factors influencing it in Asian Indian population with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Sadishkumar Kamalanathan

    2014-01-01

    Full Text Available Objective: To assess bone mineral density (BMD in type 2 diabetes mellitus (T2DM patients and its relation, if any, to clinical, hormonal and metabolic factors. Materials and Methods: A prospective evaluation of 194 T2DM patients (97 men and 97 women was carried out. BMD was done with dual energy X-ray absorptiometry (DXA at the lumbar spine and total hip. Physical activity, nutritional intake and sunlight exposure were calculated. Biochemical and hormonal tests included serum 25 hydroxy vitamin D [25(OH D], parathyroid hormone, estrogen, testosterone and urinary calcium-creatinine ratio. Glycosylated hemoglobin and complete lipid profiles were done in patients with diabetes. Five hundred and seventy one non-diabetic controls (262 males and 309 females were evaluated for BMD alone. Results: BMD was normal (Z score > -2 in 156 (80.5% and low (Z score ≤ -2 in 38 (19.5% patients in the diabetes study group. BMD in the diabetes group was significantly higher than the control group in both sexes at the hip and spine. The difference was no longer significant on analysis of a BMI matched control subgroup. Weight and BMI showed significant correlation to BMD. Duration of T2DM, degree of glycemic control, use of drugs like statins and thiazolidinediones, 25(OH D levels, calcium intake, sunlight exposure and physical activity did not significantly affect BMD in this cohort of individuals with diabetes. Conclusions: Bone mineral density of Asian Indian T2DM subjects was similar to that of healthy volunteers in this study.

  5. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  6. Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries

    Science.gov (United States)

    Ni, Qiao; Wu, Feng

    2017-01-01

    Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. PMID:28331782

  7. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  8. Evaluation of bone mineral density in premenopausal women with type-2 diabetes mellitus in Zahedan, Southeast Iran

    International Nuclear Information System (INIS)

    Zakeri, Z.

    2011-01-01

    To determine the BMD in premenopausal women with type-2 diabetes mellitus. Methods: This case-control study was performed on 60 premenopausal women with type-2 diabetes mellitus and 60 normal premenopausal subjects. The groups were not completely matched regarding BMI; but they were in the range of obesity. Bone mineral density was determined using dual energy X-ray absorptiometry (DXA) to define bone mineral density (BMD) in second to fourth lumbar vertebrae and the neck of the femur (g/cm/sup 2/). Results: The results showed that BMD, T- and Z-score of femoral neck, total femur, L2, and Ward's were not significantly different between type 2 diabetic and normal premenopausal women (p>0.5). A significant increase of L3 BMD and L2-L4 Z-score was observed in diabetic group (p<0.05). In addition BMD, T- and Z-score of L4 were significantly higher in type 2 diabetic women than normal premenopausal women (P<0.05). Conclusion: Higher BMD was noted over the spine in diabetic group which may be due to higher BMI in this group. (author)

  9. Influence of composition of the raw materials on phase formation in solid compounds based on slag and clay minerals

    International Nuclear Information System (INIS)

    Galkin, A.V.; Tolebaev, T.; Omarova, V.I.; Burkitbaev, M.; Blynskiy, A.P.; Bachilova, N.V.; Matsynina, V.I.

    2003-01-01

    Full text: Activation of solidification processes in a compound formed on the basis of slag and clay minerals using sodium hydroxide - the output product from processing the BN-350 sodium coolant it is expedient to form the final product with a phase composition representing (in terms of long term storage) hydro-alumino-silicates incorporating Na-22 and Cs-137 radionuclides, which isomorphly replace other atoms in the crystal lattice sites. Combination of mineral phases, such as alkaline and alkaline-earth hydro-alumino-silicates with zeolite-like structure, providing sorptive properties, and the tobermorite like low-base hydro silicates of calcium defining the physico-mechanical properties of compound is the necessary condition for the compound stability. Investigations of phase formation in the mixtures of Kazakhstan clay, slag materials and alkali have been conducted targeted to control the physico-chemical properties of solid compound. The mixtures of alkali, thermal power plant ashes and clays of various mineralogical genesis (kaolinite, bentonite, Ca-Na-smectite montmorillonite) have been studied. The ashes and phosphorous slag while interacting with alkali are determined to form the non-alkaline hydro-silicates of stavrolite and indianite (anortite) type with free alkali being found in an unbound state. Both alkaline and alkaline-alkaline-earth hydro-silicates of Na 2 Ca 2 Si 2 O 7 H 2 O type are only formed in a compounds containing metallurgical slag. Formation of alkaline hydro-alumino-silicates of NaAlSiO 4 H 2 0 type as well as tomsonite (Na 4 Ca 8 [Al 20S i 20 O 80 ] 24H 2 O) - the zeolite like mineral have been detected in a two-component alkali-clay mixtures. Besides the quantity of tomsonite was determined to be not only dependent on Al 2 O 3 content in clay component but is also defined by stoichiometric composition of the mixture, because zeolite synthesis takes place under conditions of gels co-deposition and high pH value. Maximum quantity of

  10. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  11. Manejo clínico de la resorción dental interna utilizando agregad o trióxido mineral como material de obturación intracanal

    Directory of Open Access Journals (Sweden)

    Alvaro Francisco Negrete Barbosa

    2013-10-01

    cannot ignore the knowledge of this and much less treatment, as this depends on the condition that stops or further progress, because the resorptive action is linked to certain pulp vitality degree, after the elimination of pulp tissue dental bodies with this kind of pathology, one must consider that material is ideal to seal off the cavity of elliptical or rounded that causes this type of resorption. Since the departure of the MTA (mineral trioxide aggregate long ago, this assumes multiple applications in the endodontic practice because of its great advantages and properties compared to other materials on the market, which is why it becomes a material of choice for filling of these spring-loaded cavities, along with copious irrigation with sodium hypochlorite and biomechanics conformation of the root canals. The following article will show the clinical management of two root canals premolar sub - obturates and internal root resorption, in which mineral trioxide aggregate used as root filling material.Keywords: Bicuspid; Endodontics; Tooth resorption; root canal obturation; mineral trioxide aggregate.

  12. Building materials. Structure and technology, types and properties, application and handlings. 2. rev. ed. Baustoffkunde. Aufbau und Technologie, Arten und Eigenschaften, Anwendung und Verarbeitung der Baustoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffler, H

    1980-01-01

    Details are given on the large variety of structural and interior building materials. Reference is made to the relation between the structure and technology of building materials on one hand and the properties and handling of building materials on the other hand. The following subjects are dealt with: Fundamentals (historical development, systematy of building materials, regulations, properties, property warranties); natural stone; lumber and derived lumber products (properties, species of lumber, flaws, supply cuts); ceramic building materials and glass (brick, earthenware, refractory materials); building materials with mineral binders added, concrete and mortar (technology, setting); metals (properties, technology); bituminous building materials (technology, properties); plastics (thermoplasts, elastomers, duroplastics, paints, adhesives, synthetic-resin mortar and synthetic-resin concrete); insulating materials, organic floor coverings, papers and paperboard, paints, adhesives and sealing materials; damage to buildings (types, causes, responsibility, avoidance). (HWJ).

  13. Intrafibrillar Mineral May be Absent in Dentinogenesis Imperfecta Type II (DI-II)

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-29

    High-resolution synchrotron radiation computed tomography (SRCT) and small angle x-ray scattering (SAXS) were performed on normal and dentinogenesis imperfecta type II (DI-II) teeth. Three normal and three DI-II human third molars were used in this study. The normal molars were unerupted and had intact enamel; donors were female and ranged in age from 18-21y. The DI-II specimens, which were also unerupted with intact enamel, came from a single female donor age 20y. SRCT showed that the mineral concentration was 33% lower on average in the DI-II dentin with respect to normal dentin. The SAXS spectra from normal dentin exhibited low-angle diffraction peaks at harmonics of 67.6 nm, consistent with nucleation and growth of the apatite phase within gaps in the collagen fibrils (intrafibrillar mineralization). In contrast, the low-angle peaks were almost nonexistent in the DI-II dentin. Crystallite thickness was independent of location in both DI-II and normal dentin, although the crystallites were significantly thicker in DI-II dentin (6.8 nm (s.d. = 0.5) vs 5.1 nm (s.d. = 0.6)). The shape factor of the crystallites, as determined by SAXS, showed a continuous progression in normal dentin from roughly one-dimensional (needle-like) near the pulp to two-dimensional (plate-like) near the dentin-enamel junction. The crystallites in DI-II dentin, on the other hand, remained needle-like throughout. The above observations are consistent with an absence of intrafibrillar mineral in DI-II dentin.

  14. Study of Adsorption of Phenanthrene on Different Types of Clay Minerals

    International Nuclear Information System (INIS)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-01-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay minerals also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represents ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs

  15. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  16. Biologically controlled minerals as potential indicators of life

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  17. Geochemistry and mineralogy of listwaenite hosting mercury mineralization and its comparison with the barren types in Tavreh area, west of Khoy city

    Directory of Open Access Journals (Sweden)

    Ali Imamalipour

    2013-10-01

    Full Text Available Alteration of ophiolitic ultramafic rocks, formation of listwaenite and associated mineralization are interesting phenomena of metallogeny of Khoy ophiolite. It seems that the hydrothermal circulations responsible for mercury mineralization were derived from geothermal systems caused by intermediate to acidic magmatism in Neogene-Pleistocene time. Reactivation of brecciated serpentinite with hydrothermal solutions led to the silica-carbonate hydrothermal alteration and formation of listwaenite. The importance of these alteration types is due to associated Hg-Au mineralization. Based on the microscopic mineralogical studies, XRD analysis, geochemical characteristics and field relationships, three types of listwaenite including silica, silica-carbonate and carbonate have been recognized. Tavreh mercury occurrence has formed in relation with silica type listwaenite which also named as birbirite. Alteration zones have structural controls and are restricted to shale (marl/serpentinite fault type contacts. Mineralogically, silica type listwaenite mainly consists of quartz, chalcedony, opal and secondary iron hydroxides. Magnesite, dolomite, calcite and clay minerals are the minor phases. Toward silica-carbonate and carbonate listwaenites, silica minerals decrease while carbonate minerals increase. Geological field relations and existence of residual chrome spinel in the listwaenite of Tavreh area confirmed the ultrabasic host rock. Based on geochemical studies, average values of SiO2, Fe2O3, MgO and L.O.I as the main components of silica listwaenite are 82.6, 6.99, 1.02 and 3.74 wt %, respectively. Among rare elements, average values of Hg, Pb, As and S have been obtained as 646.2 ppm, 517.7 ppm, 329.1 ppm and 281 ppm, respectively. Mass changes (gains and losses of major and minor elements during the alteration process in the Tavreh area have considered, using Gresens’ equation in this study. Cinabar-bearing silica listwaenite is enriched in SiO2

  18. Development of certified reference material of mineral composition of natural water designed to control of turbidity measurement accuracy

    Directory of Open Access Journals (Sweden)

    Liudmila I. Gorjaeva

    2017-01-01

    Full Text Available Introduction. The results of development of a certified reference material (CRM of mineral composition of natural water are presented. A solution prepared from the material of the CRM specimen imitates mineral composition of natural surface water. The certified values are mass fractions of nitrate ions, chloride ions, fluoride ions, and total iron and turbidity according to formazine scale. Materials and methods. The certified values of mass concentrations of the components were determined using calculated experimental evaluation procedure;the certified turbidity value was determinedusing the certified turbidimetric method. Results. The relative expanded uncertainty (k = 2 of the certified turbidity values does not exceed 5 %, the same value for mass concentrationsis not more than 3.5 %. Relative standard uncertainty from heterogeneity does not exceed 1.0 %. The shelf life of the developed CRM is set to 3 years. Discussion and conclusion. Developed CRM was registered in the State Register of CRM's as GSO 10815-2016. The CRM is designed to control the accuracy of results of the certified characteristics measurements, including proficiency testing of laboratories using interlaboratory comparative tests. The CRM can be used for validation of measurement procedures.

  19. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Thind, K.S.

    2008-01-01

    A comprehensive and consistent set of formulas is given for calculating the effective atomic number and electron density for all types of materials and for all photon energies greater than 1 keV. The are derived from first principles using photon interaction cross sections of the constituent atom....... The theory is illustrated by calculations and experiments for molecules of medical and biological interest, glasses for radiation shielding, alloys, minerals and liquids....

  20. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  1. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  2. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  3. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    Science.gov (United States)

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  4. Characterization of Mexican zeolite minerals

    International Nuclear Information System (INIS)

    Jimenez C, M.J.

    2005-01-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  5. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    Science.gov (United States)

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  6. Mode of distribution of uranium mineralization and sequence of the formation of minerals in albitites

    International Nuclear Information System (INIS)

    Grechishnikov, N.P.; Kramar, O.A.; Rapovich, F.I.

    1985-01-01

    On the basis of analysis and generalization of factural material data on the distribution nature of accessory uranium mineralization in albitites permitting to judge of the role and textural-structural peculiarities of enclosing rocks in mineralization localization are given. It is shown that the uranium mineral formation is closely related with the albitite formation and proceeded during two stages. A main mass of primary uranium minerals (brannerites and uraninites) in the form of impregnated mineralization was formed during the first uraninite-brannerite-albitite stage. Uranium oxides, silicates and titanates in the shape of veines formed. During the second coffinite-pitchblende-chloritic stage the formation of uranium oxides, silicates and titanates occured. Uranium mineralization in albitites developes in zones of cataclasm, small jointing, mylonitization localizing in fine-grained aggregates. A main mass of primary uranium minerals in albitites (brannerite, uraninite relates to neogenic during metasomatosis dark-coloured minerals (riebenite, aegirine, chlorite)

  7. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  8. Applied mineral exploration with special reference to uranium

    International Nuclear Information System (INIS)

    Bailey, R.V.; Childers, M.O.

    1977-01-01

    An explanation of the fundamentals of organizing, operating, and concluding an exploration program, particularly uranium exploration, is presented. Discussion of many exploration practices currently being used in the industry and a review of some new developments or research projects which are being studied or which show promise are included. The material is presented in 13 chapters entitled: the Mineral Explorationist and the Role He Plays; Types of Uranium Deposits; Development of Idea and Preliminary Investigation: Uranium; a Review of Mining Law as it Pertains to Mineral Exploration and Development in the United States; Land Ownership and Leasing; Continuing Detailed Geologic Work; the Decision to Make a Play; Selling a Deal; Legal and Accounting Aspects; the Drilling Program; Using Geology in Planning and Executing Drilling; Transition from Exploration to Development; and a Forward Look

  9. Study the quantitative relation between some sedimentary minerals for syrian soil when mixed in equal rates and study the effect of adding amorphous material by X-Ray diffraction

    International Nuclear Information System (INIS)

    Kanbour, M.

    2012-08-01

    During the work of X ray diffraction lab several kinds of local Syrian soil samples were received, the most of them have the same main mineral contents, some samples consist of one mineral. We have got some pure samples from different Syrian places (Quartz, Calcite, Gypsum and Montmorillonite) which have been analyzed to ensure its purity.These samples were mixed in similar weights. Effect of mixing samples on the diffractograms and the percentage of the minerals has been calculated in tow methods, manually and instrumentally, correction factors needed have been fixed for the used minerals. Amorphous material has been added to the used minerals in different ratios, results showed that adding each mineral affects the intensity of the main peak. Quartz has been chosen to study the effect of adding different ratios of amorphous material, comparing diffractograms with each other showed a clear difference in the intensity of the main peak. (author)

  10. Copper minerals and archaeometallurgical materials from the Vinča culture sites of Belovode and Pločnik: Overview of the evidence and new data

    Directory of Open Access Journals (Sweden)

    Radivojević Miljana

    2014-01-01

    Full Text Available The Vinča culture sites of Belovode and Pločnik have been attracting scholarly attention for decades now, due to numerous discoveries indicative of copper mineral and metal use in these settlements, which are confirmed as, currently, the earliest worldwide and very likely developed independently in Eurasia.1 The authors attempt to give an overview of already published data along with new results stemming from the recently completed doctoral research of the primary author.2 All materials related to copper mineral use and pyrometallurgical activities are presented through the concept of metallurgical chaîne opératoire, following the established sequence of operations,3 which is adjusted for this specific case study and divided into three categories: copper mineral processing, (smelting debris, and the making and working of finished metal objects. The qualitative overview of available data is therefore focused mainly around the material side of the studied samples and provides an insight into the technological choices for making copper mineral ornaments and copper metal artefacts in the sites of Belovode and Pločnik. Accordingly, it provides a model for the understanding of similar material assemblages that occur in other Vinča culture sites, or beyond. [Projekat Ministarstva nauke Republike Srbije, br.177012: Society, spiritual and material culture and communications in the prehistory and early history of the Balkans

  11. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization.

    Science.gov (United States)

    Daniels, Geoff; Ballif, Bryan A; Helias, Virginie; Saison, Carole; Grimsley, Shane; Mannessier, Lucienne; Hustinx, Hein; Lee, Edmond; Cartron, Jean-Pierre; Peyrard, Thierry; Arnaud, Lionel

    2015-06-04

    The Augustine-negative alias At(a-) blood type, which seems to be restricted to people of African ancestry, was identified half a century ago but remains one of the last blood types with no known genetic basis. Here we report that a nonsynonymous single nucleotide polymorphism in SLC29A1 (rs45458701) is responsible for the At(a-) blood type. The resulting p.Glu391Lys variation in the last extracellular loop of the equilibrative nucleoside transporter 1 (ENT1; also called SLC29a1) is known not to alter its ability to transport nucleosides and nucleoside analog drugs. Furthermore, we identified 3 individuals of European ancestry who are homozygous for a null mutation in SLC29A1 (c.589+1G>C) and thus have the Augustine-null blood type. These individuals lacking ENT1 exhibit periarticular and ectopic mineralization, which confirms an important role for ENT1/SLC29A1 in human bone homeostasis as recently suggested by the skeletal phenotype of aging Slc29a1(-/-) mice. Our results establish Augustine as a new blood group system and place SLC29A1 as a new candidate gene for idiopathic disorders characterized with ectopic calcification/mineralization. © 2015 by The American Society of Hematology.

  12. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile); Martínez, Francisco, E-mail: polimart@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile)

    2013-10-15

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N{sub 2} (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe{sup 2+} and Fe{sup 3+} from the mineral magnetite is synergistic.

  13. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    International Nuclear Information System (INIS)

    Morel, Mauricio; Martínez, Francisco; Mosquera, Edgar

    2013-01-01

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N 2 (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe 2+ and Fe 3+ from the mineral magnetite is synergistic

  14. Serum and Hair Mineral Levels in Children with Failure to Thrive According to the Type of Feeding Difficulties.

    Science.gov (United States)

    Lee, Eun Hye; Yang, Hye Ran

    2017-01-01

    This study evaluated serum and hair mineral and trace element levels as well as levels of other nutritional factors affecting growth and appetite in young children with non-organic failure to thrive (NOFTT) based on the presence or types of feeding difficulty (FD). Between August 2012 and July 2015, 136 children less than 6 years of age with NOFTT were included. FD was diagnosed based on Wolfson criteria and divided into subtypes according to Chatoor's classification. Clinical data were reviewed, and serum and hair mineral levels were measured. Of all assessed serum and hair minerals, only hair sulfur contents differed significantly between subjects with and without infantile anorexia (39,392 ± 2211 vs. 40,332 ± 2551 μg/g, P = 0.034). There were no differences in serum and hair mineral levels between children with and without sensory food aversion. Hair copper contents were significantly lower in children with FD of reciprocity (12.3 ± 6.0 vs. 22.4 ± 25.1 μg/g, P = 0.049). While hair zinc contents were also lower, the difference was not statistically significant (49.2 ± 26.8 vs. 70.6 ± 41.0 μg/g, P = 0.055). Only hair manganese contents were significantly lower in children with posttraumatic FD (0.12 ± 0.04 vs. 0.26 ± 0.73 μg/g, P = 0.037). In conclusion, there were no differences in most serum and hair mineral levels in children with NOFTT, except for relatively lower hair levels of sulfur, copper and possibly zinc, and manganese in infantile anorexia, reciprocity, and posttraumatic types of FD, respectively.

  15. Carbonizing bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    1921-05-01

    A process for carbonizing bituminous minerals, like oil-shale, in a furnace with addition of air in the presence of heat-receiving material is characterized by the fact that to the feed such solid or liquid material (with the exception of oil) is added, which, through vaporization or heat-binding decomposition or conversion, hinders the establishment of excessive temperatures.

  16. Characterization of potential mineralization in Afghanistan: four permissive areas identified using imaging spectroscopy data

    Science.gov (United States)

    King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.

    2014-01-01

    As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.

  17. Statistical models for optimizing mineral exploration

    International Nuclear Information System (INIS)

    Wignall, T.K.; DeGeoffroy, J.

    1987-01-01

    The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)

  18. Methods of mineral potential assessment of uranium deposits: A mineral systems approach

    International Nuclear Information System (INIS)

    Jaireth, S.

    2014-01-01

    Conclusions: • Choice of methods depends on the objective; • Basics: – Know your mineral system (deposit-type): SCIENCE; – Create useful datasets: A MUST; • Mineral system approach can be rewarding. For successful examples visit GA’s website; • Don’t overdo or oversell it (only detailed exploration such as drilling can find a deposit)

  19. Diseases of uranium miners and other underground miners exposed to radon

    International Nuclear Information System (INIS)

    Samet, J.M.

    1991-01-01

    Excess lung cancer has been demonstrated in many groups of underground miners exposed to radon, including uranium miners and those mining other substances in radon-contaminated mines. In the United States, most underground uranium mines had shut down by the late 1980s, but occupational exposure to radon progeny remains a concern for many other types of underground miners and other underground workers. Worldwide, uranium mining continues, with documented production in Canada, South Africa and other African countries, and Australia. Thus, radon in underground mines remains a significant occupational hazard as the end of the twentieth century approaches.39 references

  20. Relating desorption of polycyclic aromatic hydrocarbons from harbour sludges to type of organic material

    Science.gov (United States)

    Heister, K.; Pols, S.; Loch, J. P. G.; Bosma, T.

    2009-04-01

    For decades, polycyclic aromatic hydrocarbons (PAH) cause great concern as environmental pollutants. Especially river and marine harbour sediments are frequently polluted with PAH derived from surface runoff, fuel and oil spills due to shipping and industrial activities, industrial waste and atmospheric deposition. Harbour sediments contain large amounts of organic carbon and clay minerals and are therefore not easy to remediate and have to be stored in sludge depositories after dredging to maintain sufficient water depth for shipping. The organic contaminants will be adsorbed to particles, leached in association with dissolved organic material or microbially degraded. However, compounds of high molecular weight are very persistent, particularly under anaerobic conditions, thus giving rise to the potential to become desorbed again. PAH adsorb mainly to organic material. It has been shown that components of the organic material with a low polarity and a high hydrophobicity like aliphatic and aromatic components exhibit a high sorption capacity for hydrophobic organic contaminants like PAH. Accordingly, not only the amount but also the type of organic material needs to be determined in order to be able to predict contaminant behaviour. In this study, desorption behaviour of the 16 EPA-PAH in two different harbour sludges from the port of Rotterdam, the Netherlands, has been investigated. The Beerkanaal (BK) site is located relatively close to the North Sea and represents a brackish environment; the Beneden Merwede River (BMR) site originates from a fresh water environment and is close to industrial sites. The samples were placed in dialysis membranes and brought into contact with water for a period of 130 days. At several time intervals, water samples were retrieved for analysis of pH, dissolved organic carbon (DOC) content, electrical conductivity and PAH concentrations. The experiment was conducted at 4 and at 20°C. Although the samples were initially treated with

  1. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  2. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    Science.gov (United States)

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  3. Proceedings of XXIV international mineral processing congress

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dianzuo; Sun Chuan Yao; Wang Fu Liang; Zhang Li Cheng; Han Long (eds.)

    2008-07-01

    Topics covered in volume 1 include applied mineralogy, comminution, classification, physical separation, flotation chemistry, sulphide flotation, non-sulphide flotation and reagent in mineral industry. Volume 2 covers processing of complex ores, processing of industrial minerals and coal, solid liquid separation, dispersion and aggregation, process simulation, expert systems and control of mineral processing, biohydrometallurgy, and mineral chemical processing. Volume 3 contains powder technology, mineral materials, treatment and recycling for solid wastes, waste water treatment, secondary resource recovery, soil remediation, concentrator engineering and process design, and application of mineral processing in related industry. It includes a CD-ROM of the proceedings.

  4. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 1. Calcium and magnesium.

    Science.gov (United States)

    Gątarska, Anna; Tońska, Elżbieta; Ciborska, Joanna

    2016-01-01

    Natural mineral waters may be an essential source of calcium, magnesium and other minerals. In bottled waters, minerals occur in an ionized form which is very well digestible. However, the concentration of minerals in underground waters (which constitute the material for the production of bottled waters) varies. In view of the above, the type of water consumed is essential. The aim of the study was to estimate the calcium and magnesium contents in products available on the market and to evaluate calcium and magnesium consumption with natural mineral water by different consumer groups with an assumed volume of the consumed product. These represented forty different brands of natural mineral available waters on Polish market. These waters were produced in Poland or other European countries. Among the studied products, about 30% of the waters were imported from Lithuania, Latvia, Czech Republic, France, Italy and Germany. The content of calcium and magnesium in mineral waters was determined using flame atomic absorption spectrometry in an acetylene-air flame. Further determinations were carried out using atomic absorption spectrometer--ICE 3000 SERIES-THERMO-England, equipped with a GLITE data station, background correction (a deuterium lamp) as well as other cathode lamps. Over half of the analysed natural mineral waters were medium-mineralized. The natural mineral waters available on the market can be characterized by a varied content of calcium and magnesium and a high degree of product mineralization does not guarantee significant amounts of these components. Among the natural mineral waters available on the market, only a few feature the optimum calcium-magnesium proportion (2:1). Considering the mineralization degree of the studied products, it can be stated that the largest percentage of products with significant calcium and magnesium contents can be found in the high-mineralized water group. For some natural mineral waters, the consumption of 1 litre daily may

  5. The influence of organic substances type on the properties of mineral-organic fertilizers

    Science.gov (United States)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites

  6. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  7. Niger Republic mineral planning : Part four Second volume : Main mineral substances specific study and their geological context

    International Nuclear Information System (INIS)

    Franconi, Antoine; Joo', Julien; Zibo, Idde

    1981-01-01

    This volume describes Niger Republic mineral substances capable of rising economic interest. After relating minerals occurrence , indices and deposits types, conclusions and recommendations have been made for mineral prospecting. Mineral substances described are : Copper, lead and zinc, molybdena, iron, manganese, titanium, vanadium, nickel and chrome ( cobalt and platinoid ), lithium, lignite, diamond and diverse substances rare earth, beryllium, silver, bismuth arsenic and antimony, barytine, alunite, talc and asbestos ( graphite and diatomite) [fr

  8. Sustainability in the UK construction minerals industry

    OpenAIRE

    Mitchell, Clive

    2015-01-01

    Sustainability in the UK construction minerals industry Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Nottingham, UK Email: Sustainability is not just about environmental protection it also concerns biodiversity, community relations, competence, employment, geodiversity, health and safety, resource efficiency, restoration and stakeholder accountability. The UK construction minerals industry aims to supply essential materials in a sustainabl...

  9. Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: Constraints from spatial and numerical analyses

    Science.gov (United States)

    Parsa, Mohammad; Maghsoudi, Abbas

    2018-04-01

    The Behabad district, located in the central Iranian microcontinent, contains numerous epigenetic stratabound carbonate-hosted Zn-Pb ore bodies. The mineralizations formed as fault, fracture and karst fillings in the Permian-Triassic formations, especially in Middle Triassic dolostones, and comprise mainly non-sulfides zinc ores. These are all interpreted as Mississippi Valley-type (MVT) base metal deposits. From an economic geological point of view, it is imperative to recognize the processes that have plausibly controlled the emplacement of MVT Zn-Pb mineralization in the Behabad district. To address the foregoing issue, analyses of the spatial distribution of mineral deposits comprising fry and fractal techniques and analysis of the spatial association of mineral deposits with geological features using distance distribution analysis were applied to assess the regional-scale processes that could have operated in the distribution of MVT Zn-Pb deposits in the district. The obtained results based on these analytical techniques show the main trends of the occurrences are NW-SE and NE-SW, which are parallel or subparallel to the major northwest and northeast trending faults, supporting the idea that these particular faults could have acted as the main conduits for transport of mineral-bearing fluids. The results of these analyses also suggest that Permian-Triassic brittle carbonate sedimentary rocks have served as the lithological controls on MVT mineralization in the Behabad district as they are spatially and temporally associated with mineralization.

  10. Producing p-type conductivity in self-compensating semiconductor material

    International Nuclear Information System (INIS)

    Vechten, J.A. van; Woodall, J.M.

    1981-01-01

    This relates to compound type semiconductor materials that exhibit self-compensated n-type conductivity. The process described imparts p-type conductivity to a body of normally n-conductivity self-compensated compound semiconductor material by bombarding it with charged particles, either electrons, protons or ions. Other possible steps include introducing an acceptor impurity and applying a coating onto the crystal body. This technique will allow new semiconductor structures to be made. For example, there are some compound semiconductor materials that exhibit n-conductivity only that have energy gap widths that would permit electrical to light conversion at frequency and colours not readily achieved in semiconductor devices. (U.K.)

  11. Petrography, mineralization and mineral explorations in the Zendan salt dome (Hara, Bandar Lengeh

    Directory of Open Access Journals (Sweden)

    Habib Biabangard

    2018-04-01

    Full Text Available Introduction The Zendan salt dome is located at 80 Km north of Bandar-Lengeh and 110 Km west of Bandar-Khamir cities in the Hormozgan province. Based on the structural geology of Iran, the Zendan salt dome is placed in the southeastern part of the Zagros zone (Stocklin, 1968. Important units in this area are Hormuz, Mishan, Aghajari and Bakhtiari formations with the Precambrian age (Alian and Bazamad, 2014. The Hormuz formation with the four members of H1, H2, H3, and H4 is the oldest formation (Ahmadzadeh Heravi et al., 1991. Basalt and diabase rocks are mostly rocks that are exposed in the Zendan salt dome. Magnetite and hematite iron mineralization happened in all the building rocks of salt dome, and is not a uniform mineralization. Iron mineralization contains hematite, spicularite, magnetite, goethite, and iron hydroxides. Magnetite-hematite-oligist layers (red soil are the most iron mineralization in the Zendan salt dome, which are usually broken and scattered with gypsum layers (mostly anhydrite, respectively. Another form of iron mineralization is a mixture of hematite and magnetite (about 10 to 15% in diabase rocks. Copper mineralization consists of pyrite and chalcopyrite minerals that are mostly in tuff and shale units. The presence of low immobile trace elements in the Zendan salt dome and type of alteration shows that maybe the origin of this iron is deposited from brine fluid. Therefore, this deposit can be classified into VMS deposits. Materials and methods We have taken 60 samples rocks from the Zendan salt dome, and then prepared 20 thin and polished sections. Petrographic studies were done and 9 samples were selected for analysis. These samples were sent to the Zarzma laboratory and the amount of FeO was determined by the wet chemical method and other amounts of oxides were determined by XRF. Six samples were analyzed for determining the major elements with the XRF method in the Binalood laboratory. Nine samples from vines

  12. Intrafibrillar Mineral May be Absent in Dentinogenesis Imperfecta Type II (DI-II); TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    High-resolution synchrotron radiation computed tomography (SRCT) and small angle x-ray scattering (SAXS) were performed on normal and dentinogenesis imperfecta type II (DI-II) teeth. Three normal and three DI-II human third molars were used in this study. The normal molars were unerupted and had intact enamel; donors were female and ranged in age from 18-21y. The DI-II specimens, which were also unerupted with intact enamel, came from a single female donor age 20y. SRCT showed that the mineral concentration was 33% lower on average in the DI-II dentin with respect to normal dentin. The SAXS spectra from normal dentin exhibited low-angle diffraction peaks at harmonics of 67.6 nm, consistent with nucleation and growth of the apatite phase within gaps in the collagen fibrils (intrafibrillar mineralization). In contrast, the low-angle peaks were almost nonexistent in the DI-II dentin. Crystallite thickness was independent of location in both DI-II and normal dentin, although the crystallites were significantly thicker in DI-II dentin (6.8 nm (s.d.= 0.5) vs 5.1 nm (s.d.= 0.6)). The shape factor of the crystallites, as determined by SAXS, showed a continuous progression in normal dentin from roughly one-dimensional (needle-like) near the pulp to two-dimensional (plate-like) near the dentin-enamel junction. The crystallites in DI-II dentin, on the other hand, remained needle-like throughout. The above observations are consistent with an absence of intrafibrillar mineral in DI-II dentin

  13. Role of complex utilization of mineral raw materials In geological research

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, P.; Varju, G.

    1979-01-01

    Presents Hungarian research efforts on ways of utilizing the secondary raw materials alunite, pumice and slate coal from various mines. The slate coal is separated from brown coal and disposed of at spoil banks of brown coal mines, due to its high ash content (up to 56.8% under dry conditions), silicate content up to 58.2% and low calorific value between 1500 and 2780 kcal/kg. The research proposal for utilizing slate coal is directed at partial separation of the mineral and coal content by comminution, peptization and hydrocentrifugal separation. The larger part of the silicate content is held in the colloid suspension, which could be used for conditioning drilling mud or foundry sand. The produced coal concentrate has a reduced ash content and higher calorific value (between 500 and 800 kcal/kg) and could be employed in soil amelioration or combustion. (10 refs.) (In German)

  14. Hydrogeochemical methods for studying uranium mineralization in sedimentary rocks

    International Nuclear Information System (INIS)

    Lisitsin, A.K.

    1985-01-01

    The role of hydrogeochemical studies of uranium deposits is considered, which permits to obtain data on ore forming role of water solutions. The hydrogeochemistry of ore formation is determined as a result of physicochemical analysis of mineral paragenesis. Analysis results of the content of primary and secondary gaseous - liquid inclusions into the minerals are of great importance. Another way to determine the main features of ore formation hydrogeochemistry envisages simultaneous analysis of material from a number of deposits of one genetic type but in different periods of their geochemical life: being formed, formed and preserved, and being destructed. Comparison of mineralogo-geochemical zonation and hydrogeochemical one in water-bearing horizon is an efficient method, resulting in the objective interpretation of the facts. The comparison is compulsory when determining deposit genesis

  15. Genetic aspects of uranium mineralization in the Himalaya

    International Nuclear Information System (INIS)

    Saraswat, A.C.; Mahadevan, T.M.

    1989-01-01

    The Himalayan Uranium Province hosts five major types of uranium mineralization: (1) stratiform remobilized (Proterozoic), (2) structurally controlled hydrothermal (Proterozoic), (3) black shale-phosphorite (Palaeozoic-Mesozoic), (4) sandstone (Siwalik belt, Tertiary), and (5) primary disseminations in granitoids (Tertiary). Evaluation of the genetic aspects of these types has led to the identification of distinct spatial (lithostratigraphic and tectonic units) and temporal relations among them. The sandstone types are confined to the Tertiary (Middle Miocene to Pleistocene) molasse formations found south of th Main Boundary Thrust (MBT). Between the MBT and the Main Central Thrust, in the Lesser Himalaya, mineralization hosted in the Chail quartzite-phyllite ± metabasic sequences is of stratiform remobilized type. The structurally controlled hydrothermal type is confined to Dalings and gneisses. Syngenetic uranium in black shale-phosphorite sequences of Palaeozoic-Mesozoic age is found on the southern fringes of the Lesser Himalaya, bordering the MBT. Disseminated uranium occurs in the Tertiary and Proterozoic(?) granitoids of the Greater Himalaya and Ladakh. Rb-Sr geochronological data on host rocks and U-Pb dates on uraninites from some areas indicate that uranium mineralization in stratiform remobilized and structurally controlled types hosted by the Chails, Dalings and gneisses is essentially Precambrian and thus existed much before the Himalayan Orogeny. The Himalayan Orogeny, however, appears to have aided in further remobilization. The sandstone type mineralization in the Siwalik, on the other hand, is directly related to the process of formation of the foredeep and molasse sedimentation and subsequent uplift and epigenesis of the uranium mineralization, all of which are directly relatable to the evolution of the Himalaya. The relevance of deep seated lineament structures to mineralization, particularly of uranium, needs to be evaluated critically, as most

  16. Improved process control through real-time measurement of mineral content

    Energy Technology Data Exchange (ETDEWEB)

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  17. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  18. Thermal highly porous insulation materials made of mineral raw materials

    Science.gov (United States)

    Mestnikov, A.

    2015-01-01

    The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.

  19. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    Science.gov (United States)

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Mineral facilities of Northern and Central Eurasia

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays almost 900 records of mineral facilities within the countries that formerly constituted the Union of Soviet Socialist Republics (USSR). Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recent published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2

  1. Mineral facilities of Asia and the Pacific

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays over 1,500 records of mineral facilities throughout the continent of Asia and the countries of the Pacific Ocean. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the 2008 U.S. Geological Survey Minerals Yearbook (Asia and the Pacific volume), (2) minerals statistics and information from the U.S. Geological Survey Minerals Information Web site (http://minerals.usgs.gov/minerals/), and (3) data collected by U.S. Geological Survey minerals information country specialists. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information is available from the country specialists listed in table 2.

  2. Increased bone mineral density in postmenopausal women with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Hadzibegovic, I.; Miskic, B.; Prvulovic, D.; Bistrovic, D.; Cosic, V.

    2008-01-01

    Studies of bone mineral density (BMD) in women with type 2 diabetes mellitus have shown conflicting results. We conducted this study to determine whether postmenopausal women with diabetes have higher BMD than non-diabetic women of similar age and to investigate the relationship between BMD and relevant clinical characteristics in these groups of women. We retrospectively analyzed lumbar spine, femoral neck and radius BMD data and other relevant clinical data for 130 postmenopausal women with type 2 diabetes mellitus and 166 non-diabetic women collected during a voluntary screening for osteoporosis in postmenopausal women without a history of low bone mass or osteoporotic fractures. Women with type 2 diabetes mellitus had significantly higher mean lumbar spine BMD (0.903 +-0.165 vs. 0.824+-0.199, respectively, P<0.001) and mean femoral neck BMD (0.870+-0.132 vs. 0.832+-0.134, respectively, P<0.05) than non-diabetic women. In both groups of women, age correlated negatively with BMD levels at all three anatomical sites. Higher body mass index was associated only with higher lumber spine BMD in both groups. Alkaline phosphatase levels showed a negative correlation with BMD at all sites in women with type 2 diabetes mellitus. Postmenopausal women with type 2 diabetes mellitus have higher BMD levels than non-diabetic women with similar clinical characteristics and require a more scrutinized approach in managing low bone mass. (author)

  3. The Effect of a Long-Term, Community-Based Exercise Program on Bone Mineral Density in Postmenopausal Women with Pre-Diabetes and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Bello Marieni

    2014-12-01

    Full Text Available The aim of this study was to evaluate the impact of a community-based exercise program on bone mineral density and body composition in postmenopausal women with pre-diabetes and type 2 diabetes. Twenty postmenopausal women (aged 61.3 ± 6.0 years with pre-diabetes and type 2 diabetes were randomly assigned to a community-based exercise program group (n=10 or a control group (n=10. The community-based exercise program was multicomponent, three days per week for 32 weeks, and included walking, resistance and aquatic exercises. Body composition and bone mineral density were measured pre and post-training by dual X-ray absorptiometry. In the exercise group significant increases were found in the ward’s triangle bone mineral density (+7.8%, p=0.043, and in fat-free mass (+2.4%, p=0.018. The findings suggest that regular multicomponent training is effective in preventing osteoporosis and sarcopenia among postmenopausal women with pre-diabetes and type 2 diabetes.

  4. Rice Hulls as a Renewable Complex Material Resource

    Directory of Open Access Journals (Sweden)

    Irina Glushankova

    2018-05-01

    Full Text Available As a result of rice grain processing, a big amount of waste (up to 20% is produced. It is mainly rice hulls. The main components of rice hulls are cellulose, lignin and mineral ash. The mineral ash quantity in rice hulls varies from 15 up to 20%, by weight of the rice hulls. The mineral ash consists of amorphous silica (opal-type. Due to the high content of silica in rice hulls, the material burns with difficulty under natural conditions, and it is biodegradably destroyed only with difficulty, when composted. Utilization of rice hulls then becomes an ecological problem due to huge rice production and its continuous growth. At the same time, the annual quantity of silica content in rice hulls is comparable with the quantity of amorphous silica produced as a mineral resource. The issue of manufacturing cellular glass silica construction materials from rice hulls as a renewable resource is discussed in this paper. The utilization technology is based on an amorphous silicon oxide with the use of energy from the combustion of the organic component of rice hulls.

  5. Mineral commodity summaries 2013

    Science.gov (United States)

    ,

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  6. Mineral commodity summaries 2014

    Science.gov (United States)

    ,

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  7. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  8. Near-infrared laboratory spectroscopy of mineral chemistry: A review

    Science.gov (United States)

    Meer, Freek van der

    2018-03-01

    Spectroscopy is the science concerned with the investigation and measurement of spectra produced when materials interacts with or emits electromagnetic radiation. Commercial infrared spectrometer were designed from the 1950's onward and found their way into the pharmaceutical and chemical industries. In the 1970's and 1980's also natural sciences notably mineralogy and vegetation science started systematically to measure optical properties of leaves and minerals/rocks with spectrometers. In the last decade spectroscopy has made the step from qualitative observations of mineral classes, soil type and vegetation biomass to quantitative estimates of mineral, soil and vegetation chemistry. This resulted in geothermometers used to characterize metamorphic and hydrothermal systems and to the advent of foliar biochemistry. More research is still needed to bridge the gap between laboratory spectroscopy and field spectroscopy. Empirical studies of minerals either as soil or rock constituents (and vegetation parameters) derived from regression analysis of spectra against chemistry is important in understanding the physics of the interaction of electromagnetic radiation and matter which in turn is important in the design of future satellite missions. Physics based models and retrievals are needed to operationalize these relationships and implement them in future earth observation missions as these are more robust and easy to transfer to other areas and data sets.

  9. Type of litter determines the formation and properties of charred material during wildfires

    Science.gov (United States)

    Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin

    2014-05-01

    Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some

  10. Radio nuclides in mineral rocks and beach sand minerals in south east coast, Odisha

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Sahoo, S.K.; Essakki, Chinna; Tripathy, S.K.; Ravi, P.M.; Tripathi, R.M.; Mohanty, D.

    2014-01-01

    The primordial and metamorphic mineral rocks of the Eastern Ghats host minerals such as rutile, ilmenite, Silmenite, zircon, garnet and monazite in quartz matrix. The weathered material is transported down to the sea by run-off through Rivers and deposited back in coastal beach as heavy mineral concentrates. The minerals are mined by M/S Indian Rare Earths Ltd at the Chatrapur plant in Odisha coast to separate the individual minerals. Some of these minerals have low level radioactivity and may pose external and internal radiation hazard. The present paper deals with natural Thorium and Uranium in the source rocks with those observed in the coastal deposits. The study correlates the nuclide activity ratios in environmental samples in an attempt to understand the ecology of the natural radio nuclides of 238 U, 232 Th, 40 K and 226 Ra in environmental context. Further work is in progress to understand the geological process associated with the migration and reconcentration of natural radio-nuclides in the natural high background radiation areas

  11. Printing nature: Unraveling the role of nacre's mineral bridges.

    Science.gov (United States)

    Gu, Grace X; Libonati, Flavia; Wettermark, Susan D; Buehler, Markus J

    2017-12-01

    Creating materials with strength and toughness has been a long-sought goal. Conventional engineering materials often face a trade-off between strength and toughness, prompting researchers seeking to overcome these limitations to explore more sophisticated materials, such as composites. This paradigm shift in material design is spurred by nature, which exhibits a plethora of heterogeneous materials that offer outstanding material properties, and many natural materials are widely regarded as examples of high-performing hybrid materials. A classic example is nacre, also known as mother-of-pearl, which boasts a combination of high stiffness, strength, and fracture toughness. Various microstructural features contribute to the toughness of nacre, including mineral bridges (MBs), nano-asperities, and waviness of the constituent platelets. Recent research in biomimicry suggests that MBs contribute to the high strength and toughness observed in nacre and nacre-inspired materials. However, previous work in this area did not allow for complete control over the length scale of the bridges and had limitations on the volume fraction of mineral content. In this work, we present a systematic investigation elucidating the effects of structural parameters, such as volume fraction of mineral phase and density of MBs, on the mechanical response of nacre-inspired additive manufactured composites. Our results demonstrate that it is possible to tune the composite properties by tuning sizes and content of structural features (e.g. MBs and mineral content) in a heterogeneous material. Looking forward, this systematic approach enables materials-by-design of complex architectures to tackle demanding engineering challenges in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Paradoxical differences in N-dynamics between Luxembourg soils: litter quality or parent material?

    OpenAIRE

    Kooijman, A.M.; Smit, A.

    2009-01-01

    To explore whether litter quality could alter differences in N-dynamics between soil types, we compared spruce and beech growing on soils with parent material sandstone and limestone, and beech and hornbeam on acid marl and limestone. We measured pH, organic matter content, C:N ratio, soil respiration and net N-mineralization of the organic layer and the mineral topsoil in a laboratory incubation experiment and estimated gross N-mineralization and immobilization with a simulation model. Speci...

  13. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  14. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Science.gov (United States)

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  15. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  16. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    Science.gov (United States)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  18. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry.

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Tanideh, Nader; Janghorban, Kamal; Sheibani, Nader

    2014-05-01

    Materials with new compositions were tested in order to develop dental materials with better properties. Calcium silicate-based cements, including white mineral trioxide aggregate (WMTA), may improve osteopromotion because of their composition. Nano-modified cements may help researchers produce ideal root-end filling materials. Serial dual-energy x-ray absorptiometry measurement was used to evaluate the effects of particle size and the addition of tricalcium aluminate (C3A) to a type of mineral trioxide aggregate-based cement on bone mineral density and the surrounding tissues in the mandible of rabbits. Forty mature male rabbits (N = 40) were anesthetized, and a bone defect measuring 7 × 1 × 1 mm was created on the semimandible. The rabbits were divided into 2 groups, which were subdivided into 5 subgroups with 4 animals each based on the defect filled by the following: Nano-WMTA (patent application #13/211.880), WMTA (as standard), WMTA without C3A, Nano-WMTA + 2% Nano-C3A (Fujindonjnan Industrial Co, Ltd, Fujindonjnan Xiamen, China), and a control group. Twenty and forty days postoperatively, the animals were sacrificed, and the semimandibles were removed for DXA measurement. The Kruskal-Wallis test followed by the Mann-Whitney U test showed significant differences between the groups at a significance level of P density at both intervals and P20 day = .004 and P40 day = .005 for bone mineral content. This study showed that bone regeneration was enhanced by reducing the particle size (nano-modified) and C3A mixture. This may relate to the existence of an external supply of minerals and a larger surface area of nano-modified material, which may lead to faster release rate of Ca(2+), inducing bone formation. Adding Nano-C3A to Nano-WMTA may improve bone regeneration properties. Copyright © 2014 American Association of Endodontists. All rights reserved.

  19. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  20. Uranium mineralization and unconformities: how do they correlate? - A look beyond the classic unconformity-type deposit model?

    Science.gov (United States)

    Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.

    2010-05-01

    Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier

  1. BET measurements: Outgassing of minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    Outgassing minerals at elevated temperatures prior to BET measurements can lead to phase changes, especially in the case of amorphous and poorly crystalline materials. In order to evaluate the applicability of the BET method when low outgassing temperatures are required, selected aquifer minerals...... were outgassed at different temperatures and for different times. The studied minerals are 2-line ferrihydrite, goethite, lepidocrocite, quartz, calcite, ®-alumina, and kaolinite. The results demonstrate that measured specific surface areas of iron oxides are strongly dependent on outgassing conditions...... because the surface area increased by 170% with increasing temperature. In the poorly crystalline minerals, phase changes caused by heating were observed at temperatures lower than 100±C. Therefore low outgassing temperatures are preferable for minimizing phase changes. As demonstrated in this study...

  2. The use of by-products from metallurgical and mineral industries as filler in cement-based materials.

    Science.gov (United States)

    Moosberg, Helena; Lagerblad, Björn; Forssberg, Eric

    2003-02-01

    This investigation has been made in order to make it possible to increase the use of by-products in cement-based materials. Use of by-products requires a screening procedure that will reliably determine their impact on concrete. A test procedure was developed. The most important properties were considered to be strength development, shrinkage, expansion and workability. The methods used were calorimetry, flow table tests, F-shape measurements, measurements of compressive and flexural strength and shrinkage/expansion measurements. Scanning electron microscopy was used to verify some results. Twelve by-products were collected from Swedish metallurgical and mineral industries and classified according to the test procedure. The investigation showed that the test procedure clearly screened out the materials that can be used in the production of concrete from the unsuitable ones.

  3. Enhanced Materials Based on Submonolayer Type-II Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Tamargo, Maria C [City College of New York, NY (United States); Kuskovsky, Igor L. [City Univ. (CUNY), NY (United States) Queens College; Meriles, Carlos [City College of New York, NY (United States); Noyan, Ismail C. [Columbia Univ., New York, NY (United States)

    2017-04-15

    We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refining the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.

  4. Organic n-type materials for charge transport and charge storage applications.

    Science.gov (United States)

    Stolar, Monika; Baumgartner, Thomas

    2013-06-21

    Conjugated materials have attracted much attention toward applications in organic electronics in recent years. These organic species offer many advantages as potential replacement for conventional materials (i.e., silicon and metals) in terms of cheap fabrication and environmentally benign devices. While p-type (electron-donating or hole-conducting) materials have been extensively reviewed and researched, their counterpart n-type (electron-accepting or electron-conducting) materials have seen much less popularity despite the greater need for improvement. In addition to developing efficient charge transport materials, it is equally important to provide a means of charge storage, where energy can be used on an on-demand basis. This perspective is focused on discussing a selection of representative n-type materials and the efforts toward improving their charge-transport efficiencies. Additionally, this perspective will also highlight recent organic materials for battery components and the efforts that have been made to improve their environmental appeal.

  5. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  6. Structure Integrity Testing of Mineral Feed by Means of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Jaroslav Začal

    2016-01-01

    Full Text Available This work deals with specific method of non-destructive testing – Acoustic emission (AE. Theoretical part of article is focused on underlying principle of this method and its applicability. The experimental part is focused on research of pressure resistance in mineral feed using the AE. Mineral feed is condensed cube of rock salt (sodium chloride with supplementary minerals, which is fed to livestock and game to supply the mineral elements necessary for their health and condition. Using the AE sensor is possible to provide monitoring of internal changes in the material. AE gives the overview of internal changes in material structure. With use of specific software we can interpret the acoustic signal and identify the current state of material integrity in real time.

  7. Hydrometalurgical processes for mineral complexes

    International Nuclear Information System (INIS)

    Barskij, L.A.; Danil'chenko, L.M.

    1977-01-01

    Requirements for the technology of the processing of ores including uranium ores and principal stages of the working out of technological schemes are described in brief. There are reference data on commercial minerals and ores including uranium-thorium ores, their classification with due regard for physical, chemical and superficial properties which form the basis for ore-concentrating processes. There are also presented the classification of minerals including uranium minerals by their flotation ability, flotation regimes of minerals, structural-textural characteristics of ores, genetic types of ore formations and their concentrating ability, algorithmization of the apriori evaluation of the concentration and technological diagnostics of the processing of ores. The classification of ore concentration technique is suggested

  8. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Montross, Scott N. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Verba, Circe A. [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center; Collins, Keith [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center

    2017-07-17

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries for supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the

  9. A world of minerals in your mobile device

    Science.gov (United States)

    Jenness, Jane E.; Ober, Joyce A.; Wilkins, Aleeza M.; Gambogi, Joseph

    2016-09-15

    Mobile phones and other high-technology communications devices could not exist without mineral commodities. More than one-half of all components in a mobile device—including its electronics, display, battery, speakers, and more—are made from mined and semiprocessed materials (mineral commodities). Some mineral commodities can be recovered as byproducts during the production and processing of other commodities. As an example, bauxite is mined for its aluminum content, but gallium is recovered during the aluminum production process. The images show the ore minerals (sources) of some mineral commodities that are used to make components of a mobile device. On the reverse side, the map and table depict the major source countries producing these mineral commodities along with how these commodities are used in mobile devices. For more information on minerals, visit http://minerals.usgs.gov.

  10. Effect of Mineral Composition on Thermoluminescence Analysis of Irradiated Garlics

    International Nuclear Information System (INIS)

    Sookkasem, Atitaya; Wanwisa, Sudprasert; Vitittheeranon, Arag

    2009-07-01

    Full text: Thermoluminescence (TL) is one of the most popular techniques used for identification of irradiated foods such as spices, herbs and dried fruits in accordance with the Codex Standards. TL analysis is based on the determination of TL of adhering or contaminating minerals in foods. This research aimed to study the effect of mineral composition on the TL intensity. The composited minerals were extracted from 3 types of non-irradiated and irradiated garlic powders by sodium polytungstate solution. X-ray diffraction (XRD) spectroscopy was employed to investigate the type and amount of minerals present in garlic powders. TL of separated minerals were analysed using a Harshaw 4500 TL reader. The results showed that the mineral composition of garlic powders was mainly quartz of varying amounts depending on types of garlics. The TL intensity linearly increased with the amount of quartz present in the samples. It can be concluded that the amount of minerals affect the TL intensity which might influence the identification of irradiated tretment of garlics by thermoluminescence

  11. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  12. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  13. The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization

    Directory of Open Access Journals (Sweden)

    Khadijeh Mikaeili

    2018-04-01

    Full Text Available The Shah-Ali-Beiglou epithermal base metal-silver deposit is located in the Tarom-Hashjin metallogenic province (THMP in northwestern Iran. This deposit is hosted by quartz monzonite dikes of Oligocene age and surrounded by andesite to trachyandesite volcanic and volcaniclastic rocks of Eocene age. The subvolcanic rocks in the study area vary in composition from quartz-monzonite to monzonite and have metaluminous, calc-alkaline to shoshonitic affinity. These rocks have I-type geochemical characteristic and are related to post-collisional tectonic setting. The mineralization occurs as NE-SW and E-W-trending brecciated veins controlled by strike-slip and normal faults, which are associated to the Late Oligocene compressional regime. The mineral paragenesis of the vein mineralization is subdivided into pre-ore stage, ore stage, post-ore stage, and supergene stage. Pre-ore stage is dominated by quartz, sericite, and subhedral to anhedral pyrite as disseminated form. Ore-stage is represented by quartz, sphalerite (from 0.1 mol % to 4 mol % FeS, galena, chalcopyrite, tetrahedrite-tennantite, minor seligmannite and enargite, as vein-veinlet, cement and clast breccias. Post-ore stage is defined by deposition of quartz and carbonate along with minor barite, and supergene stage is characterized by bornite, chalcocite, covellite, hematite, goethite, and jarosite. The ore mineralization is associated with the silicic alteration. The styles of alteration are silicic, carbonate, sericitic, chloritic, and propylitic. Fluid inclusions in sphalerite have a wide range of salinities between 0.35 wt % and 21.4 wt % NaCl equivalent and homogenization temperatures range from 123 to 320 °C. The isotopic values of sulfides vary from 2.8‰ to 6.7‰ suggesting a magmatic source for the sulfur. In the present study, based on geological setting, alteration style of the host and wall rocks, main textures, mineral assemblages, composition of ore minerals, and structural

  14. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  15. Mesozoic-Cenozoic tectonic evolution and its relation to sandstone-type uranium mineralization in northern Tarim area--Evidence from apatite fission track

    International Nuclear Information System (INIS)

    Liu Hongxu; Dong Wenming; Liu Zhangyue; Chen Xiaolin

    2009-01-01

    The apatite fission track dating and inversion result of geological thermal history of four rock specimens from Sawafuqi area and Talike area in northern Tarim Basin show that two areas uplifted at different ages. The apatite fission track ages of Sawafuqi range from 3.5 to 3.9 Ma, while the ages of Talike range from 53 to 59 Ma. The thermal history recorded by rock samples reveals that there are at least three prominent cooling phases since Late Cretaceous epoch. Detailed study was made on the division of uplifting stages during Mesozoic and Cenozoic tectonic evolution with the existing data in northern Tarim area. And new ideas on tectonic evolution and sandstone-type uranium mineralization have been put forward by combining with the sandstone-type uranium mineralization ages in this area.(authors)

  16. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  17. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes.

    Science.gov (United States)

    Hunt, Heather B; Pearl, Jared C; Diaz, David R; King, Karen B; Donnelly, Eve

    2018-05-01

    Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  18. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2017-11-01

    Full Text Available Introduction The Irankuh mining district area located at the southern part of the Malayer-Isfahan metallogenic belt, south of Isfahan, consists of several Zn-Pb deposits and occurrences such as Tappehsorkh, Rowmarmar 5, Kolahdarvazeh, Blind ore, and Gushfil deposits as well as Rowmarmar 1-4 and Gushfil 1 prospects. Based on geology, alteration, form and texture of mineralization, and paragenesis assemblages, Pb-Zn mineralization is Mississippi-type deposit (Rastad, 1981; Ghazban et al., 1994; Ghasemi, 1995; Reichert, 2007; Timoori-Asl (2010; Ayati et al., 2013; Hosseini-Dinani et al., 2015. Geology of the area consists of Jurassic siltstone and shale and different types of Cretaceous dolostone and limestone. The aim of this research is new geological studies such as revision of old geologic map, study of different types of textures and mineral assemblages within carbonate and clastic host rocks, and chemistry of galena, sphalerite, and dolomite. Finally, we combined these results with isotopic and fluid inclusion data and discussed on ore-fluid conditions. Materials and Methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, 200 thin and 70 polished thin sections were prepared. Some of the samples were selected for microprobe analysis and galena and sphalerite minerals were analyzed by using JEOL- JAX-8230 analyzer at Colorado University, USA. The chemistry of dolomite and fluid inclusion data are used after Boveiri Konari and Rastad (2016 and stable isotope is used after Ghazban et al. (1994. Discussion The Irankuh mineralization is hosted by carbonate rocks (dolostone and limestone and minor clastic rocks as epigenetic. Mineralization has occurred as breccia, veinlet, open space filling, spoted, dessiminated, and replacement (carbonate hosted rock. The mineral assemblages are Fe-rich sphalerite, galena, minor pyrite, Fe- and Mn-rich dolomite, bituminous, ankrite, calcite ± quartz ± barite

  19. Recognition of Minerals Using Multispectral Remote Sensing Data: A Case Study in the Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Sankaran Rajendran

    2015-02-01

    Full Text Available The present study demonstrates the capability of a multispectral sensor for the detection of the minerals in the rocks surrounding the Rusayl and Al Jafnayn regions, Sultanate of Oman. The study of spectral absorptions of rocks and minerals in the visible and near infrared (VNIR and short wavelength infrared (SWIR spectral bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER using the Spectral Angle Mapper (SAM supervised image classification technique has provided information on the occurrence of minerals in the rock types of the regions. The study shows the occurrence of carbonate minerals in the limestone formations and of poorly altered silicate minerals in the basic dyke rocks of the study regions. The analysis of minerals over the ancient terraces and recent alluvial deposits show that the deposit materials are derived from the dykes and foliated gabbro source rocks. The image interpretation is compared to the geological map, verified in the field and confirmed through laboratory analyses. The satellite data and the image processing techniques used have potential in the recognition of minerals in the rocks of the study region and could be used in similar arid regions elsewhere in the world.

  20. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  1. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    Directory of Open Access Journals (Sweden)

    Marita Westhrin

    Full Text Available Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST and dental matrix protein-1 (DMP1, markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  2. Global stocks of selected mineral-based commodities

    Science.gov (United States)

    Wilburn, David R.; Bleiwas, Donald I.; Karl, Nick A.

    2016-12-05

    IntroductionThe U.S. Geological Survey, National Minerals Information Center, analyzes mineral and metal supply chains by identifying and describing major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. This report focuses on an important component of the world’s supply chain: the amounts and global distribution of major consumer, producer, and exchange stocks of selected mineral commodities. In this report, the term “stock” is used instead of “inventory” and refers to accumulations of mined ore, intermediate products, and refined mineral-based commodities that are in a form that meets the agreed-upon specifications of a buyer or processor of intermediate products. These may include certain ores such as bauxite, concentrates, smelter products, and refined metals. Materials sometimes referred to as inventory for accounting purposes, such as ore contained in a deposit or in a leach pile, or materials that need to be further processed before they can be shipped to a consumer, are not considered. Stocks may be held (owned) by consumers, governments, investors, producers, and traders. They may serve as (1) a means to achieve economic, social, and strategic goals through government policies; (2) a secure source of supply to meet demand and to mitigate potential shortages in the supply chain; (3) a hedge to mitigate price volatility; and (4) vehicles for speculative investment.The paucity and uneven reliability of data for stocks of ores and concentrates and for material held by producers, consumers, and merchants hinder the accurate estimating of the size and distribution of this portion of the supply chain for certain commodities. This paper reviews the more visible stocks held in commodity exchange warehouses distributed throughout the world.

  3. Production of mineral ash-wool

    International Nuclear Information System (INIS)

    Micevic, Z.; Djekic, S.

    1996-01-01

    The project entitled 'Production of Mineral Ash-Wool' presents a new technology of possible use of the fly ash, generated as a waste product from the fossil fueled power plants, as a basic raw material for manufacturing of different products from a new mineral ash-wool. The wide area of mineral ash-wool application (civil engineering, industry, power generation, etc.) and the advantages of this new technology (important raw material obtained free of charge, substitution of expensive silicate stone, use of electric energy for melting instead for coke, vicinity of factory location close to the fossil fueled power plant, lower product price, reduction of environmental pollution, etc.) have resulted in the performance of the bench scale tests. Positive results have been obtained, as a good initial base for the realization of this project. The named study as an detailed analysis has been carried out for the assessment of: supply and sales market, analysis of possible and selection of an optimal location of the factory in the frame of fossil fueled power plant 'Kosovo', selection of the production capacity and alternative preliminary technical designs of the factory for the mineral ash-wool production. For the studied alternatives, specifications and capital investments evaluations for equipment and works (mechanical, civil engineering and electromechanical part) have been made as well as assessments of production costs. Based on the performed economical and financial analyses, as well as the sensitivity analyses one could be concluded that the investments in the factory for the mineral ash-wool production is highly economically acceptable. (author). 1 fig., 1 tab., 3 refs

  4. Minerals with metal-organic framework structures.

    Science.gov (United States)

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  5. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    International Nuclear Information System (INIS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-01-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.

  6. Fabrication of Mineralized Collagen from Bovine Waste Materials by Hydrothermal Method as Promised Biomaterials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Macossay, Javier

    2011-01-01

    In the present study, we aimed to produce mineralized-collagen by hydrothermal process. A simple method not depending on additional foreign chemicals has been employed to isolate the mineralized-collagen fibers from bovine waste. The process of extraction involves the use of hydrothermal method...... mineral content in the individual fibers. The X-ray diffraction showed the crystalline feature of the obtained nano-compounds. The thermo gravimetric analysis was used to differentiate between the collagen and mineral parts of obtained product. Overall, the results generously indicated production of well...

  7. Mining and sustainable development: Considerations for minerals supply

    International Nuclear Information System (INIS)

    Lambert, Ian B.

    2001-01-01

    Sustainable development involves meeting the needs of human societies while maintaining viable biological and physical Earth systems. The needs include minerals: metals, fuels, industrial and construction materials. There will continue to be considerable demand for virgin mineral resources, even if levels of recycling and efficiency of use are optimal, and rates of population growth and globalisation decrease significantly. This article aims to stimulate debate on strategic issues for minerals supply. While the world has considerable stocks of mineral resources overall, international considerations of the environmental and social aspects of sustainable development are beginning to result in limitations on where mining will be conducted and what types of deposits will be mined. Current and emerging trends favour large mines in parts of the world where mining can be conducted within acceptable limits of environmental and social impact. Finding new deposits that meet such criteria will be all the more challenging given a disturbing global decline in the rate of discovery of major economic resources over the last decade, and the decreasing land area available for exploration and mining. To attract responsible exploration and mining, governments and mining nations will need to provide: regional-scale geo-scientific datasets as required to attract and guide future generations of exploration; resource access through multiple and sequential land use regimes, and frameworks for dealing with indigenous peoples' issues; and arrangements for consideration of mining proposals and regulation of mines that ensure responsible management of environmental and social issues. The minerals industry will need to continue to pursue advances in technologies for exploration, mining, processing, waste management and rehabilitation, and in public reporting of environmental and social performance. (author)

  8. Bioactive Polymeric Composites for Tooth Mineral Regeneration: Physicochemical and Cellular Aspects

    Science.gov (United States)

    Skrtic, Drago; Antonucci, Joseph M.

    2011-01-01

    Our studies of amorphous calcium phosphate (ACP)-based dental materials are focused on the design of bioactive, non-degradable, biocompatible, polymeric composites derived from acrylic monomer systems and ACP by photochemical or chemically activated polymerization. Their intended uses include remineralizing bases/liners, orthodontic adhesives and/or endodontic sealers. The bioactivity of these materials originates from the propensity of ACP, once exposed to oral fluids, to release Ca and PO4 ions (building blocks of tooth and bone mineral) in a sustained manner while spontaneously converting to thermodynamically stable apatite. As a result of ACP's bioactivity, local Ca- and PO4-enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Besides its applicative purpose, our research also seeks to expand the fundamental knowledge base of structure-composition-property relationships existing in these complex systems and identify the mechanisms that govern filler/polymer and composite/tooth interfacial phenomena. In addition to an extensive physicochemical evaluation, we also assess the leachability of the unreacted monomers and in vitro cellular responses to these types of dental materials. The systematic physicochemical and cellular assessments presented in this study typically provide model materials suitable for further animal and/or clinical testing. In addition to their potential dental clinical value, these studies suggest the future development of calcium phosphate-based biomaterials based on composite materials derived from biodegradable polymers and ACP, and designed primarily for general bone tissue regeneration. PMID:22102967

  9. Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma

    Energy Technology Data Exchange (ETDEWEB)

    Villaseca, C.; Ruiz-Martínez, V.C.; Pérez-Soba, C.

    2017-07-01

    Magnetic susceptibility (MS) has been measured in Variscan granites from central Spain. They yield values in the order of 15 to 180μSI units for S- and I-type granites, indicating that both types belong to the ilmenite series. Only samples from magnetite-bearing leucogranites from the I-type La Pedriza massif show high MS values, in the order of 500-1400μSI, reflecting the presence of this ferromagnetic mineral. Mineral chemistry of magmatic Fe-rich minerals (mainly biotite) suggests similar oxidation values for both granite types. MS values change in highly fractionated granites accordingly either with the presence of rare new Fe-oxide phases (some I-type leucogranites) or with the marked modal amount decrease of Fe-rich minerals (I- and S-type leucogranites). The redox state in highly fractionated granite melts is mostly controlled by magmatic processes that modify redox conditions inherited from the source region. Thus, the occurrence of magnetite or ilmenite in granites is primarily controlled by the oxidation state of the source material but also by the differentiation degree of the granite melt. The presence of magnetite in some Variscan I-type leucogranites might be a consequence of crystal fractionation processes in a more limited mafic mineral assemblage than in S-type granite melts.

  10. Interaction of actinides with natural microporous materials: a review

    International Nuclear Information System (INIS)

    Misaelides, P.; Godelitsas, A.

    1998-01-01

    Natural microporous materials include several types of minerals such as zeolites, clay minerals, micas, iron- and manganese-oxides/hydroxides/oxyhydroxides present in various geological environments and soil formations. The transport of the actinide elements in the environment is mainly performed through aquatic pathways (streams, rivers, underground waters) and their mobility is strongly related to the interaction of their dissolved species with geological materials and especially with the highly sorptive microporous minerals. The existing studies mainly concern the sorption of Th, U, Np, Pu and Am from aqueous media by clay minerals and zeolites as well as the determination of the corresponding chemical processes taking place at the mineral-water interface. The investigation techniques also include advanced spectroscopic methods such as Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS), Rutherford Backscattered Spectroscopy (RBS), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. These techniques significantly contribute to the characterization of the reacted mineral surfaces and to the explanation of the structural and compositional characteristics of the sorbed actinide species. Theoretical models regarding the aqueous chemistry and speciation of the actinides have also been developed aiming the elucidation of the complex actinide sorption mechanisms. Finally, this contribution also includes some recently obtained data concerning the interaction of actinides with todorokite (a naturally occurring microporous manganese-oxide of technological importance) and granitic micas (biotite) correlated with the nuclear waste disposal in geological formations

  11. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  12. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  13. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  14. [Mechanism of tritium persistence in porous media like clay minerals].

    Science.gov (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  15. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  16. Mineral oil barrier sequential polymer treatment for recycled paper products in food packaging

    Science.gov (United States)

    Paul, Uttam C.; Fragouli, Despina; Bayer, Ilker S.; Mele, Elisa; Conchione, Chiara; Cingolani, Roberto; Moret, Sabrina; Athanassiou, Athanassia

    2017-01-01

    Recycled cellulosic paperboards may include mineral oils after the recycle process, which together with their poor water resistance limit their use as food packaging materials. In this work, we demonstrate that a proper functionalization of the recycled paper with two successive polymer treatments, imposes a mineral oil migration barrier and simultaneously renders it waterproof and grease resistant, making it an ideal material for food contact. The first poly (methyl methacrylate) treatment penetrates the paper network and creates a protective layer around every fiber, permitting thus the transformation of the paperboard to a hydrophobic material throughout its thickness, reducing at the same time the mineral oil migration. Subsequently, the second layer with a cyclic olefin copolymer fills the open pores of the surface, and reduces the mineral oil hydrocarbons migration at levels below those proposed by the BMEL. Online liquid chromatography-gas chromatography coupled with flame ionization detection quantitatively demonstrate that this dual functional treatment prevents the migration of both saturated (mineral oil saturated hydrocarbons) and aromatic hydrocarbon (mineral oil aromatic hydrocarbons) mineral oils from the recycled paperboard to a dry food simulant.

  17. Formation mechanism of uranium minerals at sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Li Shengfu; Zhang Yun

    2004-01-01

    By analyzing the behavior and existence form of uranium in different geochemical environments, existence form of uranium and uranium minerals species, this paper expounds the formation mechanism of main commercial uranium mineral--pitchblende: (1) uranium is a valence-changeable element. It is reactivated and migrates in oxidized environment, and is reduced and precipitated in reducing environment; (2) [UO 2 (CO 3 ) 3 ] 4- , [UO 2 (CO 3 ) 2 ] 2- coming from oxidized environment react with reductants such as organic matter, sulfide and low-valence iron at the redox front to form simple uranium oxide--pitchblende; (3)the adsorption of uranium by organic matter and clay minerals accelerates the reduction and the concentration of uranium. Therefore, it is considered, that the reduction of SO 4 2- by organic matter to form H 2 S, and the reduction of UO 2 2+ by H 2 S are the main reasons for the formation of pitchblende. This reaction is extensively and universally available in neutral and weakly alkaline carbonate solution. The existense of reductants such as H 2 S is the basic factor leading to the decrease of Eh in environments and the oversaturation of UO 2 2+ at the redox front in groundwater, thus accelerating the adsorption and the precipitation of uranium

  18. Mineral fibres and health

    International Nuclear Information System (INIS)

    Hoskins, J.A.

    2001-01-01

    The use of inorganic fibrous materials is a comparatively new phenomenon and was uncommon before the Industrial Revolution. Humans evolved in a comparatively fibre-free environment and consequently never fully developed the defence mechanisms needed to deal with the consequences of inhaling fibres. However, the urban environment now has an airborne fibre concentration of around 1 f.l -1 , which is a tenfold increase on the natural background. Any sample of ambient air collected indoors or outdoors will probably contain some mineral fibres, but there is little evidence that these pose any risk to human health. They come from asbestos used in brakes, glass and mineral wools used as insulation and fire proofing of buildings, gypsum from plaster and a variety of types from many sources. Few of these have the potential to do any harm. Asbestos is the only fibre of note but urban levels are insignificant compared to occupational exposures. When the health of cohorts occupationally exposed to the several types of asbestos is studied the problem can be put into perspective. Studies of workers in the chrysotile industry exposed to much higher dust levels than in a factory today show no excess lung cancer or mesothelioma. By comparison those living near crocidolite mines, let alone working in them, may develop asbestos-related disease. As always, dose is the critical factor. Chrysotile is cleared from the lungs very efficiently, only the amphiboles are well retained. The only real health problem comes from the earlier use of asbestos products that may now be old, friable and damaged and made from amphibole or mixed fibre. If though, these are still in good condition, they do not pose a health problem. Asbestos-related diseases are very rare in those not occupationally exposed. Where they exist exposure has nearly always been to crocidolite. (author)

  19. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration

    International Nuclear Information System (INIS)

    Maroto-Valer, M.M.; Kuchta, M.E.; Zhang, Y.; Andresen, J.M.; Fauth, D.J.

    2005-01-01

    Mineral carbonation, the reaction of magnesium-rich minerals such as olivine and serpentine with CO 2 to form stable mineral carbonates, is a novel and promising approach to carbon sequestration. However, the preparation of the minerals prior to carbonation can be energy intensive, where some current studies have been exploring extensive pulverization of the minerals below 37 μm, heat treatment of minerals up to 650 o C, prior separation of CO 2 from flue gases, and carbonation at high pressures, temperatures and long reaction times of up to 125 atm, 185 o C and 6 h, respectively. Thus, the objective of the mineral activation concept is to promote and accelerate carbonation reaction rates and efficiencies through surface activation to the extent that such rigorous reaction conditions were not required. The physical activations were performed with air and steam, while chemical activations were performed with a suite of acids and bases. The parent serpentine, activated serpentines, and carbonation products were characterized to determine their surface properties and assess their potential as carbonation minerals. The results indicate that the surface area of the raw serpentine, which is approximately 8 m 2 /g, can be increased through physical and chemical activation methods to over 330 m 2 /g. The chemical activations were more effective than the physical activations at increasing the surface area, with the 650 o C steam activated serpentine presenting a surface area of only 17 m 2 /g. Sulfuric acid was the most effective acid used during the chemical activations, resulting in surface areas greater than 330 m 2 /g. Several of the samples produced underwent varying degrees of carbonation. The steam activated serpentine underwent a 60% conversion to magnesite at 155 o C and 126 atm in 1 h, while the parent sample only exhibited a 7% conversion. The most promising results came from the carbonation of the extracted Mg(OH) 2 solution, where, based on the amount of

  20. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Archuleta

    2005-01-01

    Full Text Available This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.

  1. Evaluation of the lithology contents and types of clay minerals using downhole spectral analyzer of natural gamma radiation

    International Nuclear Information System (INIS)

    Zivanov, M.; Savicic, M.; Grbovic, G.

    1992-01-01

    The microprocessor downhole spectrum analyzer of natural gamma radiation is an important part of the new generation of geophysical well logging systems. This instrument produces complete energy spectra of the penetrated formations. here physical principles of logging are shown. based on the logging results from one of the wells complex lithology was identified, together with shale contents in the formation and types of clay and minerals. (author)

  2. Water states and types of water in materials from different argillaceous formations

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.

    2010-01-01

    clayey formations, the amount of accessory minerals, type of clays and water contents affect the amount and distribution of the external and internal water; and the combination of such properties is not well understood. In this work, the study of water states, types of water (adsorbed, free water), and the water volume accessible to ions is performed in samples belonging to different clay formations (Boom Clay, Opalinus Clay and Callovo-Oxfordian). This offers the opportunity of understanding the nature of water in clayey systems because of their variations in parameters affecting to the amount of adsorbed and capillary water such as: degree of compaction, water content, clay content, type of clays, salinity, nature of exchangeable cations, etc. The aim is to obtain the accessible porosity or geochemical porosity in compacted materials in order to determine the chemical composition of the pore water. The results are compared with those obtained in experimental lab (by squeezing and aqueous leaching) and in situ studies. The research is accomplished by a careful and detailed characterization of the clay samples. Parameters such as particle size, layer spacing, chemical composition, mineralogy, external and total surfaces, porosity and pore water chemistry were determined. The method combines different types of methodologies to obtain a representative description of double porosity systems and the amount of free, adsorbed and confined water involved in real-type porous media: water adsorption isotherms, XRD, TG, calorimetric measurements and diffuse reflectance FTIR. Besides, a comparison among different types of clayey formation is given, in which there are variations in the types of clays, water contents, dry densities, pore water chemistry and type of exchangeable cations. The results try to reduce the lack of data about water volume accessible to ions, and the involved uncertainty in the use of total porosity or accessible porosity in the modelling of the pore water

  3. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    Science.gov (United States)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  4. COMPOSITION OF MINERAL PHASES OF THE GHIDIRIM DIATOMITE

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2007-06-01

    Full Text Available Studies of the mineralogical composition of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. The mineral phase of the diatomite contains a number of clay minerals, like montmorillonite (in a mixture with insignificant quantities of slightly chloritized montmorillonite, illite and kaolinite. Diatomite contains also non-clay components as fine-dispersed quartz and amorphous material, the more probable sources of which are opal, amorphous alumosilicates, aluminum and iron hydroxides. The applied procedure for separation of clay fractions by sizing settling in liquid media proves to be very useful, enabling possibilities for more accurate identification of the clay constituents of diatomic material. Procedure allows to separate very clean clay fraction especially rich in montmorillonite, which can be utilized itself as mineral adsorbent for practical purposes.

  5. EIS and adjunct electrical modeling for material selection by evaluating two mild steels for use in super-alkaline mineral processing

    DEFF Research Database (Denmark)

    Bakhtiyari, Leila; Moghimi, Fereshteh; Mansouri, Seyed Soheil

    2012-01-01

    The production of metal concentrates during mineral processing of ferrous and non-ferrous metals involves a variety of highly corrosive chemicals which deteriorate common mild steel as the material of choice in the construction of such lines, through rapid propagation of localized pitting...... in susceptible parts, often in sensitive areas. This requires unscheduled maintenance and plant shut down. In order to test the corrosion resistance of different available materials as replacement materials, polarization and electrochemical impedance spectroscopy (EIS) tests were carried out. The EIS numerical...... software-enhanced polarization resistance, and reduced capacitance added to much diminished current densities, verified the acceptable performance of CK45 compared with high priced stainless steel substitutes with comparable operational life. Therefore, CK45 can be a suitable alternative in steel...

  6. An exploration in mineral supply chain mapping using tantalum as an example

    Science.gov (United States)

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  7. 3.7. Technical and economic aspects of the application of cement concretes obtained from local minerals

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    This article is devoted to technical and economic aspects of the application of cement concretes obtained from local minerals. The following composite materials obtained from local raw materials were considered: mineral (cement, lime), inorganic (phosphates, sodium silicate), organic (phenol formaldehyde, epoxide, urea-formaldehyde, carbamide, acryl, organosilicon, furfural aniline). It was concluded that from technical and economical points of view the most effective materials were: mineral composite materials, crude shale oils and ligno sulphonates.

  8. Development of hemoglobin typing control materials for laboratory investigation of thalassemia and hemoglobinopathies.

    Science.gov (United States)

    Pornprasert, Sakorn; Tookjai, Monthathip; Punyamung, Manoo; Pongpunyayuen, Panida; Jaiping, Kanokwan

    2016-01-01

    To date, the hemoglobin (Hb) typing control materials for laboratory investigation of thalassemia with low (1.8%-3.2%) and high (4%-6%) levels of HbA2 are available but there are no Hb typing quality control materials for analysis of thalassemia and hemoglobinopathies which are highly prevalent in South-East Asian countries. The main aim of the present study was to develop the lyophilized Hb typing control materials for laboratory investigation of thalassemia and hemoglobinopathies that are commonly found in South-East Asia. Erythrocytes of blood samples containing Hb Bart's, HbH, HbE, HbF, Hb Constant Spring (CS), Hb Hope, and Hb Q-Thailand were washed and dialysed with 0.85% saline solution. The erythrocytes were then lysed in 5% sucrose solution. The lyophilized Hb typing control materials were prepared by using a freeze drying (lyophilization) method. The high performance liquid chromatography (HPLC) analysis of lyophilized Hb was performed after the storage at -20 °C for 1 year and also after reconstitution and storage at 4 or -20 °C for 30 days. In addition, the Hb analysis was compared between the three different methods of HPLC, low pressure liquid chromatography (LPLC) and capillary electrophoresis (CE). Following a year of storage at -20 °C, the HPLC chromatograms of lyophilized Hb typing control materials showed similar patterns to the equivalent fresh whole blood. The stability of reconstituted Hb typing control materials was also observed through 30 days after reconstitution and storage at -20 °C. Moreover, the Hb typing control materials could be analyzed by three methods, HPLC, LPLC and CE. Even a degraded peak of HbCS was found on CE electropherogram. The lyophilized Hb typing control materials could be developed and used as control materials for investigation of thalassemia and hemoglobinopathies.

  9. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...... waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different...... brick discs obtained satisfactory densities (1669-2007 kg/m3) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m3) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more...

  10. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.

    Science.gov (United States)

    Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-11-15

    Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.

  11. Impacts of Nickel Nanoparticles on Mineral Carbonation

    Directory of Open Access Journals (Sweden)

    Marius Bodor

    2014-01-01

    Full Text Available This work presents experimental results regarding the use of pure nickel nanoparticles (NiNP as a mineral carbonation additive. The aim was to confirm if the catalytic effect of NiNP, which has been reported to increase the dissolution of CO2 and the dissociation of carbonic acid in water, is capable of accelerating mineral carbonation processes. The impacts of NiNP on the CO2 mineralization by four alkaline materials (pure CaO and MgO, and AOD and CC steelmaking slags, on the product mineralogy, on the particle size distribution, and on the morphology of resulting materials were investigated. NiNP-containing solution was found to reach more acidic pH values upon CO2 bubbling, confirming a higher quantity of bicarbonate ions. This effect resulted in acceleration of mineral carbonation in the first fifteen minutes of reaction time when NiNP was present. After this initial stage, however, no benefit of NiNP addition was seen, resulting in very similar carbonation extents after one hour of reaction time. It was also found that increasing solids content decreased the benefit of NiNP, even in the early stages. These results suggest that NiNP has little contribution to mineral carbonation processes when the dissolution of alkaline earth metals is rate limiting.

  12. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    Science.gov (United States)

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  13. Minerals Yearbook, volume II, Area Reports—Domestic

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  14. Minerals Yearbook, volume III, Area Reports—International

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  15. Moisture dependent thermal properties of hydrophilic mineral wool: application of the effective media theory

    Directory of Open Access Journals (Sweden)

    Iñigo Antepara

    2015-09-01

    Full Text Available Thermal properties of mineral wool based materials appear to be of particular importance for their practical applications because the majority of them is used in the form of thermal insulation boards. Every catalogue list of any material producer of mineral wool contains thermal conductivity, sometimes also specific heat capacity, but they give only single characteristic values for dry state of material mostly. Exposure to outside climate or any other environment containing moisture can negatively affect the thermal insulation properties of mineral wool. Nevertheless, the mineral wool materials due to their climatic loading and their environmental exposure contain moisture that can negatively affect their thermal insulation properties. Because the presence of water in mineral wool material is undesirable for the majority of applications, many products are provided with hydrophobic substances. Hydrophilic additives are seldom used in mineral wool products. However, this kind of materials has a good potential for application for instance in interior thermal insulation systems, masonry desalination, green roofs, etc. For these materials, certain moisture content must be estimated and thus their thermal properties will be different than for the dry state. On this account, moisture dependent thermal properties of hydrophilic mineral wool (HMW are studied in a wide range of moisture content using a pulse technique. The experimentally determined thermal conductivity data is analysed using several homogenization formulas based on the effective media theory. In terms of homogenization, a porous material is considered as a mixture of two or three phases. In case of dry state, material consists from solid and gaseous phase. When moistened, liquid phase is also present. Mineral wool consists of the solid phase represented by basalt fibers, the liquid phase by water and the gaseous phase by air. At first, the homogenization techniques are applied for the

  16. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  17. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    International Nuclear Information System (INIS)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-01-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials

  18. Radiation-induced defects in clay minerals, markers of the mobility of the uranium in solution in the unconformity-type uranium deposits

    International Nuclear Information System (INIS)

    Morichon, E.

    2008-10-01

    This study presents the works driven on three groups of clay minerals (kaolins, illite, sudoite (di-tri-octahedral chlorites)) characteristics of the alteration halos surrounding unconformity-type uranium deposits, in order to reveal uranium paleo-circulations in the intra-cratonic meso-Proterozoic basins (1,2 - 1,6 Ga). Thanks to Electron Paramagnetic Resonance Spectroscopy (EPR), we were able to highlight the persistence of structural defects in kaolin-group minerals contemporaneous of the basin diagenesis, and demonstrate the existence of relatively stable defects in illites and sudoites contemporaneous of the uranium deposits setting. Thus, the main defect in illite (Ai centre) and the main defect in sudoite (As centre) are characterized by their g components such as, respectively, gt = 2,003 et g// = 2,051 for illite and gt = 2,008 et g// = 2,051 for sudoite. As the main defect in kaolins (kaolinite/dickite), the main defects in illite and sudoite are perpendicularly oriented according to the (ab) plane, on the tetrahedral Si-O bound. However, their thermal stabilities seem different. The observation of samples from different zones (background, anomal or mineralized) of the Athabasca basin (Canada) allowed to identify a parallel evolution between actual defects concentration measured in the different clay minerals and the proximity of the mineralisation zones. Consequently, clays minerals can be considered as potential plotters of zones where uranium-rich solutions have circulated. (author)

  19. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    Science.gov (United States)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  20. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  1. Marketing mix of chosen Slovak mineral water

    Directory of Open Access Journals (Sweden)

    Juhanová Silvia

    2001-09-01

    Full Text Available Considering its small area, Slovakia abounds in many sources of mineral waters and a considerable amount of them can be used for the commercial utilization. STN 86 8000 divides mineral waters in the natural mineral waters, natural mineral table waters and the natural mineral healing waters. Natural mineral water is, after the present norm, in effect water, which rises from natural trapped sources. This type of water contains more than 1 gram of dissolved substances or 1 gram of dissolved CO 2 in 1 litter. Natural mineral table water is water that, with its chemical composition as well as its physical and sensorial attributes is suitable as a refresher. It contains at least 1 gram of melted CO2 and up to 6 grams of dissolved illiquid substances in 1 litter. The mentioned substances are not characterised by any marked pharmacological effect. Natural mineral healing water is water, which with an eye to its chemical composition and physical properties, have a scientifically demonstrable effects to the human health and it is generally used for healing purposes. In the present contribution, an attention is orientated to the occurrence of listed types of waters in Slovakia, in connection with geological conditions of their circulation and accumulation and especially with possibilities of their use on the Slovak buyer’s market.The marketing mix is a complex of information, which can be regulated. Firms accumulate this information to satisfy a customer. Marketing mix of mineral waters includes information about four variables: product (characteristics of product, quality, packing, design..., prices, advertisement, distribution (the way how to get product to customer. Data listed in the contribution come from the sectional market research, which was performed between December 1st and December 22nd 2000 in twenty groceries in

  2. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  3. Studies on treatment and manufacturing of industrial materials

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Woong; Kim, Chi Kwon; Hwang, Seon Kook [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    For the technical development on utilization of domestic unused resources, the study on the production and the process of industrial raw materials was carried out. This study is divided into five articles and their main results are summarized as follows. 1. The utilization of chromic oxide wastes: This study was carried out to develop the optimum process for recovering precious and valuable metals from chrome oxide wastes. The following subjects such as, feasibility on the recovery of precious and valuable metals, recovery rate of precious and valuable metals, purification of extracted precious and valuable metals, and environmental aspects of recovery process, were investigated. 2. The production of ultramarine from nonmetal minerals: The aims were the determination of the optimum conditions of calcination of raw materials and the investigation of the synthesis mechanism of ultramarine green and blue. 3. The synthesis in fine calcium carbonate powder and it`s characteristics: The transformation process of amorphous CaCO{sub 3} obtained from the reaction between aqueous solution of Ca(OH){sub 2} and CO{sub 2} at 10, 15, 20 and 25 degree was traced continuously by measuring the electrical conductivity of the reaction solution and the influences of reaction temperature, electrical conductivity value of the reaction solution on the products after transformation were examined by x-ray powder diffraction and electron microscopy. 4. Mineral processing technology for abrasive minerals: Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. This aimed to develop technology and process for the recovery of garnet concentrate. 5. Synthesis of nitride material by plasma method: DC plasma torch which is a non-transferred type was constructed and silicon nitride powders were produced. (Abstract Truncated)

  4. The actual prevention of fibrogenic effect of mineral dust

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2000-09-01

    Full Text Available The dustiness occurs in the mining work environment during the process of disintegration of rocks by drilling, explosion and dislocation. The dust contains minerals forming the massif, under Slovak mining conditions, it was usually quartz and some other minerals. They usually accompanied utility minerals. The characteristic mining aerosol is created during disintegration process. It was inhaled by miners and due to the most dangerous fibrogenic mineral – quartz – it caused that employees suffered from the so far incurable industrial disease. From that reason a long-term research of reaction qualities of quartz dust was carried out and the possibility to decrease its fibrogenic properties was researched. The prevention vested in the elimination of these properties on the surface of quartz grain or other silicate before entering, i.e. being inhaled by lungs, using water soluble aluminium hydroxide compound. This water was used for flushing in drilling process and to decrease dustiness by spraying it directly in the mining workplace. The aluminium hydroxide agent reacted with mineral dust directly in aerosol before being inhaled. The principle vested in the reaction of one mole of agent with two moles of surface structures of quartz particle forming a thermostatic layer of a new mineral type, in this case aluminium silicate of kaolinite. The required concentration of aluminium hydroxide compound solution for pure quartz dust was determined by experimental works and calculation with a required reserve or even slight excess of agent. If the fibrogenity of quartz not influenced in this manner was considered as 100%, its cytostatic and consequently fibrogenic effect would be decreased by the influence of this agent minimally by 60%. The method has been tested directly in mines, but due to recession of mining industry, it was not introduced in practice, however, it is currently getting a certain significance in tunnelling of transport tunnels in

  5. Neutron activation determination of rhenium in mineral raw materials of complex composition

    International Nuclear Information System (INIS)

    Shiryaeva, M.B.; Lyubimova, L.N.; Salmin, Yu.P.; Ryumina, K.N.; Tatarkin, M.A.

    1984-01-01

    The method of neutron-activation rhenium determination in mineral raw material of complex composition is developed, according to which easily hydrolized elements: scandium, iron, lanthanum, ytterbium, protactinium, hafnium and partially ruthenium and osmium are isolated in the form of hydroxides after smelting of a sample, which has been previously irradiated in nuclear reactor (thermal neutron flux 1.2x10 13 n/cm 2 xs for 22 hr) with sodium peroxide and leaching of the melt by water. To separate Re from other interfering elements extraction of perrhenate-ion by methylethylketone from alkali solution is used. Interfering effect of gold is eliminated by its extraction with TBP 30% solution in toluence or benzene from 1 M HNO 3 . Activity of rhenium preparations, singled out from samples of comparison, is measured, using multichannel γ-spectrometer with Ge(Li)-coaxial detector of high resolution (approximately 2.0-2.2 keV over the line 122 keV 5+ Co). Relative standard deviation in Re content range 5x10 -7 -5x10 -2 % does not exceed 0.3

  6. Development of Perovskite-Type Materials for Thermoelectric Application

    Directory of Open Access Journals (Sweden)

    Tingjun Wu

    2018-06-01

    Full Text Available Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  7. Geochemical and lead isotope evidence for a mid-ocean ridge type mineralization within a polymetamorphic ophiolite complex (Monte del Forno, North Italy/Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Peretti, A; Koeppel, V

    1986-11-01

    Major, trace element and Pb isotope investigations show the presence of a mid-ocean ridge-type mineralization within the polymetamorphic Monte del Forno Unit. Detailed analysis of the lithostratigraphy of the amphibolites demonstrates a close similarity to recent oceanic crust: a dyke zone at the bottom, a hydrothermally altered zone with a stockwork-type Fe-Cu-Zn mineralization and a pillow zone at the top. Effects of hydrothermal seafloor alteration are restricted to an approximately 50 m thick horizon. Sulfide mineralization is accompanied by Ca and Sr depletion and Mn and minor Na and Mg enrichments. Mineralogically the horizon distinguishes itself from the unmineralized amphibolites by the presence of chlorite and contact metamorphic magnesio-cummingtonite. The chemical imprint of the hydrothermal seafloor alteration survived a regional greenschist and an upper amphibolite facies contact metamorphism. The MORB signature of the Pb isotopes is preserved in the central parts of the approximately 300 m thick amphibolite sequence. During the regional greenschist facies metamorphism the isotope characteristics of the amphibolites were almost completely changed at the contact to the metasediments. The contact metamorphism of the Bregaglia Intrusion produced no obvious Pb contamination even within amphibolite xenoliths in the granodiorite.

  8. GIS-based identification of areas that have resource potential for critical minerals in six selected groups of deposit types in Alaska

    Science.gov (United States)

    Karl, Susan M.; Jones, James V.; Hayes, Timothy S.

    2016-11-16

    Alaska has considerable potential for undiscovered mineral resources. This report evaluates potential for undiscovered critical minerals in Alaska. Critical minerals are those for which the United States imports more than half of its total supply and which are largely derived from nations that cannot be considered reliable trading partners. In this report, estimated resource potential and certainty for the state of Alaska are analyzed and mapped for the following six selected mineral deposit groups that may contain one or more critical minerals: (1) rare earth elements-thorium-yttrium-niobium(-uranium-zirconium) [REE-Th-Y-Nb(-U-Zr)] deposits associated with peralkaline to carbonatitic igneous intrusive rocks; (2) placer and paleoplacer gold (Au) deposits that in some places might also produce platinum group elements (PGE), chromium (Cr), tin (Sn), tungsten (W), silver (Ag), or titanium (Ti); (3) platinum group elements(-cobalt-chromium-nickel-titanium-vanadium) [PGE(-Co-Cr-Ni-Ti-V)] deposits associated with mafic to ultramafic intrusive rocks; (4) carbonate-hosted copper(-cobalt-silver-germanium-gallium) [Cu(-Co-Ag-Ge-Ga)] deposits; (5) sandstone-hosted uranium(-vanadium-copper) [U(-V-Cu)] deposits; and (6) tin-tungsten-molybdenum(-tantalum-indium-fluorspar) [Sn-W-Mo(-Ta-In-fluorspar)] deposits associated with specialized granites.This study used a data-driven, geographic information system (GIS)-implemented method to identify areas that have mineral resource potential in Alaska. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic units) as the spatial unit of classification. The final map output uses a red, yellow, green, and gray color scheme to portray estimated relative potential (High, Medium, Low, Unknown) for each of the six groups of mineral deposit types, and it indicates the relative certainty (High, Medium, Low) of that estimate for

  9. Concentration of gold, sulphide minerals and uranium oxide minerals by flotation from ores and metallurgical plant products

    International Nuclear Information System (INIS)

    Weston, D.

    1974-01-01

    A process for the recovery by froth flotation of gold and mineral values selected from the group consisting of gold bearing minerals, platinum group minerals, silver group minerals, and uranium group minerals, from ores and metallurgical plant products containing at least gold and at least one of the other said minerals comprising: subjecting a suitably prepared pulp of the material to mechanical agitation in at least one agitation conditioning stage wherein the pH of the said pulp has been lowered with an acid agent to an optimum pH point within the pH range of about 1.5 to 5.0 and wherein the agitation conditioning is for a sufficient period of time to bring about heavy activation of at least one of the said mineral values in at least one subsequent mechanical agitation conditioning stage wherein the said pulp is further agitation conditioned for a sufficient period of time and at an optimum pH point in the pH range of about 6.0 to 11.0 in the presence of at least one collector selected from the group of sulfhydryl anionic collectors to produce the said heavy activation of at least gold and at least one of the other said mineral values; and subsequently in the presence of a frother subjecting and said agitation conditioned pulp to flotation to produce a concentrate enriched in gold and at least one of the othersaid mineral values, and a tailings product impoverished in at least gold and at least one of the other said mineral values

  10. USE OF CRUMB RUBBER FROM USED CAR TIRES IN MINERAL ASPHALT MIXES

    Directory of Open Access Journals (Sweden)

    Andrzej Plewa

    2014-11-01

    Full Text Available With the development of the automotive industry the disposal of used tires is constantly growing problem. Storage of waste rubber is associated with a very long period of decomposition of rubber in the natural conditions. Simultaneously new technologies are developed every year, which in the future may significantly promote recycling of this type of materials. The crumb rubbery modification of the road bitumen is the one of the environmentally safe solutions of rubbery decomposition. Improvement of resistance of the crumb rubbery modification of the road asphalt mixtures is the very important ecological aspect of the future. The article presents the results of research on the fatigue life resistance of asphalt concretes AC16P and AC22P with asphalt-rubber binders. The above analyses have been based on the results of tests of fatigue life of mineral-rubber-asphalt mixes determined by the method of prismatic four-point bending (4PB-PR. Mineral-rubber -asphalt mixes have been diversified according to the amount of the additive of rubber fines in asphalt-rubber binder. On the basis of the test results have been proven improvements functional properties mineral-rubber-asphalt mixes compared with mineral-asphalt mixes with unmodified asphalt.

  11. On Mineral Retrosynthesis of a Complex Biogenic Scaffold

    Directory of Open Access Journals (Sweden)

    Ashit Rao

    2017-03-01

    Full Text Available Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a heterogeneous organic scaffold in egg shell mineralization, the present study explores the regulation over mineralization attained by applying synthetic polymeric counterparts (polyethylene glycol, poly(acrylic acid, poly(aspartic acid and poly(4-styrenesulfonic acid-co-maleic acid as additives during remineralization of decalcified eggshell membranes. By applying Mg2+ ions as a co-additive species, mineral retrosynthesis is achieved in a manner that modulates the polymorph and structure of mineral products. Notable features of the mineralization process include distinct local wettability of the biogenic organic scaffold by mineral precursors and mineralization-induced membrane actuation. Overall, the form, structure and polymorph of the mineralization products are synergistically affected by the additive and the content of Mg2+ ions. We also revisit the physicochemical nature of the biomineral scaffold and demonstrate the distinct spatial distribution of anionic biomolecules associated with the scaffold-mineral interface, as well as highlight the hydrogel-like properties of mammillae-associated macromolecules.

  12. Comparison of the Osteogenic Potential of Mineral Trioxide Aggregate and Endosequence Root Repair Material in a 3-dimensional Culture System.

    Science.gov (United States)

    Rifaey, Hisham S; Villa, Max; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran; Chen, I-Ping

    2016-05-01

    The ability to promote osteoblast differentiation is a desirable property of root-end filling materials. Several in vitro studies compare the cytotoxicity and physical properties between mineral trioxide aggregate (MTA) and Endosequence root repair material (ERRM), but not their osteogenic potential. Three-dimensional cultures allow cells to better maintain their physiological morphology and better resemble in vivo cellular response than 2-dimensional cultures. Here we examined the osteogenic potential of MTA and ERRM by using a commercially available 3-dimensional Alvetex scaffold. Mandibular osteoblasts were derived from 3-week-old male transgenic reporter mice where mature osteoblasts express green fluorescent protein (GFP) driven by a 2.3-kilobase type I collagen promoter (Col(I)-2.3). Mandibular osteoblasts were grown on Alvetex in direct contact with MTA, ERRM, or no material (negative control) for 14 days. Osteoblast differentiation was evaluated by expression levels of osteogenic genes by using quantitative polymerase chain reaction and by the spatial dynamics of Col(I)-2.3 GFP-positive mature osteoblasts within the Alvetex scaffolds by using 2-photon microscopy. ERRM significantly increased alkaline phosphatase (Alp) and bone sialoprotein (Bsp) expression compared with MTA and negative control groups. Both MTA and ERRM increased osterix (Osx) mRNA significantly compared with the negative control group. The percentage of Col(I)-2.3 GFP-positive cells over total cells within Alvetex was the highest in the ERRM group, followed by MTA and by negative controls. ERRM promotes osteoblast differentiation better than MTA and controls with no material in a 3-dimensional culture system. Alvetex scaffolds can be used to test endodontic materials. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Petrography, metasomatism and mineralization of uranium and other radioactive minerals in the Narigan Area (Central Iran) Islamic Republic of Iran

    International Nuclear Information System (INIS)

    Fazeli, A.; Azizaliabad, M.; Iranmanesh, J.

    2014-01-01

    The Narigan Zone is a portion of Yazd Province based on geopolitical division. In the Narigan Valley, rocks of zone have experienced a lot of fracturing and faulting events that are caused by different compressional and tensional tectonic processes. Tensional forces by producing fractures and faults have created an appropriate place for migration of magmatic hydrothermal solutions. The assemblage rock of these study area includes of various mineralogical types such as: acidic rocks, basic rocks, sedimentary rocks, rhyolite and rhyodacite, andesite, limestone layers, quartz-porphyry, metasomatic granites and diabasic dikes. On the basis of petrographical and mineralogical studies, various alterations were observed in the Narigan area, such as: gumbeite or potassic alteration, bresite or phyllic alteration, argillic or clay alteration, propylitic alteration, hornfelsic alteration and hydromica, chlorite, carbonate, magnetite and pyritic alteration. Elevated radiometric counts usually occur in phlogopite-magnetite alteration zone that in this complex usually consists of minerals like biotite, phlogopite, hydromica, magnetite, carbonate, pyrite, chlorite and less commonly apatite. The greatest increase in U content is accompanied by phlogopite-magnetite alteration, sometimes this increase is also observed in the propylitic zone. Respectively, the greatest increases in Th contents were observed by phlogopitic-magnetitic, gumbeitey, bresitic-propylitic intermediate zone and the bresitic and propylitic alteration zones. Increasing amounts of Cu is accompanied by phlogopitic-magnetitic, phyllic, phyllic-propylitic intermediate zone, hornfelsic and propylitic alteration zones. The greatest increase in Mo contents is respectively accompanied by phlogopitic-magnetitic, hornfelsic, bresiticpropylitic intermediate zone, bresitic, propylitic and gumbeitic alteration zones. Respectively, the most increase in amount of Co is associated with phlogopite-magnetite, hornfelsic

  14. Helium Ion Microscopy: A Promising Tool for Probing Biota-Mineral Interfaces

    Science.gov (United States)

    Lybrand, R.; Zaharescu, D. G.; Gallery, R. E.

    2017-12-01

    The study of biogeochemical interfaces in soil requires powerful technologies that can enhance our ability to characterize mineral surfaces and interacting organisms at micro- to nanoscale resolutions. We aim to demonstrate potential applications of Helium Ion Microscopy in the earth and ecological sciences using, as an example, samples from a field experiment. We assessed samples deployed for one year along climatic and topographic gradients in two Critical Zone Observatories (CZOs): a desert to mixed conifer forest gradient (Catalina CZO) and a humid hardwood forest (Calhoun CZO). Sterile ground rock (basalt, quartz, and granite; 53-250 µm) was sealed into nylon mesh bags and buried in the surface soils of both CZOs. We employed helium ion and scanning electron microscopies to compare retrieved ground rock samples with sterile unreacted mineral controls in conjunction with the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory, USA. Our work showed early colonization of mesh bag materials by fungal and bacterial organisms from the field systems and identified morphological changes in mineral grains following exposure to the soil environment. Biological specimens observed on grain surfaces exhibited contrasting features depending on mineral type and ecosystem location, including fungal hyphae that varied in length, diameter, and surface morphologies. We also present imagery that provides evidence for incipient stages of mineral transformation at the fungal-mineral interface. Our findings demonstrate that helium ion microscopy can be successfully used to characterize grain features and biological agents of weathering in experimental field samples, representing a promising avenue for research in the biogeosciences. Future directions of this work will couple high resolution imaging with measures of aqueous and solid geochemistry, fungal morphological characterization, and microbial profiling to better understand mineral

  15. Mineral Facilities of Latin America and Canada

    Science.gov (United States)

    Bernstein, Rachel; Eros, Mike; Quintana-Velazquez, Meliany

    2006-01-01

    This data set consists of records for over 900 mineral facilities in Latin America and Canada. The mineral facilities include mines, plants, smelters, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. Records include attributes such as commodity, country, location, company name, facility type and capacity if applicable, and generalized coordinates. The data were compiled from multiple sources, including the 2003 and 2004 USGS Minerals Yearbooks (Latin America and Candada volume), data to be published in the 2005 Minerals Yearbook Latin America and Canada Volume, minerals statistics and information from the USGS minerals information Web site (minerals.usgs.gov/minerals), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies,and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists.

  16. Effect of mineral additives on structure and properties of concrete for pavements

    Science.gov (United States)

    Sobol, Khrystyna; Markiv, Taras; Hunyak, Oleksii

    2017-12-01

    Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  17. High performance p-type half-Heusler thermoelectric materials

    Science.gov (United States)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  18. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  19. Comparison of three mineral candidates in middle and low-pressure condition. Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Heng; Zhang, Jun-ying; Zhao, Yong-chun; Wang, Zhi-lang; Pan, Xia; Xu, Jun; Zheng, Chu-guang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    ''Greenhouse Effect'', which is scientifically proven to be main caused by the increasing concentration of CO{sub 2}, has become a topic of national and international concern. Mineral carbonation, such as carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a potentially attractive route to mitigate possible global warming on the basis of industrial imitation of natural weathering processes. In this paper, three typical natural mineral candidates in China, serpentine, olivine and wollastonite, were selected as carbonation raw materials for direct mineral carbonation experiments under middle and low-pressure. A series number of experiments were carried out to investigate the factors that influence the conversion of carbonation reaction, such as reaction temperature, reaction pressure, particle size, solution composition and pretreatment. The solid products from carbonation experiments were filtered, collected, dried and analyzed by X-ray diffraction (XRD) and field scanning electron microscopy equipped with energy dispersive X-ray analysis (FSEM-EDX) to identify the reaction of mineral carbonation. And the method of mass equilibrium after heat decomposition was used to calculate the mineral carbonation conversion. All the XRD and FSEM analysis validate that carbonation reaction was occurred during the experiments and mineral carbonation is one of the potential techniques for carbon dioxide sequestration. The data of mass equilibrium after heat decomposition was collected and then the conversion formula was used to calculate the carbonation conversion of all the three mineral candidates. The mass equilibrium results show that, for all of the three mineral materials, the carbonation conversion increases with the increasing of reaction temperature. But once the temperature increases above 150 C, the conversion of serpentine decreases a little. Reaction pressure is also an important factor to mineral

  20. Uranium mineralization of migmatite in southern China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mingyue

    1987-09-01

    The uranium mineralization occurs in migmatite in the form of disseminated uraninite is a new type found in southern China. According to the forms of uraninite existence in orebodies, it can be divided into primary and reworked subtypes. The principal uranium mineral in the deposits of primary subtype is uraninite, but those in reworked subtype are pitchblende and relict uraninite. The formation of uranium mineralization is considered as a result of remobilization, migration and local concentration caused by preferential melting of the uranium-rich strata.

  1. Uranium mineralization of migmatite in southern China

    International Nuclear Information System (INIS)

    Feng Mingyue.

    1987-01-01

    The uranium mineralization occurs in migmatite in the form of disseminated uraninite is a new type found in southern China. According to the forms of uraninite existence in orebodies, it can be divided into primary and reworked subtypes. The principal uranium mineral in the deposits of primary subtype is uraninite, but those in reworked subtype are pitchblende and relict uraninite. The formation of uranium mineralization is considered as a result of remobilization, migration and local concentration caused by preferential melting of the uranium-rich strata

  2. Marine minerals: The Indian perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Gujar, A.R.; Nath, B.N.; Banerjee, R.

    the Konkan Coast, Maharashtra. The future demand for economic minerals and metals for the year 2000 vis-a-vis the production of material in the last twelve years has been calculated, and in light of the above, the importance and chances of offshore...

  3. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    Science.gov (United States)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    Uranium-lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U-Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5-453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U-Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U-Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U-Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U-Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U-Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a

  4. Influence of bone mineral density and hip geometry on the different types of hip fracture.

    Science.gov (United States)

    Li, Yizhong; Lin, Jinkuang; Cai, Siqing; Yan, Lisheng; Pan, Yuancheng; Yao, Xuedong; Zhuang, Huafeng; Wang, Peiwen; Zeng, Yanjun

    2016-01-01

    The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD) were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.

  5. Influence of bone mineral density and hip geometry on the different types of hip fracture

    Directory of Open Access Journals (Sweden)

    Yizhong Li

    2016-01-01

    Full Text Available The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.

  6. Mineralization of 14C-labeled agrochemicals in soil

    International Nuclear Information System (INIS)

    Xu Bujin; Huang Xiaohua; Hu Xiuqing; Zhang Yongxi

    2001-01-01

    14 C-labeled compounds were used to study the mineralization of methamidophos, 2,4-D and metsulfuron in soil. Mineralization rate was influenced by the type of soil, concentration of chemical in the soil, the initial soil microbial population and the nature of the chemical. (author)

  7. Hydroceramics, a ''new'' cementitious waste form material for U.S. defense-type reprocessing waste

    International Nuclear Information System (INIS)

    Siemer, Darryl D.

    2002-01-01

    A ''hydroceramic'' (HC) is a concrete which possesses mineralogy similar to the zeolitized rock indigenous to the USA's current ''basis'' high level radioactive waste (HLW) repository site, Yucca Mountain (YM). It is made by curing a mixture of inorganic waste, calcined clay, vermiculite, Na 2 S, NaOH, plus water under hydrothermal conditions. The product differs from conventional Portland cement and/or slag-based concretes (''grouts'') in that it is primarily comprised of alkali aluminosilicate ''cage minerals'' (cancrinites, sodalites, and zeolites)rather than hydrated calcium silicates (C-S-H in cement-chemistry shorthand). Consequently it microencapsulates individual salt molecules thereby rendering them less leachable than they are from conventional grouts. A fundamental difference between the formulations of HCs and radwaste-type glasses is that the latter contain insufficient aluminum to form insoluble minerals with all of the alkali metals in them. This means that the imposition of worst-case ''repository failure'' (hydrothermal) conditions would cause a substantial fraction of such glasses to alter to water-soluble forms. Since the same conditions tend to reduce the solubility of HC concretes, they constitute a more rugged immobilization sub-system. This paper compares leach characteristics of HCs with those of radwaste-type glasses and points out why hydroceramic solidification makes more sense than vitrification for US defense-type reprocessing waste. (orig.)

  8. Reducing the extraction of minerals

    DEFF Research Database (Denmark)

    Bouzon, Marina; Govindan, Kannan; Rodriguez, Carlos Manuel Taboada

    2015-01-01

    Mass consumption and shortening product lifecycles have increased worldwide production. Consequently, more raw materials such as minerals are used, and available landfills are filling up. Companies are urged to effectively incorporate sustainability issues such as End-of-life (EOL) management...... and Reverse Logistics (RL) practices to close the loop and diminish the amount of raw materials used in their production systems. However, implementing RL implies dealing with its barriers. The purpose of this article is to focus on the recovery of EOL products that use mostly raw materials from the mining...

  9. Who's on first? Part I: Influence of plant growth on C association with fresh soil minerals

    Science.gov (United States)

    Neurath, R.; Whitman, T.; Nico, P. S.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Mineral surfaces provide sites for carbon stabilization in soils, protecting soil organic matter (SOM) from microbial degradation. SOM distributed across mineral surfaces is expected to be patchy and certain minerals undergo re-mineralization under dynamic soil conditions, such that soil minerals surfaces can range from fresh to thickly-coated with SOM. Our research investigates the intersection of microbiology and geochemistry, and aims to build a mechanistic understanding of plant-derived carbon (C) association with mineral surfaces and the factors that determine SOM fate in soil. Plants are the primary source of C in soil, with roots exuding low-molecular weight compounds during growth and contributing more complex litter compounds at senescence. We grew the annual grass, Avena barbata, (wild oat) in a 99 atom% 13CO2 atmosphere in soil microcosms incubated with three mineral types representing a spectrum of reactivity and surface area: quartz, kaolinite, and ferrihydrite. These minerals, isolated in mesh bags to exclude roots but not microorganisms, were extracted and analyzed for total C and 13C at multiple plant growth stages. At plant senescence, the quartz had the least mineral-bound C (0.40 mg-g-1) and ferrihydrite the most (0.78 mg-g-1). Ferrihydrite and kaolinite also accumulated more plant-derived C (3.0 and 3.1% 13C, respectively). The experiment was repeated with partially digested 13C-labled root litter to simulate litter decomposition during plant senescence. Thus, we are able evaluate contributions derived from living and dead root materials on soil minerals using FTIR and 13C-NMR. We find that mineral-associated C bears a distinct microbial signature, with soil microbes not only transforming SOM prior to mineral association, but also populating mineral surfaces over time. Our research shows that both soil mineralogy and the chemical character of plant-derived compounds are important controls of mineral protection of SOM.

  10. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  11. Spectral Classification of Similar Materials using the Tetracorder Algorithm: The Calcite-Epidote-Chlorite Problem

    Science.gov (United States)

    Dalton, J. Brad; Bove, Dana; Mladinich, Carol; Clark, Roger; Rockwell, Barnaby; Swayze, Gregg; King, Trude; Church, Stanley

    2001-01-01

    Recent work on automated spectral classification algorithms has sought to distinguish ever-more similar materials. From modest beginnings separating shade, soil, rock and vegetation to ambitious attempts to discriminate mineral types and specific plant species, the trend seems to be toward using increasingly subtle spectral differences to perform the classification. Rule-based expert systems exploiting the underlying physics of spectroscopy such as the US Geological Society Tetracorder system are now taking advantage of the high spectral resolution and dimensionality of current imaging spectrometer designs to discriminate spectrally similar materials. The current paper details recent efforts to discriminate three minerals having absorptions centered at the same wavelength, with encouraging results.

  12. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    Science.gov (United States)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    . The results from the static experiments will be used to model and predict the impacts of mineral sorption and biological activity on OM persistence in the context of dynamic saturation conditions and heterogeneous material properties.

  13. Uranium mineralization associated with late Palaeozoic acid magmatism in northeast Queensland

    International Nuclear Information System (INIS)

    Bain, J.H.C.

    1977-01-01

    The late Palaeozoic acid igneous petrographic province, covering some 120,000 km 2 in the Cairns-Townsville hinterland, has associated uranium mineralization characterized by various combinations of uranium, fluorine, and molybdenum. Mineralization of this type has been described from other parts of the world, but is best known in the USSR. Information about the Australian deposits and occurrences is very limited, but it is apparent that the mineralization is mainly of hydrothermal origin and genetically related to extensive late Palaeozoic magmatism. A detailed description of the mineralization and the prospect of additional discoveries of uranium deposits of similar and related types in other parts of Australia are discussed. (J.R.)

  14. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  15. Sorption of radionuclide technetium on minerals

    International Nuclear Information System (INIS)

    Li Min; Fan Xianhua; Wei Liansheng; Zhang Yingjie; Jiao Haiyang

    2004-01-01

    The study on adsorption behavior of technetium on antimonial minerals is performed in batch experiments and the influence of adsorption time, mineral granularity, solid-liquid ratio, initial concentration, pH value and reducing ion. On technetium adsorption are considered according to adsorption ratios of hepta valent and quadrivalent technetium on stibnite and antimony ocher, the results show that reduction of technetium from heptavelence to quadrivalence could improve adsorption ratios, which provide reference data for selecting buffer-backfill materials in high level rad waste deep geological diplosal. (author)

  16. Exogenic and endogenic Europa minerals

    Science.gov (United States)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  17. Geologic Maps as the Foundation of Mineral-Hazards Maps in California

    Science.gov (United States)

    Higgins, C. T.; Churchill, R. K.; Downey, C. I.; Clinkenbeard, J. P.; Fonseca, M. C.

    2010-12-01

    that show potential for mineral hazards. Depending on the type of mineral hazard investigated, qualitative and/or quantitative methods are used in this process. The final information is given to CGS clients in various formats that range from traditional paper maps to attributed digital layers, which can be viewed on background digital imagery in 2D or 3D with image viewers or GIS software. This variety of formats assures that users with different levels of computer experience or available computer resources can access the information. Besides the applications presented here, mineral-hazards mapping can also be used in many other settings and situations as a tool to evaluate potential effects on human health and the environment. Examples include fighting forest fires, harvesting of timber, post-fire debris flows during storms, disposal or import of earth materials for non-highway construction projects, and rural areas used for recreation (hiking, motorcycling, etc.). In the future, the CGS expects to investigate and possibly employ more-sophisticated digital algorithms to rate and display the potential for specific mineral hazards on its maps. The geologist’s knowledge and experience will still be needed, however, to review these digital results to decide if they are reasonable.

  18. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N. [Pacific Northwest National Laboratory, Richland, WA, USA; Gallagher, Neal B. [Eigenvector Research, Inc., Manson, WA, USA; Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, WA, USA; Szecsody, James E. [Pacific Northwest National Laboratory, Richland, WA, USA; Tonkyn, Russell G. [Pacific Northwest National Laboratory, Richland, WA, USA; Su, Yin-Fong [Pacific Northwest National Laboratory, Richland, WA, USA; Sweet, Lucas E. [Pacific Northwest National Laboratory, Richland, WA, USA; Lewallen, Tricia A. [Pacific Northwest National Laboratory, Richland, WA, USA; Johnson, Timothy J. [Pacific Northwest National Laboratory, Richland, WA, USA

    2017-10-24

    The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species, including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the

  19. Beryllium—A critical mineral commodity—Resources, production, and supply chain

    Science.gov (United States)

    Lederer, Graham W.; Foley, Nora K.; Jaskula, Brian W.; Ayuso, Robert A.

    2016-11-14

    Beryllium is a lightweight metallic element used in a wide variety of specialty and industrial applications. As a function of its unique chemical and physical properties, such as a high stiffness-to-weight ratio, resistance to temperature extremes, and high thermal conductivity, beryllium cannot be easily replaced by substitute materials in applications where combinations of these properties make it the material of choice. Because the number of beryllium producers is limited and the use of substitute materials in specific defense-related applications that are vital to national security is inadequate, several studies have categorized beryllium as a critical and strategic material. This categorization has led to the United States Government recommending that beryllium be stockpiled for use in the event of a national emergency. As of December 31, 2015, the National Defense Stockpile inventory of hot-pressed beryllium metal powder, structured beryllium metal powder, and vacuum-cast beryllium metal totaled 78 metric tons (t).The U.S. Geological Survey (USGS) Mineral Resources Program supports research on the occurrence, quality, quantity, and availability of mineral resources vital to the economy and national security. The USGS, through its National Minerals Information Center (NMIC), collects, analyzes, and disseminates information on more than 90 nonfuel mineral commodities from more than 180 countries. This fact sheet provides information on the production, consumption, supply chain, geology, and resource availability of beryllium in a global context.

  20. The review of recent carbonate minerals processing technology

    Science.gov (United States)

    Solihin

    2018-02-01

    Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is

  1. Radioactive mineral occurrences in the Bancroft area

    Energy Technology Data Exchange (ETDEWEB)

    Satterly, J

    1958-12-31

    The report summarizes three years of field work conducted in the Bancroft area investigating occurrences of radioactive minerals, and also includes accounts of properties in the area for which drill logs and survey reports have been filed. It begins with a history of exploration and development of radioactive mineral deposits in the area, a review of the area`s general geology (Grenville metasediments, plutonic rocks), and general descriptions of the types of radioactive mineral deposits found in the area (deposits in granitic and syenitic bodies, metasomatic deposits in limy rocks, hydrothermal deposits). It also describes the mineralogy of radioactive minerals found in the area and the Geiger counter technique used in the investigation. The bulk of the report consists of descriptions of radioactive mineral properties and mine workings, containing (where available) information on exploration history, general and economic geology, and production.

  2. Total mineral material, acidity, sulphur, and nitrogen in rain and snow at Kentville, Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F A; Gorham, E

    1957-01-01

    Analyses of total ash, sulphur, ph, ammonia, and nitrate nitrogen have been made on 23 monthly precipitation samples and 17 individual snow samples collected between June 1952 and May 1954 at Kentville, Nova Scotia, in a predominantly agricultural area. Mean annual supply of total mineral ash was 95 kg/ha, of sulphur 9.1 hg/ha, of ammonia nitrogen 2.8 kg/ha, and of nitrate nitrogen 1.1 kg/ha. Average pH was 5.7, and rains more acid than this exhibited higher levels of both nitrate and sulphur, and a marked correlation between the latter and ammonia. Snow samples had much lower concentrations of ash, sulphur, and nitrogen than rain samples collected in the same months, which may perhaps indicate a lower efficiency of snow flakes in removing materials from the atmosphere.

  3. Iodine mineral waters

    Directory of Open Access Journals (Sweden)

    Iluta Alexandru

    2011-11-01

    Full Text Available Iodine mineral waters are found especially in sub-Carpathian region, also in regions with Salif deposits. Waters are currently used iodine in drinking cure for chaps and Basedow. Are also indicated in balneology. Iodine water containing at least 1 mg L, there is pure iodine is usually given the nature of other types of mineral waters further: sodium chlorinated water (Bazna (50-70 mg iodine / l, Baile Govora (50 - 70 mg / l, Bălţăteşti (4-5 mg / l, salted Monteoru (30 mg / l, mine water mixed alkaline chlorination, sulphate, which are indicated for crenoterapie (hypo or isotonic to the bathrooms Olăneşti or Călimăneşti-Căciulata.

  4. Mining of sedimentary-type ore deposits

    International Nuclear Information System (INIS)

    Bruha, J.; Slovacek, T.; Berka, J.; Sadilek, P.

    1992-01-01

    A procedure is proposed for mining sedimentary-type ore deposits, particularly uranium deposits, using the stope-pillar technique. The stope having been mined out, the free room is filled with hydro-setting gob from the surface. A precondition for the application of this technique is horizontal ore mineralization in sediments where the total thickness of the mineralized ore layer is at least 3 to 5 m. Mining losses do not exceed 5%. For thicknesses greater than 5 m, the roof is reinforced and the walls are secured with netting. The assets of the technique include higher labor productivity of the driving, lower material demands in reinforcing and filling, lower power consumption, and reduced use of explosives. (Z.S.). 3 figs

  5. Niger Republic Mineral Planning : Part IV - first volume : Main mineral substances specific study and their geological context; Plan Mineral de la Republique du Niger : Tome IV - 1er volume : Etude specifique des principales substances minerals et leur contexte geologique

    Energy Technology Data Exchange (ETDEWEB)

    Franconi, Antoine; Joo' , Julien; Zibo, Idde

    1981-07-01

    This volume contains the detailed study of mineral substances industrially exploited to date : uranium, coal, non metallic building materials and public activities, and non conventionally exploited substances, that are : tin, columbite-tantalite, tungsten, gold, phosphates and evaporates. [French] Ce volume contient l'etude detaillee des substances minerals exploitees industriellement a ce jour : l'uranium, le charbon, les materiaux non metalliques de construction et de travaux publics et les substances exploitees artisanalement qui sont : l'etain, la Colombo-tantalite, le tungstene, l'or, les phosphates et les evaporates.

  6. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  7. 30 CFR 56.15001 - First-aid materials.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid materials. 56.15001 Section 56.15001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....15001 First-aid materials. Adequate first-aid materials, including stretchers and blankets, shall be...

  8. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  9. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  10. Mineral oil content in sediments and soils: comparability, traceability and a certified reference material for quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Roland; Buge, Hans-Gerhard; Bremser, Wolfram; Nehls, Irene [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany)

    2006-06-15

    The performance of twelve laboratories with previously established proficiency in the determination of the mineral oil content in a fresh water sediment is described. The summation parameter total petrol hydrocarbon (TPH) is defined according to ISO 16703:2004 with regard to the sample preparation to be applied, the flame ionisation detection (FID) and the boiling range of C{sub 10}-C{sub 40} to be integrated. Comprehensive tests of homogeneity and stability have been carried out on the candidate material using appropriate models. The outcome of the study served as the basis for the certification of the candidate reference material as ERM-CC015a. The certified mass fraction is 1,820{+-}130mgkg{sup -1}and traceability was established by using an appropriate calibration standard certified for the mass fraction of C{sub 10}-C{sub 40}. The interlaboratory scatter of measurement results in this exercise can largely be explained by the variability of the individual calibrations based on this common calibration standard. (orig.)

  11. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  12. Effect of mineral additives on structure and properties of concrete for pavements

    Directory of Open Access Journals (Sweden)

    Sobol Khrystyna

    2017-12-01

    Full Text Available Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  13. To the question of peculiarities of thermal activation of natural siliceous raw material

    Directory of Open Access Journals (Sweden)

    Chumachenko Natalya

    2017-01-01

    Full Text Available The results of research of activity enhancement of natural siliceous raw material are given in the article. Fossil meal of Khotynetsky deposit, diatomite of Sharlovsky deposit, silica clay of Balasheika deposit were used as natural active mineral admixtures. The influence of heat-treating temperature and dispersion on activity of different types of siliceous raw material is studied. The increase of activity of fixation of Ca(OH2 in several times is traced after heat-treating at a certain temperature in the range from 100 to 800°C. The type of activity change is discovered. Explanation is given connected with the change of silica structure in the surface layer. Parameters of the highest activity are defined for every type of siliceous raw material.

  14. 30 CFR 57.15001 - First aid materials.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid materials. 57.15001 Section 57.15001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Surface and Underground § 57.15001 First aid materials. Adequate first-aid materials, including stretchers...

  15. Mineral potential of clays that cover the gypsum deposits in Araripina-PE region

    International Nuclear Information System (INIS)

    Lira, B.B.; Anjos, I.F. dos; Rego, S.A.B.C.

    2011-01-01

    In the present work the applicability of the clays that cover the deposits of Gypsum Plaster in the region of Araripina - PE for use as the ceramic pigments and for bricks production in the red ceramic industry was analyzed. The clay minerals contained the illite, kaolinite and smectite, with high proportion of the last one. The possibility of industrial application of this mineral clay is considerable; however, the mining industries that mine and process the gypsum in the region do not take the clays into account as the potential mineral. In general, industries use the clay minerals in manufacturing processes or as key raw materials, or as the alternatives for some kinds of the chemical processing industries. This paper aims to highlight the potential of materials that cover the deposits of gypsum in reference. The material sampled from different deposit layers was characterized and the physical treatment of ore was applied. The results showed that the material analyzed can be used in various kinds of industry, such as the production of natural ceramic pigments. (author)

  16. Characterization of clay minerals; Caracterizacion de minerales arcillosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A. [Gerencia de Ciencias Basicas, Direccion de Investigacion Cientifica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  17. Characterization of Mexican zeolite minerals; Caracterizacion de minerales zeoliticos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez C, M.J

    2005-07-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  18. Inulin and oligofructose and mineral metabolism: the evidence from animal trials.

    Science.gov (United States)

    Scholz-Ahrens, Katharina E; Schrezenmeir, Jürgen

    2007-11-01

    Nondigestible oligosaccharides have been shown to increase the absorption of several minerals (calcium, magnesium, in some cases phosphorus) and trace elements (mainly copper, iron, zinc). Inulin-type fructans including oligofructose and fructooligosaccharides derived from sucrose by enzymatic transfructosylation are the best investigated food ingredients in this respect. The stimulation of absorption was more pronounced when the demand for calcium was high, i.e., in animals in the rapid growing stage and in animals with impaired calcium absorption because of either ovariectomy or gastrectomy. Even a small stimulation of calcium absorption increased the mineral accumulation in the skeleton because of its persisting effect over months. Inulin-type fructans stimulated mineral absorption and bone mineral accretion when combined with probiotic lactobacilli and in the presence of antibiotics. Direct comparison of different inulin-type fructans revealed a more pronounced effect by inulin or a mixture of long-chain inulin and oligofructose than by oligofructose alone. Mechanisms on how inulin-type fructans mediate this effect include acidification of the intestinal lumen by short-chain fatty acids increasing solubility of minerals in the gut, enlargement of the absorption surface, increased expression of calcium-binding proteins mainly in the large intestine, modulated expression of bone-relevant cytokines, suppression of bone resorption, increased bioavailability of phytoestrogens, and, via stimulation of beneficial commensal microorganisms, increase of calcium uptake by enterocytes. Under certain conditions, inulin-type fructans may improve mineral absorption by their impact on the amelioration of gut health including stabilization of the intestinal flora and reduction of inflammation. The abundance of reports indicate that inulin-type fructans are promising substances that could help to improve the supply with available calcium in human nutrition and by this contribute

  19. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Jon [Fiberlean Technologies; Ireland, Sean [Fiberlean Technologies; Skuse, David [Imerys; Edwards, Martha [Imerys; Mclain, Leslie [Imerys; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Ozcan, Soydan [ORNL

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  20. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    Science.gov (United States)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  1. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  2. Niger Republic Mineral Planning : Part IV - first volume : Main mineral substances specific study and their geological context

    International Nuclear Information System (INIS)

    Franconi, Antoine; Joo', Julien; Zibo, Idde

    1981-01-01

    This volume contains the detailed study of mineral substances industrially exploited to date : uranium, coal, non metallic building materials and public activities, and non conventionally exploited substances, that are : tin, columbite-tantalite, tungsten, gold, phosphates and evaporates [fr

  3. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Science.gov (United States)

    Jauhari, Shekeab

    2008-09-01

    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  4. Choosing mineral carrier of nanoscale additives for asphalt concrete

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2014-03-01

    Full Text Available At present time the operation life of the majority of roads is essentially shorter than required. The reason for it is the increase in traffic intensity and axle loads of automobile transport. The obvious reasons for early wear of roads are the low quality of the components used and low industrial standards while producing asphalt pavement. In this paper the mineral material was selected as a carrier of nanoscale additives for asphalt. The optimal modes for grinding mineral materials were identified, which provide correspondence of their structure parameters with the developed model. The influence of different mineral nanomodifier carriers on the structure formation processes was estimated. It is shown that among a number of mineral materials diatomite has high activity in relation to the bitumen, because it has a highly porous structure. It is also shown that as a result of lighter fractions of bitumen adsorption on the border of phase interface, diatomite and bitumen changes from the free state to the film, and solvate shell of bitumen is saturated with asphaltenes. With the help of IR spectroscopy the authors defined the nature of the diatomite and bitumen interaction and proved that in the process of their interaction there occurs physical adsorption with additional absorption of bitumen components into the pore space of diatomite grains.

  5. Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective

    Directory of Open Access Journals (Sweden)

    Jose-Luis Palacios

    2018-03-01

    Full Text Available Latin America has traditionally been a raw material supplier since colonial times. In this paper, we analyze mineral exports from an exergoecology perspective from twenty countries in Latin American (LA-20. We apply material flow analysis (MFA principles along with the concept of the exergy replacement cost (ERC, which considers both quantity and thermodynamic quality of minerals, reflecting their scarcity in the crust. ERC determines the energy that would be required to recover minerals to their original conditions in the mines once they have been totally dispersed into the Earth’s crust, with prevailing technology. Using ERC has helped us identify the importance of certain traded minerals that could be overlooked in a traditional MFA based on a mass basis only. Our method has enabled us to determine mineral balance, both in mass (tonnes and in ERC terms (Mtoe. Using indicators, both in mass and ERC, we have assessed the self-sufficiency and dependency of the region. We have also analyzed the mineral exports flows from Latin America for 2013. Results show that half of the mineral production from LA-20 was mainly exported. High-quality minerals, such as, gold, silver, and aluminum were largely exported to China and the United States. Extraction of high-quality minerals also implies higher losses of natural stock and environmental overburdens in the region.

  6. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Science.gov (United States)

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  7. Types of architectural structures and the use of smart materials

    Science.gov (United States)

    Tavşan, Cengiz; Sipahi, Serkan

    2017-07-01

    about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.

  8. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: An in vitro study.

    Science.gov (United States)

    Mohan, Neethu; Wilson, Jijo; Joseph, Dexy; Vaikkath, Dhanesh; Nair, Prabha D

    2015-12-01

    The study investigated the potential of electrospun fiber assembled hydrogel, with physical gradients of chondroitin sulfate (CS) and sol-gel-derived bioactive glass (BG), to engineer hyaline and mineralized cartilage in a single 3D system. Electrospun poly(caprolactone) (PCL) fibers incorporated with 0.1% w/w of CS (CSL) and 0.5% w/w of CS (CSH), 2.4% w/w of BG (BGL) and 12.5% w/w of BG (BGH) were fabricated. The CS showed a sustained release up to 3 days from CSL and 14 days from CSH fibers. Chondrocytes secreted hyaline like matrix with higher sulfated glycosaminoglycans (sGAG), collagen type II and aggrecan on CSL and CSH fibers. Mineralization was observed on BGL and BGH fibers when incubated in simulated body fluid for 14 days. Chondrocytes cultured on these fibers secreted a mineralized matrix that consisted of sGAG, hypertrophic proteins, collagen type X, and osteocalcin. The CS and BG incorporated PCL fiber mats were assembled in an agarose-gelatin hydrogel to generate a 3D hybrid scaffold. The signals in the fibers diffused and generated continuous opposing gradients of CS (chondrogenic signal) and BG (mineralization) in the hydrogel. The chondrocytes were encapsulated in hybrid scaffolds; live dead assay at 48 h showed viable cells. Cells maintained their phenotype and secreted specific extracellular matrix (ECM) in response to signals within the hydrogel. Continuous opposing gradients of sGAG enriched and mineralized ECM were observed surrounding each cell clusters on gradient hydrogel after 14 days of culture in response to the physical gradients of raw materials CS and BG. A construct with gradient mineralization might accelerate integration to subchondral bone during in vivo regeneration. © 2015 Wiley Periodicals, Inc.

  9. Mineral facilities of Africa and the Middle East

    Science.gov (United States)

    Eros, J.M.; Candelario-Quintana, Luissette

    2006-01-01

    This map displays over 1,500 mineral facilities in Africa and the Middle East. The mineral facilities include mines, plants, mills, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. The data used in this poster were compiled from multiple sources, including the 2004 USGS Minerals Yearbook (Africa and Middle East volume), Minerals Statistics and Information from the USGS Web site (http://minerals.usgs.gov/minerals/), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists. See Table 1 for general information about each mineral facility site including country, location and facility name, facility type, latitude, longitude, mineral commodity, mining method, main operating company, status, capacity, and units.

  10. The effect of nitrates on the alteration of the cementitious material

    International Nuclear Information System (INIS)

    Takei, Akihiko; Owada, Hitoshi; Fujita, Hideki; Negishi, Kumi

    2002-02-01

    TRU waste includes various chemical compounds such as nitrates. The influence of the chemical compounds on the performance of the barrier system should be estimated. Since the temperature of the deep-underground is higher than that of the near surface and a part of the TRU waste generates the heat accompanied with the decay of the radioactive nuclides, the influences of the heat to the barrier material also should be taken into account. In this study, we estimated the influence of sodium nitrate and also that of the leachate from the ROBE-waste (borate-solidified body of concentrated low-level waste) to the degradation of the cementitious material. We also obtained the mineralogical data of cementitious mineral after alteration in elevated temperature conditions. Results in this year are described below. 1) Alteration of characteristics of cementitious material in nitrate solution were evaluated by the water permeation test using sodium nitrate solution. The enhancement of the alteration of cementitious material due to sodium nitrate was observed. The dissolution quantity of the calcium of sodium nitrate solution permeated sample was larger than that of deionized water permeated sample (denoted as 'blank' in following). Hydraulic conductivity of sodium nitrate solution permeated sample was lower than blank, but after changing permeation liquid from sodium nitrate solution to deionized water, hydraulic conductivity rose quickly. The increase of porosity and the decrease of compressive strength were observed in the case of sodium nitrate solution compared with blank. In the nitrate solution, sulfate type and carbonate type of AFm changed into the nitrate type AFm. The nitrate type AFm altered to the carbonate type AFm when the nitrate concentration was lowered. 2) The influence of the leachate from the two types of ROBE-waste on the dissolution of the cementitious material was evaluated by the leaching experiments. Dissolution of the calcium from the cementitious

  11. Dana's Minerals and How to Study Them, Fourth Edition

    Science.gov (United States)

    Cribb, Warner

    Anyone who spends time in a geology lab, natural science museum, or rock and mineral shop can see that nature provides us with an incredible variety of minerals. Countless introductory geology students get “turned on” to the science of geology by studying minerals. Despite the development of modern instruments that enable rapid and detailed mineral, chemical, and atomic structural analysis, the study of minerals by hand sample remains one of the most popular and economical pursuits of many professional geologists, students, and amateur mineral enthusiasts.Because individuals with varying backgrounds in physical science collect and study minerals, a considerable need exists for a reference text that can be effectively used by both professionals and amateurs. Edward Salisbury Dana published the first such text, Minerals and How to Study Them, over a century ago. The third and last edition of this book was published in 1948. In the 50 years since, considerable changes have occurred in the understanding of mineral chemistry, crystallography, and microscopy. As a result, Dana's third edition is somewhat out of date, and its presentation of material is somewhat antiquated for modern-day readers.

  12. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 ± 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area

  13. PERSPECTIVE NONMETALLIC RAW MATERIALS AND THEIR UTILIZATION

    Directory of Open Access Journals (Sweden)

    Havelka Jaroslav

    1997-10-01

    Full Text Available It is the existence of the domestic base of raw materials and stable or growing markets that are a precondition for the prospectiveness industrial minerals. Traditional and non-traditional prospective nonmetal-liferous raw materials can be distinguished. The main trends in new industrial applications of industrial minerals are being stated. In the Czech Republic, the following may be ranked among the traditional prospective nonme-talliferous raw materials: kaoline, refractory clays, ceramic and expandable clays, glass and foundry sands, li-mestones, building stones, gypsum, cast basalt, bentonite, diatomite, feldspars, graphite. Alkali rocks, industrial garnets, flaky mica, wollastonite and yet unmined staurolite, minerals of the sillimanite group and others belong to the non-traditional prospective industrial minerals.

  14. Colloid transport in model fracture filling materials

    Science.gov (United States)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  15. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    2014-01-01

    of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area...

  16. Nanoclay minerals and plastics: tiny particles deliver big impact

    CSIR Research Space (South Africa)

    Sinah Ray, S

    2015-10-01

    Full Text Available A polymer nanocomposite is an advanced plastic material where the incorporation of nanostructures such as clay minerals and other nanoparticles into the polymer has been achieved on the nano-level so that the material exhibits improvements in colour...

  17. Evaluation of the sealing ability of bone cement as furcation perforation repair material when compared with mineral trioxide aggregate and calcium phosphate cement: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Rashmi Chordiya

    2010-01-01

    Full Text Available Aim: This study was undertaken to compare the sealing ability of bone cement as furcation perforation repair material when compared with mineral trioxide aggregate and calcium phosphate cement. Materials and Methods: A total of 70 sound mandibular molars were selected for this study. The sample teeth were randomly divided into five groups: group I - n=20, perforation repair material used, mineral trioxide aggregate; group II - n=20, perforation repair material used, calcium phosphate cement; group III - n=20, perforation repair material used, bone cement; group IV - positive control, n=5, the furcation were not repaired with any material; group V - negative control, n=5, furcation area intact, no perforation done. The teeth were immersed in silver nitrate solution for 2 hours and then rinsed with photographic developer solution for 6 hours. They were then sectioned in a longitudinal direction and examined under a stereomicroscope. In each section the actual values of dye leakage were calculated from outer margins of perforation to the level of pulpal floor and were then subjected to statistical analysis. Results: An unpaired ′t′ test revealed that different groups exhibited significantly different dye penetrations (P<0.01. Conclusion: Furcation perforation repaired with MTA showed minimum microleakage (mean 54.5%, calcium phosphate cement showed maximum microleakage (100%, and bone cement showed moderate dye leakage (87.8%.

  18. Impact of ARPANS-like legislation on minerals industry in Australia - the TENORM issue

    International Nuclear Information System (INIS)

    Koperski, J.

    2001-01-01

    Processing of minerals results in increased concentrations of the naturally occurring radioactive materials (NORM) in mineral products and/or process wastes, relative to those in the source materials. Due to the current legislative trends this technologically enhanced naturally occurring radioactive material (TENORM) phenomenon may bring mineral processing practices, including disposal of NORM-elevated wastes, into the realm of regulatory concern for practically all mineral-processing operations in Australia. The 1999 Australian Radiation Protection and Nuclear Safety (ARPANS) legislation has been based on the 1996 International Basic Safety Standards (BSS) recommended by the International Atomic Energy Agency (IAEA). As such, it contains very restrictive exemption criteria from the provisions of the legislation. ARPANS legislation is only binding upon Commonwealth entities. They, incidentally, do not include minerals industry operations. This legislation has been incompatible with the nature of the minerals industry. However, the current legislative developments have been aimed at imposing this legislation onto States and Territories. If this happens, and the current ARPANS legislative exemption criteria are not rationalised, major radiation safety-related operational and administrative impacts on the Australian minerals industry will occur. They will result in a marked burden to the national economy for yet to be clearly identified health and safety benefits. It is thus recommended that, without compromising rational radiation protection principles and practices, legislation commensurate with the nature of the minerals industry operations, national and state circumstances, conditions and interests be adopted in Australia. Such legislation would follow the spirit of the IAEA 1996 recommendations. Copyright (2001) Australasian Radiation Protection Society Inc

  19. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials.

    Science.gov (United States)

    Shahi, Shahriar; Yavari, Hamid R; Rahimi, Saeed; Eskandarinezhad, Mahsa; Shakouei, Sahar; Unchi, Mahsa

    2011-12-01

    Inadequate apical seal is the major cause of surgical endodontic failure. The root-end filling material used should prevent egress of potential contaminants into periapical tissue. The purpose of this study was to compare the sealing ability of four root-end filling materials: white mineral trioxide aggregate (MTA), gray MTA, white Portland cement (PC) and gray PC by dye leakage test. Ninety-six human single-rooted teeth were instrumented, and obturated with gutta-percha. After resecting the apex, an apical cavity was prepared. The teeth were randomly divided into four experimental groups (A: white MTA, B: gray MTA, C: white PC and D: gray PC; n = 20) and two control groups (positive and negative control groups; n = 8). Root-end cavities in the experimental groups were filled with the experimental materials. The teeth were exposed to Indian ink for 72 hours. The extent of dye penetration was measured with a stereomicroscope at 16× magnification. The negative controls showed no dye penetration and dye penetration was seen in the entire root-end cavity of positive controls. However, there was no statistically significant difference among the four experimental groups (P > 0.05). All retrograde filling materials tested in this study showed the same microleakage in vitro. Given the low cost and apparently similar sealing ability of PC, PC could be considered as a substitute for MTA as a root-end filling material.

  20. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    Science.gov (United States)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  1. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    Science.gov (United States)

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a

  2. Alveolar bone loss and mineralization in the pig with experimental periodontal disease

    Directory of Open Access Journals (Sweden)

    Mandee Yang

    2018-03-01

    Full Text Available Objective: To address how experimental periodontal disease affects alveolar bone mass and mineral apposition in a young pig model. Materials and methods: Seven three-month-old pigs were periodically inoculated with 4 types of periodontal bacteria, along with a ligature around the last maxillary deciduous molar for 8 weeks to induce periodontal disease (PG. Eight same-aged pigs served as the control (CG. Segmentations of 3D cone-beam CT images were performed to quantify volumes of the total alveolar bone, alveolar ridge, and all roots of the target molar. Calcein and alizarin were administered for labeling mineral apposition before euthanasia. The harvested molar blocks were sectioned and examined under epifluorescence. The inter-label distance between the two vital markers at regional bone surfaces were measured and mineral apposition rate (MAR was calculated. Results: A significant reduction of total alveolar bone volume was seen in PG with the major loss at the alveolar ridge. MAR was significantly higher at the root furcation region than those at both buccal and palatal ridges in CG. Compared with CG, PG animals showed more interrupted labeled bands with significantly lower MAR at the furcation region. MARs were positively associated with both the volumes of total alveolar bone and ridge in CG, but only with the total alveolar bone in PG. Conclusions: In young growing pigs, mineral apposition is region specific. The experimental periodontal disease not only leads to alveolar bone loss, but also perturbs mineral apposition for new bone formation, thus impairing the homeostasis of alveolar bone remodeling. Keyword: Dentistry

  3. Nanocomposites from polymers and layered minerals

    NARCIS (Netherlands)

    Fischer, H.R.; Gielgens, L.H.; Koster, T.P.M.

    1999-01-01

    Composites consisting of polymer matrix materials and natural or synthetic layered minerals e.g. clays were prepared by using special compatibilizing agents betsveen these two intrinsically non-miscible components. Block or graft copolymers combining one part of the polymer that is identically

  4. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  5. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-01-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing 137 Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite >> vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. - Graphical abstract: Autoradiography analysis showed that presence of larger amounts of mineral of vermiculite collected in South Africa induced less accumulation of radioactive Cs in yeast cells from the medium. - Highlights: • Effect of minerals on the accumulation of radioactive Cs by yeast was studied. • Presence of minerals reduced accumulation of radioactive Cs by yeast. • The order of reduction is mica>smectite, illite>>vermiculite, phlogopite

  6. Impact of Aggregate Gradation and Filler Type on Marshall Properties of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2015-09-01

    Full Text Available As asphalt concrete wearing course (ACWC is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties. A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50 penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and limestone dust, the second type included SCRB specification and coal fly ash, the third types included ROAD NOTE 31 specification and limestone dust and the fourth type included ROAD NOTE 31 specification and coal fly ash. The optimum asphalt content of each type of mixtures was determined using Marshall Method of mix design. 60 specimen were prepared and tested with dimension of 10.16 cm in diameter and 6.35 cm in height. Results of this study indicated that aggregate gradation and filler type have a significant effect on optimum asphalt content and Marshall Properties. From the experimental data, it was observed that the value of Marshall Stability is comparatively higher when using fly ash as filler as compared to limestone dust.

  7. Využití stacionárních dopravních zařízení v oblasti těžby a zpracování minerálních surovin pro stavební práce ve vybraném lomu.

    OpenAIRE

    HRUŠKA, Jan

    2013-01-01

    The aim of my thesis is an overview and analysis of stationary transport equipment feasible for use in mining branch and mineral raw material processing for construction works. Particular types of transport equipment are listed in this work, including their specific construction and technical features description. Parameters of transport equipment for realizing mineral raw material transport and factors, which influence their use, are summarized in this work. Organisational incorporation of t...

  8. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    International Nuclear Information System (INIS)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin

    2010-05-01

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  9. Pretreatment process for mineral analysis in FFH using INAA-method and evaluation of mineral intakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Hee; Youn, Kyung Jin; Lee, Ji Bum; Kim, Mi Jin [Yongin University, Yongin (Korea, Republic of)

    2010-05-15

    This study were aimed to set up the pre-treatment process for FFH and analyse Pretreatment processes for the analysis of food mineral contents by INAA were established according to FFH state using freeze-drying and homogenization. The Se contents showed higher precision with INAA-method than ICP-method. The content of Ca, Na, Mg, Fe, Zn, Cu, Mn, Cr, Co in FFH measured using INAA-method showed that the mineral contents in the amount of recommended intakes by manufacturer were not significantly different according to FFH type. The average Ca contents was the highest in Yousanguns > nutritional supplement> glucosamines. The average K content of FFH with one serving size were the highest in glucosamines>aloes> nutritional supplements. I content among FFH was the highest in nutritional supplements. The average Mg contents were highest in Chlorella-Spirurina and Aloes. The average Cu content of FFH was the highest in Yeasts. The contents of Fe, Zn and Se were the highest in nutritional supplements. The mineral contents in recommended intake amounts by manufacturer were over the maximum contents regulated by Korean FDA in some imported FFH products. their mineral contents of FFH using NAA-method and to assess the mineral intakes by FFH

  10. gold mineralization in Masjeddaghi area, east of Jolfa, NW Iran

    OpenAIRE

    Ali Imamalipour; Hossein Abdoli; Behzad Hajalilo

    2010-01-01

    Two types of mineralization including porphyry copper and epithermal gold mineralization have occurred in relation with an intermediate volcano-plutonic complex in Masjeddaghi area. Different alterations including silica, advanced argillic, intermediate argillic and propylitic have been distinguished in relation with epithermal mineralization, which have a zonal pattern. Elemental mass gains and losses during alterations were calculated using Zr as an immobile monitor. Silica zone has enriche...

  11. KeyPathwayMiner 4.0

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; Pauling, Josch; Batra, Richa

    2014-01-01

    release of KeyPathwayMiner (version 4.0) that is not limited to analyses of single omics data sets, e.g. gene expression, but is able to directly combine several different omics data types. Version 4.0 can further integrate existing knowledge by adding a search bias towards sub-networks that contain...... (avoid) genes provided in a positive (negative) list. Finally the new release now also provides a set of novel visualization features and has been implemented as an app for the standard bioinformatics network analysis tool: Cytoscape. CONCLUSION: With KeyPathwayMiner 4.0, we publish a Cytoscape app...

  12. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  13. 30 CFR 56.16004 - Containers for hazardous materials.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 56.16004 Section 56.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16004 Containers for hazardous materials. Containers holding hazardous materials...

  14. 30 CFR 57.16004 - Containers for hazardous materials.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 57.16004 Section 57.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16004 Containers for hazardous materials. Containers holding hazardous materials...

  15. Porosity, Mineralization, Tissue Type and Morphology Interactions at the Human Tibial Cortex

    Science.gov (United States)

    Hampson, Naomi A.

    Prior research has shown a relationship between tibia robustness (ratio of cross-sectional area to bone length) and stress fracture risk, with less robust bones having a higher risk, which may indicate a compensatory increase in elastic modulus to increase bending strength. Previous studies of human tibiae have shown higher ash content in slender bones. In this study, the relationships between variations in volumetric porosity, ash content, tissue mineral density, secondary bone tissue, and cross sectional geometry, were investigated in order to better understand the tissue level adaptations that may occur in the establishment of cross-sectional properties. In this research, significant differences were found between porosity, ash content, and tissue type around the cortex between robust and slender bones, suggesting that there was a level of co-adaption occurring. Variation in porosity correlated with robustness, and explained large parts of the variation in tissue mineral density. The nonlinear relationship between porosity and ash content may support that slender bones compensate for poor geometry by increasing ash content through reduced remodeling, while robust individuals increase porosity to decrease mass, but only to a point. These results suggest that tissue level organization plays a compensatory role in the establishment of adult bone mass, and may contribute to differences in bone aging between different bone phenotypes. The results suggest that slender individuals have significantly less remodeled bone, however the proportion of remodeled bone was not uniform around the tibia. In the complex results of the study of 38% vs. 66% sites the distal site was subject to higher strains than the 66% site, indicating both local and global regulators may be affecting overall remodeling rates and need to be teased apart in future studies. This research has broad clinical implications on the diagnosis and treatment of fragility fractures. The relationships that

  16. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  17. [The effectiveness of the spa and health resort-based treatment with the application of Essentuki-type drinking mineral waters for the management of non-alcoholic fatty liver disease in the patients presenting with type 2 diabetes mellitus].

    Science.gov (United States)

    Efimenko, N V; Kaĭsinova, A S; Fedorova, T E; Botvineva, L A

    2015-01-01

    The objective of the present study was to estimate the effectiveness of the spa and health resort-based treatment of non-alcoholic fatty liver disease in 40 patients at the mean age of 48,8 ± 5.7 years suffering from type 2 diabetes mellitus. All of them received combined therapy including the application of potable Essentuki-Novaya mineral water (20 patients) or Essentuki No 4 water (20 patients). This therapeutic modality resulted in positive dynamics of clinical symptoms of the disease, the functional liver tests, and parameters of intra-hepatic hemodynamics, lipid peroxidation homeostasis, and the hormonal status. It is concluded that the spa and health resort-based treatment with the application of local drinking Essentuki-type mineral waters for the management of non-alcoholic fatty liver disease in the patients presenting with type 2 diabetes mellitus leads to the improvement of the main functions of the liver, stabilizes carbohydrate and lipid metabolism, and prevents progression of the pathological process.

  18. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  19. Minerals from Macedonia: XV. Sivec mineral assemble

    International Nuclear Information System (INIS)

    Boev, Blazho; Jovanovski, Gligor; Makreski, Petre; Bermanec, Vladimir

    2005-01-01

    The paper presents investigations carried out on the collected minerals from the Sivec deposit. It is situated in the vicinity of the town of Prilep, representing a rare occurrence of sugary white dolomite marbles. The application of suitable methods of exploitation of decorative-dimension stones makes possible to obtain large amounts of commercial blocks well known in the world. Despite the existence of dolomite marbles, a series of exotic minerals are typical in Sivec mineralization. Among them, the most significant are: calcite, fluorite, rutile, phlogopite, corundum, diaspore, almandine, kosmatite (clintonite or margarite), clinochlore, muscovite, quartz, pyrite, tourmaline and zoisite. An attempt to identify ten collected minerals using the FT IR spectroscopy is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well. (Author)

  20. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  1. Tannins in Mineral Processing and Extractive Metallurgy

    Directory of Open Access Journals (Sweden)

    Jordan Rutledge

    2015-08-01

    Full Text Available This study provides an up to date review of tannins, specifically quebracho, in mineral processing and metallurgical processes. Quebracho is a highly useful reagent in many flotation applications, acting as both a depressant and a dispersant. Three different types of quebracho are mentioned in this study; quebracho “S” or Tupasol ATO, quebracho “O” or Tupafin ATO, and quebracho “A” or Silvafloc. It should be noted that literature often refers simply to “quebracho” without distinguishing a specific type. Quebracho is most commonly used in industry as a method to separate fluorite from calcite, which is traditionally quite challenging as both minerals share a common ion—calcium. Other applications for quebracho in flotation with calcite minerals as the main gangue source include barite and scheelite. In sulfide systems, quebracho is a key reagent in differential flotation of copper, lead, zinc circuits. The use of quebracho in the precipitation of germanium from zinc ores and for the recovery of ultrafine gold is also detailed in this work. This analysis explores the wide range of uses and methodology of quebracho in the extractive metallurgy field and expands on previous research by Iskra and Kitchener at Imperial College entitled, “Quebracho in Mineral Processing”.

  2. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    International Nuclear Information System (INIS)

    Jia, C.Q.; Pickles, C.A.; Brienne, S.; Rao, S.R.

    2008-01-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs

  3. Proceedings of the 6. international symposium on waste processing and recycling in the mineral and metallurgical industries : WALSIM : water, air and land sustainability issues in mineral and metal extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, C.Q. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry; Pickles, C.A. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mining Engineering; Brienne, S. [Teck Cominco Metals Ltd., Trail, BC (Canada). Applied Research and Engineering; Rao, S.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Mining and Materials Engineering] (eds.)

    2008-07-01

    The proceedings of the 2008 conference of metallurgists of CIM includes a collection 7 separate symposia, namely (1) aerospace materials and manufacturing, (2) water, air and land sustainability issues in mineral and metal extraction (WALSIM), (3) current status and future trends of functional nanometers, (4) recent developments in advanced high strength steels processing, (5) corrosion and wear of materials, (6) advanced characterization techniques applied to mineral, metals and materials, and (7) management in metallurgy. The WALSIM symposium dealt with environmental issues, with particular reference to the three topics of water, air and land sustainability associated with mineral and metal extraction, processing and fabrication. It provided an opportunity for scientists, engineers and plant operators to report on work aimed at achieving more efficient, environmentally sound and sustainable performance of the mineral and metals industry by enabling related organizations to exchange information on the latest developments in this field of activity with considerations of both industry and society. The sessions were entitled: resource recovery from waste material; by-products processing of slag, fly ash and electric arc furnace dust; metal recycling; wastewater and effluent treatment; gaseous pollutants treatment; and, sustainability and basic research. The symposium featured 43 presentations, of which 17 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  4. Hypermineralization and High Osteocyte Lacunar Density in Osteogenesis Imperfecta Type V Bone Indicate Exuberant Primary Bone Formation.

    Science.gov (United States)

    Blouin, Stéphane; Fratzl-Zelman, Nadja; Glorieux, Francis H; Roschger, Paul; Klaushofer, Klaus; Marini, Joan C; Rauch, Frank

    2017-09-01

    In contrast to "classical" forms of osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain-of-function mutation in the IFITM5 gene, encoding the interferon-induced transmembrane protein 5, or bone-restricted interferon-inducible transmembrane (IFITM)-like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders such as hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate-treated patients. Therefore, investigations of transiliac bone biopsy samples from a cohort of OI type V children (n = 15, 8.7 ± 4 years old) untreated at baseline and a subset (n = 8) after pamidronate treatment (2.6 years in average) were performed. Quantitative backscattered electron imaging (qBEI) was used to determine bone mineralization density distribution (BMDD) as well as osteocyte lacunar density. The BMDD of type V OI bone was distinctly shifted toward a higher degree of mineralization. The most frequently occurring calcium concentration (CaPeak) in cortical (Ct) and cancellous (Cn) bone was markedly increased (+11.5%, +10.4%, respectively, p < 0.0001) compared to healthy reference values. Treatment with pamidronate resulted in only a slight enhancement of mineralization. The osteocyte lacunar density derived from sectioned bone area was elevated in OI type V Ct and Cn bone (+171%, p < 0.0001; +183.3%, p < 0.01; respectively) versus controls. The high osteocyte density was associated with an overall immature primary bone structure ("mesh-like") as visualized by polarized light microscopy. In summary, the bone material from OI type V patients is hypermineralized, similar to other forms of OI. The elevated osteocyte lacunar density in connection with lack of regular bone

  5. Some Key Features and Possible Origin of the Metamorphic Rock-Hosted Gold Mineralization in Buru Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v1i1.172This paper discusses characteristics of some key features of the primary Buru gold deposit as a tool for a better understanding of the deposit genesis. Currently, about 105,000 artisanal and small-scale gold miners (ASGM are operating in two main localities, i.e. Gogorea and Gunung Botak by digging pits/shafts following gold-bearing quartz vein orientation. The gold extraction uses mercury (amalgamation and cyanide processing. The field study identifies two types/generations of quartz veins namely (1 Early quartz veins which are segmented, sigmoidal, dis­continous, and parallel to the foliation of host rock. The quartz vein is lack of sulfides, weak mineralized, crystalline, relatively clear, and maybe poor in gold, and (2 Quartz veins occurred within a ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. The gold mineralization is strongly overprinted by an argillic alteration zone. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. The gold-bearing quartz veins are characterized by banded texture particularly colloform following host rock foliation and sulphide banding, brecciated, and rare bladed-like texture. The alteration types consist of propylitic (chlorite, calcite, sericite, argillic, and carbonation represented by graphite banding and carbon flakes. The ore mineralization is characterized by pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar, stibnite, chalcopyrite, galena, and sphalerite are rare or maybe absent. In general, sulphide minerals are rare (<3%. Fifteen rock samples were collected in Wamsaid area for geochemical assaying for Au, Ag, As, Sb, Hg, Cu, Pb, and Zn. Eleven of fifteen samples yielded more than 1.00 g/t Au, in which six of them are in excess of 3.00 g/t Au. It can be noted that all high-grade samples are originally or containing limonitic materials, that suggest

  6. Assessment of the geoavailability of trace elements from minerals in mine wastes: analytical techniques and assessment of selected copper minerals

    Science.gov (United States)

    Driscoll, Rhonda; Hageman, Phillip L.; Benzel, William M.; Diehl, Sharon F.; Adams, David T.; Morman, Suzette; Choate, LaDonna M.

    2012-01-01

    In this study, four randomly selected copper-bearing minerals were examined—azurite, malachite, bornite, and chalcopyrite. The objectives were to examine and enumerate the crystalline and chemical properties of each of the minerals, to determine which, if any, of the Cu-bearing minerals might adversely affect systems biota, and to provide a multi-procedure reference. Laboratory work included use of computational software for quantifying crystalline and amorphous material and optical and electron imaging instruments to model and project crystalline structures. Chemical weathering, human fluid, and enzyme simulation studies were also conducted. The analyses were conducted systematically: X-ray diffraction and microanalytical studies followed by a series of chemical, bio-leaching, and toxicity experiments.

  7. Czech Republic – the type material of spiders (Araneae)

    Czech Academy of Sciences Publication Activity Database

    Růžička, Vlastimil; Kůrka, A.; Buchar, J.; Řezáč, M.

    2005-01-01

    Roč. 174, 1-4 (2005), s. 13-64 ISSN 0139-9543 R&D Projects: GA AV ČR(CZ) IAA6007401 Institutional research plan: CEZ:AV0Z50070508 Keywords : spider s * type material * Czech Republic Subject RIV: EG - Zoology

  8. An evaluation of thematic mapper simulator data for the geobotanical discrimination of rock types in Southwest Oregon

    Science.gov (United States)

    Weinstock, K. J.; Morrissey, L. A.

    1984-01-01

    Rock type identification may be assisted by the use of remote sensing of associated vegetation, particularly in areas of dense vegetative cover where surface materials are not imaged directly by the sensor. The geobotanical discrimination of ultramafic parent materials was investigated and analytical techniques for lithologic mapping and mineral exploration were developed. The utility of remotely sensed data to discriminate vegetation types associated with ultramafic parent materials in a study area in southwest Oregon were evaluated. A number of specific objectives were identified, which include: (1) establishment of the association between vegetation and rock types; (2) examination of the spectral separability of vegetation types associated with rock types; (3) determination of the contribution of each TMS band for discriminating vegetation associated with rock types and (4) comparison of analytical techniques for spectrally classifying vegetation.

  9. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS

    International Nuclear Information System (INIS)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C.

    2015-01-01

    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  10. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  11. Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g, ƒTe(g, and ƒS2(g control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g/ƒS2(g ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite.

  12. Sustainable Development Strategy for Russian Mineral Resources Extracting Economy

    Science.gov (United States)

    Dotsenko, Elena; Ezdina, Natalya; Prilepskaya, Angelina; Pivnyk, Kirill

    2017-11-01

    The immaturity of strategic and conceptual documents in the sphere of sustainable development of the Russian economy had a negative impact on long-term strategic forecasting of its neo-industrialization. At the present stage, the problems of overcoming the mineral and raw material dependence, the negative structural shift of the Russian economy, the acceleration of the rates of economic growth, the reduction of technological gap from the developed countries become strategically in demand. The modern structure of the Russian economy, developed within the framework of the proposed market model, does not generate a sustainable type of development. It became obvious that in conditions of the market processes' entropy, without neo-industrial changes, the reconstruction of industry on a new convergence-technological basis and without increasing the share of high technology production the instability of macroeconomic system, the risks of environmental and economic security of Russia are growing. Therefore, today we need a transition from forming one industry development strategy to the national one that will take into account both the social and economic and environmental challenges facing Russia as a mineral resources extracting country.

  13. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  14. An overview of hydrodynamic studies of mineralization

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2011-07-01

    Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.

  15. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    Directory of Open Access Journals (Sweden)

    Maryam Bidar

    2014-09-01

    Full Text Available Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. His-topathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tis-sue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposedwith a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Port-land cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral triox-ide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Al-though the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45% and the least increase in fibrous tissue were ob-served adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp cap-ping in dog teeth.

  16. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  17. New opportunities for U.S. coal and mineral exporters

    International Nuclear Information System (INIS)

    Watkins, J.A.

    1992-01-01

    U.S. exports of coal, metals and industrial minerals to the European Community were valued at $2.4 billion in 1989, representing 47 percent of total export revenues generated by these materials. Coal was the single largest contributor to the value of mineral exports to the EC with total sales of approximately $2 billion in 1989. With the extinction of trade barriers that will be triggered by the economic and political unification of Europe, new opportunities for U.S. minerals exporters are likely to develop. This paper examines the overall impact of European integration on U.S. metal and industrial mineral exports and provides a more rigorous analysis of the outlook for thermal and coking coal exports to the EC during the next decade

  18. Potential for Sulfide Mineral Deposits in Australian Waters

    Science.gov (United States)

    McConachy, Timothy F.

    The world is witnessing a paradigm shift in relation to marine mineral resources. High-value seafloor massive sulfides at active convergent plate boundaries are attracting serious commercial attention. Under the United Nations Convention on the Law of the Sea, maritime jurisdictional zones will increase by extending over continental margins and ocean basins. For Australia, this means a possible additional 3.37 million km2 of seabed. Australia's sovereign responsibility includes, amongst other roles, the management of the exploitation of nonliving resources and sea-bed mining. What, therefore, is the potential in Australia's marine jurisdiction for similar deposits to those currently attracting commercial attention in neighboring nations and for other types/styles of sulfide deposits? A preliminary review of opportunities suggests the following: (i) volcanogenic copper—lead—zinc—silver—gold mineralization in fossil arcs and back arcs in eastern waters Norfolk Ridge and the Three Kings Ridge; (ii) Mississippi Valley-type lead—zinc—silver mineralization in the NW Shelf area; (iii) ophiolite-hosted copper mineralization in the Macquarie Ridge Complex in the Southern Ocean; and (iv) submerged extensions of prospective land-based terranes, one example being offshore Gawler Craton for iron oxide—copper—gold deposits. These areas would benefit from pre-competitive surveys of detailed swath bathymetry mapping, geophysical surveys, and sampling to help build a strategic inventory of future seafloor mineral resources for Australia.

  19. Statics and kinematics of discrete Cosserat-type granular materials

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    2003-01-01

    A theoretical framework is presented for the statics and kinematics of discrete Cosserat-type granular materials. In analogy to the force and moment equilibrium equations for particles, compatibility equations for closed loops are formulated in the two-dimensional case for relative displacements and

  20. Uranium fixation by mineralization at the redox front

    International Nuclear Information System (INIS)

    Isobe, Hiroshi

    1998-01-01

    The behavior of actinide elements including uranium in geomedia is controlled by redox conditions. Under the oxidized conditions, uranium forms uranyl ion (UO 2 2+ ) and its complexes, and dissolves in ground water. Under the reduced conditions, U(IV) has much lower solubility than uranyl ion. In the Koongarra uranium deposit, Australia, lead-bearing uraninite, uranyl lead oxide and uranyl silicate minerals occur in the unweathered, primary ore zone, and uranyl phosphate minerals occur in the weathered, secondary ore zone. Between unweathered and weathered zones, the transition zone exists as a redox front. In the transition zone, graphite and sulfide minerals react as reducing agents for species dissolved in ground water. By SEM, spherical grains of uraninite were observed in veins with graphite. Pyrite had coffinite rim with crystals of uraninite. Calculation based on the ground water chemistry and hydrology at Koongarra shows that the uranium in the transition zone may be fixed from the ground water. In the Koongarra transition zone, recent mineralization of uranium by reduction takes place. Mineralization is much stronger fixation mechanism than adsorption on clay minerals. Pyrite in the buffer materials of possible radioactive waste repositories can fix radionuclides in oxidized ground water by mineralization with reducing reactions. (author)

  1. Fundamental thermodynamics of actinide-bearing mineral waste forms. 1998 annual progress report

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Williamson, M.A.

    1998-01-01

    'The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly, understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpy of formation of actinide substituted zircon, zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stability of these materials. This report summarizes work after eight months of a three year project.'

  2. Mineral raw materials used in the archaeological artifacts in Guayacas - Dayman - Paysandu

    International Nuclear Information System (INIS)

    Capdepont, I.; Del Puerto, L.; Castineira, C.; Pineiro, G.

    2012-01-01

    The purpose of this work is about the election, exploitation and modes of supply mineral raw resources used in the manufacturing of lithic and ceramic archaeological artifacts in Guayacas - Dayman - Paysandu

  3. Perspective sources of industrial minerals for building industry in Novohrad (Southern Slovakia

    Directory of Open Access Journals (Sweden)

    Beláček Boris

    1999-03-01

    Full Text Available Novohrad a region of Southern Slovakia has wealthy industrial history, which was built mostly on local natural raw materials. Some deposits are exhausted, but other are ready to be exploited. Among such industrial minerals are raw materials for building industry. There are industrial minerals for fine and rough ceramics, stones for building and pavement, sand and gravel. The perspective areas are listed on Tab. 1 - 6 and are shown on Fig 1 - 3.

  4. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  5. Characteristics of minerals in vesicles produced by human osteoblasts hFOB 1.19 and osteosarcoma Saos-2 cells stimulated for mineralization.

    Science.gov (United States)

    Strzelecka-Kiliszek, Agnieszka; Bozycki, Lukasz; Mebarek, Saida; Buchet, Rene; Pikula, Slawomir

    2017-06-01

    Bone cells control initial steps of mineralization by producing extracellular matrix (ECM) proteins and releasing vesicles that trigger apatite nucleation. Using transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) we compared the quality of minerals in vesicles produced by two distinct human cell lines: fetal osteoblastic hFOB 1.19 and osteosarcoma Saos-2. Both cell lines, subjected to osteogenic medium with ascorbic acid (AA) and β-glycerophosphate (β-GP), undergo the entire osteoblastic differentiation program from proliferation to mineralization, produce the ECM and spontaneously release vesicles. We observed that Saos-2 cells mineralized better than hFOB 1.19, as probed by Alizarin Red-S (AR-S) staining, tissue nonspecific alkaline phosphatase (TNAP) activity and by analyzing the composition of minerals in vesicles. Vesicles released from Saos-2 cells contained and were surrounded by more minerals than vesicles released from hFOB 1.19. In addition, there were more F and Cl substituted apatites in vesicles from hFOB 1.19 than in those from Saos-2 cells as determined by ion ratios. Saos-2 and h-FOB 1.19 cells revealed distinct mineralization profiles, indicating that the process of mineralization may proceed differently in various types of cells. Our findings suggest that TNAP activity is correlated with the relative proportions of mineral-filled vesicles and mineral-surrounded vesicles. The origin of vesicles and their properties predetermine the onset of mineralization at the cellular level. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Niger Republic mineral planning : Part four Second volume : Main mineral substances specific study and their geological context; Plan mineral de la Republique du Niger : Tome IV : 2e Volume : Etude specifique des principales substances minerales et leur contexte geologique

    Energy Technology Data Exchange (ETDEWEB)

    Franconi, Antoine; Joo' , Julien; Zibo, Idde

    1981-07-01

    This volume describes Niger Republic mineral substances capable of rising economic interest. After relating minerals occurrence , indices and deposits types, conclusions and recommendations have been made for mineral prospecting. Mineral substances described are : Copper, lead and zinc, molybdena, iron, manganese, titanium, vanadium, nickel and chrome ( cobalt and platinoid ), lithium, lignite, diamond and diverse substances rare earth, beryllium, silver, bismuth arsenic and antimony, barytine, alunite, talc and asbestos ( graphite and diatomite) [French] Ce volume decrit les substances susceptibles de presenter un interet economique au Niger. Apres avoir relate leurs occurrences , indices et types de gisement auxquels elles appartiennent des conclusions et recommendations ont ete faites pour la prospection. Les substances ainsi decrites sont : le cuivre, le plomb et le zinc, le molybdene, le fer, le manganese, le titane et le vanadium, le nickel et le chrome (Cobalt et platinoides), le lithium, le lignite, le diamant et les substances diverses ( terres rares, beryllium), argent, bismuth, arsenic et antimoine, barytine, alunite, talc et amiante (graphite et diatomite)

  7. A Crosswalk of Mineral Commodity End Uses and North American Industry Classification System (NAICS) codes

    Science.gov (United States)

    Barry, James J.; Matos, Grecia R.; Menzie, W. David

    2015-09-14

    This crosswalk is based on the premise that there is a connection between the way mineral commodities are used and how this use is reflected in the economy. Raw mineral commodities are the basic materials from which goods, finished products, or intermediate materials are manufactured or made. Mineral commodities are vital to the development of the U.S. economy and they impact nearly every industrial segment of the economy, representing 12.2 percent of the U.S. gross domestic product (GDP) in 2010 (U.S. Bureau of Economic Analysis, 2014). In an effort to better understand the distribution of mineral commodities in the economy, the U.S. Geological Survey (USGS) attempts to link the end uses of mineral commodities to the corresponding North American Industry Classification System (NAICS) codes.

  8. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); Roschger, Paul [4th Medical Department, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1140 Vienna (Austria); Schell, Hanna; Duda, Georg N, E-mail: fratzl@mpikg.mpg.d [Julius Wolff Institut and Center for Musculoskeletal Surgery, Charite- University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  9. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter; Roschger, Paul; Schell, Hanna; Duda, Georg N

    2010-01-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  10. Using of Mineral Recourses for Water Purification

    International Nuclear Information System (INIS)

    Tumanova, I.V.; Nazarenko, O.B.; Anna, Yu.

    2009-01-01

    Pollution of surface waters results in necessity of underground waters using for drinking. Underground waters are characterized by the high quantity of heavy metals salts. This led to development of methods reducing the concentration of the metal salts in water. Wide spread occurrence, cheapness and high sorption properties of nature minerals allow to consider them as perspective sorbents for different impurities extraction, including dissoluble compounds of heavy metals. Reachable purification efficiency with mineral resources use for the moment satisfies sanitary indexes and standards presenting to portable water in Russia. In given material there are presented the results of research of artificial sorbent and certain minerals sorption characteristics, which are typical for West Siberia. For purification quality improvement from Fe and Mn ions there are suggested to use the method of boiling bed.

  11. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    Science.gov (United States)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters is spatially controlled by the hydrology of the system and is localized around mixing zones between Ca-type with Mg-type waters. Residence time of discharging waters in the ponds before mixing has an impact on fluid chemistry as it influences the equilibration time with the atmosphere. Acicular aragonite is the main textural type in hyper-alkaline Ca-type waters, acting as a substratum for the growth of calcite and brucite crystals. Low crystallinity, dumbbell shaped and double pyramid aragonite dominates in Mix-type water precipitates. Rate of supersaturation is essential

  12. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Yossifova, Mariana G. [Geological Institute, Acad. G. Bonchev Str., Bl.24, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-11-22

    The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that

  13. Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae.

    Science.gov (United States)

    Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu

    2015-06-01

    The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review

    Directory of Open Access Journals (Sweden)

    Lidia Bandura

    2017-03-01

    Full Text Available Environmental pollution with petroleum products has become a major problem worldwide, and is a consequence of industrial growth. The development of sustainable methods for the removal of petroleum substances and their derivatives from aquatic and terrestrial environments and from air has therefore become extremely important today. Advanced technologies and materials dedicated to this purpose are relatively expensive; sorption methods involving mineral sorbents are therefore popular and are widely described in the scientific literature. Mineral materials are easily available, low-cost, universal adsorbents and have a number of properties that make them suitable for the removal of petroleum substances. This review describes recent works on the use of natural, synthetic and modified mineral adsorbents for the removal of petroleum substances and their derivatives from roads, water and air.

  15. On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials

    Directory of Open Access Journals (Sweden)

    Michael Schwall

    2018-04-01

    Full Text Available Half-Heusler compounds have been in focus as potential materials for thermoelectric energy conversion in the mid-temperature range, e.g., as in automotive or industrial waste heat recovery, for more than ten years now. Because of their mechanical and thermal stability, these compounds are advantageous for common thermoelectric materials such as Bi 2 Te 3 , SiGe, clathrates or filled skutterudites. A further advantage lies in the tunability of Heusler compounds, allowing one to avoid expensive and toxic elements. Half-Heusler compounds usually exhibit a high electrical conductivity σ , resulting in high power factors. The main drawback of half-Heusler compounds is their high lattice thermal conductivity. Here, we present a detailed study of the phase separation in an n-type Heusler materials system, showing that the Ti x Zr y Hf z NiSn system is not a solid solution. We also show that this phase separation is key to the thermoelectric high efficiency of n-type Heusler materials. These results strongly underline the importance of phase separation as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands of a thermoelectric converter.

  16. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Science.gov (United States)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  17. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  18. Mineralogy and geochemistry of clayey dump materials from Troyanovo-2 mine, East Maritza Basin (Bulgaria)

    International Nuclear Information System (INIS)

    Milakovska, Z.; Goettlicher, J.; Gasharova, B.; Pohlmann-Lortz, M.

    2005-01-01

    Eleven samples of macroscopic different types of surface dump materials (black, gray-green and ochreous clays and clay mixtures) which were heaped during different stages of open-pit coal mining were studied. Montmorillonite ((Na,Ca) 0.33 (Al,Mg) 2 Si 4 O 10 (OH) 2 ), illite (K(Al, Mg, Fe) 2 AlSi 3 O 10 (OH) 2 ), calcite (CaCO 3 ), halloysite (Al 2 Si 2 O 5 (OH) 4 ), and less frequently kaolinite (Si 4 Al 4 O 10 (OH) 8 ) and quartz (SiO 2 ) are the main primary minerals identified. Primary sulfide minerals determined are pyrite (FeS 2 ) (detected in three samples) and arsenopyrite (FeAsS) - in two samples. Gypsum (CaSO 4 x2H 2 O) is the most widespread secondary mineral followed by goethite (FeOOH) and hematite (Fe 2 O 3 ). Na-rich jarosite (ideal: NaFe 3 (SO 4 ) 2 (OH) 6 ) was identified in two samples, lepidocrocite (γ-FeOOH) - only in one. One sample is free of secondary minerals. The mineralogical study shows that oxidation processes of the surface dump materials are not finished yet and pyrite is still present in samples stored 20 years ago. Main factors contributing to the slow rate of oxidation process are clay minerals, low sulfide content (prerequisite for a low oxidation potential), and calcite that contributes to the acidity neutralising potential of the clayey materials. (authors)

  19. Maghemite Formation via Organics and the Prospect for Maghemite as a Biomarker Mineral on Mars

    Science.gov (United States)

    Bishop, Janice; Mancinelli, R. L.; Madsen, M. B.; Zent, A. P.

    2000-01-01

    One of the major questions on Mars is the origin of the magnetic component in the surface material. Our work on maghemite formation suggests that alteration of femhydrite in the presence of organics would provide a plausible formation scenario for this magnetic soil component and further suggests that maghemite might be an important biomarker mineral on Mars. Identification of biomarker minerals is an important aspect of Astrobiology . The iron oxide mineral maghemite is thought to be one of the magnetic components in the Martian surface material; however, it is a rare mineral on the Earth and requires a reducing agent for synthesis. Organic material serves as a reductant in maghemite formation during forest fires on Earth and may play an important role in maghemite formation on Mars through low-temperature heating (e.g., volcanism, impacts). This study involves analysis of magnetite, maghemite and hematite formation under Martian environmental conditions from femhydrite in the presence and absence of organics. A dehydrated version of the mineral femhydrite is thought to be present in Martian soil/dust grains and could have formed at an earlier time on Mars when water was present. Our work indicates that low-temperature alteration of femhydrite in the presence of organic material could be an important mechanism on Mars.

  20. Sandwich-panels based on penopolisocyanurate and mineral wool

    OpenAIRE

    Burtzeva M.; Mednikova E.

    2017-01-01

    Sandwich panel is a self-supporting structure consisting of two steel zinc-coated profiles with a layer of heat retainer. It is used as roofing and walling material. Widely is used in industrial construction, shopping centres, sports complexes, chilling and freezing chambers, storage buildings and quickly erectable housing. The classical basis of heat-insulating layer (core panel) products is used mineral wool insulation materials. This material is resistant to deformation, non-flammable,...

  1. Evaluation of the mineral composition of breadstuff and frequency its consumption.

    Science.gov (United States)

    Winiarska-Mieczan, Anna; Kwiecień, Małgorzata

    2011-01-01

    The aim of the study was to assess some selected minerals (Ca, Mg, Na, K, P, Fe, Zn, Cu, Mn) in different types of breadstuff. Moreover, the frequency of breadstuff consumption was determined in a selected group of students at one of Lublin universities. The material for the study was breadstuff available on the consumer market, produced from wheat and rye flour, of varied degree of grinding. In the samples the content of dry matter, crude ash and minerals (Ca, Mg, Na, K, P, Mn, Cu, Fe and Zn) was determined. A questionnaire investigation was performed in a group of 100 university students in Lublin. The questionnaire included questions which were helpful in determining the frequency of the consumed breadstuff. The content of mineral elements in breadstuff depended on its recipe's composition and their higher share was noted in rye and mixed-flour bread. Whole wheat bread was richer in minerals in comparison with white bread. Assuming that a statistical Pole consumes daily 166 g of bread, it may be calculated that the men consumes daily with bread 512 mg of P (73% of RDA) and 0.7 mg of Cu (ca. 78% of RDA), ca. 20 mg of Ca (1.6-2.0% of AI), 93 mg of Mg (ca. 22-30% of RDA), 602 mg of Na (40-50% of AI), 183 mg of K (3.9% of AI), 4.5 mg of Fe (25-45% of RDA) and 3 mg of Zn (29-40% of RDA). Bread is an important source of minerals, especially phosphorus and copper. Among students an excessive consumption of white bread should be noted contrasting with a low intake of whole wheat or whole meal bread.

  2. The influence of mineralization on the phase composition and properties of low-burned clay-dolomited composition materials

    International Nuclear Information System (INIS)

    Shirin-zade, I.N.; Ganbarov, D.M.

    2008-01-01

    With aim of acceleration of dissociation of carbonates in clay-dolomited compositions Na 2 SiF 6 was added. Addition mineralization raise stability of composition reaches 20-30 MPa. Na 2 SiF 6 mineralization makes more active decomposition of dolomite and accelerate appearance of new creations. It was experimentally proved that adding of mineralization of Na 2 SiF 6 promote to appearance in mixture of intermediate double salts which are bring down temperature of dissociation of carbonates. Accelerated action of mineralization Na 2 SiF 6 accepted by x-ray, DTA and x-ray spectroscopy

  3. Book review: Economic geology: Principles and practice: Metals, minerals, coal and hydrocarbons—Introduction to formation and sustainable exploitation of mineral deposits

    Science.gov (United States)

    Anderson, Eric

    2013-01-01

    This volume, available in both hardcover and paperback, is an English translation of the fifth edition of the German language text Mineralische und Energie-Rohstoffe. The book provides an extensive overview of natural resources and societal issues associated with extracting raw materials. The comprehensive list of raw materials discussed includes metals, industrial minerals, coal, and hydrocarbons. The book is divided into four parts: (1) “Metalliferous ore deposits,” (2) “Nonmetallic minerals and rocks,” (3) “Practice of economic geology,” and (4) “Fossil energy raw materials—coal, oil, and gas.” These sections are bound by a brief introduction and an extensive list of up-to-date references as well as an index. Each chapter begins with a concise synopsis and concludes with a summary that contains useful suggestions for additional reading. All figures are grayscale images and line drawings; however, several have been grouped together and reproduced as color plates. Also included is a companion website (www.wiley.com/go/pohl/geology) that contains additional resources, such as digital copies of figures, tables, and an expanded index, all available for download in easy-to-use formats.Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits. Walter l. Pohl. 2011. Wiley-Blackwell. Pp. 663. ISBN 978-1-4443-3663-4 (paperback).

  4. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  5. Uranium mineralization possibilities in metamorphic Massif of Isla de Juventud, Cuba

    International Nuclear Information System (INIS)

    Gongora Dominguez, L.E.; Llanes Castro, A.I.; Pena Fortes, B.; Capote Rodriguez, G.

    1996-01-01

    The geologic and metallogenic characteristic of the metamorphic Massif shows the presence of possible uranium vein type mineralization as a result of a hidrotermal genetic process. Metalliferous fluids rising along the fault system were responsible for the deposition of the uranium in the reduction zones, i.e. presence of pyrite, organic matter and others. This type of uranium minerization is proposed for the Bibijagua area and for the Revolucion and Lela area the same type is expected. The gamma spectrometric analysis was used to evaluate the geological samples

  6. The occurrence of ferropyrosmalite in the mineralized breccias from Igarape Bahia (North region, Brazil) Au-Cu (± ETR-U) deposit, Carajas mineral Province

    International Nuclear Information System (INIS)

    Tazava, Edison; Gomes, Newton Souza; Oliveira, Claudinei Gouveia de

    1999-01-01

    In the last years, several works report the presence of pyrosmalite mineral series [(Fe, Mn) 8 Si 6 O 15 (OH, Cl) 10 ] commonly associated with volcanic exhalative massive sulphide or Fe-Mn metamorphosed deposits. In this paper, we present the inedit occurrence of ferropyrosmalite in the Au-Cu (± REE-U) of Igarape Bahia deposit, located in the Au-Cu district of the Carajas Mineral Province. We consider the Igarape Bahia mineralization as being related to the genesis of iron-oxide class deposit, like the Olympic Dam type. Ferropyrosmalite occurs in two different contexts: associated with carbonate veins; associated with heterolithic breccias, composed by BIF and mafic metavolcanic fragments immersed in a magnetic, chalcopyrite, bornite, pyrite, carbonates (calcite to siderite), uranium and REE minerals, and gold, - rich matrix. The growth of ferropyrosmalite is probably due to the substitution of iron rich minerals (chloride, magnetite and siderite), controlled by magmatic fluid influx rich in chlorine. The permeability of breccias and the discontinuity of veins favour fluid percolation. The mode of occurrence of ferropyrosmalite and its relation with amphibole (ferro-hornblende-actinolite) indicate metasomatic growth of the former under temperatures in the transition of greenschist/amphibolite facies. The ferropyrosmalite of the Igarape Bahia deposit represents an uncommon type of occurrence linked to hydrothermal/magmatic conditions. (author)

  7. Teaching materials for radiation training and user guides

    International Nuclear Information System (INIS)

    Furuta, Etsuko; Kusama, Keiji

    2014-01-01

    Training for radiation teaching is important because of understanding radiation. Training methods except for a cloud chamber were proposed in this study; for example, drawing a visual image of a sand-picture by scanning its beta-rays with a handy type GM dosimeter. Though training hours are limited, measurement of alpha-, beta- and gamma-rays is useful to understand important characteristics of radiation. So, useful radioactive materials are the keys of radiation training. Small sizes of radioactive minerals, chemical reagent of KCl and radon progeny in the air were excellent radioactive materials for training. The differences between ionization and excitation of radiation, the relationship between penetration powers of radiation and shield effects of materials, the differences between natural radioactive materials and artificial ones, and other extension lectures were taught usefully for every grade as training by using these teaching materials. (author)

  8. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  9. Is it necessary to adopt measures in occupational radiological protection in Spanish NORM industries devoted to the processing of minerals and raw materials

    International Nuclear Information System (INIS)

    Garcia-Tenorio, R.; Bolivar, J. P.

    2010-01-01

    In this work it is documented why is quite limited the number os Spanish NORM industries devoted to the processing of minerals and/or raw materials where it is necessary to adopt occupational radiological protection countermeasures. These countermeasures are coincident in some cases with OHS countermeasures historically applied in the affected industries and in most cases can be only needed in working situations associated with maintenance operations. (Author) 6 refs.

  10. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A

    1978-09-01

    Whereas the ultimate world supply of energy minerals--defined as fossil fuels and fissile materials--is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. Genuine shortages of energy minerals are now of a very long-term nature, whereas artificial ones may occur at any time and have a serious effect on the world economy due to the dependence of most OECD countries on imports of energy minerals. This paper argues that events over the last decade will progressively lead to a major, long-lasting transformation of the energy scene worldwide. This transformation will encompass demand, in terms of conservation and efficiency, the supply mix of the various energy minerals, the supply system and the structure of the different energy industries. It is already affecting the role of governments and reaching into the question of national sovereignty, thereby making energy minerals a key area of international relations. In all these respects, this paper concludes that we have entered an era that is quite different from those we have experienced in the past. As well as requiring many new technological innovations, more importantly, attention must be focused on the development of new approaches to meeting the energy industries' capital requirements in the decades ahead--first, because of the changing character of the energy industries and the magnitude of their financial requirements; secondly, because of the nature of the uncertainties with which they are faced; and thirdly, because of the constantly shifting and increasingly complex world capital market conditions.

  12. Hydrochemical and isotopic properties of the mineralized thermal waters of Kirsehir Province, Turkey

    International Nuclear Information System (INIS)

    Unsal, Nail; Celik, Mehmet; Murathan, Atilla M.

    2003-01-01

    The main objective of this study is to determine the chemical and isotopic properties and reservoir temperature of mineralized thermal waters of Kirsehir region, Turkey. Areas which have been included in this study are Savcih, Karakurt, Terme, Bulamach and Mahmutlu. Mahmutlu and Bulamach waters are mainly of the Na-Cl type, Savcih waters are of the Na-HCO 3 -Cl type and Karakurt and Terme waters are mainly of the Ca-HCO 3 type. The Saturation Index values of the waters have been evaluated and mineralized thermal waters were found to be saturated with respect to the calcite and dolomite minerals but undersaturated with respect to the halite mineral in spite of being NaCl type. The results of hydrochemical and environmental isotope ( 18 O, D, 3 H) analyses show that the waters are of meteoric origin and have varying component of relatively old water. The reservoir temperature of the five areas of thermal manifestations fall between 50 and 100 degC. Highest temperatures of about 100 degC have been estimated for Bulamach and Mahmutlu using various chalcedony geothermometers. Mahmutlu mineralized thermal water has longer residence times and higher reservoir temperature compared to other geothermal areas in Kirsehir Province. (author)

  13. Method for the production of solid hydroxides contained in mineral oils, mineral oil-like materials or mineral oil-containing materials and uses of products thus obtained. Verfahren zur Herstellung von Mineraloele, mineraloelaehnliche Stoffe oder mineraloelhaltige Stoffe enthaltenden festen Hydroxiden sowie die Verwendung danach erhaltener Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Boelsing, F

    1975-07-29

    A method has been developed which permits mineral oils, mineral oil-like substances or mineral oil-containing substances (eg waste oil) to be separated in powder form, even when these substance are present in a continuous phase with water (for example, oil slurries). A compound (eg. line) which forms a hydroxide with water is added, the formed hydroxide then acts as carrier substance. Prerequisite for obtaining the end-product in powdered form is that the homogeneous mixing of the oil-containing substance and hydroxide-forming substance takes place at a faster rate than the necessary auxilliary reaction, namely hydroxide formation, and further that water in present in at least stoichiometric quantities. The powdered end-product finds numerous applications eg. road construction, soil conditioning and compacting, recultivation measures in cement manufacture, and others.

  14. Discussion on causes and geochemical Characteristics of lamprophyre with uranium mineralization at the west of Mianning country, Sichuan Province

    International Nuclear Information System (INIS)

    Sun Yue; Li Juchu; Ding Jun; Yao Yifeng; Xiang Jie; Wang Zhanyong

    2014-01-01

    Moyite body of middle and late period is filled with normal lamprophyre and lamprophyre of uranium mineralization along cracks of Yan Mountain at the west of Mianning country, Sichuan Province. There are significant differences between the two types of lamprophyre, such as petrological characteristics, output location and scale, radioactive anomalies and geochemical characteristics. The main types of rocks are camptonite, mica-plagioclase lamprophyre and minette. Mineralized lamprophyre belongs to potassic-ultrapotassic lamprophyre according to macro-element analysis, while normal lamprophyre belongs to lamprophyre of calc-alkaline type. The transition elements allocation model are both mantle 'W' type with LILE (K, Rb, Ba) and HFSE (Nb, Ta, Zr, Hf). The rare earth elements allocation model of normal lamprophyre is Rightist LREE with δEu value of 0.73∼0.87. The rare earth elements allocation model of mineralized lamprophyre is 'M' type with δEu value of 0.28∼0.48. It indicates that lamprophyre is the result of partial melting of enriched mantle, and mineralized lamprophyre can be changed obviously by fluid flow. In the area, the type of uranium mineralization is that of vein rock, which is strictly controlled by mineralization lamprophyre, that is a new type of uranium mineralization in China. (authors)

  15. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    Science.gov (United States)

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with

  16. Natural radionuclides in some romanian medicinal mineral water

    Energy Technology Data Exchange (ETDEWEB)

    Botezatu, E.; Iacob, O. [Institute of Public Health, Iasi (Romania)

    2006-07-01

    Radioactive minerals occur irregularly in the bedrock, similar to other minerals and they dissolve easily in water. Bedrock contains naturally occurring radioactivity including uranium, thorium, radium and potassium. The natural radioactivity results from water passing through deposits of naturally occurring radioactive materials.Many mineral water springs are traditionally used as drinking mineral water sources in the area.During the period from 1997 to 2000, we accomplished a study that had as basic objectives the radioacty control of the drinking mineral waters according to existing standards and evaluation of doses to population by ingestion of mineral water (bottled waters commercially available for human intake and some spring waters).For this reason, we were interested in finding out the extent to which these waters can be a natural radiation source. This survey aimed at assessing the radioactive content of these waters and their contribution to the population exposure.The presented data contribute to a national database concerning the natural radioactive content of Romanian mineral waters. A hypothetical person that undergoes a cure of mineral water by ingestion, inhalation and immersion is receiving an average supplementary dose of 3 {mu}Sv over background radiation of 2,512 {mu}Sv.y{sup -1} due to all natural radiation sources in Romania. The contribution of mineral water used in therapeutic purposes to the natural irradiation of population is very slight, almost insignificant. This supports the conclusion that these spring mineral waters can be used without any restrictions for drinking or bathing / washing for medical therapy of ailing persons even other sources of exposure are also taken into account. (N.C.)

  17. Information system of mineral deposits in Slovenia

    Science.gov (United States)

    Hribernik, K.; Rokavec, D.; Šinigioj, J.; Šolar, S.

    2010-03-01

    At the Geologic Survey of Slovenia the need for complex overview and control of the deposits of available non-metallic mineral raw materials and of their exploitations became urgent. In the framework of the Geologic Information System we established the Database of non-metallic mineral deposits comprising all important data of deposits and concessionars. Relational database is built with program package MS Access, but in year 2008 we plan to transfer it on SQL server. In the evidence there is 272 deposits and 200 concessionars. The mineral resources information system of Slovenia, which was started back in 2002, consists of two integrated parts, mentioned relational database of mineral deposits, which relates information in tabular way so that rules of relational algebra can be applied, and geographic information system (GIS), which relates spatial information of deposits. . The complex relationships between objects and the concepts of normalized data structures, lead to the practical informative and useful data model, transparent to the user and to better decision-making by allowing future scenarios to be developed and inspected. Computerized storage, and display system is as already said, developed and managed under the support of Geological Survey of Slovenia, which conducts research on the occurrence, quality, quantity, and availability of mineral resources in order to help the Nation make informed decisions using earth-science information. Information about deposit is stored in records in approximately hundred data fields. A numeric record number uniquely identifies each site. The data fields are grouped under principal categories. Each record comprise elementary data of deposit (name, type, location, prospect, rock), administrative data (concessionar, number of decree in official paper, object of decree, number of contract and its duration) and data of mineral resource produced amount and size of exploration area). The data can also be searched, sorted and

  18. A process for reducing rocks and concentrating heavy minerals

    Science.gov (United States)

    Strong, Thomas R.; Driscoll, Rhonda L.

    2016-03-30

    To obtain minerals suitable for age-dating and other analyses, it is necessary to first reduce the mineral-bearing rock to a fine, sand-like consistency. Reducing whole rock requires crushing, grinding, and sieving. Ideally, the reduced material should range in size from 80- to 270-mesh (an opening between wires in a sieve). The openings in an 80-mesh sieve are equal to 0.007 inches, 0.177 millimeters, or 177 micrometers. This size range ensures that compound grains are mostly disaggregated and that grains, in general, are dimensionally similar. This range also improves the segregation rate of conspicuous to extremely small individual heavy mineral grains.

  19. Influence of glutamic acid enantiomers on C-mineralization.

    Science.gov (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  20. MicroCT study on the enamel mineral density of primary molars

    NARCIS (Netherlands)

    Elfrink, M.E.C.; Kalin, K.; van Ruijven, L.J.; ten Cate, J.M.; Veerkamp, J.S.J.

    2016-01-01

    Aim The aim of this study is to report on the mineral density of the enamel of primary molars related to the age of the child and to compare the mineral density of sound and carious enamel in those molars. Materials and methods This study included 23 children and 41 extracted primary molars. The

  1. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  2. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    International Nuclear Information System (INIS)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-01-01

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  3. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Oliver [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Karlsruhe Institute of Technology, Institute for Geography and Geoecology, Adenauerring 20, 76131 Karlsruhe (Germany); Bayer, Peter, E-mail: bayer@erdw.ethz.ch [Swiss Federal Institute of Technology Zurich, Geological Institute, Sonneggstrasse 5, 8092 Zurich (Switzerland); Juraske, Ronnie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Verones, Francesca [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Hellweg, Stefanie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland)

    2014-10-15

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  4. The study of mineral content in Thalictrum foetidum L. herb and roots

    Directory of Open Access Journals (Sweden)

    E. V. Savelieva

    2016-04-01

    Full Text Available Aim. The physiological role of mineral substances is extremely important for human’s organism. It is necessary to maintain constantly the required level of irreplaceable macro- and microelements in organism, which are part of food products, mineral or mineral-vitamin complexes, medical plants and drugs on their basis. Methods and results. With the purpose to expand information about chemical composition of raw material, the qualitative composition and quantitative content of macro- and microelements in Thalictrum foetidum L. herb and roots has been determined. The atomic emission spectroscopy method has been used for research. The content of 15 macro- and microelements has been determined in Thalictrum foetidum L. herb and roots. Conclusions. Analyzing the general content of elements in raw material of Thalictrum foetidum L., sufficiently high content of neurogenic macro- and microelements (in particular, manganese, magnesium, potassium, and molybdenum has been noted. This fact makes herbal material promising for subsequent phytochemical and pharmacological research, and it can be used for new neurogenic drugs creation.

  5. Pressure solution of minerals in quartz-type buffer materials

    International Nuclear Information System (INIS)

    Erlstroem, M.

    1986-12-01

    Two samples, pure quartz sand and a sand-bentonite (10%) mixture, were tested under conditions of high pressure (200 bar) and temperature (115 0 C). The experiment was carried out over a period of 70 days. A series of thin slides were prepared on a resin embedded sample at the end of the test period. A microscopical study was performed as to obtain data concerning the effects of pressure and temperature. It showed that no pressure solution had taken place in the pure quartz sand. However, the individual grains had been severely fractured, thus causing significant internal sedimentation. The mixed sample showed that the clay component coated the quartz grains and significantly decreased the effect of stress in the grains by having a cushioning effect. Relative grain movement was facilitated by the clay, by which the grains rotated and slipped into stable positions with large contact areas and low contact stresses. This probably minimized pressure solution. However, a few contact regions indicated the presence of precipitated silica. The investigation shows no definite evidence of pressure solution after an experiment duration of 70 days. Since the effect of solution may be time dependent at the applied temperature, it is recommended that further experiments be conducted at higher effective and porewater pressures but still at 115 0 C. (orig.)

  6. Periapical tissue response after use of intermediate restorative material, gutta-percha, reinforced zinc oxide cement, and mineral trioxide aggregate as retrograde root-end filling materials: a histologic study in dogs.

    Science.gov (United States)

    Wälivaara, Dan-Åke; Abrahamsson, Peter; Isaksson, Sten; Salata, Luiz Antonio; Sennerby, Lars; Dahlin, Christer

    2012-09-01

    To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  8. N,O-Type Carborane-Based Materials

    Directory of Open Access Journals (Sweden)

    José Giner Planas

    2016-05-01

    Full Text Available This review summarizes the synthesis and coordination chemistry of a series of carboranyl ligands containing N,O donors. Such carborane-based ligands are scarcely reported in the literature when compared to other heteroatom-containing donors. The synthetic routes for metal complexes of these N,O-type carborane ligands are summarized and the properties of such complexes are described in detail. Particular attention is paid to the effect that the incorporation of carboranes has into the coordination chemistry of the otherwise carbon-based ligands and the properties of such materials. The reported complexes show a variety of properties such as those used in magnetic, chiroptical, nonlinear optical, catalytic and biomedical applications.

  9. Preliminary report about minerals raw materials[Uranium prospection in Uruguay]; Informe preliminar sobre materias primas minerales

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, J

    1965-07-01

    The group of experts entrusted to construct the bases to study the mineral matters has established priorities for the development of mineral resources during the next ten years: 1) aerial photography, 2) geological map, 3) mechanisms for the exploitation, 4) budget.

  10. Functional grading of mineral and collagen in the attachment of tendon to bone.

    Science.gov (United States)

    Genin, Guy M; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D; Marquez, Pablo J; Thomopoulos, Stavros

    2009-08-19

    Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

  11. Development mineral insulated cables for nuclear instrumentation of reactors

    International Nuclear Information System (INIS)

    Calvo, W.A.P.; Hess Junior, A.; Brito Maciel, R. de

    1990-01-01

    In-core and out-of-core neutron detectors for reactor and safety control systems are usually connected by means of mineral insulated cables. The electrical signal, either a pulse or a current, is transmitted along the cable at high temperature, pressure and radiation and should not be influenced by electromagnetic interfereces from the environment. In this paper it is presented the result of the analysis of the mechanical and electrical properties of several types of mineral insulated cables and also the design, manufacture, sealing, cable ends and their applications to nuclear detectors of various types. (author) [pt

  12. Process for continuous distillation of bituminous minerals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Marie, J J

    1923-01-26

    An apparatus is described for operating the process, in which the petroleum-bearing asphaltic or bituminous minerals are charged to the upper part of a vertical furnace with a lining of refractory material and varying sections; air is necessary for combustion and inert gas is necessary to regulate this combustion and to remove the hydrocarbons being blown into the lower part of the furnace; the hydrocarbons in vapor state or gases being removed are received in the condensers where they are deposited in the liquid state; the liquid from the condensers is next centrifuged to give oils essentially like natural petroleum, leaving as residue solid hydrocarbons and entrained mineral; the minerals treated are removed by gravity at the bottom of the furnace.

  13. Effect of Mineral and Humic Substances on Tailing Soil Properties and Nutrient Uptake by Pennisetum purpureum Schumach

    Directory of Open Access Journals (Sweden)

    Adhe Phoppy Wira Etika

    2015-05-01

    Full Text Available Tin mining produces a by-product sand tailing from soil leaching with characteristic low pH and total organic carbon, and can be reclaimed by providing a suitable ameliorant. When available in situ, ameliorant materials can be economically used as they are required in large amounts. Fortunately, Bangka Belitung has sample stock of such kaolinite-rich minerals that can be utilized for improving soil chemical properties. Extracted organic materials, such as humic substances, can also be utilized as they influence the complex soil reactions, and promote plant growth. Thus, this study aimed to assess the effects of mineral, humic materials and interaction of both material on soil chemical properties and nutrient uptake of Pennisetum purpureum Schumach. A completely randomized design with 2 factors and 3 replications each was employed. Factor 1 was mineral matter is 0; 420; 840; 1.260 Mg ha-1 while Factor 2 was humic material is 0; 0.46; 0.92; 1.38 kg C ha-1. Air-dried samples of tailing were applied with oil palm compost then mixed evenly with mineral and humic materials. Penissetum purpureum Schumach was planted after 4 weeks incubation, and maintained for another 4 weeks. The results demonstrated that the addition of mineral matter significantly increased soil organic carbon content, total N, exchangeable K, Fe, Mn and boosted nutrient - total Ca, Mg and Mn – uptake of the plant. But the application of humic material increased only soil organic carbon content. The interaction of both materials only lowered soil pH.

  14. Cu-Ag Besshi type volcanogenic massive sulfide mineralization in the Late Cretaceous volcano- sedimentary sequence: the case of Garmabe Paein deposit, southeast of Shahrood

    Directory of Open Access Journals (Sweden)

    Majid Tashi

    2017-07-01

    Full Text Available Introduction Iran hosts numerous types of Volcanogenic massive sulfide (VMS deposits that occur within different tectonic assemblages and have formed at discrete time periods (Mousivand et al. 2008. The Sabzevar zone hosts several VMS deposits including the Nudeh Cu-Ag deposit (Maghfouri, 2012 and some deposits in the Kharturan area (Tashi et al., 2014, and the Kharturan area locates in the Sabzevar subzone of the Central East Iranian Microcontinent. The Sabzevar subzone mainly involves Mesozoic and Cenozoic rock unites. The Late Cretaceous ophiolite mellanges and volcano-sedimentary sequences have high extension in the Subzone. Based on Rossetti (Rossetti et al. 2010, the Cretaceous rock units were formed in a back-arc setting due to subduction of the Neo-Tethyan oceanic crust beneath the Iranian plate. The exposed rock units of the Kharturan area from bottom to top are dominated by Early Cretaceous, orbitolina-bearing massive limestone, dacitic-andesitic volcanics and related volcaniclastic rocks٫ chert and radiolarite and Late Cretaceous globotrunkana- bearing limestone, paleocene polygenic conglomerate consisting of the Cretaceous volcanics and limestone pebbles (equal to the Kerman conglomerate, and Pliocene weakly-cemented polygenic conglomerate horizon. The Garmabe Paein copper-silver deposit and the Asbkeshan deposit and a few occurrences, are located at 290 km southeast of Shahrood and they have occurred within the Upper Cretaceous volcano-sedimentary sequence in the Sabzevar subzone. The aim of this study is to discuss the genesis of the Garmabe Paein deposit based on geological, textural and structural, mineralogical and geochemical evidence. Materials and methods A field study and sampling was performed during the year 2013. During the field observations, 94 rock samples were collected from the study area, and 45 thin sections were prepared and studied using a polarizing microscope. Also, 5 samples for the XRD method, 21 samples for

  15. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  16. Injury experience in metallic mineral mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  17. Injury experience in metallic mineral mining, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  18. Using ICP and micro-PIXE to investigate possible differences in the mineral composition of genetically modified versus wild-type sorghum grain

    Science.gov (United States)

    Ndimba, R.; Cloete, K.; Mehlo, L.; Kossmann, J.; Mtshali, C.; Pineda-Vargas, C.

    2017-08-01

    In the present study, possible differences in the mineral composition of transgenic versus non-transgenic sorghum grains were investigated using inductively coupled atomic emission spectroscopy (ICP-AES); and, in-tissue elemental mapping by micro Proton-Induced X-ray Emission (micro-PIXE) analysis. ICP AES was used to analyse the bulk mineral content of the wholegrain flour derived from each genotype; whilst micro-PIXE was used to interrogate localised differences in mineral composition specific to certain areas of the grain, such as the bran layer and the central endosperm tissue. According to the results obtained, no significant difference in the average Fe, Zn or Ca content was found to differentiate the transgenic from the wild-type grain using ICP-AES. However, using micro-PIXE, a significant reduction in zinc could be detected in the bran layer of the transgenic grains relative to wild-type. Although it is difficult to draw firm conclusions, as a result of the small sample size used in this study, micro-PIXE has nonetheless proven itself as a useful technique for highlighting the possibility that there may be reduced levels of zinc accumulation in the bran layer of the transgenic grains. Given that the genetic modification targets proteins that are highly concentrated in certain parts of the bran tissue, it seems plausible that the reduced levels of zinc may be an unintended consequence of the silencing of kafirin proteins. Although no immediate health or nutritional concerns emerge from this preliminary finding, it is noted that zinc plays an important biological role within this part of the grain as a structural stabiliser and antioxidant factor. Further study is therefore needed to assess more definitively the extent of the apparent localised reduction in zinc in the transgenic grains and how this may affect other important grain quality characteristics.

  19. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  20. Raman and Photoluminescence Spectroscopy in Mineral Identification

    Science.gov (United States)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.