WorldWideScience

Sample records for mineland hydrology hydraulics

  1. Synthesis of Hydrologic and Hydraulic Impacts : Technical Report

    Science.gov (United States)

    2012-08-01

    A substantial portion of the cost of highway projects (approximately 40%, according to one in-house TxDOT : estimate) is for drainage infrastructure, which is intended to minimize any adverse hydrologic and hydraulic : (H&H) impacts of the project. Y...

  2. North American Bats and Mines Project: A cooperative approach for integrating bat conservation and mine-land reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Ducummon, S.L. [Bat Conservation International, Austin, TX (United States)

    1997-12-31

    Inactive underground mines now provide essential habitat for more than half of North America`s 44 bat species, including some of the largest remaining populations. Thousands of abandoned mines have already been closed or are slated for safety closures, and many are destroyed during renewed mining in historic districts. The available evidence suggests that millions of bats have already been lost due to these closures. Bats are primary predators of night-flying insects that cost American farmers and foresters billions of dollars annually, therefore, threats to bat survival are cause for serious concern. Fortunately, mine closure methods exist that protect both bats and humans. Bat Conservation International (BCI) and the USDI-Bureau of Land Management founded the North American Bats and Mines Project to provide national leadership and coordination to minimize the loss of mine-roosting bats. This partnership has involved federal and state mine-land and wildlife managers and the mining industry. BCI has trained hundreds of mine-land and wildlife managers nationwide in mine assessment techniques for bats and bat-compatible closure methods, published technical information on bats and mine-land management, presented papers on bats and mines at national mining and wildlife conferences, and collaborated with numerous federal, state, and private partners to protect some of the most important mine-roosting bat populations. Our new mining industry initiative, Mining for Habitat, is designed to develop bat habitat conservation and enhancement plans for active mining operations. It includes the creation of cost-effective artificial underground bat roosts using surplus mining materials such as old mine-truck tires and culverts buried beneath waste rock.

  3. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    Science.gov (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  4. Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003

    Science.gov (United States)

    Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.

    2003-01-01

    Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.

  5. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks

  6. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    Science.gov (United States)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  7. Hydrologic and hydraulic modelling of the Nyl River floodplain Part 3 ...

    African Journals Online (AJOL)

    The ecological functioning of the Nyl River floodplain in the Limpopo Province of South Africa depends on water supplied by catchments which are experiencing continuing water resource development. Hydrological and hydraulic models have been produced to assist in future planning by simulating the effects of ...

  8. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  9. HYDROLOGIC AND HYDRAULIC MODELLING INTEGRATED WITH GIS: A STUDY OF THE ACARAÚ RIVER BASIN – CE

    Directory of Open Access Journals (Sweden)

    Samuellson Lopes Cabral

    2014-01-01

    Full Text Available The paper presents a case study integrating hydrologic models, hydraulic models and a geographic information system (GIS to delineate flooded areas in the medium-sized Acaraú River Basin in Ceará State, Brazil. The computational tools used were HEC-HMS for hydrologic modelling, HEC-RAS for hydraulic modelling and HEC-GeoRAS for the GIS. The results showed that a substantial portion of the riverine populations of the cities of Sobral, Santana do Acaraú and Groairas were affected by floods. Overall, the flood model satisfactorily represents the affected areas and shows the locations with the greatest flooding.

  10. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    Science.gov (United States)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  11. Natural hazard management high education: laboratory of hydrologic and hydraulic risk management and applied geomorphology

    Science.gov (United States)

    Giosa, L.; Margiotta, M. R.; Sdao, F.; Sole, A.; Albano, R.; Cappa, G.; Giammatteo, C.; Pagliuca, R.; Piccolo, G.; Statuto, D.

    2009-04-01

    The Environmental Engineering Faculty of University of Basilicata have higher-level course for students in the field of natural hazard. The curriculum provides expertise in the field of prediction, prevention and management of earthquake risk, hydrologic-hydraulic risk, and geomorphological risk. These skills will contribute to the training of specialists, as well as having a thorough knowledge of the genesis and the phenomenology of natural risks, know how to interpret, evaluate and monitor the dynamic of environment and of territory. In addition to basic training in the fields of mathematics and physics, the course of study provides specific lessons relating to seismic and structural dynamics of land, environmental and computational hydraulics, hydrology and applied hydrogeology. In particular in this course there are organized two connected examination arguments: Laboratory of hydrologic and hydraulic risk management and Applied geomorphology. These course foresee the development and resolution of natural hazard problems through the study of a real natural disaster. In the last year, the work project has regarded the collapse of two decantation basins of fluorspar, extracted from some mines in Stava Valley, 19 July 1985, northern Italy. During the development of the course, data and event information has been collected, a guided tour to the places of the disaster has been organized, and finally the application of mathematical models to simulate the disaster and analysis of the results has been carried out. The student work has been presented in a public workshop.

  12. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  13. Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models

    NARCIS (Netherlands)

    Voortman, B.R.; Bartholomeus, R.P.; Bodegom, van P.M.; Gooren, H.P.A.; Zee, van der S.E.A.T.M.; Witte, J.P.M.

    2014-01-01

    Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic

  14. Hydrology and Hydraulic Properties of a Bedded Evaporite Formation

    International Nuclear Information System (INIS)

    BEAUHEIM, RICHARD L.; ROBERTS, RANDALL M.

    2000-01-01

    The Permian Salado Formation in the Delaware Basin of New Mexico is an extensively studied evaporite deposit because it is the host formation for the Waste Isolation Pilot Plant, a repository for transuranic wastes. Geologic and hydrologic studies of the Salado conducted since the mid-1970's have led to the development of a conceptual model of the hydrogeology of the formation that involves far-field permeability in anhydrite layers and at least some impure halite layers. Pure halite layers and some impure halite layers may not possess an interconnected pore network adequate to provide permeability. Pore pressures are probably very close to lithostatic pressure. In the near field around an excavation, dilation, creep, and shear have created and/or enhanced permeability and decreased pore pressure. Whether flow occurs in the far field under natural gradients or only after some threshold gradient is reached is unknown. If far-field flow does occur, mean pore velocities are probably on the order of a meter per hundreds of thousands to tens of millions of years. Flow dimensions inferred from most hydraulic-test responses are subradial, which is believed to reflect channeling of flow through fracture networks, or portions of fractures, that occupy a diminishing proportion of the radially available space, or through percolation networks that are not ''saturated'' (fully interconnected). This is probably related to the directional nature of the permeability created or enhanced by excavation effects. Inferred values of permeability cannot be separated from their associated flow dimensions. Therefore, numerical models of flow and transport should include heterogeneity that is structured to provide the same flow dimensions as are observed in hydraulic tests. Modeling of the Salado Formation around the WIPP repository should also include coupling between hydraulic properties and the evolving stress field because hydraulic properties change as the stress field changes

  15. Coupling hydrologic and hydraulic models to take into consideration retention effects on extreme peak discharges in Switzerland

    Science.gov (United States)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2015-04-01

    Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.

  16. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  17. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment

    Science.gov (United States)

    Ebel, Brian A.; Martin, Deborah

    2017-01-01

    Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed-scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run-off and erosion, existing quantitative relations to predict Kfsrecovery with time since wildfire are lacking. Here, we conduct meta-analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3-year duration. The meta-analyses focus on fitting 2 quantitative relations (linear and non-linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil-water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.

  18. Hydraulic and hydrological aspects of an evapotranspiration-constructed wetland combined system for household greywater treatment.

    Science.gov (United States)

    Filho, Fernando Jorge C Magalhães; Sobrinho, Teodorico Alves; Steffen, Jorge L; Arias, Carlos A; Paulo, Paula L

    2018-05-12

    Constructed wetlands systems demand preliminary and primary treatment to remove solids present in greywater (GW) to avoid or reduce clogging processes. The current paper aims to assess hydraulic and hydrological behavior in an improved constructed wetland system, which has a built-in anaerobic digestion chamber (AnC), GW is distributed to the evapotranspiration and treatment tank (CEvaT), combined with a subsurface horizontal flow constructed wetland (SSHF-CW). The results show that both the plants present in the units and the AnC improve hydraulic and volumetric efficiency, decrease short-circuiting and improve mixing conditions in the system. Moreover, the hydraulic conductivity measured on-site indicates that the presence of plants in the system and the flow distribution pattern provided by the AnC might reduce clogging in the SSHF-CW. It is observed that rainfall enables salt elimination, thus increasing evapotranspiration (ET), which promotes effluent reduction and enables the system to have zero discharge when reuse is unfeasible.

  19. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  20. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  1. A Combined Hydrological and Hydraulic Model for Flood Prediction in Vietnam Applied to the Huong River Basin as a Test Case Study

    Directory of Open Access Journals (Sweden)

    Dang Thanh Mai

    2017-11-01

    Full Text Available A combined hydrological and hydraulic model is presented for flood prediction in Vietnam. This model is applied to the Huong river basin as a test case study. Observed flood flows and water surface levels of the 2002–2005 flood seasons are used for model calibration, and those of the 2006–2007 flood seasons are used for validation of the model. The physically based distributed hydrologic model WetSpa is used for predicting the generation and propagation of flood flows in the mountainous upper sub-basins, and proves to predict flood flows accurately. The Hydrologic Engineering Center River Analysis System (HEC-RAS hydraulic model is applied to simulate flood flows and inundation levels in the downstream floodplain, and also proves to predict water levels accurately. The predicted water profiles are used for mapping of inundations in the floodplain. The model may be useful in developing flood forecasting and early warning systems to mitigate losses due to flooding in Vietnam.

  2. Airborne laser scanning terrain and land cover models as basis for hydrological and hydraulic studies

    International Nuclear Information System (INIS)

    Vetter, M.

    2013-01-01

    The high level of topographic details is the main advantage using ALS data, which also causes many problems in different hydrological and hydraulic applications. So, the detailed topographic information can have a negative impact on the quality of hydrological and hydraulic applications. Besides the high level of geometric details, the intensity values as well as the full vertical point distribution within the 3D point cloud is available. It is shown, based on selected applications, how to minimize the negative effects of topographic details and how to extract specific parameters for hydrological and hydraulic purposes directly from ALS data by using geoinformation and remote sensing methods. The main focus is on improving existing methods to extract hydraulic and hydrological features from the ALS data with a high level of automatization. The first part deals with Laser Remote Sensing technology in general. Besides the measurement principles, different laser platforms and common gridded derivatives are presented. Finally, recent technology trends are discussed. Within the first chapter a workflow to optimize a 1m-DTM for drainage network delineation is presented. Mostly coarse DTMs, smoothed by using average filters, are used. Where detailed topographic features and roads are removed by the DTM smoothing. Therefore, the 1m spatial resolution of the ALS DTM is no longer available for the drainage delineation. By removing anthropogenic structures, mainly roads, a conditioned DTM is produced without the negative influences of the roads from the original 1m-DTM on the flow accumulation. The resulting drainage network computed on the conditioned 1m-DTM show an increase in delineation accuracy of up to 9% in correctness and completeness compared to the original 1m-DTM or a coarse resolution 5m-DTM as basis for flow accumulation. The second methodological chapter is about the delineation of water surface areas using ALS geometric and radiometric data derived from the

  3. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  4. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Science.gov (United States)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  5. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2016-05-01

    Full Text Available Geographic Information Systems (GIS are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  6. Cracking up (and down): Linking multi-domain hydraulic properties with multi-scale hydrological processes in shrink-swell soils

    Science.gov (United States)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2017-12-01

    Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.

  7. Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2017-01-01

    Roč. 31, č. 6 (2017), s. 1438-1452 ISSN 0885-6087 R&D Projects: GA ČR GA16-05665S Institutional support: RVO:67985874 Keywords : hydrological modelling * pore-size distribution * saturated hydraulic conductivity * seasonal variability * soil hydraulic parameters * soil moisture Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.014, year: 2016

  8. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  9. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    Science.gov (United States)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  10. Isotope methods in hydrology

    International Nuclear Information System (INIS)

    Moser, H.; Rauert, W.

    1980-01-01

    Of the investigation methods used in hydrology, tracer methods hold a special place as they are the only ones which give direct insight into the movement and distribution processes taking place in surface and ground waters. Besides the labelling of water with salts and dyes, as in the past, in recent years the use of isotopes in hydrology, in water research and use, in ground-water protection and in hydraulic engineering has increased. This by no means replaces proven methods of hydrological investigation but tends rather to complement and expand them through inter-disciplinary cooperation. The book offers a general introduction to the application of various isotope methods to specific hydrogeological and hydrological problems. The idea is to place the hydrogeologist and the hydrologist in the position to recognize which isotope method will help him solve his particular problem or indeed, make a solution possible at all. He should also be able to recognize what the prerequisites are and what work and expenditure the use of such methods involves. May the book contribute to promoting cooperation between hydrogeologists, hydrologists, hydraulic engineers and isotope specialists, and thus supplement proven methods of investigation in hydrological research and water utilization and protection wherever the use of isotope methods proves to be of advantage. (orig./HP) [de

  11. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Science.gov (United States)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and

  12. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    International Nuclear Information System (INIS)

    Spane, Frank A; Thorne, Paul D; Newcomer, Darrell R

    2001-01-01

    This report provides the results of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, vertical flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed

  13. HYDRAULICS, SHELBY COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDRAULICS, MEADE COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. Hydrologic conditions controlling runoff generation immediately after wildfire

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.; Martin, Deborah A.

    2012-01-01

    We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.

  16. Stochastic fusion of dynamic hydrological and geophysical data for estimating hydraulic conductivities: insights and observations (Invited)

    Science.gov (United States)

    Irving, J. D.; Singha, K.

    2010-12-01

    Traditionally, hydrological measurements have been used to estimate subsurface properties controlling groundwater flow and contaminant transport. However, such measurements are limited by their support volume and expense. A considerable benefit of geophysical measurements is that they provide a degree of spatial coverage and resolution that are unattainable with other methods, and the data can be acquired in a cost-effective manner. In particular, dynamic geophysical data allow us to indirectly observe changes in hydrological state variables as flow and transport processes occur, and can thus provide a link to hydrological properties when coupled with a process-based model. Stochastic fusion of these two data types offers the potential to provide not only estimates of subsurface hydrological properties, but also a quantification of their uncertainty. This information is critical when considering the end use of the data, which may be for groundwater remediation and management decision making. Here, we examine a number of key issues in the stochastic fusion of dynamic hydrogeophysical data. We focus our attention on the specific problem of integrating time-lapse crosshole electrical resistivity measurements and saline tracer-test concentration data in order to estimate the spatial distribution of hydraulic conductivity (K). To assimilate the geophysical and hydrological measurements in a stochastic manner, we use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology. This provides multiple realizations of the subsurface K field that are consistent with the measured data and assumptions regarding model structure and data errors. To account for incomplete petrophysical knowledge, the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration following the general form of Archie’s law. To make the spatially distributed, fully stochastic inverse problem computationally tractable, we take

  17. Case study: Prioritization strategies for reforestation of minelands to benefit Cerulean Warblers

    Science.gov (United States)

    McDermott, Molly E.; Shumar, Matthew B.; Wood, Petra Bohall

    2013-01-01

    The central Appalachian landscape is being heavily altered by surface coal mining. The practice of Mountaintop Removal/Valley Fill (MTRVF) mining has transformed large areas of mature forest to non-forest and created much forest edge, affecting habitat quality for mature forest wildlife. The Appalachian Regional Reforestation Initiative is working to restore mined areas to native hardwood forest conditions, and strategies are needed to prioritize restoration efforts for wildlife. We present mineland reforestation guidelines for the imperiled Cerulean Warbler, considered a useful umbrella species, in its breeding range. In 2009, we surveyed forest predicted to have Cerulean Warblers near mined areas in the MTRVF region of West Virginia and Kentucky. We visited 36 transect routes and completed songbird surveys on 151 points along these routes. Cerulean Warblers were present at points with fewer large-scale canopy disturbances and more mature oak-hickory forest. We tested the accuracy of a predictive map for this species and demonstrated that it can be useful to guide reforestation efforts. We then developed a map of hot spot locations that can be used to determine potential habitat suitability. Restoration efforts would have greatest benefit for Cerulean Warblers and other mature forest birds if concentrated near a relative-abundance hot spot, on north- and east-facing ridgetops surrounded by mature deciduous forest, and prioritized to reduce edges and connect isolated forest patches. Our multi-scale approach for prioritizing restoration efforts using an umbrella species may be applied to restore habitat impacted by a variety of landscape disturbances.

  18. Flood hydrology and dam-breach hydraulic analyses of four reservoirs in the Black Hills, South Dakota

    Science.gov (United States)

    Hoogestraat, Galen K.

    2011-01-01

    Extensive information about the construction of dams or potential downstream hazards in the event of a dam breach is not available for many small reservoirs within the Black Hills National Forest. In 2009, the U.S. Forest Service identified the need for reconnaissance-level dam-breach assessments for four of these reservoirs within the Black Hills National Forest (Iron Creek, Horsethief, Lakota, and Mitchell Lakes) with the potential to flood downstream structures. Flood hydrology and dam-breach hydraulic analyses for the four selected reservoirs were conducted by the U.S. Geological Survey in cooperation with the U.S. Forest service to estimate the areal extent of downstream inundation. Three high-flow breach scenarios were considered for cases when the dam is in place (overtopped) and when a dam break (failure) occurs: the 100-year recurrence 24-hour precipitation, 500-year recurrence peak flow, and the probable maximum precipitation. Inundation maps were developed that show the estimated extent of downstream floodwaters from simulated scenarios. Simulation results were used to determine the hazard classification of a dam break (high, significant, or low), based primarily on the potential for loss of life or property damage resulting from downstream inundation because of the flood surge.The inflow design floods resulting from the two simulated storm events (100-year 24-hour and probable maximum precipitation) were determined using the U.S. Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). The inflow design flood for the 500-year recurrence peak flow was determined by using regional regression equations developed for streamflow-gaging stations with similar watershed characteristics. The step-backwater hydraulic analysis model, Hydrologic Engineering Center's River Analysis System (HEC-RAS), was used to determine water-surface profiles of in-place and dam-break scenarios for the three inflow design floods that were

  19. Integrated forecast system atmospheric - hydrologic - hydraulic for the Urubamba river basin

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, L [Peruvian National Weather Service, Lima (Peru); Carrillo, M; Diaz, A; Coronado, J; Fano, G [Peruvian National Weather Service, Lima (Peru)

    2004-07-01

    climate model a statistical forecast was developed using Empirical Orthogonal Functions (EOF), this methodology uses the Long Wave Radiation as a predictor for the precipitation occurrence in the study area. This model is based on an atmospheric-ocean teleconnection El NINO 3 region in the central tropical pacific and the observed rainfall over the Andes. The information generated by the atmospheric model was used as input for the Sacramento hydrologic model originally developed by the National Weather Service River Forecast System (NWSRFS) which considers all the historical data (precipitation, flows and evapotranspiration), the model considers a perturbation in the form of a random variable which depends on the standard deviation and the mean, this algorithm allows to have not only one precipitation time series but the double or triple. This is the basis on the hydrologic ensemble forecasting where each precipitation time series generates a flow time series and then using post processing codes we find the probabilistic forecasts of non excedance for different percentage of probability. Finally the hydraulic model used was the HEC-RAS V.3.1 developed by the U.S Army Corps of Engineering which used all the cross sections available in the zone, manning values, contraction and expansion coefficients to convert the forecasted flow data into water level of the Urubamba river in four check points requested by the user: Malvinas, Nuevo Mundo, Sepahua and Maldonadillo. SENAMHI provided of useful information for 2 years and was the result of a multidisciplinary systemic work that joined meteorologists, hydrologists, climatologists and system engineers. The information used by the Regional numerical model RAMS was assimilated from geostationary satellite GOES 8 and automatic stations located in strategic points considering the topography, accessibility, security, extreme rainfall conditions and consequent variability in the levels of the Urubamba river. As a conclusion the work

  20. Integrated forecast system atmospheric-hydrologic-hydraulic for the Urubamba River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, L; Carrillo, M; Diaz, A; Coronado, J; Fano, G [Peruvian National Weather Service, Lima (Peru)

    2006-02-15

    climate model a statistical forecast was developed using Empirical Orthogonal Functions (EOF), this methodology uses the Long Wave Radiation as a predictor for the precipitation occurrence in the study area. This model is based on an atmospheric-ocean teleconnection El Nino 3 region in the central tropical pacific and the observed rainfall over the Andes. The information generated by the atmospheric model was used as input for the Sacramento hydrologic model originally developed by the National Weather Service River Forecast System (NWSRFS) which considers all the historical data (precipitation, flows and evapotranspiration), the model considers a perturbation in the form of a random variable which depends on the standard deviation and the mean, this algorithm allows to have not only one precipitation time series but the double or triple. This is the basis on the hydrologic ensemble forecasting where each precipitation time series generates a flow time series and then using post processing codes we find the probabilistic forecasts of non excedance for different percentage of probability. Finally the hydraulic model used was the HEC-RAS V.3.1 developed by the U.S Army Corps of Engineering which used all the cross sections available in the zone, manning values, contraction and expansion coefficients to convert the forecasted flow data into water level of the Urubamba river in four check points requested by the user: Malvinas, Nuevo Mundo, Sepahua and Maldonadillo. SENAMHI provided of useful information for 2 years and was the result of a multidisciplinary systemic work that joined meteorologists, hydrologists, climatologists and system engineers. The information used by the Regional numerical model RAMS was assimilated from geostationary satellite GOES 8 and automatic stations located in strategic points considering the topography, accessibility, security, extreme rainfall conditions and consequent variability in the levels of the Urubamba river. As a conclusion the work

  1. Combined Hydrologic (AGWA-KINEROS2) and Hydraulic (HEC2) Modeling for Post-Fire Runoff and Inundation Risk Assessment through a Set of Python Tools

    Science.gov (United States)

    Barlow, J. E.; Goodrich, D. C.; Guertin, D. P.; Burns, I. S.

    2016-12-01

    Wildfires in the Western United States can alter landscapes by removing vegetation and changing soil properties. These altered landscapes produce more runoff than pre-fire landscapes which can lead to post-fire flooding that can damage infrastructure and impair natural resources. Resources, structures, historical artifacts and others that could be impacted by increased runoff are considered values at risk. .The Automated Geospatial Watershed Assessment tool (AGWA) allows users to quickly set up and execute the Kinematic Runoff and Erosion model (KINEROS2 or K2) in the ESRI ArcMap environment. The AGWA-K2 workflow leverages the visualization capabilities of GIS to facilitate evaluation of rapid watershed assessments for post-fire planning efforts. High relative change in peak discharge, as simulated by K2, provides a visual and numeric indicator to investigate those channels in the watershed that should be evaluated for more detailed analysis, especially if values at risk are within or near that channel. Modeling inundation extent along a channel would provide more specific guidance about risk along a channel. HEC-2 and HEC-RAS can be used for hydraulic modeling efforts at the reach and river system scale. These models have been used to address flood boundaries and, accordingly, flood risk. However, data collection and organization for hydraulic models can be time consuming and therefore a combined hydrologic-hydraulic modeling approach is not often employed for rapid assessments. A simplified approach could streamline this process and provide managers with a simple workflow and tool to perform a quick risk assessment for a single reach. By focusing on a single reach highlighted by large relative change in peak discharge, data collection efforts can be minimized and the hydraulic computations can be performed to supplement risk analysis. The incorporation of hydraulic analysis through a suite of Python tools (as outlined by HEC-2) with AGWA-K2 will allow more rapid

  2. Results of Detailed Hydrologic Characterization Tests—Fiscal and Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.; Newcomer, Darrell R.

    2008-02-27

    This report provides the results of detailed hydrologic characterization tests conducted within selected Hanford Site wells during fiscal and calendar year 2005. Detailed characterization tests performed included groundwater-flow characterization, barometric response evaluation, slug tests, in-well vertical groundwater-flow assessments, and a single-well tracer and constant-rate pumping test. Hydraulic property estimates obtained from the detailed hydrologic tests include hydraulic conductivity, transmissivity, specific yield, effective porosity, in-well lateral and vertical groundwater-flow velocity, aquifer groundwater-flow velocity, and depth-distribution profiles of hydraulic conductivity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for a site where detailed well testing was performed. Results obtained from these tests provide hydrologic information that supports the needs of Resource Conservation and Recovery Act waste management area characterization as well as sitewide groundwater monitoring and modeling programs. These results also reduce the uncertainty of groundwater-flow conditions at selected locations on the Hanford Site.

  3. The Influence of Hydrologic Parameters on the Hydraulic Efficiency of an Extensive Green Roof in Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Giuseppina Garofalo

    2016-01-01

    Full Text Available In an urban environment, green roofs represent a sustainable solution for mitigating stormwater volumes and hydrograph peaks. So far, many literature studies have investigated the hydraulic efficiency and the subsurface runoff coefficient of green roofs, showing their strong variability according to several factors, including the characteristics of storm events. Furthermore, only few studies have focused on the hydraulic efficiency of green roofs under Mediterranean climate conditions and defined the influencing hydrological parameters on the subsurface runoff coefficient. Nevertheless, for designing purposes, it is crucial to properly assess the subsurface runoff coefficient of a given green roof under specific climate conditions and its influencing factors. This study intends to, firstly, evaluate the subsurface runoff coefficient at daily and event-time scales for a given green roof, through a conceptual model implemented in SWMM. The model was loaded with both daily and 1-min rainfall data from two Mediterranean climate sites, one in Thessaloniki, Greece and one in Cosenza, Italy, respectively. Then, the most influencing hydrological parameters were examined through a statistical regression analysis. The findings show that the daily subsurface runoff coefficient is 0.70 for both sites, while the event-based one is 0.79 with a standard deviation of 0.23 for the site in Cosenza, Italy. The multiple linear regression analysis revealed that the influencing parameters are the rainfall intensity and antecedent dry weather period with a confidence level of 95%. This study demonstrated that, due to the high variability of the subsurface runoff coefficient, the use of a unique value for design purposes is inappropriate and that a preliminary estimation could be obtained as a function of the total rainfall depth and the antecedent dry weather period by using the validated multi-regression relationship which is site specific.

  4. Hydrologic studies within the Pasco Basin

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1982-09-01

    As part of the Basalt Waste Isolation Project (BWIP), hydrologic studies are being performed to provide an evaluation of groundwater systems within the Columbia River Basalt Group. These studies are focused on the Hanford Site, which is located within the Pasco Basin in south-central Washington. Hydrologic studies within the Pasco Basin involve the areal and vertical characterization of hydraulic head, hydrologic properties, and hydrochemical content for the various basalt groundwater systems. Currently, in excess of 150 test intervals have been tested for hydraulic properties, while in excess of 80 horizons have been analyzed for hydrochemical characteristics at about 30 borehole sites within the Pasco Basin. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. Results from numerical modeling are used for evaluating potential waste migration as a function of space and time. In the Pasco Basin, geologic structures influence groundwater flow patterns within basalt aquifer systems. Potentiometric data and hydrochemical evidence collected from recent studies indicate that geologic structures act as areal hydrologic barriers and in some instances, regions of enhanced vertical conductivity. 8 figures

  5. Proceedings of the 1991 national conference on hydraulic engineering

    International Nuclear Information System (INIS)

    Shane, R.M.

    1991-01-01

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  6. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Directory of Open Access Journals (Sweden)

    G. Baroni

    2010-02-01

    Full Text Available Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i compare different methods for determining soil hydraulic parameters and ii evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a laboratory measured retention and hydraulic conductivity data and b field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c Rawls and Brakensiek, d HYPRES, and e ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June – October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter α of the van Genuchten curve. This is reflected in a variability of

  7. Nonstationary Hydrological Frequency Analysis: Theoretical Methods and Application Challenges

    Science.gov (United States)

    Xiong, L.

    2014-12-01

    Because of its great implications in the design and operation of hydraulic structures under changing environments (either climate change or anthropogenic changes), nonstationary hydrological frequency analysis has become so important and essential. Two important achievements have been made in methods. Without adhering to the consistency assumption in the traditional hydrological frequency analysis, the time-varying probability distribution of any hydrological variable can be established by linking the distribution parameters to some covariates such as time or physical variables with the help of some powerful tools like the Generalized Additive Model of Location, Scale and Shape (GAMLSS). With the help of copulas, the multivariate nonstationary hydrological frequency analysis has also become feasible. However, applications of the nonstationary hydrological frequency formula to the design and operation of hydraulic structures for coping with the impacts of changing environments in practice is still faced with many challenges. First, the nonstationary hydrological frequency formulae with time as covariate could only be extrapolated for a very short time period beyond the latest observation time, because such kind of formulae is not physically constrained and the extrapolated outcomes could be unrealistic. There are two physically reasonable methods that can be used for changing environments, one is to directly link the quantiles or the distribution parameters to some measureable physical factors, and the other is to use the derived probability distributions based on hydrological processes. However, both methods are with a certain degree of uncertainty. For the design and operation of hydraulic structures under changing environments, it is recommended that design results of both stationary and nonstationary methods be presented together and compared with each other, to help us understand the potential risks of each method.

  8. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    Science.gov (United States)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  9. Evaluation of climate change impact on extreme hydrological event ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Changes in hydrological extremes will have implications on the design of future hydraulic structures, flood plain development, and water resource management. This study assesses the potential impact of climate change on extreme hydrological events in the Akaki River catchment area in and around Addis Ababa city.

  10. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling: Applications to a watershed in northwest Houston, TX

    Science.gov (United States)

    Gori, A.; Juan, A.; Blessing, R.; Brody, S.; Bedient, P. B.

    2017-12-01

    The FEMA 100 year floodplain serves as the benchmark for characterizing and managing flood risk in the United States. However, it is usually generated by using methodologies that are too simplistic to accurately depict the spatial reality of flood risk, and often fail to consider non-stationary variables such as changing land use conditions or precipitation patterns. The impacts of these limitations are evidenced in Houston, TX, where rainfall-induced flooding has resulted in billions of dollars in commercial and residential damage over the past two decades, much of which has occurred outside of the 100 year floodplain. Specifically, rapid urbanization has drastically increased overland runoff and resulting peak flows, thereby exposing new areas to flood risks. It is therefore crucial to examine the impacts of future land development on floodplain depth and extent in order to develop effective long-term stormwater management and mitigation strategies. This study presents a methodology for characterizing the impacts of future development on flood risk in an urbanizing watershed by integrating land use projection and high-resolution hydrologic / hydraulic modeling. Development projections are generated by identifying historical land use/ land cover change (LULCC) drivers, which are incorporated into an artificial neural network (ANN) to predict development conditions out to 2040. Hydrologic modeling of current and projected land cover conditions is achieved through a physics-based distributed hydrologic model. Finally, a coupled 1D/2D unsteady hydraulic model is used to simulate floodplain depths and extents, and to generate floodplain maps for all considered scenarios. This methodology is applied to the Cypress Creek watershed in northwest Houston, TX, a partially-developed watershed which is expected to rapidly urbanize for the next few decades. The study quantifies floodplain changes (i.e., extent and depth) and the number of impacted residences, and also

  11. A coupled hydrological-hydraulic flood inundation model calibrated using post-event measurements and integrated uncertainty analysis in a poorly gauged Mediterranean basin

    Science.gov (United States)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois

    2017-04-01

    Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.

  12. Water Infiltration and Hydraulic Conductivity in Sandy Cambisols

    DEFF Research Database (Denmark)

    Bens, Oliver; Wahl, Niels Arne; Fischer, Holger

    2006-01-01

    from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any...... of the experimental soils. The results indicate clearly that soils play a crucial role for water retention and therefore, in overland flow prevention. There is a need to have more awareness on the intimate link between the land use and soil properties and their possible effects on flooding.......Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective...

  13. Looking Deeper Into Hydrologic Connectivity and Streamflow Generation: A Groundwater Hydrologist's Perspective.

    Science.gov (United States)

    Gardner, W. P.

    2016-12-01

    In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.

  14. Global operational hydrological forecasts through eWaterCycle

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  15. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...

    Science.gov (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  16. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Science.gov (United States)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  17. Geomorphological and hydrological implications of a given hydraulic geometry relationship, beyond the power-law

    Science.gov (United States)

    Kim, JongChun; Paik, Kyungrock

    2015-04-01

    Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic

  18. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  19. Steponas Kolupaila's contribution to hydrological science development

    Science.gov (United States)

    Valiuškevičius, Gintaras

    2017-08-01

    Steponas Kolupaila (1892-1964) was an important figure in 20th century hydrology and one of the pioneers of scientific water gauging in Europe. His research on the reliability of hydrological data and measurement methods was particularly important and contributed to the development of empirical hydrological calculation methods. Kolupaila was one of the first who standardised water-gauging methods internationally. He created several original hydrological and hydraulic calculation methods (his discharge assessment method for winter period was particularly significant). His innate abilities and frequent travel made Kolupaila a universal specialist in various fields and an active public figure. He revealed his multilayered scientific and cultural experiences in his most famous book, Bibliography of Hydrometry. This book introduced the unique European hydrological-measurement and computation methods to the community of world hydrologists at that time and allowed the development and adaptation of these methods across the world.

  20. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  1. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  2. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    Science.gov (United States)

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  3. Hydrologic test results for the Rattlesnake Ridge interbed and Pomona basalt flow top at Borehole DB-15

    International Nuclear Information System (INIS)

    Strait, S.R.; Brown, W.R.

    1983-07-01

    This report presents results and description of hydrologic test activities for the Rattlesnake Ridge interbed and Pomona basalt flow top at Borehole DB-15. Hydrologic tests conducted include constant discharge air-lift and constant discharge submersible pumping tests. An observed hydraulic head for the test interval was 409 ± 1 feet above mean sea level. Transmissivity values determined from hydrologic tests performed, ranged between 493 and 469 ft 2 /day. The best estimate of transmissivity is 480 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 56 feet is 8.6 ft/day. 4 refs., 7 figs., 2 tabs

  4. The impact of green roof ageing on substrate characteristics and hydrological performance

    Science.gov (United States)

    De-Ville, Simon; Menon, Manoj; Jia, Xiaodong; Reed, George; Stovin, Virginia

    2017-04-01

    Green roofs contribute to stormwater management through the retention of rainfall and the detention of runoff. However, there is very limited knowledge concerning the evolution of green roof hydrological performance with system age. This study presents a non-invasive technique which allows for repeatable determination of key substrate characteristics over time, and evaluates the impact of observed substrate changes on hydrological performance. The physical properties of 12 green roof substrate cores have been evaluated using non-invasive X-ray microtomography (XMT) imaging. The cores comprised three replicates of two contrasting substrate types at two different ages: unused virgin samples; and 5-year-old samples from existing green roof test beds. Whilst significant structural differences (density, pore and particle sizes, tortuosity) between virgin and aged samples of a crushed brick substrate were observed, these differences did not significantly affect hydrological characteristics (maximum water holding capacity and saturated hydraulic conductivity). A contrasting substrate based upon a light expanded clay aggregate experienced increases in the number of fine particles and pores over time, which led to increases in maximum water holding capacity of 7%. In both substrates, the saturated hydraulic conductivity estimated from the XMT images was lower in aged compared with virgin samples. Comparisons between physically-derived and XMT-derived substrate hydrological properties showed that similar values and trends in the data were identified, confirming the suitability of the non-invasive XMT technique for monitoring changes in engineered substrates over time. The observed effects of ageing on hydrological performance were modelled as two distinct hydrological processes, retention and detention. Retention performance was determined via a moisture-flux model using physically-derived values of virgin and aged maximum water holding capacity. Increased water holding

  5. Isotope-hydrological models and calculational methods for investigation of groundwater flow

    International Nuclear Information System (INIS)

    Marton, L.

    1982-01-01

    Recharge of groundwater through a semi-confining bed is a typical hydrogeological phenomenon in quaternary deposits which are elevated to a lesser or greater degree above the surroundings. A simple hydrological model has been introduced in which the aquifer is recharged only by precipitation through a semi-permeable layer. For applying the model, it is necessary to know the age of the water or the radioisotope concentrations in some sections of the ground-water flow system. On the basis of the age, the hydraulic conductivity of the aquifer and of the semiconfining bed and the steady rate of infiltration can be calculated. Other hydraulic parameters can be determined with the help of a mathemathical model worked out by Freeze and Witherspoon. The hydrological and mathemathical models are inversely used and are complementary. The reliability and applicability of the hydrological model has been proved in practice and good results were gained in hydrogeological research carried out in Hungary. (author)

  6. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  7. Estimation of soil hydraulic parameters by integrated hydrogeophysical inversion of time-lapse GPR data measured at Selhausen, Germany

    KAUST Repository

    Jadoon, Khan; Weihermü ller, Lutz; Verrecken, Harry; Lambot, Sé bastien

    2012-01-01

    sensitive to the near-surface water content profile and dynamics, and are thus related to soil hydraulic parameters, such as the parameters of the hydraulic conductivity and water retention functions. The hydrological simulator HYDRUS 1-D was used with a two

  8. Understanding the roles of ligand promoted dissolution, water column saturation and hydrological properties on intense basalt weathering using reactive transport and watershed-scale hydrologic modeling

    Science.gov (United States)

    Perez Fodich, A.; Walter, M. T.; Derry, L. A.

    2016-12-01

    The interaction of rocks with rainwater generates physical and chemical changes, which ultimately culminates in soil development. The addition of catalyzers such as plants, atmospheric gases and hydrological properties will result in more intense and/or faster weathering transformations. The intensity of weathering across the Island of Hawaii is strongly correlated with exposure age and time-integrated precipitation. Intense weathering has resulted from interaction between a thermodynamically unstable lithology, high water/rock ratios, atmospheric gases (O2, CO2) and biota as an organic acid and CO2 producer. To further investigate the role of different weathering agents we have developed 1-D reactive transport models (RTM) to understand mineralogical and fluid chemistry changes in the initially basaltic porous media. The initial meso-scale heterogeneity of porosity makes it difficult for RTMs to capture changes in runoff/groundwater partitioning. Therefore, hydraulic properties (hydraulic conductivity and aquifer depth) are modeled as a watershed parameter appropriate for this system where sub-surface hydraulic data is scarce(1). Initial results agree with field data in a broad sense: different rainfall regimes and timescales show depletion of mobile cations, increasingly low pH, congruent dissolution of olivine and pyroxene, incongruent dissolution of plagioclase and basaltic glass, precipitation of non-crystalline allophane and ferrihydrite, and porosity changes due to dissolution and precipitation of minerals; ultimately Al and Fe are also exported from the system. RTM is used to examine the roles of unsaturation in the soil profile, ligand promoted dissolution of Al- and Fe-bearing phases, and Fe-oxide precipitation at the outcrop scale. Also, we aim to test the use of recession flow analysis to model watershed-scale hydrological properties to extrapolate changes in the runoff/groundwater partitioning. The coupling between weathering processes and hydrologic

  9. Rainfall-runoff and hydraulic modelling integration in the Blatina River

    International Nuclear Information System (INIS)

    Timko, J.

    2017-01-01

    This paper investigates the use and integration of rainfall-runoff modelling and hydrologic modelling of Blatina river catchment. Characteristics of physical-geographical sphere and its components were created within the model, enhancing the robustness of input data for the mathematical modelling of landscape runoff. Rainfall-runoff model HEC-HMS utilised in this research allows using a wide range of methodologies to determine the movement of water in the riverbed, water losses in the basin, hydraulic and hydrological methods of transformation and base-flow. Loss and transformation of water in the basin were modeled with curve numbers method SCS-CN. The simulated hydrograph was calibrated using rainfall-runoff event from June 2009. The same event was also modelled after the deforestation of the focus area. Using hydraulic model MIKE 21, a flood of focus rainfall-runoff area was simulated under both current real and changed land cover scenarios. (authors)

  10. Effect of earthquake and faulting on the hydrological environment

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hironobu [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center; Sakai, Ryutaro

    1999-12-01

    The effects of earthquakes and active faults on the geological environment have been studied at the Tono Geoscience Center. The Hyogoken-Nanbu earthquake (January 17, 1995; M7.2) in Kobe and Awaji island caused significant changes in hydrology, involving a large amount of groundwater discharge in low-lying land and drastic water-table lowering (during only about 2-4 months) in elevated land near the epicenter. Simulation of the groundwater behavior in the vicinity of the Nojima fault was analysed to evaluate permeability enhancements. Calculated values such as water level changes were matched in a time series with the hydrological observed data in order to optimize this simulation model. Results indicate that the increase of hydraulic conductivity (5 x 10{sup -3} cm/s in weathered granitic rocks) and 1 x 10{sup -5} cm/s in fresh granitic rocks would produce a lowering of the water level at EL 180 m, and increase of discharge at less than EL 100 m, within four months after the earthquake. The study also suggested that the change in the hydraulic conductivity in the Nojima fault could not depend on the change in geological hydrology. (author)

  11. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale.

    Science.gov (United States)

    Tighe, Matthew; Haling, Rebecca E; Flavel, Richard J; Young, Iain M

    2012-01-01

    The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation of trends at larger scales. Site differences and broad classifications of BSCs as one soil surface type rather than into functional form exacerbate the problem. This study examines, for the first time, some hydrological characteristics and related surface variables of a range of crust types at one site and at a small scale (sub mm to mm). X-ray tomography and fine scale hydrological measurements were made on intact BSCs, followed by C and C isotopic analyses. A 'hump' shaped relationship was found between the successional stage/sensitivity to physical disturbance classification of BSCs and their hydrophobicity, and a similar but 'inverse hump' relationship exists with hydraulic conductivity. Several bivariate relationships were found between hydrological variables. Hydraulic conductivity and hydrophobicity of BSCs were closely related but this association was confounded by crust type. The surface coverage of crust and the microporosity 0.5 mm below the crust surface were closely associated irrespective of crust type. The δ (13)C signatures of the BSCs were also related to hydraulic conductivity, suggesting that the hydrological characteristics of BSCs alter the chemical processes of their immediate surroundings via the physiological response (C acquisition) of the crust itself. These small scale results illustrate the wide range of hydrological properties associated with BSCs, and suggest associations between the ecological successional stage/functional form of BSCs and their ecohydrological role that needs further examination.

  12. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  13. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    the result of heterogeneous streambed hydraulic characteristics in these areas. Our results have significant implications for hyporheic micro-habitats, fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.

  14. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  15. Measurement of saturated hydraulic conductivity in fine-grained glacial tills in Iowa: Comparison of in situ and laboratory methods

    Science.gov (United States)

    Bruner, D. Roger; Lutenegger, Alan J.

    1994-01-01

    Nested-standpipe and vibrating-wire piezometers were installed in Pre-Illinoian Wolf Creek and Albernett formations at the Eastern Iowa Till Hydrology Site located in Linn County, Iowa. These surficial deposits are composed of fine-grained glacial diamicton (till) with occasional discontinuous lenses of sand and silt. They overlie the Silurian (dolomite) aquifer which provides private, public, and municipal drinking water supplies in the region. The saturated hydraulic conductivity of the Wolf Creek Formation was investigated in a sub-area of the Eastern Iowa Till Hydrology Site. Calculations of saturated hydraulic conductivity were based on laboratoryflexible-wall permeameter tests, bailer tests, and pumping test data. Results show that bulk hydraulic conductivity increases by several orders of magnitude as the tested volume of till increases. Increasing values of saturated hydraulic conductivity at larger spatial scales conceptually support a double-porosity flow model for this till.

  16. Preliminary results of hydrologic testing: The composite Umtanum basalt flow top at borehole RRL-2 (3,568 - 3,781 feet)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1982-11-01

    This report presents preliminary results and description of hydrologic test activities for the composite Umtanum basalt flow top (3,568--3,781 feet) at Borehole RRL-2. Hydrologic tests conducted include two constant discharge air-lift and four slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 405.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed, range between 244 to 481 ft 2 /day, with an assigned best estimate of 480 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 157 feet, is 3.1 ft/day. 7 refs., 9 figs., 3 tabs

  17. Assessment of the effect of climate change on the hydrological cycle

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt

    , implying that when doing a future impact study, hydrological predictions could be compromised when using hydrological models calibrated on present time series. The hydrological response to a future high-end emission scenario was also explored. The hydrological model simulations and drought indices analyses...... showed longer and dryer periods leading to enhanced root zone dryness, lowered river discharge, and decreasing groundwater head elevation increasing the risk of stream flow drought and crop failure. In contrast, wetter winters will lead to increased flood risks. Finally, the influence of choosing...... a specific impact study setup was also investigated by simulating and analysing results from three factors; four climate models in combinations with three hydrological models and four land use scenarios. Results showed that the climate model was the dominant uncertainty factor on stream flow and hydraulic...

  18. Airborne laser scanning terrain and land cover models as basis for hydrological and hydraulic studies

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M.

    2013-07-01

    The high level of topographic details is the main advantage using ALS data, which also causes many problems in different hydrological and hydraulic applications. So, the detailed topographic information can have a negative impact on the quality of hydrological and hydraulic applications. Besides the high level of geometric details, the intensity values as well as the full vertical point distribution within the 3D point cloud is available. It is shown, based on selected applications, how to minimize the negative effects of topographic details and how to extract specific parameters for hydrological and hydraulic purposes directly from ALS data by using geoinformation and remote sensing methods. The main focus is on improving existing methods to extract hydraulic and hydrological features from the ALS data with a high level of automatization. The first part deals with Laser Remote Sensing technology in general. Besides the measurement principles, different laser platforms and common gridded derivatives are presented. Finally, recent technology trends are discussed. Within the first chapter a workflow to optimize a 1m-DTM for drainage network delineation is presented. Mostly coarse DTMs, smoothed by using average filters, are used. Where detailed topographic features and roads are removed by the DTM smoothing. Therefore, the 1m spatial resolution of the ALS DTM is no longer available for the drainage delineation. By removing anthropogenic structures, mainly roads, a conditioned DTM is produced without the negative influences of the roads from the original 1m-DTM on the flow accumulation. The resulting drainage network computed on the conditioned 1m-DTM show an increase in delineation accuracy of up to 9% in correctness and completeness compared to the original 1m-DTM or a coarse resolution 5m-DTM as basis for flow accumulation. The second methodological chapter is about the delineation of water surface areas using ALS geometric and radiometric data derived from the

  19. High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics

    Science.gov (United States)

    Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.

    2017-12-01

    We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal

  20. Preliminary results of hydrologic testing of the Umtanum Basalt Fracture Zone at borehole RRL-2 (3,781 to 3,827 ft)

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1983-02-01

    This report presents preliminary results and description of hydrologic test activities for the Umtanum Basalt Fracture Zone at Borehole RRL-2, within the test interval 3,781 to 3,827 feet. Hydrologic tests conducted include two short-term, constant discharge pumping tests and two slug tests. Preliminary results indicate an observed hydraulic head for the test interval of 406.7 feet above mean sea level. Transmissivity values determined from hydrologic tests performed range between 205 and 881 ft 2 /day. The best estimate of equivalent hydraulic conductivity, based on an effective test thickness of 6 feet, is 147 ft/day. 8 refs., 6 figs., 3 tabs

  1. Hydrological and hydraulic modelling of the Nyl River floodplain Part ...

    African Journals Online (AJOL)

    Catchment land-use and water resource developments may threaten the ecological integrity of the Nyl River floodplain, a world-renowned conservation area. The effect of developments on the water supply regime to the floodplain can be predicted by hydrological modelling, but assessing their ecological consequences ...

  2. Experiences and challenges in developing European soil hydrological databases

    NARCIS (Netherlands)

    Lilly, A.; Nemes, A.; Wösten, J.H.M.; Hiederer, R.

    2014-01-01

    Development of the Hydraulic Properties of European Soils (HYPRES) database began in 1995 and was funded by the European Commission. The main aims of the project were to collate existing soil hydrological data held by Universities and Research Institutes into a single database and to use these data

  3. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle......, potential relationships between Ksat and Dp/Do were investigated. A total of 84 undisturbed soil cores were extracted from the topsoil of a field site, and Dp/Do and Ksat were measured in the laboratory. Water-induced and solids-induced tortuosity factors were obtained by applying a two-parameter Dp...

  4. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    Science.gov (United States)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  5. Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C L [RE/SPEC Inc., Albuquerque, NM (United States); Wawersik, W. R.; Carlson, L. V.; Henfling, J. A.; Borns, D. J.; Beauheim, R. L.; Roberts, R. M.

    1997-05-01

    Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

  6. Role of hydraulic diffusivity in the decrease of weathering rates over time

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Springs emerging within massifs of crystalline rocks were monitored for discharge rate (Q), and the Q values combined with geomorphic and hydrographic parameters in a hydrologic model to calculate hydraulic conductivity (K) and effective porosity (ne) of the spring watersheds. The spring waters,

  7. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA

    Science.gov (United States)

    Katie Price; C. Rhett Jackson; Albert J. Parker

    2010-01-01

    A full understanding of hydrologic response to human impact requires assessment of land-use impacts on key soil physical properties such as saturated hydraulic conductivity, bulk density, and moisture retention. Such properties have been shown to affect watershed hydrology by influencing pathways and transmission rates of precipitation to stream networks. Human land...

  8. Unsteady Flows Control Hydrologic Turnover Rates in Antarctic Hyporheic Zones

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; McKnight, D. M.; Lyons, W. B.; Saelens, E.

    2016-12-01

    Hydrologic turnover of the hyporheic zone (HZ) is the process of HZ flowpaths receiving water and solutes from the stream channel while simultaneously contributing water and solutes from the HZ back to the stream channel. The influence of hydrologic turnover on HZ solute storage depends on the relative magnitude of hyporheic exchange rates (i.e. physical transport) and biogeochemical reaction rates. Because both exchange rates and reaction rates are unsteady in natural systems, the availability of solutes in the HZ is controlled by the legacy of hydraulic and biological conditions. In this study, we quantify the influence of unsteady flows on hydrologic turnover of the HZ. We study a glacial melt stream in the McMurdo Dry Valleys of Antarctica (MDVs). The MDVs provide an ideal setting for investigating hydrologic and chemical storage characteristics of HZs, because nearly all streamflow is generated from glacier melt and the HZ is vertically bounded by continuous permafrost. A dense network of shallow groundwater wells and piezometers was installed along a 60-meter reach of Von Guerard Stream. 12 days of continuous water level data in each well was used to compute the magnitude and direction of 2D hydraulic gradients between the stream channel and lateral hyporheic aquifer. Piezometers were sampled daily for stable isotope abundances. The direction and magnitude of the cross-valley (CV), perpendicular to the thalweg, component of hydraulic gradients is sensitive to daily flood events and exhibits significant spatial heterogeneity. CV gradients are consistently oriented from the hyporheic aquifer towards the stream channel on 2 sections of the study reach, whereas CV gradients are consistently oriented from the stream channel towards the hyporheic aquifer on 1 section. Three sections show diel changes in orientation of CV gradients, coincident with the passage of daily flood events. During a 4-day period of low flows, the HZ is isotopically distinct from the stream

  9. Summary and evaluation of available hydraulic property data for the Hanford Site unconfined aquifer system

    International Nuclear Information System (INIS)

    Thorne, P.D.; Newcomer, D.R.

    1992-11-01

    Improving the hydrologic characterization of the Hanford Site unconfined aquifer system is one of the objectives of the Hanford Site Ground-Water Surveillance Project. To help meet this objective, hydraulic property data available for the aquifer have been compiled, mainly from reports published over the past 40 years. Most of the available hydraulic property estimates are based on constant-rate pumping tests of wells. Slug tests have also been conducted at some wells and analyzed to determine hydraulic properties. Other methods that have been used to estimate hydraulic properties of the unconfined aquifer are observations of water-level changes in response to river stage, analysis of ground-water mound formation, tracer tests, and inverse groundwater flow models

  10. Hydrologic testing methodology and results from deep basalt boreholes

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A.; Jackson, R.L.; Pidcoe, W.W.

    1982-05-01

    The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes

  11. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    Science.gov (United States)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  12. Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio

    Science.gov (United States)

    Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.

    2016-05-06

    Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that

  13. Lateral saturated hydraulic conductivity of soil horizons evaluated in large-volume soil monoliths

    NARCIS (Netherlands)

    Pirastru, Mario; Marrosu, Roberto; Prima, Di Simone; Keesstra, Saskia; Giadrossich, Filippo; Niedda, Marcello

    2017-01-01

    Evaluating the lateral saturated hydraulic conductivity, Ks,l, of soil horizons is crucial for understanding and modelling the subsurface flow dynamics in many shallow hill soils. A Ks,l measurement method should be able to catch the effects of soil heterogeneities governing hydrological processes

  14. Hydraulic root water uptake models: old concerns and new insights

    Science.gov (United States)

    Couvreur, V.; Carminati, A.; Rothfuss, Y.; Meunier, F.; Vanderborght, J.; Javaux, M.

    2014-12-01

    Root water uptake (RWU) affects underground water dynamics, with consequences on plant water availability and groundwater recharge. Even though hydrological and climate models are sensitive to RWU parameters, no consensus exists on the modelling of this process. Back in the 1940ies, Van Den Honert's catenary approach was the first to investigate the use of connected hydraulic resistances to describe water flow in whole plants. However concerns such as the necessary computing when architectures get complex made this approach premature. Now that computing power increased dramatically, hydraulic RWU models are gaining popularity, notably because they naturally produce observed processes like compensatory RWU and hydraulic redistribution. Yet major concerns remain. Some are more fundamental: according to hydraulic principles, plant water potential should equilibrate with soil water potential when the plant does not transpire, which is not a general observation when using current definitions of bulk or average soil water potential. Other concerns regard the validation process: water uptake distribution is not directly measurable, which makes it hard to demonstrate whether or not hydraulic models are more accurate than other models. Eventually parameterization concerns exist: root hydraulic properties are not easily measurable, and would even fluctuate on an hourly basis due to processes like aquaporin gating. While offering opportunities to validate hydraulic RWU models, newly developed observation techniques also make us realize the increasing complexity of processes involved in soil-plant hydrodynamics, such as the change of rhizosphere hydraulic properties with soil drying. Surprisingly, once implemented into hydraulic models, these processes do not necessarily translate into more complex emerging behavior at plant scale, and might justify the use of simplified representations of the soil-plant hydraulic system.

  15. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe

    2012-09-01

    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  16. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest.

    Science.gov (United States)

    Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S

    2017-07-01

    Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Independent technical review and analysis of hydraulic modeling and hydrology under low-flow conditions of the Des Plaines River near Riverside, Illinois

    Science.gov (United States)

    Over, Thomas M.; Straub, Timothy D.; Hortness, Jon E.; Murphy, Elizabeth A.

    2012-01-01

    The U.S. Geological Survey (USGS) has operated a streamgage and published daily flows for the Des Plaines River at Riverside since Oct. 1, 1943. A HEC-RAS model has been developed to estimate the effect of the removal of Hofmann Dam near the gage on low-flow elevations in the reach approximately 3 miles upstream from the dam. The Village of Riverside, the Illinois Department of Natural Resources-Office of Water Resources (IDNR-OWR), and the U. S. Army Corps of Engineers-Chicago District (USACE-Chicago) are interested in verifying the performance of the HEC-RAS model for specific low-flow conditions, and obtaining an estimate of selected daily flow quantiles and other low-flow statistics for a selected period of record that best represents current hydrologic conditions. Because the USGS publishes streamflow records for the Des Plaines River system and provides unbiased analyses of flows and stream hydraulic characteristics, the USGS served as an Independent Technical Reviewer (ITR) for this study.

  18. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  19. Measurement of in-situ hydraulic conductivity in the Cretaceous Pierre Shale

    International Nuclear Information System (INIS)

    Neuzil, C.E.; Bredehoeft, J.D.

    1981-01-01

    A recent study of the hydrology of the Cretaceous Pierre Shale utilized three techniques for measuring the hydraulic conductivity of tight materials. Regional hydraulic conductivity was obtained from a hydrodynamic model analysis of the aquifer-aquitard system which includes the Pierre Shale. Laboratory values were obtained from consolidation tests on core samples. In-situ values of hydraulic conductivity were obtained by using a borehole slug test designed specifically for tight formations. The test is conducted by isolating a portion of the borehole with one or two packers, abruptly pressurizing the shut-in portion, and recording the pressure decay with time. The test utilizes the analytical solution for pressure decay as water flows into the surrounding formation. Consistent results were obtained using the test on three successively smaller portions of a borehole in the Pierre Shale. The in-situ tests and laboratory tests yielded comparable values; the regional hydraulic conductivity was two to three orders of magnitude larger. This suggests that the lower values represent intergranular hydraulic conductivity of the intact shale and the regional values represent secondary permeability due to fractures. Calculations based on fracture flow theory demonstrate that small fractures could account for the observed differences

  20. Site study plan for intermediate hydrology clusters tests wells Deaf Smith County Site, Texas

    International Nuclear Information System (INIS)

    1988-01-01

    To characterize the geologic, geochemical, and hydrologic characteristics of intermediate-depth formations at the proposed Deaf Smith County, Texas, repository site, wells called Intermediate Hydrology clusters will test the Dewey Lake, Alibates, Salado, Yates, Upper and Lower Seven Rivers, and Queen Grayburg Formations. Sixteen wells will be installed at six locations. One location will have four wills, two locations will have three wells, and three locations will have two wells for a total of 16 wells. Testing of the formations is to proceed from the bottom up, with 2-day pumping tests at the less permeable formations. Tracer tests and tests for verticall hydraulic properties will be designed and performed after other hydrologic tests are completed. After testing, selected wells are to be completed as single or possibly dual monitoring wells to observe water-level trends. To develop a hydrogeologic testing plan, the response of each formation to potential testing procedures was evaluated using design values and an assumend range for hydraulic parameters. These evaluations indicate that hydraulic properties of a sandy zone of the Dockum, the lower Sever Rivers, and possibly the Alibates and Queen/Grayburg can be determined by pumping tests. Standard of shut-in slug tests must be conducted in the remaining formations. Tests of very long duration would be required to determine the verticla properties of less permeable formations. Tracer tests would also require weeks or months. 61 figs., 34 refs., 4 tabs

  1. Radionuclide migration in fractured rock: hydrological investigations at an experimental site in the Carnmennellis granite, Cornwall

    International Nuclear Information System (INIS)

    Heath, M.J.; Durrance, E.M.

    1985-01-01

    The objectives, methods and results of hydrological investigation of the granite at an experimental site in Cornwall are described and discussed. Constant head injection tests and radioactive tracer experiments have revealed a fracture permeability in which water movement is confined to discrete fractures separated by rock of very low permeability. Data on flow path frequency, orientation and effective hydraulic aperture, required for network modelling, are presented for a 700 m borehole, with additional hydraulic data from three other boreholes. In addition to fractures of average hydraulic conductivity a small number of major hydraulic features (''main drains'') with major implications for radionuclide migration have been identified. A mean hydraulic conductivity for the granite investigated of 1.57x10 -7 ms -1 has been obtained, 2.11x10 -8 ms -1 if the major hydraulic features are excluded

  2. An approach to quantum-computational hydrologic inverse analysis.

    Science.gov (United States)

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.

  3. Hydrology team

    Science.gov (United States)

    Ragan, R.

    1982-01-01

    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  4. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

    NARCIS (Netherlands)

    Prima, Di Simone; Bagarello, Vincenzo; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Bautista, Inmaculada; Burguet, Maria; Cerda Bolinches, Artemio; Iovino, Massimo; Prosdocimi, Massimo

    2017-01-01

    Saturated soil hydraulic conductivity, Ks, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The Ks values determined by an infiltrometer

  5. Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques

    Directory of Open Access Journals (Sweden)

    T. McCormack

    2017-04-01

    New hydrological insights for the region: Results suggest two primary pathways of northwards groundwater flow in the catchment, a fault which discharges offshore, and a ∼2 m diameter karst conduit running underneath the catchment lowlands against the prevailing geological dip. This conduit, whose existence was suspected but never confirmed, links a large ephemeral lake to the coast where it discharges intertidally. Hydraulic modelling indicates that the conduit network is a complex mixture of constrictions with multiple inlets and outlets. Two ephemeral lakes are shown to be hydraulically discontinuous, either drained separately or linked by a low pressure channel.

  6. Assessing soil hydraulic characteristics using HYPROP and BEST: a comparison

    Science.gov (United States)

    Leitinger, Georg; Obojes, Nikolaus; Lassabatère, Laurent

    2015-04-01

    Knowledge of ecohydrological characteristics with high spatial resolution is a prerequisite for large-scale hydrological modelling. Data on soil hydraulic characteristics are of major importance, but measurements are often seen as time consuming and costly. In order to accurately model grassland productivity and in particular evapotranspiration, soil sampling and infiltration experiments at 25 grassland sites ranging from 900m to 2300m a.s.l. were conducted in the long term socio-ecological research (LTSER) site Stubai Valley, Tyrolean Alps, Austria, covering 265 km². Here we present a comparison of two methods to determine important hydrological properties of soils: (1) the evaporation method HYPROP (Hydraulic Property Analyzer; UMS Munich, 2010), and (2) the BEST-model (Beerkan Estimation of Soil Transfer Parameters; Lassabatère et al. (2006)), each determining the soil hydraulic characteristics and in particular the water retention curve. For the most abundant soil types we compared the pf-curves calculated from HYPROP data suing the Van Genuchten equation to the ones resulting from the comparatively time efficient BEST approach to find out if the latter is a suitable method to determine pf curves of alpine grassland soils. Except for the soil type Rendzina, the comparison of HYPROP and BEST showed slightly variations in the pF curves and resulting hydraulic characteristics. At the starting point BEST curves presented a slower dehydration, HYPROP a fast and continuous water loss. HYPROP analyses showed the highest variability in the measured values of Rendzina. Regarding BEST, the Alluvial Soils showed the highest variability. To assess equivalence between HYPROP and BEST we deduced several hydraulic characteristics from the pF curves, e.g. saturated water content, field capacity, permanent wilting point, pore size distribution, and minimum water retention. The comparison of HYPROP and BEST revealed that the results of soil water characteristics may depend on

  7. Uncertainty Assessment of Hydrological Frequency Analysis Using Bootstrap Method

    Directory of Open Access Journals (Sweden)

    Yi-Ming Hu

    2013-01-01

    Full Text Available The hydrological frequency analysis (HFA is the foundation for the hydraulic engineering design and water resources management. Hydrological extreme observations or samples are the basis for HFA; the representativeness of a sample series to the population distribution is extremely important for the estimation reliability of the hydrological design value or quantile. However, for most of hydrological extreme data obtained in practical application, the size of the samples is usually small, for example, in China about 40~50 years. Generally, samples with small size cannot completely display the statistical properties of the population distribution, thus leading to uncertainties in the estimation of hydrological design values. In this paper, a new method based on bootstrap is put forward to analyze the impact of sampling uncertainty on the design value. By bootstrap resampling technique, a large number of bootstrap samples are constructed from the original flood extreme observations; the corresponding design value or quantile is estimated for each bootstrap sample, so that the sampling distribution of design value is constructed; based on the sampling distribution, the uncertainty of quantile estimation can be quantified. Compared with the conventional approach, this method provides not only the point estimation of a design value but also quantitative evaluation on uncertainties of the estimation.

  8. Hydrologic Connectivity Estimated throughout the Nation's River Corridors

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    Hydrologic connectivity is a key concept that integrates longitudinal transport in rivers with vertical and lateral exchanges between rivers and hyporheic zones, riparian wetlands, floodplains, and ponded aquatic ecosystems. Desirable levels of connectivity are thought to be associated with rivers that are well-connected longitudinally while also being well connected vertically and laterally with marginal waters where carbon and nutrients are efficiently transformed, and where aquatic organisms feed, or are reared, or take refuge during floods. But what is the proper balance between longitudinal and vertical and lateral connectivity? We took a step towards quantifying hydrologic connectivity using the model NEXSS (Gomez-Velez and Harvey, 2014, GRL) applied throughout the nation's rivers. NEXSS simulates vertical and lateral connectivity and compares it with longitudinal transport along the river's main axis. It uses as inputs measured network topology for first to eighth order channels, river hydraulic geometry, sediment grain size, bedform types and sizes, estimated hydraulic conductivity of sediments, and estimates of reaction rates such as denitrification. Results indicate that hyporheic flow is large enough to exchange a river's entire volume many times within a river network, which increases biogeochemical opportunities for nutrient processing and attenuation of contaminants. Also, the analysis demonstrated why and where (i.e., in which physiographic regions of the nation) are hyporheic flow and solute reactions the greatest. The cumulative influence of hydrologic connectivity on water quality is expressed by a dimensionless index of reaction significance. Our quantification of hydrologic connectivity adds a physical basis that supports water quality modeling, and also supports scientifically based prioritization of management actions (e.g. stream restoration) and may support other types of actions (e.g. legislative actions) to help conserve healthy functional

  9. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    Science.gov (United States)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  10. Some challenges in eco-hydrology

    Science.gov (United States)

    Porporato, A.

    2007-12-01

    The importance of the mutual interactions between biosphere in hydrosphere has become increasingly apparent in both the ecological and hydrological sciences. In hydrology, while the role of plants in controlling soil water balance has been recognized from some time, more subtle controls have also been realized, such as the impact of soil organic matter on soil water dynamics and soil properties, the plant control on infiltration, erosion, and geomorphology. Ecosystem dynamics and land-use changes have also been recognized to impact water availability and quality. On the other hand, biologists and ecologists have increased their attention towards the dynamics of the terrestrial water balance and its impact on plants (photosynthesis, plant growth and reproduction) as well as microbial life (and thus decomposition and the entire cycling of nutrients and carbon fluxes). In this eco-hydrological context, we discuss: (i) the need to distinguish complex from complicated eco- hydrologic behaviors, which are both expected to be present in systems with many degrees of freedom, spatial heterogeneity, nonlinearities and feedbacks (and with biological components). (ii) The use of ideas and tools from complex systems science and non-equilibrium statistical mechanics to explore possible emerging behaviors and patterns. (iii) The importance of intermittency and of the entire spectrum of eco-hydrologic fluctuations conferred by the system nonlinearities, and their connection to a possible theory of biologically- meaningful hydroclimatic extremes. (iv) The need for further research of basic questions yet unanswered (e.g., role of organic matter/roots on soil water balance and soil properties; vegetation control on infiltration; competition for water by plants; role of plant control on uptake (e.g., hydraulic lift)). (v) Ways to merge observations, minimalist models and complex numerical simulations as well as to increase communication of hydrologists with physicists, statisticians

  11. Effects of tides on the hydrology and geometry of a freshwater channel

    African Journals Online (AJOL)

    The computer program such as HEC-HMS 2.2.2 will be used to carry out the Hydrologic Model Calibration. By using HEC-RAS, Hydraulic Model Calibration will be carried out for the channel. The discharge with different ARI will be used as the upstream boundary condition during the flow analysis. Frequency analysis for ...

  12. Evaluation of Hydraulic Potentiality for Small Scale Hydroelectric Power Systems. Base for formulation of plans for the municipal development

    International Nuclear Information System (INIS)

    Torres Q, E.

    1997-01-01

    Colombia has been recognized as the fourth country in the world with high hydraulic resources, the best way to exploit this potential is by talking use of as a main hydroelectric alternative on isolated areas of the country. At the beginnings there was an study the Potential Hydraulic Assessment was performed at the Chicamocha Deep Valley, due to this area count with a good hydrologic and meteorological network enough, to investigate the hydro climate behavior

  13. Using tracers to understand the hydrology of an abandoned underground coal mine

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Flooded underground mines pose a difficult problem for remediation efforts requiring hydrologic information. Mine environments are hydraulically complicated due to sinuous travel paths and variable hydraulic gradients. For an acidic mine remediation project, conducted by the University of Oklahoma in conjunction with the Oklahoma Conservation Commission, a tracer study was undertaken to identify basic hydrologic properties of a flooded coal mine. The study was conducted to investigate the possibility of in-situ remediation of acidic mine water with the use of alkaline coal combustion by-products. Information on the rate of flow and ''connectiveness'' of injection wells with the discharge point was needed to develop a treatment strategy. Fluorescent dyes are not typically used in mine tracer studies because of the low pH values associated with certain mines and a tendency to adsorb ferric iron precipitates. However, Rhodamine WT was used in one tracer test because it can be detected at low concentrations. Due to poor recovery, a second tracer test was undertaken using a more conservative tracer-chloride. Each tracer produced similar travel time results. Findings from this study suggest that Rhodamine WT can be used under slightly acidic conditions, with mixed results. The more conservative tracer provided somewhat better results, but recovery was still poor. Use of these tracers has provided some valuable information with regard to mine hydrology, but additional questions have been raised

  14. Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed

    Science.gov (United States)

    Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa

    2017-04-01

    Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment

  15. Study of capillary experiments and hydrologic factors under subsurface drip irrigation with fractal theory

    International Nuclear Information System (INIS)

    Zhou, W; Cao, L

    2012-01-01

    Soil spatial variability is one of the primary environmental factors that influences the hydraulic factors and technical indicators of subsurface drip irrigation (SDI), whose emitters are buried in the soil. This paper aimed at evaluating these effects of soil spatial variability on hydrologic factors under SDI. And some SDI emitter and capillary experiments were designed to obtain test data and distribution of pressure and emitter discharge. First, The results of labyrinth non-turbulent mosaic drip emitter test and fractal theory were used to research the fractal and quantitative relationship between single emitter hydrologic factors and soil physical parameters; and then, the capillary experiments and the relationship among hydrologic factors of capillary were used to analyze the fractal and quantitative relationship between hydrologic factors of capillary and soil physical parameters, which explained the inner relationship between spatial variability of soil and hydrologic factors of filed pipeline network under SDI, and provide theory support for the plan, design, management and production of SDI.

  16. Scaling the flood regime with the soil hydraulic properties of the catchment

    Science.gov (United States)

    Peña Rojas, Luis Eduardo; Francés García, Félix; Barrios Peña, Miguel

    2015-04-01

    The spatial land cover distribution and soil type affect the hydraulic properties of soils, facilitating or retarding the infiltration rate and the response of a catchment during flooding events. This research analyzes: 1) the effect of land cover use in different time periods as a source of annual maximum flood records nonstationarity; 2) the scalability of the relationship between soil hydraulic properties of the catchment (initial abstractions, upper soil capillary storage and vertical and horizontal hydraulic conductivity) and the flood regime. The study was conducted in Combeima River basin in Colombia - South America and it was modelled the changes in the land uses registered in 1991, 2000, 2002 and 2007, using distributed hydrological modelling and nonparametric tests. The results showed that changes in land use affect hydraulic properties of soil and it has influence on the magnitude of flood peaks. What is a new finding is that this behavior is scalable with the soil hydraulic properties of the catchment flood moments have a simple scaling behavior and the peaks flow increases with higher values of capillary soil storage, whereas higher values, the peaks decreased. Finally it was applied Generalized Extreme Values and it was found scalable behavior in the parameters of the probability distribution function. The results allowed us to find a relationship between soil hydraulic properties and the behavior of flood regime in the basin studied.

  17. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    hydrodynamic models. The hydrological model will run operationally for the whole globe. Once special situations are predicted, such as floods, navigation hindrances, or water shortages, a detailed local hydraulic model will start to predict the exact local consequences. In Vienna, we will show for the first time the operational global eWaterCycle model, including high resolution forecasts, our new data assimilation technique, and coupled hydrological/hydraulic models.

  18. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Orfánus, T.; Czachor, H.; Rajkai, K.; Šír, Miloslav; Tesař, Miroslav

    2010-01-01

    Roč. 3, č. 4 (2010), s. 413-420 ISSN 1936-0584 R&D Projects: GA MŠk MEB0808114 Institutional research plan: CEZ:AV0Z20600510 Keywords : sandy soil * water repellency * plant cover * sorptivity * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.835, year: 2010

  19. A GIS-based model for the hydrological and hydraulic reconstruction of historical flash-floods in urban areas. The case of the river Turia in Valencia (1957)

    Science.gov (United States)

    Portugués Mollá, Iván; Felici, Xavier Bonache i.; Mateu Bellés, Joan F.; Segura, Juan B. Marco

    2015-04-01

    Flash-floods are recurrent events in the Mediterranean arch, mostly derived from cold air pool phenomena triggering hydro-geomorphic high-intensity processes, combining high discharge and low frequency. In urban environments the complexity of the processes become higher due to the existence of very fast-response basins and quick-response runoff. However, immediate activities of cleaning up and restoration delete the urban marks. After a short time both significance and dimension of the hydro-geomorphic event become completely unrecognizable. Nevertheless, these episodes generate extensive administrative documentation which is testimony of the processes in almost real time. Exploiting this source typology in order to reconstruct events far in time within urban areas, which may lack database sufficiently rich, is necessary to understand the hydrological and hydraulic derived processes. This is particularly the case of the Valencia flash-flood (1957), located in the lower Turia River basin (6.400 km2). Within a short interval (15 hours) there were registered two flood peaks (estimated at that time at 2.500 and 3.700 m3/s). The double overflowing inundated a large proportion of the urban area. The flash-flood activated fast processes with high energy that left numerous hydro-geomorphic marks. Although those tracks were deleted in a short while after the flood, it remains a legacy that had not yet been exploited, consisting of immediate aerial and oblique high resolution photography, pictures at street level, water level record and administrative records, such as claim files for compensation. Paradoxically, despite the event is considered as a milestone on metropolitan territorial planning and it was decided to divert the river Turia definitely through a major project (12 km of channeling, known as South Solution), being the scenario notably altered, the analysis of the hydrological and hydraulic process has never been reviewed. Undoubtedly, a modern study would ensure

  20. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  1. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  2. Recent hydrological observations from the Riverton and Maybell tailings piles

    International Nuclear Information System (INIS)

    Tokunaga, T.; Narasimhan, T.N.

    1982-01-01

    This paper reports on field and laboratory hydrologic studies of two inactive uranium mill tailings piles under the Uranium Mill Tailings Remedial Action Program (UMTRA). The ultimate goal of the studies is to evaluate the nature of the contaminant potential of the piles with sufficient detail so that appropriate remedial measures can be designed and implemented under the UMTRA Program. The field studies included the monitoring of hydraulic head profiles of the piles and infiltration tests. Both the field and laboratory results from the Riverton tailings indicate a great deal of spatial variability in hydraulic properties. It is determined that the bulk of the precipitation input at the Riverton tailings is lost by evapotranspiration within the upper meter of soil cover and tailings

  3. The Hydraulic Project Włocławek: Design, Studies, Construction and Operation

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available The Hydraulic Project Włocławek was commissioned in 1970 as the first barrage of the Lower Vistula Cascade (LVC. The purpose of the LVC was to create an important source of hydro-energy and inland navigation route connecting central Poland with the port city of Gdańsk. Along the Lower Vistula (LV important cities and industrial centres are located. The Włocławek project still remains the only barrage on the LV thus creating a number of problems. The paper presents the basic hydrological and hydraulic data for the Vistula river, and describes the Włocławek project, hydraulic model investigations conducted in the design phase, the construction of the project and the main problems, attendant on its use, including the winter flood of 1982 in the upper part of the Włocławek reservoir. The paper ends with conclusions on project construction and exploitation. The next barrage downstream from Włocławek is proposed.

  4. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 1. Hydrology Model

    Science.gov (United States)

    Colgan, William; Rajaram, Harihar; Anderson, Robert; Steffen. Konrad; Phillips, Thomas; Zwally, H. Jay; Abdalati, Waleed

    2012-01-01

    We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt season along a approx.17 km stretch of the approx.50 km of flowline within the ablation zone. Beneath the majority of the flowline, subglacial conduit storage closes (i.e. obtains minimum radius) during the winter and opens (i.e. obtains maximum radius) during the summer. Along certain stretches of the flowline, the model predicts that subglacial conduit storage remains open throughout the year. A calculated mean glacier water residence time of approx.2.2 years implies that significant amounts of water are stored in the glacier throughout the year. We interpret this residence time as being indicative of the timescale over which the glacier hydrologic system is capable of adjusting to external surface meltwater forcings. Based on in situ ice velocity observations, we suggest that the summer speed-up event generally corresponds to conditions of increasing hydraulic head during inefficient subglacial drainage. Conversely, the slowdown during fall generally corresponds to conditions of decreasing hydraulic head during efficient subglacial drainage.

  5. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    Science.gov (United States)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  6. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  7. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    Science.gov (United States)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  8. Evaluating soil moisture and hydraulic conductivity in semi-arid rangeland soils

    International Nuclear Information System (INIS)

    Whitaker, M.P.L.

    1993-01-01

    The US DOE's Office of Civilian Radioactive Waste Management (DOE-OCRWM) Fellowship Program supports various disciplines of academic research related to the isolation of radionuclides from the biosphere. The purpose of this paper is to provide an example of a university research application in the specific discipline of hydrology and water resources (a multi-disciplinary field encompassing engineering and the earth sciences), and to discuss how this research pertains to the objectives of the DOE-OCRWM Fellowship Program. The university research application is twofold: One portion focuses on the spatial variability of soil moisture (θ) and the other section compares point measurements with small watershed estimates of hydraulic conductivity (K) in a semi-arid rangeland soil in Arizona. For soil moisture measurements collected over a range of horizontal sampling intervals, no spatial correlation was evident. This outcome is reassuring to computer modelers who have assumed no spatial correlation for soil moisture over smaller scales. In regard to hydraulic conductivity, point measurements differed significantly from small watershed estimates of hydraulic conductivity which were derived from a calibrated and verified rainfall-runoff computer model. The estimates of saturated hydraulic conductivity (Ks) were obtained from previous computer simulations in which measured data was collected in the same research location as the present study

  9. Comparative study of geological, hydrological, and geophysical borehole investigations

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Duran, O.

    1984-09-01

    The understanding of the permeability of the bedrock can be improved by supplementing the results of the water injection tests with information from core mapping, TB-inspection and borehole geophysics. The comparison between different borehole investigations encompasses core mapping, TV-inspection and various geophysical bore hole measurements. The study includes data from two different study areas, namely Kraakemaala and Finnsjoen. In these two areas, extensive geological, hydrological and geophysical investigation have been carried out. The fractures and microfractures in crystalline rock constitute the main transport paths for both groundwater and electric currents. They will therefore govern both the permeability and the resistivity of the rock. In order to get a better understanding of the influence of fractures on permeability and resistivity, a detailed comparison has been made between the hydraulic conductivity, respectively, and the character of fractures in the core and the borehole wall. The fractures show very large variations in hydraulic conductivity. Microfractures and most of the thin fractures have no measurable hydraulic conductivity (in this case -9 m s -1 ), while test sections which contain a single isloated fracture can have no measurable, to rather high hydraulic conductivities (> 10 -7 m s -1 ). Wide fracture zones often have hydraulic conductivities which vary from very low (less than 2 x 10 -9 m s -1 ) to high values (10 -5 m s -1 ). This indicates that the hydraulic conductivity is governed by a few discrete fractures. The resistivity shows a continous variation in the range 1,000- 100,000 ohm-m and a relatively poor correlation with hydraulic conductivities. The observed difference is considered to the effect of restriction of water flow on a few channels, while electric surface condition, i.e. current transport through thin water films, makes current transport possible through fractures with very small aperatures. (Author)

  10. Evaluation of multiple hydraulic models in generating design/near-real time flood inundation extents under various geophysical settings

    Science.gov (United States)

    Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.

    2015-12-01

    Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.

  11. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan

    2010-01-01

    Hydrologic models that use components for integrated modelling of surface water and groundwater systems help conveniently simulate the dynamically linked hydrologic and hydraulic processes that govern flow conditions in watersheds. The Soil and Water Assessment Tool (SWAT) is one such model...... that allows continuous simulations over long time periods in the land phase of the hydrologic cycle by incorporating surface water and groundwater interactions. This study provides a verified structure for the SWAT to evaluate existing flow regimes in a small-sized catchment in Denmark and examines a simple...... simulation to help quantify the effects of climate change on regional water quantities. SWAT can be regarded among the alternative hydrologic simulation tools applicable for catchments with similar characteristics and of similar sizes in Denmark. However, the modellers would be required to determine a proper...

  12. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  13. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  14. Root Hydraulics and Root Sap Flow in a Panamanian Low-Land Tropical Forest

    Science.gov (United States)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.; Beverly, D.; Speckman, H. N.

    2017-12-01

    In the tropics, trees are subjected to increasingly frequent and severe droughts driven by climate change. Given the hydrological benefits associated with tropical forests, such as reduced peak runoff during high precipitation events and increased base flow during drought periods ("sponge-effect"), the underlying plant-hydrological processes at the soil-plant interface have become the focus of recent research efforts. In Panama, the 2015/16 El Niño-Southern Oscillation (ENSO) event ranks amongst the driest and hottest periods on record, thus providing an excellent opportunity to study the effects of drought on tropical forests. Starting in 2015, we instrumented 76 trees with heat-ratio sap flow sensors in regrowing secondary forest (8-, 25-, and 80-year old stands) in the 15 km2 Agua Salud study area, located in central Panama. Of those trees, 16 individuals were instrumented with additional sap flow sensors on three roots each. Data were logged every 30 minutes and soil moisture was measured at 10, 30, 50, and 100 cm depth. Meteorological data were taken from a nearby met-station. Rooting depth and root density were assessed in eight 2×2×2 m soil pits. In April 2017, we measured hydraulic conductance and vulnerability to cavitation of eight species using the centrifuge technique. Trees in 8-year old forest limited transpiration during the drought whereas no such limitation was evident in trees of the 80-year old forest. Root sap flow data show seasonal shifts in water uptake between individual roots of a given tree, with sap flow decreasing in some roots while simultaneously increasing in other roots during the wet-dry season transition. Roots followed a typical log distribution along the profile, with overall root densities of 46, 43, and 52 roots m-2 in the 8-, 25-, and 80-yo stand, respectively. Roots were found up to 200 cm depth in all forests, with roots >5 cm occurring at lower depths (>125 cm) only in 25- and 80-year old forests. Maximum hydraulic

  15. Approach to the fracture hydrology at Stripa: preliminary results

    International Nuclear Information System (INIS)

    Gale, J.E.; Witherspoon, P.A.

    1979-05-01

    There are two main problems associated with the concept of geologic storage of radioactive waste in fractured crystalline rock: (1) the thermo-mechanical effects of the heat generated by the waste, and (2) the potential for transport of radioactive materials by the groundwater system. In both problems, fractures play a dominant role. An assessment of the hydraulic and mechanical characteristics of fractued rock requires a careful series of laboratory and field investigations. The complexity of the problem is illustrated by the field studies in a fractured granite that are currently underway in an abandoned iron-ore mine at Stripa, Sweden. Much information is being gathered from an extensive series of boreholes and fracture maps. The approach being taken to integrate these data into an analysis of the fracture hydrology is reviewed and preliminary results from the hydrology program are presented. 13 figures

  16. Quantifying the uncertainty in discharge data using hydraulic knowledge and uncertain gaugings: a Bayesian method named BaRatin

    Science.gov (United States)

    Le Coz, Jérôme; Renard, Benjamin; Bonnifait, Laurent; Branger, Flora; Le Boursicaud, Raphaël; Horner, Ivan; Mansanarez, Valentin; Lang, Michel; Vigneau, Sylvain

    2015-04-01

    River discharge is a crucial variable for Hydrology: as the output variable of most hydrologic models, it is used for sensitivity analyses, model structure identification, parameter estimation, data assimilation, prediction, etc. A major difficulty stems from the fact that river discharge is not measured continuously. Instead, discharge time series used by hydrologists are usually based on simple stage-discharge relations (rating curves) calibrated using a set of direct stage-discharge measurements (gaugings). In this presentation, we present a Bayesian approach (cf. Le Coz et al., 2014) to build such hydrometric rating curves, to estimate the associated uncertainty and to propagate this uncertainty to discharge time series. The three main steps of this approach are described: (1) Hydraulic analysis: identification of the hydraulic controls that govern the stage-discharge relation, identification of the rating curve equation and specification of prior distributions for the rating curve parameters; (2) Rating curve estimation: Bayesian inference of the rating curve parameters, accounting for the individual uncertainties of available gaugings, which often differ according to the discharge measurement procedure and the flow conditions; (3) Uncertainty propagation: quantification of the uncertainty in discharge time series, accounting for both the rating curve uncertainties and the uncertainty of recorded stage values. The rating curve uncertainties combine the parametric uncertainties and the remnant uncertainties that reflect the limited accuracy of the mathematical model used to simulate the physical stage-discharge relation. In addition, we also discuss current research activities, including the treatment of non-univocal stage-discharge relationships (e.g. due to hydraulic hysteresis, vegetation growth, sudden change of the geometry of the section, etc.). An operational version of the BaRatin software and its graphical interface are made available free of charge on

  17. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  18. Averaging hydraulic head, pressure head, and gravitational head in subsurface hydrology, and implications for averaged fluxes, and hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2009-07-01

    Full Text Available Current theories for water flow in porous media are valid for scales much smaller than those at which problem of public interest manifest themselves. This provides a drive for upscaled flow equations with their associated upscaled parameters. Upscaling is often achieved through volume averaging, but the solution to the resulting closure problem imposes severe restrictions to the flow conditions that limit the practical applicability. Here, the derivation of a closed expression of the effective hydraulic conductivity is forfeited to circumvent the closure problem. Thus, more limited but practical results can be derived. At the Representative Elementary Volume scale and larger scales, the gravitational potential and fluid pressure are treated as additive potentials. The necessary requirement that the superposition be maintained across scales is combined with conservation of energy during volume integration to establish consistent upscaling equations for the various heads. The power of these upscaling equations is demonstrated by the derivation of upscaled water content-matric head relationships and the resolution of an apparent paradox reported in the literature that is shown to have arisen from a violation of the superposition principle. Applying the upscaling procedure to Darcy's Law leads to the general definition of an upscaled hydraulic conductivity. By examining this definition in detail for porous media with different degrees of heterogeneity, a series of criteria is derived that must be satisfied for Darcy's Law to remain valid at a larger scale.

  19. FLOOD HAZARD MAP IN THE CITY OF BATNA (ALGERIA BY HYDRAULIC MODELING APPROCH

    Directory of Open Access Journals (Sweden)

    Guellouh SAMI

    2016-06-01

    Full Text Available In the light of the global climatic changes that appear to influence the frequency and the intensity of floods, and whose damages are still growing; understanding the hydrological processes, their spatiotemporal setting and their extreme shape, became a paramount concern to local communities in forecasting terms. The aim of this study is to map the floods hazard using a hydraulic modeling method. In fact, using the operating Geographic Information System (GIS, would allow us to perform a more detailed spatial analysis about the extent of the flooding risk, through the approval of the hydraulic modeling programs in different frequencies. Based on the results of this analysis, decision makers can implement a strategy of risk management related to rivers overflowing through the city of Batna.

  20. The perceptual trap: Experimental and modelling examples of soil moisture, hydraulic conductivity and response units in complex subsurface settings.

    Science.gov (United States)

    Jackisch, Conrad; Demand, Dominic; Allroggen, Niklas; Loritz, Ralf; Zehe, Erwin

    2017-04-01

    In order to discuss hypothesis testing in hydrology, the question of the solid foundation of such tests has to be answered. But how certain are we about our measurements of the components of the water balance and the states and dynamics of the complex systems? What implicit assumptions or bias are already embedded in our perception of the processes? How can we find light in the darkness of heterogeneity? We will contribute examples from experimental findings, modelling approaches and landscape analysis to the discussion. Example soil moisture and the soil continuum: The definition of soil moisture as fraction of water in the porous medium assumes locally well-mixed conditions. Moreover, a unique relation of soil water retention presumes instant local thermodynamic equilibrium in the pore water arrangement. We will show findings from soil moisture responses to precipitation events, from irrigation experiments, and from a model study of initial infiltration velocities. The results highlight, that the implicit assumption relating soil moisture state dynamics with actual soil water flow is biased towards the slow end of the actual velocity distribution and rather blind for preferential flow acting in a very small proportion of the pore space. Moreover, we highlight the assumption of a well-defined continuum during the extrapolation of point-scale measurements and why spatially and temporally continuous observation techniques of soil water states are essential for advancing our understanding and development of subsurface process theories. Example hydraulic conductivity: Hydraulic conductivity lies at the heart of hydrological research and modelling. Its values can range across several orders of magnitude at a single site alone. Yet, we often consider it a crisp, effective parameter. We have conducted measurements of soil hydraulic conductivity in the lab and in the field. Moreover, we assessed infiltration capacity and conducted plot-scale irrigation experiments to

  1. Hydraulics of epiphreatic flow of a karst aquifer

    Science.gov (United States)

    Gabrovšek, Franci; Peric, Borut; Kaufmann, Georg

    2018-05-01

    The nature of epiphreatic flow remains an important research challenge in karst hydrology. This study focuses on the flood propagation along the epiphreatic system of Reka-Timavo system (Kras/Carso Plateau, Slovenia/Italy). It is based on long-term monitoring of basic physical parameters (pressure/level, temperature, specific electric conductivity) of ground water in six active caves belonging to the flow system. The system vigorously responds to flood events, with stage rising >100 m in some of the caves. Besides presenting the response of the system to flood events of different scales, the work focuses on the interpretation of recorded hydrographs in view of the known distribution and size of conduits and basic hydraulic relations. Furthermore, the hydrographs were used to infer the unknown geometry between the observation points. This way, the main flow restrictors, overflow passages and large epiphreatic storages were identified. The assumptions were tested with a hydraulic model, where the inversion procedure was used for an additional parameter optimisation. Time series of temperature and specific electric conductivity were used to assess the apparent velocities of flow between consecutive points.

  2. Radar-raingauge data combination techniques: a revision and analysis of their suitability for urban hydrology.

    Science.gov (United States)

    Wang, Li-Pen; Ochoa-Rodríguez, Susana; Simões, Nuno Eduardo; Onof, Christian; Maksimović, Cedo

    2013-01-01

    The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.

  3. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  4. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  5. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  6. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    Science.gov (United States)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  7. Biopolitics problems of large-scale hydraulic engineering construction

    International Nuclear Information System (INIS)

    Romanenko, V.D.

    1997-01-01

    The XX century which will enter in a history as a century of large-scale hydraulic engineering constructions come to the finish. Only on the European continent 517 large reservoirs (more than 1000 million km 3 of water were detained, had been constructed for a period from 1901 till 1985. In the Danube basin a plenty for reservoirs of power stations, navigations, navigating sluices and other hydraulic engineering structures are constructed. Among them more than 40 especially large objects are located along the main bed of the river. A number of hydro-complexes such as Dnieper-Danube and Gabcikovo, Danube-Oder-Labe (project), Danube-Tissa, Danube-Adriatic Sea (project), Danube-Aegean Sea, Danube-Black Sea ones, are entered into operation or are in a stage of designing. Hydraulic engineering construction was especially heavily conducted in Ukraine. On its territory some large reservoirs on Dnieper and Yuzhny Bug were constructed, which have heavily changed the hydrological regime of the rivers. Summarised the results of river systems regulating in Ukraine one can be noted that more than 27 thousand ponds (3 km 3 per year), 1098 reservoirs of total volume 55 km 3 , 11 large channels of total length more than 2000 km and with productivity of 1000 m 2 /s have been created in Ukraine. Hydraulic engineering construction played an important role in development of the industry and agriculture, water-supply of the cities and settlements, in environmental effects, and maintenance of safe navigation in Danube, Dnieper and other rivers. In next part of the paper, the environmental changes after construction of the Karakum Channel on the Aral Sea in the Middle Asia are discussed

  8. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  9. Results of monitoring at Olkiluoto in 2009. Hydrology

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Klockars, J.; Nummela, J.; Pentti, E.; Penttinen, T.; Tammisto, E.; Karvonen, T.; Lindgren, S.

    2010-08-01

    The impact of the ONKALO construction is monitored by measuring and observing numerous different parameters of hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open boreholes, cross drillhole flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Environment Report. Mainly the monitoring has been carried out according to plan. This Report presents the results for the year 2009. A significant change in the Monitoring Programme was performed while most of the open drillholes were packed-off before excavation of the ONKALO access tunnel through the hydrogeological HZ20 zones began in Jun 2008. Prior to packing-off, open drillholes connected the main hydrogeological features, HZ19 and HZ20 systems, to each other. Due to packing-off open drillholes, number of flow logging and hydraulic testing monitoring measurements has considerably decreased. The observed changes in groundwater level in shallow observation tubes in the overburden and in shallow drillholes in the bedrock are not necessarily caused by the construction of ONKALO. However, weak indications of decrease in groundwater level have been observed. The effects on head deeper in the bedrock have been both shortterm and long-term and in 2009 these were mostly connected to drilling of grouting holes of the shafts trough the HZ20 zones. In other drillholes except packed-off sections connected to the HZ20 system, long-term changes i.e. decrease in pressure heads near ONKALO have remained on the same order of magnitude, c 1 m, as the year before

  10. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    Science.gov (United States)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters. PMID:24748683

  11. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    Science.gov (United States)

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters.

  12. User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter

    Science.gov (United States)

    Ortel, Terry W.; Martin, Angel

    2010-01-01

    Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.

  13. Probability encoding of hydrologic parameters for basalt: Elicitation of expert opinions from a panel of five consulting hydrologists

    International Nuclear Information System (INIS)

    Davis, J.D.

    1984-01-01

    The Columbia River Basalts Underlying the Hanford Site in Washington State are being considered as a possible location for a geologic repository for high-level nuclear waste. To investigate the feasibility of a repository at this site, the hydrologic parameters of the site must be evaluated. Among hydrologic parameters of particular interest are the effective porosity of the Cohassett flow top and flow interior and the vertical-to-horizontal hydraulic conductivity, or anisotropy ratio, of the Cohassett flow interior. Site-specific data for these hydrologic parameters are currently inadequate. To obtain credible, auditable, and independently derived estimates of the specified hydrologic parameters for the purpose of preliminary assessment of candidate repository performance, a panel of five nationally recognized hydrologists was assembled. Their expert judgments were quantified during two rounds of Delphi process by means of a probability encoding method developed to estimate the probability distributions of the selected hydrologic variables. 210 refs., 12 figs., 5 tabs

  14. Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater

    Science.gov (United States)

    Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G.

    2004-06-01

    This paper aims mainly to provide experimental evidence of the consequences of urban wastewater reuse in irrigation practices on the hydrological behavior of soils. The effects on both the hydraulic and dispersive properties of representative soils in southern Sardinia are illustrated. Ten undisturbed soil monoliths, 120 cm in height and 40 cm in diameter, were collected from plots previously selected through a soil survey. Soil hydraulic and solute transport properties were determined before and after application of wastewater using transient water infiltration and steady state-solute transport column experiments. Detailed spatial-temporal information on the propagation of water and solute through the soil profiles were obtained by monitoring soil water contents, θ, pressure heads, h, and solute concentrations, C, measured by a network of time domain reflectometry probes, tensiometers and solution samplers horizontally inserted in each column at different depths. A disturbed layer at the soil surface, which expands in depth with time, was observed, characterized by reduced soil porosity, translation of pore size distribution towards narrower pores and consequent decrease in water retention, hydraulic conductivity and hydrodynamic dispersion. It is shown that these changes occurring in the disturbed soil layer, although local by nature, affect the hydrological behavior of the whole soil profile. Due to the disturbed layer formation, the soil beneath never saturates. Such behavior has important consequences on the solute transport in soils, as unsaturated conditions mean higher residence times of solutes, even of those normally characterized by considerable mobility (e.g. boron), which may accumulate along the profile. The results mainly provide experimental evidence that knowledge of the chemical and microbiological composition of the water is not sufficient to evaluate its suitability for irrigation. Other factors, mainly soil physical and hydrological

  15. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  16. Hydrology of Quirke and Panel uranium tailings basins

    International Nuclear Information System (INIS)

    King, R.M.; MacPhie, L.

    1991-11-01

    The research project described by this report provides the AECB with an independent assessment of the 'saturated tailings concept' for the decommissioning of tailing areas at the Rio Algom Quirke and Panel uranium mines near Elliot Lake in Northern Ontario. Hydrologic and hydraulic modelling for each facility showed the interrelation between the design of the water-level control facilities and the water levels in each cell for design flood and extreme low-flow conditions, taking into account all water-balance components. The estimate of seepage rates through the tailings mass is identified as a critical issue

  17. Multi-criteria evaluation of hydrological models

    Science.gov (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko

    2013-04-01

    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  18. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the

  19. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    Science.gov (United States)

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Hydrology of Fritchie Marsh, coastal Louisiana

    Science.gov (United States)

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  1. Hydrological controls on transient aquifer storage in a karst watershed

    Science.gov (United States)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  2. Spatial Bias in Field-Estimated Unsaturated Hydraulic Properties

    Energy Technology Data Exchange (ETDEWEB)

    HOLT,ROBERT M.; WILSON,JOHN L.; GLASS JR.,ROBERT J.

    2000-12-21

    Hydraulic property measurements often rely on non-linear inversion models whose errors vary between samples. In non-linear physical measurement systems, bias can be directly quantified and removed using calibration standards. In hydrologic systems, field calibration is often infeasible and bias must be quantified indirectly. We use a Monte Carlo error analysis to indirectly quantify spatial bias in the saturated hydraulic conductivity, K{sub s}, and the exponential relative permeability parameter, {alpha}, estimated using a tension infiltrometer. Two types of observation error are considered, along with one inversion-model error resulting from poor contact between the instrument and the medium. Estimates of spatial statistics, including the mean, variance, and variogram-model parameters, show significant bias across a parameter space representative of poorly- to well-sorted silty sand to very coarse sand. When only observation errors are present, spatial statistics for both parameters are best estimated in materials with high hydraulic conductivity, like very coarse sand. When simple contact errors are included, the nature of the bias changes dramatically. Spatial statistics are poorly estimated, even in highly conductive materials. Conditions that permit accurate estimation of the statistics for one of the parameters prevent accurate estimation for the other; accurate regions for the two parameters do not overlap in parameter space. False cross-correlation between estimated parameters is created because estimates of K{sub s} also depend on estimates of {alpha} and both parameters are estimated from the same data.

  3. Technical note: Design flood under hydrological uncertainty

    Science.gov (United States)

    Botto, Anna; Ganora, Daniele; Claps, Pierluigi; Laio, Francesco

    2017-07-01

    Planning and verification of hydraulic infrastructures require a design estimate of hydrologic variables, usually provided by frequency analysis, and neglecting hydrologic uncertainty. However, when hydrologic uncertainty is accounted for, the design flood value for a specific return period is no longer a unique value, but is represented by a distribution of values. As a consequence, the design flood is no longer univocally defined, making the design process undetermined. The Uncertainty Compliant Design Flood Estimation (UNCODE) procedure is a novel approach that, starting from a range of possible design flood estimates obtained in uncertain conditions, converges to a single design value. This is obtained through a cost-benefit criterion with additional constraints that is numerically solved in a simulation framework. This paper contributes to promoting a practical use of the UNCODE procedure without resorting to numerical computation. A modified procedure is proposed by using a correction coefficient that modifies the standard (i.e., uncertainty-free) design value on the basis of sample length and return period only. The procedure is robust and parsimonious, as it does not require additional parameters with respect to the traditional uncertainty-free analysis. Simple equations to compute the correction term are provided for a number of probability distributions commonly used to represent the flood frequency curve. The UNCODE procedure, when coupled with this simple correction factor, provides a robust way to manage the hydrologic uncertainty and to go beyond the use of traditional safety factors. With all the other parameters being equal, an increase in the sample length reduces the correction factor, and thus the construction costs, while still keeping the same safety level.

  4. Acting, predicting and intervening in a socio-hydrological world

    Science.gov (United States)

    Lane, S. N.

    2014-03-01

    This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because

  5. Agua Para Todos: A New Regionalist Hydraulic Paradigm in Spain

    Directory of Open Access Journals (Sweden)

    Elena Lopez-Gunn

    2009-10-01

    Full Text Available This paper reviews the hydraulic paradigm in Spain and its evolution over the last 100 years to the current decentralisation process of "agua para todos", i.e. where different regional governments vie for control over 'scarce' water resources and defining the concept of hydro-solidarity between regions. Recent events seem to point to a new hydraulic bureaucracy at the sub-national level due to the political devolution currently taking place in Spain, where water has an increased political value in electoral terms. Water has strategic importance in single-issue politics and territorial identity, as compared to traditional left/right ideological politics for both national and regional parties in the Spanish multilevel electoral system. This refers to an important aspect of water politics – openly discussed in Spain but rarely analysed – namely the 'political returns' on water (or 'political rent-seeking'. This also points to spatial dimensions of the definition of state, identity, and access to resources in a semiarid country. This historical process of decentralisation of water is highlighted with particular reference to key events in recent Spanish history, including the Hydraulic Plan of the 1930s, its reappearance in the 1993 National Hydrological Plan, a revised version in the year 2001, and a final change in paradigm in 2005 at the national level. This suggests that the hydraulic paradigm is re-enacted at the regional government level. It is argued that a multi-scalar analysis of Spanish water decentralisation is essential in order to understand change and stasis in public policy paradigms related to water.

  6. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    Science.gov (United States)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  7. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  8. Statistical analysis of hydrologic data for Yucca Mountain

    International Nuclear Information System (INIS)

    Rutherford, B.M.; Hall, I.J.; Peters, R.R.; Easterling, R.G.; Klavetter, E.A.

    1992-02-01

    The geologic formations in the unsaturated zone at Yucca Mountain are currently being studied as the host rock for a potential radioactive waste repository. Data from several drill holes have been collected to provide the preliminary information needed for planning site characterization for the Yucca Mountain Project. Hydrologic properties have been measured on the core samples and the variables analyzed here are thought to be important in the determination of groundwater travel times. This report presents a statistical analysis of four hydrologic variables: saturated-matrix hydraulic conductivity, maximum moisture content, suction head, and calculated groundwater travel time. It is important to modelers to have as much information about the distribution of values of these variables as can be obtained from the data. The approach taken in this investigation is to (1) identify regions at the Yucca Mountain site that, according to the data, are distinctly different; (2) estimate the means and variances within these regions; (3) examine the relationships among the variables; and (4) investigate alternative statistical methods that might be applicable when more data become available. The five different functional stratigraphic units at three different locations are compared and grouped into relatively homogeneous regions. Within these regions, the expected values and variances associated with core samples of different sizes are estimated. The results provide a rough estimate of the distribution of hydrologic variables for small core sections within each region

  9. Evaluating permafrost thaw vulnerabilities and hydrologic impacts in boreal Alaska (USA) watersheds using field data and cryohydrogeologic modeling

    Science.gov (United States)

    Walvoord, M. A.; Voss, C.; Ebel, B. A.; Minsley, B. J.

    2017-12-01

    Permafrost environments undergo changes in hydraulic, thermal, chemical, and mechanical subsurface properties upon thaw. These property changes must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of water in arctic and sub-arctic boreal regions. Advances have been made in the last several years with respect to multiscale geophysical characterization of the subsurface and coupled fluid and energy transport modeling of permafrost systems. Ongoing efforts are presented that integrate field data with cryohydrogeologic modeling to better understand and anticipate changes in subsurface water resources, fluxes, and flowpaths caused by climate warming and permafrost thawing. Analyses are based on field data from several sites in interior Alaska (USA) that span a broad north-south transition from continuous to discontinuous permafrost. These data include soil hydraulic and thermal properties and shallow permafrost distribution. The data guide coupled fluid and energy flow simulations that incorporate porewater liquid/ice phase change and the accompanying modifications in hydraulic and thermal subsurface properties. Simulations are designed to assess conditions conducive to active layer thickening and talik development, both of which are expected to affect groundwater storage and flow. Model results provide a framework for identifying factors that control the rates of permafrost thaw and associated hydrologic responses, which in turn influence the fate and transport of carbon.

  10. Results of monitoring at Olkiluoto in 2007. Hydrology

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Klockars, J.; Nummela, J.; Penttinen, T.; Tammisto, E.; Karvonen, T.

    2008-07-01

    The impact of the construction of ONKALO is monitored by measuring and observing numerous different parameters related to hydrology, geochemistry, environment, rock mechanics and foreign materials. The hydrological monitoring programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open boreholes, cross drillhole flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, water balance in the tunnel system and in the Korvensuo reservoir. This report focuses on the hydrogeological parameters. Other parameters like precipitation, ground frost etc. will be reported in the environment report. Monitoring has in the main parts been carried out according to plan. The previous monitoring report contained results until the end of 2006, and this report presents results for the year 2007. Cross drillhole measurements were started as new measurements by test measurements. Monitoring measurements will start in 2008. In addition, the water balance of the Korvensuo Reservoir was introduced for the first time. According to the observations made in shallow observation tubes in the overburden and in shallow drillholes in the bedrock, the construction of ONKALO has not caused any certain changes in groundwater level. However, weak indications of a decrease in groundwater level have been observed. The effects on the head deeper in the bedrock have been both short-term and long-term. Short-term changes have been caused by several different investigation activities carried out in the field and by ONKALO as well by as temporary leakages due to the e.g. grouting holes drilled in ONKALO. The order of magnitude of long-term changes, i.e. a decrease in pressure heads near ONKALO, has remained the same as the previous year and the changes are in the order of 1 m. The changes observed in flow conditions in open drillholes

  11. Hydraulic Arm Modeling via Matlab SimHydraulics

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    Roč. 16, č. 4 (2009), s. 287-296 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : simulatin modeling * hydraulics * SimHydraulics Subject RIV: JD - Computer Applications, Robotics

  12. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    NARCIS (Netherlands)

    Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; Dam, van J.C.

    2010-01-01

    Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still

  13. What are the main research challenges in hydrology?

    Science.gov (United States)

    Savenije, H. H. G.

    2012-04-01

    The science of hydrology finds itself in a difficult situation. The PUB decade has told us that we are not very good at predicting hydrological behaviour in a data scarce environment. How good is our science if we are so uncertain about our predictions? On the other hand experienced hydrologists may say that we know enough for most practical problems. We can apply standard approaches or models to a variety of situations and if we have enough data we can make reasonable predictions of river flow, groundwater levels or water availability. In the world of applied hydrology we have enough knowledge to design dams, well fields, embankments, irrigation schemes, water intakes, and the like. There are proofs galore of impressive hydraulic works, all around the world. But for a scientist these accomplishments are hardly satisfying. The fact that a model works is no proof that the theory is correct, or that we understand the processes behind it. A hydrological scientist will rightly point out that there is still a lot that we don't understand. Although we can apply rainfall-runoff models to catchments, we fail to understand how exactly the water behaves, or how long it resides within the different compartments of the system. From a science perspective this is very unsatisfactory, even though engineers may argue that there is no problem as long as the models give reasonable outputs. So is our science adequate or are we still in the dark and do we fail to understand precisely how our hydrological system functions, much like a clockmaker who can read the time from a watch, but fails to understand how precisely the clockwork works? Hydrology is about the occurrence and flow of water (or moisture) through the Earth system. In that sense it is similar to other Earth sciences, such a climatology, oceanography or hydraulics. But this similarity is treacherous, because it is different in one fundamental aspect. Unlike other Earth sciences, in hydrology the medium through which the

  14. Open source data assimilation framework for hydrological modeling

    Science.gov (United States)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent

  15. Hydrologic test results for the upper Cohassett flow interior at borehole RRL-2, Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Strait, S.R.; Spane, F.A. Jr.

    1984-03-01

    The results and description of hydrologic test activities for the upper Cohassett flow interior at borehole RRL-2 over the depth interval 3,057 to 3,172 feet are presented in this report. Hydrologic tests conducted include an over-pressure pulse test and a constant head injection test. Preliminary results from hydrologic tests performed indicate transmissivity values ranging from 1.8 x 10 -6 to 1.7 x 10 -4 square feet per day, with an assigned best estimate of 1.7 x 10 -4 square feet per day. The best estimates of equivalent hydraulic conductivity, based on a thickness for the effective test interval of 115 feet, is 1.5 x 10 -6 feet per day. Best-estimate values obtained from testing are consistent with results previously reported for similar Grande Ronde Basalt horizons. 12 refs., 6 figs., 3 tabs

  16. Field Training Activities for Hydrologic Science in West Java, Indonesia

    Science.gov (United States)

    Agustina, C.; Fajri, P. N.; Fathoni, F.; Gusti, T. P.; Harifa, A. C.; Hendra, Y.; Hertanti, D. R.; Lusiana, N.; Rohmat, F. I.; Agouridis, C.; Fryar, A. E.; Milewski, A.; Pandjaitan, N.; Santoso, R.; Suharyanto, A.

    2013-12-01

    In hydrologic science and engineering, one challenge is establishing a common framework for discussion among workers from different disciplines. As part of the 'Building Opportunity Out of Science and Technology: Helping Hydrologic Outreach (BOOST H2O)' project, which is supported by the U.S. Department of State, nine current or recent graduate students from four Indonesian universities participated in a week of training activities during June 2013. Students had backgrounds in agricultural engineering, civil and environmental engineering, water resources engineering, natural resources management, and soil science. Professors leading the training, which was based at Bogor Agricultural University (IPB) in west Java, included an agricultural engineer, civil engineers, and geologists. Activities in surface-water hydrology included geomorphic assessment of streams (measuring slope, cross-section, and bed-clast size) and gauging stream flow (wading with top-setting rods and a current meter for a large stream, and using a bucket and stopwatch for a small stream). Groundwater-hydrology activities included measuring depth to water in wells, conducting a pumping test with an observation well, and performing vertical electrical soundings to infer hydrostratigraphy. Students also performed relatively simple water-quality measurements (temperature, electrical conductivity, pH, and alkalinity) in streams, wells, and springs. The group analyzed data with commercially-available software such as AQTESOLV for well hydraulics, freeware such as the U.S. Geological Survey alkalinity calculator, and Excel spreadsheets. Results were discussed in the context of landscape position, lithology, and land use.

  17. The hydrological functioning of a constructed fen wetland watershed.

    Science.gov (United States)

    Ketcheson, Scott J; Price, Jonathan S; Sutton, Owen; Sutherland, George; Kessel, Eric; Petrone, Richard M

    2017-12-15

    Mine reclamation requires the reconstruction of entire landforms and drainage systems. The hydrological regime of reclaimed landscapes will be a manifestation of the processes operating within the individual landforms that comprise it. Hydrology is the most important process regulating wetland function and development, via strong controls on chemical and biotic processes. Accordingly, this research addresses the growing and immediate need to understand the hydrological processes that operate within reconstructed landscapes following resource extraction. In this study, the function of a constructed fen watershed (the Nikanotee Fen watershed) is evaluated for the first two years following construction (2013-2014) and is assessed and discussed within the context of the construction-level design. The system design was capable of sustaining wet conditions within the Nikanotee Fen during the snow-free period in 2013 and 2014, with persistent ponded water in some areas. Evapotranspiration dominated the water fluxes from the system. These losses were partially offset by groundwater discharge from the upland aquifer, which demonstrated strong hydrologic connectivity with the fen in spite of most construction materials having lower than targeted saturated hydraulic conductivities. However, the variable surface infiltration rates and thick placement of a soil-capping layer constrained recharge to the upland aquifer, which remained below designed water contents in much of the upland. These findings indicate that it is possible to engineer the landscape to accommodate the hydrological functions of a fen peatland following surface oil sands extraction. Future research priorities should include understanding the storage and release of water within coarse-grained reclaimed landforms as well as evaluating the relative importance of external water sources and internal water conservation mechanisms for the viability of fen ecosystems over the longer-term. Copyright © 2017 Elsevier B

  18. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration.

    Science.gov (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-09-01

    A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.

  19. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  20. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-01-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and

  1. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    Science.gov (United States)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  2. Unsaturated hydraulic behaviour of a permeable pavement: Laboratory investigation and numerical analysis by using the HYDRUS-2D model

    Science.gov (United States)

    Turco, Michele; Kodešová, Radka; Brunetti, Giuseppe; Nikodem, Antonín; Fér, Miroslav; Piro, Patrizia

    2017-11-01

    An adequate hydrological description of water flow in permeable pavement systems relies heavily on the knowledge of the unsaturated hydraulic properties of the construction materials. Although several modeling tools and many laboratory methods already exist in the literature to determine the hydraulic properties of soils, the importance of an accurate materials hydraulic description of the permeable pavement system, is increasingly recognized in the fields of urban hydrology. Thus, the aim of this study is to propose techniques/procedures on how to interpret water flow through the construction system using the HYDRUS model. The overall analysis includes experimental and mathematical procedures for model calibration and validation to assess the suitability of the HYDRUS-2D model to interpret the hydraulic behaviour of a lab-scale permeable pavement system. The system consists of three porous materials: a wear layer of porous concrete blocks, a bedding layers of fine gravel, and a sub-base layer of coarse gravel. The water regime in this system, i.e. outflow at the bottom and water contents in the middle of the bedding layer, was monitored during ten irrigation events of various durations and intensities. The hydraulic properties of porous concrete blocks and fine gravel described by the van Genuchten functions were measured using the clay tank and the multistep outflow experiments, respectively. Coarse gravel properties were set at literature values. In addition, some of the parameters (Ks of the concrete blocks layer, and α, n and Ks of the bedding layer) were optimized with the HYDRUS-2D model from water fluxes and soil water contents measured during irrigation events. The measured and modeled hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index (varied between 0.95 and 0.99) while the coefficient of determination R2 was used to assess the measured water content versus the modelled water content in the bedding layer (R2 = 0.81 ÷ 0.87) . The

  3. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  4. Assessing predictability of a hydrological stochastic-dynamical system

    Science.gov (United States)

    Gelfan, Alexander

    2014-05-01

    The water cycle includes the processes with different memory that creates potential for predictability of hydrological system based on separating its long and short memory components and conditioning long-term prediction on slower evolving components (similar to approaches in climate prediction). In the face of the Panta Rhei IAHS Decade questions, it is important to find a conceptual approach to classify hydrological system components with respect to their predictability, define predictable/unpredictable patterns, extend lead-time and improve reliability of hydrological predictions based on the predictable patterns. Representation of hydrological systems as the dynamical systems subjected to the effect of noise (stochastic-dynamical systems) provides possible tool for such conceptualization. A method has been proposed for assessing predictability of hydrological system caused by its sensitivity to both initial and boundary conditions. The predictability is defined through a procedure of convergence of pre-assigned probabilistic measure (e.g. variance) of the system state to stable value. The time interval of the convergence, that is the time interval during which the system losses memory about its initial state, defines limit of the system predictability. The proposed method was applied to assess predictability of soil moisture dynamics in the Nizhnedevitskaya experimental station (51.516N; 38.383E) located in the agricultural zone of the central European Russia. A stochastic-dynamical model combining a deterministic one-dimensional model of hydrothermal regime of soil with a stochastic model of meteorological inputs was developed. The deterministic model describes processes of coupled heat and moisture transfer through unfrozen/frozen soil and accounts for the influence of phase changes on water flow. The stochastic model produces time series of daily meteorological variables (precipitation, air temperature and humidity), whose statistical properties are similar

  5. The Irma-sponge Project Frhymap: Flood Risk and Hydrological Mapping

    Science.gov (United States)

    Hoffmann, L.; Pfister, L.

    In the context of both increasing socio-economic developments in floodplains and the recent heavy floodings that have occurred in the Rhine and Meuse basins, the need for reliable hydro-climatological data, easily transposable hydrological and hydraulic models, as well as risk management tools has increased crucially. In the FRHYMAP project, some of these issues were addressed within a common mesoscale experimen- tal basin: the Alzette river basin, located in the Grand-duchy of Luxembourg. The various aspects concerning flooding events, reaching from the hydro-climatological analysis of field data to the risk assessment of socio-economic impacts, taking into account past and future climate and landuse changes were analysed by the six partici- pating research institutes (CREBS, L; CEREG, F; DLR, D; EPFL, CH; UB, D; VUB, B). Hydro-climatological data analysis over the past five decades has shown that in the study area, the increase in westerly and south-westerly atmospheric circulation patterns induced higher winter rainfall totals, leading to more frequent groundwater resurgences and ultimately also to higher daily maximum streamflow of the Alzette. The thus increased flood hazard has nonetheless a certain spatial variability, closely linked to the rainfall distribution patterns, which are strongly depending on the topo- graphical characteristics of the study area. Although the overall regime of the Alzette is more dependent on climate fluctuations, land use changes (mining activities, urbani- sation) had a marked effect on the rainfall-runoff relationship in some sub-basins over the last decades. By linking model parameters to physiographical basin characteris- tics, regionalised and thus easily transposable hydrological models were developed. Within a study area with very little long-term observation series, this technique, com- bined with the use of hydraulic models, allowed to define hydrological hazard pro- ducing and hydrological risk exposed areas. The

  6. Impact of land-use change on hydraulic properties of wettable and hydrophobic soils

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Nagy, V.; Houšková, B.; Šír, Miloslav; Tesař, Miroslav

    2008-01-01

    Roč. 36, Suppl. 5 (2008), s. 1599-1602 ISSN 0133-3720. [Alps Adria Scientific Workshop /7./. Stará Lesná, 28.04.2008-01.05.2008] R&D Projects: GA ČR GA205/06/0375; GA ČR GA205/08/1174; GA MŽP(CZ) SP/1A6/151/07 Grant - others:APVV(XE) SK-CZ-0066-07 Institutional research plan: CEZ:AV0Z20600510 Keywords : wettable soil * hydrophobic soil * hydraulic conductivity * bypassing ratio Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.190, year: 2007

  7. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  8. Nuclear well logging in hydrology

    International Nuclear Information System (INIS)

    1971-01-01

    they are described in detail elsewhere. The tracer techniques which have been included involve the use of well-logging methods to locate isotopic tracers inserted either in an adjacent borehole or in the same borehole as that in which the logs are made. Throughout the report, sufficient references have been selected to ensure that proven methods are adequately represented, but a comprehensive bibliography is not included. The International Atomic Energy Agency, at the request of the Coordinating Council of the International Hydrological Decade, is providing the Secretariat for the Working Group on Nuclear Techniques in Hydrology of the International Hydrological Decade (IHD). The Working Group and Secretariat have contributed to and coordinated the preparation of this report as well as an earlier more general report, Guidebook on Nuclear Techniques in Hydrology, IAEA Technical Reports Series No.91. Nuclear logging, along with other borehole geophysical methods, was adopted and developed primarily by the petroleum industry for use in exploration and developmental work. The information in this report shows that nuclear logging may also be useful in hydrology. Qualitative and under proper conditions quantitative interpretations about the physical, chemical, petrographic and hydraulic properties of formations and their contained fluids can be made from nuclear logs. The IHD Working Group on Nuclear Techniques in Hydrology, during its fourth meeting (in 1969), considered in detail the present status of nuclear logging with respect to hydrological investigations. Particularly it considered: (1) whether suitable equipment is at present available; (2) whether it could fulfil the need of hydrologists today; and (3) whether it was yet economic for use in hydrological investigations. The Working Group noted that the two main deficiencies in nuclear logging for hydrological purposes are: (1) the general lack of information in a coordinated form, and (2) the scarcity of

  9. Application of polish experience in the implementation of the flood directive in Georgia – hydrological calculations

    Directory of Open Access Journals (Sweden)

    Diana Egiazarova

    2018-05-01

    Full Text Available This paper present an example of the implementation of hydrological calculation methods for delineation of flood risk zones in the conditions prevailing in Georgia. The results, described in the present paper, were obtained in the project “Study of hydraulic modelling against floods – 2nd stage – support to the competence and readiness of Georgian institutions” which was organized and implemented by Polish Center for International Aid (PCPM, and co-funded by the Ministry of Foreign Affairs of the Republic of Poland. The results related to the catchments of the Lopota, the Intsoba, the Chelti, the Avaniskhevi, the Shromiskhevi in Kakheti and the Aragvi. All the catchments named above are hydrologically ungauged, therefore, a rainfall-runoff hydrological model was required for generating hypothetical hydrographs. Based on the peak daily total rainfall for the multi-annual period 1966–2014, quantiles of rainfall with a specified exceedance probability were calculated. A rainfall hyetogram was found using the beta distribution function. Effective rainfall was calculated by the SCS-CN method. Details of the land profile, cover and soil conditions were obtained from the numerical land model as well as maps, generated as part of the project named above. The effective rainfall was transformed into runoff using a simple SCSUH model, based on the synthetic unit hydrograph. Studies indicated that total daily uniform rainfalls were random and could be described using the Fisher-Tippett distribution type III min. The results obtained by modeling were boundary conditions in the hydraulic model of transformation of the flood wave in rivers.

  10. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermo-mechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift

  11. Estimation of soil hydraulic parameters by integrated hydrogeophysical inversion of time-lapse GPR data measured at Selhausen, Germany

    KAUST Repository

    Jadoon, Khan

    2012-06-01

    We present an integrated hydrogeophysical inversion approach that uses time-lapse off-ground ground-penetrating radar (GPR) data to estimate soil hydraulic parameters, and apply it to a dataset collected in the field. Off-ground GPR data are mainly sensitive to the near-surface water content profile and dynamics, and are thus related to soil hydraulic parameters, such as the parameters of the hydraulic conductivity and water retention functions. The hydrological simulator HYDRUS 1-D was used with a two-layer single- and dual-porosity model. To monitor the soil water content dynamics, time-lapse GPR and time domain reflectometry (TDR) measurements were performed, whereby only GPR data was used in the inversion. The dual porosity model provided better results compared to the single porosity model for describing the soil water dynamics, which is supported by field observations of macropores. Furthermore, the GPR-derived water content profiles reconstructed from the integrated hydrogeophysical inversion were in good agreement with TDR observations. These results suggest that the proposed method is promising for non-invasive characterization of the shallow subsurface hydraulic properties and monitoring water dynamics at the field scale.

  12. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin

    Science.gov (United States)

    Ji, H. J.; Liu, J.

    2017-12-01

    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring

  13. Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    Science.gov (United States)

    Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis

    2017-04-01

    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.

  14. Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling

    Science.gov (United States)

    Chen, Huili; Liang, Qiuhua; Liu, Yong; Xie, Shuguang

    2018-04-01

    Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM.

  15. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    International Nuclear Information System (INIS)

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  16. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  17. Toward the Development of a Cold Regions Regional-Scale Hydrologic Model, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D [Univ. of Alaska, Fairbanks, AK (United States); Bolton, William Robert [Univ. of Alaska, Fairbanks, AK (United States); Young-Robertson, Jessica (Cable) [Univ. of Alaska, Fairbanks, AK (United States)

    2018-01-02

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating that assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.

  18. Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06

    Science.gov (United States)

    Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.

    2011-01-01

    The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components

  19. Modeling Subsurface Hydrology in Floodplains

    Science.gov (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  20. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    Science.gov (United States)

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  1. Results of monitoring at Olkiluoto in 2008. Hydrology

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Klockars, J.; Nummela, J.; Penttinen, T.; Tammisto, E.; Karvonen, T.

    2009-08-01

    The impact of the ONKALO construction is monitored by measuring and observing numerous different parameters of hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open boreholes, cross drillhole flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Environment Report. Mainly the monitoring has been carried out according to plan. The previous Monitoring Report contained the results until the end of 2007, and this Report presents the results for the year 2008. A significant change in the Monitoring Programme was performed while most of the open drillholes were packed-off before excavation of the ONKALO access tunnel through the hydrogeological HZ20 zones began in Jun 2008. Prior to packing-off, open drillholes connected the main hydrogeological features, HZ19 and HZ20 systems, to each other. Due to packing-off open drillholes, number of flow logging and hydraulic testing monitoring measurements has considerably decreased. According to the observations carried out in shallow observation tubes in the overburden and in shallow drillholes in the bedrock, the construction of ONKALO has not caused any certain changes in groundwater level. However, weak indications of decrease in groundwater level have been observed. The effects on head deeper in the bedrock have been both short-term and long-term and in 2008 these were mostly connected to excavation of the tunnel trough the HZ20 zones. In most cases, short-term changes have been caused by temporary leakages due to the probe holes and grouting holes

  2. An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions

    International Nuclear Information System (INIS)

    Voss, C.F.; Shotwell, L.R.

    1990-04-01

    The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs

  3. Effect of Using Extreme Years in Hydrologic Model Calibration Performance

    Science.gov (United States)

    Goktas, R. K.; Tezel, U.; Kargi, P. G.; Ayvaz, T.; Tezyapar, I.; Mesta, B.; Kentel, E.

    2017-12-01

    Hydrological models are useful in predicting and developing management strategies for controlling the system behaviour. Specifically they can be used for evaluating streamflow at ungaged catchments, effect of climate change, best management practices on water resources, or identification of pollution sources in a watershed. This study is a part of a TUBITAK project named "Development of a geographical information system based decision-making tool for water quality management of Ergene Watershed using pollutant fingerprints". Within the scope of this project, first water resources in Ergene Watershed is studied. Streamgages found in the basin are identified and daily streamflow measurements are obtained from State Hydraulic Works of Turkey. Streamflow data is analysed using box-whisker plots, hydrographs and flow-duration curves focusing on identification of extreme periods, dry or wet. Then a hydrological model is developed for Ergene Watershed using HEC-HMS in the Watershed Modeling System (WMS) environment. The model is calibrated for various time periods including dry and wet ones and the performance of calibration is evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient, percent bias (PBIAS) and root mean square error. It is observed that calibration period affects the model performance, and the main purpose of the development of the hydrological model should guide calibration period selection. Acknowledgement: This study is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 115Y064.

  4. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  5. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2016-04-01

    One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle

  6. Avaliação de aspectos hidraúlicos e hidrológicos de sistemas alagados construídos de fluxo subsuperficial Evaluating hydrological and hydraulic aspects in subsurface-flow constructed wetland systems

    Directory of Open Access Journals (Sweden)

    Mozart da Silva Brasil

    2008-09-01

    Full Text Available Este trabalho teve-se como objetivo avaliar os aspectos hidráulicos e hidrológicos de quatro sistemas alagados construídos (SACs, cultivados com taboa (Typha sp. e utilizados no tratamento de esgoto doméstico pré-decantado em tanque séptico. O sistema foi alimentado com uma taxa de aplicação hidráulica (q constante de 60, 47, 23 e 35 litro m-2 d-1, respectivamente, nos SACs 1, 2, 3 e 4, tendo recebido monitoramento e medição da condutividade hidráulica e evapotranspiração no sistema. Foram realizados balanços hídricos mensais, durante um período de seis meses. Os resultados evidenciaram que: a condutividade hidráulica no meio suporte é reduzida com o tempo de funcionamento do sistema; e o sistema de tratamento apresentou evapotranspiração média de 9,3 mm d-1, resultando num coeficiente da cultura (Kc da taboa com variação de 2,22 a 4,58.This work was conducted to evaluate both hydrological and hydraulic aspects in four constructed wetland systems (SACs, that were cropped with Typha sp. and used in the treatment of the domestic wastewater presettled in septic tank. The system was fed a constant water application ratio (q of 60, 47, 23 and 35 liter m-2 d-1 in SACs 1, 2, 3 and 4, respectively, besides being monitored. The hydraulic conductivity and evapotranspiration were also measured. Water balances were monthly accomplished during six-months period. The results evidenced the hydraulic conductivity in the supportive medium to be reduced during the operating time of the system, as well as the treatment system showed an average evapotranspiration of 9.3mm d-1, as resulting into a cropping coefficient (Kc of the Typha sp. ranging from 2.22 to 4.58.

  7. Evaluation and hydrological modelization in the natural hazard prevention

    International Nuclear Information System (INIS)

    Pla Sentis, Ildefonso

    2011-01-01

    hydraulic properties, evaluable at field. It is proposed a model system, based on hydrological processes, properly evaluated with adequate methodologies for each combination of soil, topography, climate and management system. This model has been proved to evaluate the causes and effects of soil and water degradation under different conditions.

  8. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  9. Hydraulic model to assess the hydromorphological changes within the Danube Delta

    Directory of Open Access Journals (Sweden)

    CIOACĂ Eugenia

    2012-09-01

    Full Text Available Morphological changes of the hydrographic networks (rivers /channels /brooks /lakes as result of fluvial processes (erosion and alluvial sedimentation induce modification on hydrologic regime with positive /negative impacts on biodiversity. This paper aims at emphasizing the amplitude of these processes within the Danube Delta Biosphere Reserve (Romanian part inner hydrographic network, by means of the morphologic model, as maincomponent of 3D mathematical /hydraulic model. It is constructed based on geo-referenced database as resulted from hydraulicand bathymetric field measurements carried out within 2008-2010. Hydro-morphological changes are assessed by analyzingthose zones where fluvial processes have been identified to be active, meaning that specific hydraulic conditions are fulfilled,such as: water flow with high energy /high values of hydraulic parameters: level, speed, slope, and solid transport (upstream ofdelta: erosion followed by a decrease of these values (middle part: alluvia sedimentation and ending with very clear water at very low flow velocity (downstream of delta: no fluvial processes. Both erosion and, especially, alluvial sedimentation zones, in low water level conditions lead to disconnection of some channels /lakes generating ecological disequilibrium with negative impact on some flora and fauna species. Thus, the gained knowledge on the aquatic ecosystem function is used as scientific tool for decision making on a sound management of such an environment system in order to improve the quality of aquatic life by restoration of hydrographical network with impacts on habitats and overall ecological reconstruction.

  10. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  11. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin

    Science.gov (United States)

    Beighley, R.E.; Eggert, K.G.; Dunne, T.; He, Y.; Gummadi, V.; Verdin, K.L.

    2009-01-01

    Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite-derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to Amazon vary by approximately + /− 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /− 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin.

  12. Mine drivage in hydraulic mines

    Energy Technology Data Exchange (ETDEWEB)

    Ehkber, B Ya

    1983-09-01

    From 20 to 25% of labor cost in hydraulic coal mines falls on mine drivage. Range of mine drivage is high due to the large number of shortwalls mined by hydraulic monitors. Reducing mining cost in hydraulic mines depends on lowering drivage cost by use of new drivage systems or by increasing efficiency of drivage systems used at present. The following drivage methods used in hydraulic mines are compared: heading machines with hydraulic haulage of cut rocks and coal, hydraulic monitors with hydraulic haulage, drilling and blasting with hydraulic haulage of blasted rocks. Mining and geologic conditions which influence selection of the optimum mine drivage system are analyzed. Standardized cross sections of mine roadways driven by the 3 methods are shown in schemes. Support systems used in mine roadways are compared: timber supports, roof bolts, roof bolts with steel elements, and roadways driven in rocks without a support system. Heading machines (K-56MG, GPKG, 4PU, PK-3M) and hydraulic monitors (GMDTs-3M, 12GD-2) used for mine drivage are described. Data on mine drivage in hydraulic coal mines in the Kuzbass are discussed. From 40 to 46% of roadways are driven by heading machines with hydraulic haulage and from 12 to 15% by hydraulic monitors with hydraulic haulage.

  13. Impacts of Vegetation Growth on Reach-scale Flood Hydraulics in a Sand-bed River and the Implications for Vegetation-morphology Coevolution

    Science.gov (United States)

    Box, S.; Wilcox, A. C.

    2017-12-01

    Vegetation alters flood hydraulics and geomorphic response, yet quantifying and predicting such responses across spatial and temporal scales remains challenging. Plant- and patch-scale studies consistently show that vegetation increases local hydraulic variability, yet reach-scale hydrodynamic models often assume vegetation has a spatially homogeneous effect on hydraulics. Using Nays2DH in iRIC (International River Interface Cooperative), we model the effect of spatially heterogeneous vegetation on a series of floods with varying antecedent vegetation conditions in a sand-bed river in western Arizona, taking advantage of over a decade of data on a system that experienced substantial geomorphic, hydrologic, and ecosystem changes. We show that pioneer woody seedlings (Tamarix, Populus, Salix) and cattail (Typha) increase local hydraulic variability, including velocity and bed shear stress, along individual cross sections, predominantly by decreasing velocity in zones of vegetation establishment and growth and increasing velocity in unvegetated areas, with analogous effects on shear stress. This was especially prominent in a study reach where vegetation growth contributed to thalweg incision relative to a vegetated bar. Evaluation of these results in the context of observed geomorphic response to floods elucidates mechanisms by which vegetation and channel morphology coevolve at a reach scale. By quantifying the influence of spatially heterogeneous vegetation on reach-scale hydraulics, we demonstrate that plant- and patch-scale research on vegetation hydraulics is applicable to ecogeomorphology at the reach scale.

  14. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  15. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  16. Hydrological simulations driven by RCM climate scenarios at basin scale in the Po River, Italy

    Directory of Open Access Journals (Sweden)

    R. Vezzoli

    2014-09-01

    Full Text Available River discharges are the main expression of the hydrological cycle and are the results of climate natural variability. The signal of climate changes occurrence raises the question of how it will impact on river flows and on their extreme manifestations: floods and droughts. This question can be addressed through numerical simulations spanning from the past (1971 to future (2100 under different climate change scenarios. This work addresses the capability of a modelling chain to reproduce the observed discharge of the Po River over the period 1971–2000. The modelling chain includes climate and hydrological/hydraulic models and its performance is evaluated through indices based on the flow duration curve. The climate datasets used for the 1971–2000 period are (a a high resolution observed climate dataset, and COSMO-CLM regional climate model outputs with (b perfect boundary condition, ERA40 Reanalysis, and (c suboptimal boundary conditions provided by the global climate model CMCC–CM. The aim of the different simulations is to evaluate how the uncertainties introduced by the choice of the regional and/or global climate models propagate in the simulated discharges. This point is relevant to interpret the results of the simulated discharges when scenarios for the future are considered. The hydrological/hydraulic components are simulated through a physically-based distributed model (TOPKAPI and a water balance model at the basin scale (RIBASIM. The aim of these first simulations is to quantify the uncertainties introduced by each component of the modelling chain and their propagation. Estimation of the overall uncertainty is relevant to correctly understand the future river flow regimes. The results show how bias correction algorithms can help in reducing the overall uncertainty associated to the different stages of the modelling chain.

  17. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  18. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  19. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  20. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  1. Disturbance Hydrology in the Tropics: The Galápagos Islands as a Case Study

    Science.gov (United States)

    Riveros-Iregui, D. A.; Schmitt, S.; Percy, M.; Hu, J.; Singha, K.; Mirus, B. B.

    2015-12-01

    Tropical Latin America has shown the largest acceleration in land use change in recent decades. It is well established that changes in vegetation cover can lead to changes in water demand, evapotranspiration, and eventually soil textural characteristics. Given the projected changes in the intensity and distribution of rainfall in tropical regions in the coming decades, it is critical to characterize how changes in land use change across different climatic zones may fundamentally reshape water availability and storage, soil composition and associated hydraulic properties, and overall watershed hydrologic behavior. This study evaluates the role of anthropogenic disturbance on hydrological processes across different climatic zones in the tropics. We focus specifically on San Cristobal Island, the second most populated island of the iconic Galapagos archipelago, which is currently undergoing severe anthropogenic transformation. The island contains a spectrum of climates, ranging from very humid to arid, and has seen a dramatic increase in tourism and an increase in the permanent population of greater than 1000% in the last 40 years. Over 70% of the landscape of San Cristobal has been altered by land use change and invasive species. Our study identifies the complex interactions among hydrological, geological, economic, and social variables that tropical island systems will face in the years ahead, and the role and effects of a dynamic hydrologic cycle across multiple scales.

  2. Development of Characterization Technology for Fault Zone Hydrology

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; Miyakawa, Kimio

    2010-01-01

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ∼ 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to 'up-scale,' which is extremely tenuous.

  3. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  4. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  5. Proceedings of the 15. CRIPE workshop on the hydraulics of ice covered rivers

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, F. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering] (comp.)

    2009-07-01

    This workshop focused on the hydraulic aspects of river ice phenomena and the effects of ice cover on flow characteristics. Ice processes play a large role in the hydrologic regime of Canadian rivers and are related to the life cycle of aquatic, terrestrial, and avian species. The most serious impacts of river ice occur during ice-jam flooding, affecting the winter operation of hydroelectric power plants and sometimes resulting in the loss of property and human life. The conference addressed these concerns as well as environmental aspects of river ice, and climatic change. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. In addition to a poster session, the workshop included sessions on ice measurement; freeze-up and frazil; ice processes and the environment; ice hydraulics; ice and river regulation; ice jams and breakup forecasting; ice and infrastructure; and remote sensing. The workshop featured 35 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  6. Proceedings of the 15. CRIPE workshop on the hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Hicks, F.

    2009-01-01

    This workshop focused on the hydraulic aspects of river ice phenomena and the effects of ice cover on flow characteristics. Ice processes play a large role in the hydrologic regime of Canadian rivers and are related to the life cycle of aquatic, terrestrial, and avian species. The most serious impacts of river ice occur during ice-jam flooding, affecting the winter operation of hydroelectric power plants and sometimes resulting in the loss of property and human life. The conference addressed these concerns as well as environmental aspects of river ice, and climatic change. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. In addition to a poster session, the workshop included sessions on ice measurement; freeze-up and frazil; ice processes and the environment; ice hydraulics; ice and river regulation; ice jams and breakup forecasting; ice and infrastructure; and remote sensing. The workshop featured 35 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  7. Results of monitoring at Olkiluoto in 2010. Hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Ahokas, H.; Klockars, J.; Nummela, J.; Pentti, E.; Penttinen, T.; Poellaenen, J. [Poeyry Finland Oy, Espoo (Finland); Karvonen, T. [WaterHope, Helsinki (Finland); Lindgren, S.

    2012-03-15

    The impact of the construction of ONKALO is monitored by measuring and observing numerous different parameters related to hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open boreholes, cross drillhole flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, and water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Monitoring Report of Environment. Monitoring has primarily been carried out according to plan. This Report presents the results for the year 2010. A significant change took place in the Monitoring Programme when most of the open drillholes were packed-off before the excavation of the ONKALO access tunnel through the hydrogeological HZ20 zones began in June 2008. Prior to packing-off, open drillholes connected the main hydrogeological features, the HZ19 and HZ20 systems, to each other. Due to the packing-off of open drillholes, the number of flow logging and hydraulic testing (HTU) measurements has decreased considerably. The mapping of water leakages and moisture conditions in tunnel walls and roof has been continued. Some changes have been observed in the pattern of moisture content. The changes have probably been caused by shotcreting, postgrouting and possibly also by seasonal effects. The changes have so far not been analysed. The changes observed in the groundwater level in shallow observation tubes in the overburden and in shallow drillholes in the bedrock are not necessarily caused by the construction of ONKALO. However, weak indications of a decrease in groundwater level have been observed. Effects on the head deeper in the

  8. Characterising the hydrological regime of an ungauged temporary river system: a case study.

    Science.gov (United States)

    D'Ambrosio, Ersilia; De Girolamo, Anna Maria; Barca, Emanuele; Ielpo, Pierina; Rulli, Maria Cristina

    2017-06-01

    Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a 'river type' classification for all water bodies.

  9. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange

    NARCIS (Netherlands)

    Troch, P.A.A.; Berne, A.D.; Harman, C.; Hilberts, A.G.J.; Lyon, S.W.; Paniconi, C.; Pauwels, V.R.N.; Rupp, D.E.; Selker, J.S.; Teuling, A.J.; Uijlenhoet, R.; Verhoest, N.E.C.

    2013-01-01

    Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in

  10. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert adn Jean-Yves Parlange

    NARCIS (Netherlands)

    Troch, P.A.; Berne, A.; Bogaart, P.W.; Harman, C.; Hilberts, A.G.J.; Lyon, S.W.; Paniconi, C.; Pauwels, V.R.N.; Rupp, D.E.; Selker, J.S.; Teuling, A.J.; Uijlenhoet, R.; Verhoest, N.E.C.

    2013-01-01

    Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in

  11. Determination of near-saturated hydraulic conductivity by automated minidisk infiltrometer

    Science.gov (United States)

    Klipa, Vladimir; Snehota, Michal; Dohnal, Michal; Zumr, David

    2013-04-01

    Numerical models in surface and subsurface hydrology require knowledge of infiltration properties of soils for their routine use in the field of water management, environmental protection or agriculture. A new automated tension infiltration module has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. In the proposed infiltration module the amount of infiltrated water is registered via changes of buoyant force of stationary float attached to the load cell. Presented setup consists of six mini-disk infiltrometer modules held in the light aluminum frame and two Mariotte's bottles. Three infiltrometer modules connected to each Mariotte's bottle allow performing six simultaneous measurements at two different pressure heads. Infiltration modules are connected to the automatic data logging system and consist of: plastic cover with the integrated load cell and the float, reservoir tube (external diameter of 50 mm), and sintered stainless steel plate (diameter of 44.5 mm). The newly developed device was used for determination of near-saturated hydraulic conductivity of soils in experimental catchments Uhlirska (Jizera Mountains, Northern Bohemia) and Kopaninsky creek (Bohemian-Moravian Highlands). The acquired data show a good agreement with the data obtained from previous measurements.

  12. Impact of hydraulic redistribution on multispecies vegetation water use in a semi-arid ecosystem: An experimental and modeling synthesis

    Science.gov (United States)

    Lee, E.; Kumar, P.; Barron-Gafford, G.; Scott, R. L.; Hendryx, S. M.; Sanchez-Canete, E. P.; Minor, R. L.; Colella, A.

    2017-12-01

    A key challenge in critical zone science is to understand and predict the interaction between aboveground and belowground ecohydrologic processes. One of the links that facilitates the interaction is hydraulic redistribution (HR), a phenomenon by which roots serve as preferential pathways for water movement from wet to dry soil layers. We use a multi-layer canopy model in conjunction with experimental data to examine the influence of HR on eco-hydrologic processes, such as transpiration, soil evaporation, and soil moisture, which characterize the competitive and facilitative dynamics between velvet mesquite and understory bunchgrass. Both measured and simulated results show that hydraulic descent (HD) dominates sap flux during the wet monsoon season, whereas hydraulic lift (HL) occurs between precipitation events. About 17% of precipitation is absorbed as soil-moisture, with the rest of the precipitation returning to the atmosphere as evapotranspiration. In the wet season, 13% of precipitation is transferred to deep soil (>2m) through mesquite roots, and in the dry season, 9% of this redistributed water is transported back to shallow soil depth (competitive advantage over understory bunchgrass through HR.

  13. Identifying hydrological regime and eco-flow threshold of small and medium flood of the Xiaoqing River in Jinan city

    Science.gov (United States)

    Liu, Yang; Cao, Sheng-Le

    2017-06-01

    It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.

  14. Hydrology Project

    International Nuclear Information System (INIS)

    Anon.

    Research carried out in the 'Hydrology Project' of the Centro de Energia Nuclear na Agricultura', Piracicaba, Sao Paulo State, Brazil, are described. Such research comprises: Amazon hydrology and Northeast hydrology. Techniques for the measurement of isotope ratios are used. (M.A.) [pt

  15. Spatial and temporal variations in glacier hydrology on Storglaciaeren, Sweden

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove

    2009-06-01

    The aim of the current research project was to provide a framework of real conditions within which to interpret theory and extrapolate likely conditions beneath a future ice sheet over Fennoscandia. The purpose of this report is to summarize the experimental work on glacier hydrology and basal hydraulic conditions performed on Storglaciaeren, northern Sweden, during the years 1990-2006. Surface fed subglacial hydrological systems are extremely dynamic because the input rates of rain and temperature-controlled surface melt fluctuate, and the geometry of flow paths is constantly changing due to ice deformation which tends to open and close the flow paths. The hydrological system of a glacier is quite unusual because since liquid water flows through conduits made of its solid phase (ice). Understanding the expected dynamic range of a glacier's hydrological system is best studied by in situ measurements. The processes studied on Storglaciaeren can be expected to apply to ice sheet scale, albeit on different spatial scales. Since Storglaciaeren is a polythermal glacier with a large fraction of ice below freezing and at the melting point and with a surface-fed hydrological system of conduits and tunnels, results apply to the lower elevation regions where the surface is composed of ice (ablation zone) rather than composed of snow (accumulation zone) found at higher elevations of the glaciers and ice sheets, Therefore, our results apply to the ablation zone of the past Fennoscandian Ice Sheet. In this report we discuss the measurements made to assess the subglacial conditions that provide a potential analogue for conditions under the Fennoscandian Ice Sheet. For this purpose field work was performed on from 2003 to 2006 yielding subglacial water pressure measurements. We have included a large quantity of unpublished data from Storglaciaeren from different research projects conducted since 1990. Together these data provide a picture of the temporal and spatial water

  16. Spatial and temporal variations in glacier hydrology on Storglaciaeren, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)); Naeslund, Jens-Ove (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-06-15

    The aim of the current research project was to provide a framework of real conditions within which to interpret theory and extrapolate likely conditions beneath a future ice sheet over Fennoscandia. The purpose of this report is to summarize the experimental work on glacier hydrology and basal hydraulic conditions performed on Storglaciaeren, northern Sweden, during the years 1990-2006. Surface fed subglacial hydrological systems are extremely dynamic because the input rates of rain and temperature-controlled surface melt fluctuate, and the geometry of flow paths is constantly changing due to ice deformation which tends to open and close the flow paths. The hydrological system of a glacier is quite unusual because since liquid water flows through conduits made of its solid phase (ice). Understanding the expected dynamic range of a glacier's hydrological system is best studied by in situ measurements. The processes studied on Storglaciaeren can be expected to apply to ice sheet scale, albeit on different spatial scales. Since Storglaciaeren is a polythermal glacier with a large fraction of ice below freezing and at the melting point and with a surface-fed hydrological system of conduits and tunnels, results apply to the lower elevation regions where the surface is composed of ice (ablation zone) rather than composed of snow (accumulation zone) found at higher elevations of the glaciers and ice sheets, Therefore, our results apply to the ablation zone of the past Fennoscandian Ice Sheet. In this report we discuss the measurements made to assess the subglacial conditions that provide a potential analogue for conditions under the Fennoscandian Ice Sheet. For this purpose field work was performed on from 2003 to 2006 yielding subglacial water pressure measurements. We have included a large quantity of unpublished data from Storglaciaeren from different research projects conducted since 1990. Together these data provide a picture of the temporal and spatial water

  17. Examining the information content of time-lapse crosshole GPR data collected under different infiltration conditions to estimate unsaturated soil hydraulic properties

    DEFF Research Database (Denmark)

    Scholer, M.; Irving, J.; Zibar, Majken Caroline Looms

    2013-01-01

    Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either...... by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data...... of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten–Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural...

  18. How runoff begins (and ends): characterizing hydrologic response at the catchment scale

    Science.gov (United States)

    Mirus, Benjamin B.; Loague, Keith

    2013-01-01

    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  19. The Scale Effects of Engineered Inlets in Urban Hydrologic Processes

    Science.gov (United States)

    Shevade, L.; Montalto, F. A.

    2017-12-01

    Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.

  20. Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir

    Science.gov (United States)

    Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming

    2017-12-01

    Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.

  1. Hydrological peculiarities of high mountain basins: the case of the Spanish Pyrenees

    International Nuclear Information System (INIS)

    Ferrer Castillo, Cesar; Alonso-Muiioyerro, Justo Mora; Parra, Miguel Arenillas; Campos, Guillermo Cobos

    2004-01-01

    The exploitation of a reservoir is determined by the availability of information within which the information provided by hydrological information systems must be included. This should be complemented, especially in flood circumstances, by meteorological forecasts and the results obtained by from hydrological and hydraulic simulation and forecasting models. In mountain basins with marked influence of snow, specific hydrological modelling is necessary, permitting simulation of the phenomenon of snow runoff. In particular, the hydrology of the basin of the River Ebro (Spain) is clearly influenced by this phenomenon. This basin is affected by flood situations caused by rapid melt of the snow accumulated on its Pyrenean slopes. This has brought about the need for a specific study to be undertaken in order to facilitate greater understanding and control. Additionally, the volume of accumulated snow in the catchment areas determines the management and everyday exploitation of the reservoirs for the achievement of maximum yield from water resources. This interest in the understanding of snow phenomena has given rise to numerous studies in the Pyrenean area: field study campaigns to carry out point measurements of thickness and density, hydrological-statistical modelling for the forecasting of melts and course flows and the development and application of hydrological simulation models. In the Pyrenean slopes basin the ASTER model has been applied to the reservoir of Yesa during a period of more than five years, achieving quite satisfactory results with regard to watercourse flow forecasting and the volume of water stored in the form of snow. This has enabled appropriate management of the reservoir during flood circumstances - minimising possible damage as well as under everyday conditions. The results obtained from this period have led to the generalisation of the ASTER model to apply to all sources of the Pyrenean tributaries of the Ebro with clear snow influence and

  2. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  3. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  4. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  5. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  6. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  7. Probability encoding of hydrologic parameters for basalt. Elicitation of expert opinions from a panel of five consulting hydrologists

    International Nuclear Information System (INIS)

    Runchal, A.K.; Merkhofer, M.W.; Olmsted, E.; Davis, J.D.

    1984-11-01

    The Columbia River basalts underlying the Hanford Site in Washington State are being considered as a possible location for a geologic repository for high-level nuclear waste. To investigate the feasibility of a repository at this site, the hydrologic parameters of the site must be evaluated. Among hydrologic parameters of particular interest are the effective porosity of the Cohassett basalt flow top and flow interior and the vertical-to-horizontal hydraulic conductivity, or anisotropy ratio, of the Cohassett basalt flow interior. The Cohassett basalt flow is the prime candidate horizon for repository studies. Site-specific data for these hydrologic parameters are currently inadequate for the purpose of preliminary assessment of candidate repository performance. To obtain credible, auditable, and independently derived estimates of the specified hydrologic parameters, a panel of five nationally recognized hydrologists was assembled. Their expert judgments were quantified during two rounds of Delphi process by means of a probability encoding method developed to estimate the probability distributions of the selected hydrologic variables. The results indicate significant differences of expert opinion for cumulative probabilities of less than 10% and greater than 90%, but relatively close agreement in the middle ranges of values. The principal causes of the diversity of opinion are believed to be the lack of site-specific data and the absence of a single, widely accepted, conceptual or theoretical basis for analyzing these variables

  8. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  9. THE POSSIBILITIES OF USING HEC-RAS SOFTWARE FOR MODELLING HYDRAULIC CONDITIONS OF WATER FLOW IN THE FISH PASS EXAMPLED BY THE POMIŁOWO BARRAGE ON THE WIEPRZA RIVER

    Directory of Open Access Journals (Sweden)

    Mateusz Hammerling

    2016-04-01

    Full Text Available The aim of the article is to analyse hydraulic conditions of water flow in a fish pass. The test facility is part of the Pomiłowo barrage in the commune of Sławno, Poland. The authors applied HEC-RAS software for modelling hydraulic parameters of the water flow in the fish pass. The data from field measurements was implemented in the software and calculations of changes in the water table in the fish pass were made. The results confirmed the usefulness of HEC-RAS software for estimating hydraulic parameters of water flow in a fish pass. HEC-RAS software enables to take into account the parameters responsible for the phenomena accompanying the flow through a fish pass. Selecting mathematical model parameters (coefficients should be preceded by a multidimensional analysis of the facility. More precise information on hydraulics, hydrology and biology of the test fish pass are also required.

  10. Baseline hydrologic studies in the lower Elwha River prior to dam removal

    Science.gov (United States)

    Magirl, Christopher S.; Curran, Christopher A.; Sheibley, Rich W.; Warrick, Jonathan A.; Czuba, Jonathan A.; Czuba, Christiana R.; Gendaszek, Andrew S.; Shafroth, Patrick B.; Duda, Jeffrey J.; Foreman, James R.

    2011-01-01

    After the removal of two large, long‑standing dams on the Elwha River, Washington, the additional load of sediment and wood is expected to affect the hydrology of the lower river, its estuary, and the alluvial aquifer underlying the surrounding flood plain. To better understand the surface-water and groundwater characteristics of the river and estuary before dam removal, several hydrologic data sets were collected and analyzed. An experiment using a dye tracer characterized transient storage, and it was determined that the low‑flow channel of the lower Elwha River was relatively simple; 1–6 percent of the median travel time of dye was attributed to transient‑storage processes. Water data from monitoring wells adjacent to the main‑stem river indicated a strong hydraulic connectivity between stage in the river and groundwater levels in the flood plain. Analysis of temperature data from the monitoring wells showed that changes in the groundwater temperature responded weeks or months after water temperature changed in the river. A seepage investigation indicated that water from the river was moving into the aquifer (losing

  11. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  12. Hydrologic properties of shale and related argillaceous rocks

    International Nuclear Information System (INIS)

    Moiseyev, A.N.

    1979-01-01

    This report is the result of a bibliographic study designed primarily to collect hydrologic data on American clay-rich rocks. The following information was also sought: stratigraphy, environment of deposition, mineralogic composition, and diagenetic changes. The collected numerical data are presented in tables which contain densities, porosities, and/or hydraulic conductivities of approximately 360 samples. Additional data include hydraulic diffusivities, resistivities, flow rates, and rock strengths. Geologic information suggests that large deposits of shale which may be suited for waste repository belong to all ages and were formed in both marine and continental environments. Of the studied units, the most promising are Paleozoic in the eastern half of the country, Mesozoic in the central part, and Cenozoic in the Gulf Coast area and the West. Less widespread units locally present some additional possibilities. Mineralogic investigations suggest that the smectite content in rocks shows a decrease in time (70% in Recent rocks; 35% in pre-Mesozoic rocks). Because of this predominance of smectite in younger rocks, the modeling of repositories in post-Paleozoic formations might require knowledge of additional and poorly known parameters. Results of investigations into the mathematical relationships between porosity and permeability (or hydralic conductivity) suggest that in situ permeabilities could be estimated from sonic logs and fluid pressure changes at depth. 16 figures, 8 tables

  13. Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD

    Science.gov (United States)

    Saadat, S.; Bowling, L. C.; Frankenberger, J.

    2017-12-01

    Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.

  14. [Socio-hydrology: A review].

    Science.gov (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  15. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

  16. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  17. Groundwater potentiality mapping using geoelectrical-based aquifer hydraulic parameters: A GIS-based multi-criteria decision analysis modeling approach

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji Hwee San Lim

    2017-01-01

    Full Text Available This study conducted a robust analysis on acquired 2D resistivity imaging data and borehole pumping test records to optimize groundwater potentiality mapping in Perak province, Malaysia using derived aquifer hydraulic properties. The transverse resistance (TR parameter was determined from the interpreted 2D resistivity imaging data by applying the Dar-Zarrouk parameter equation. Linear regression and GIS techniques were used to regress the estimated values for TR parameters with the aquifer transmissivity values extracted from the geospatially produced BPT records-based aquifer transmissivity map to develop the aquifer transmissivity parameter predictive (ATPP model. The reliability evaluated ATPP model using the Theil inequality coefficient measurement approach was used to establish geoelectrical-based hydraulic parameters (GHP modeling equations for the modeling of transmissivity (Tr, hydraulic conductivity (K, storativity (St, and hydraulic diffusivity (D properties. The applied GHP modeling equation results to the delineated aquifer media was used to produce aquifer potential conditioning factor maps for Tr, K, St, and D. The maps were modeled to develop an aquifer potential mapping index (APMI model via applying the multi-criteria decision analysis-analytic hierarchy process principle. The area groundwater reservoir productivity potential model map produced based on the processed APMI model estimates in the GIS environment was found to be 71% accurate. This study establishes a good alternative approach to determine aquifer hydraulic parameters even in areas where pumping test information is unavailable using a cost effective geophysical data. The produced map can be explored for hydrological decision making.

  18. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    Science.gov (United States)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  19. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  20. Modeling the Hydrologic Processes of a Permeable Pavement ...

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  1. Hydrological consequences of land-use change from forest to pasture in the Atlantic rain forest region

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Martinelli

    2012-12-01

    Full Text Available The Atlantic rain forest is the most endangered ecosystem in Brazil. Its degradation has started since 1500 when the European settlers arrived. Despite of all land use changes that have occurred, hydrological studies carried out in this biome have been limited to hydrological functioning of rain forests only. In order to understand the hydrological consequences of land-use change from forest to pasture, we described the hydrological functioning of a pasture catchment that was previously covered by tropical rain forest. To reach this goal we measured the precipitation, soil matric potential, discharge, surface runoff and water table levels during one year. The results indicated that there is a decrease in surface soil saturated hydraulic conductivity. However, as low intensity rainfall prevails, the lower water conductivity does not necessarily leads to a substantially higher surface runoff generation. Regarding soil water matric potential, the pasture presented higher moisture levels than forest during the dry season. This increase in soil moisture implies in higher water table recharge that, in turn, explain the higher runoff ratio. This way, land-use change conversion from forest to pasture implies a higher annual streamflow in pasture catchments. Nonetheless, this increase in runoff due to forest conversion to pasture implies in losses of biological diversity as well as lower soil protection.

  2. [Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters].

    Science.gov (United States)

    Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting

    2018-04-01

    The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

  3. Economic Evaluation of Hydrological Ecosystem Services in Mediterranean River Basins Applied to a Case Study in Southern Italy

    Directory of Open Access Journals (Sweden)

    Marcello Mastrorilli

    2018-02-01

    Full Text Available Land use affects eco-hydrological processes with consequences for floods and droughts. Changes in land use affect ecosystems and hydrological services. The objective of this study is the analysis of hydrological services through the quantification of water resources, pollutant loads, land retention capacity and soil erosion. On the basis of a quantitative evaluation, the economic values of the ecosystem services are estimated. By assigning an economic value to the natural resources and to the hydraulic system, the hydrological services can be computed at the scale of catchment ecosystem. The proposed methodology was applied to the basin “Bonis” (Calabria Region, Italy. The study analyses four land use scenarios: (i forest cover with good vegetative status (baseline scenario; (ii modification of the forest canopy; (iii variation in forest and cultivated surfaces; (iv insertion of impermeable areas. The simulations prove that the variations of the state of forest areas has considerable influence on the water balance, and then on the provided economic value. Small economic changes derive from reducing the impermeable areas. Increasing the agricultural area to 50% of the total, and reducing the forest surface, affects soil erosion, reduces the storage capacity of the water, and consequently the water harvesting. The suggested methodology can be considered a suitable tool for land planning.

  4. The progress of hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, V T [University of Illinois, Urbana, IL (United States)

    1967-05-15

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  5. The progress of hydrology

    International Nuclear Information System (INIS)

    Chow, V.T.

    1967-01-01

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  6. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  7. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  8. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  9. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  10. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  11. Measurement of Physical and Hydraulic Properties of Organic Soil Using Computed Tomographic Imagery

    Science.gov (United States)

    Blais, K. E.; Quinton, W. L.; Heck, R. J.; Price, J. S.; Schmidt, M. G.

    2005-12-01

    The Lower Liard River valley is located within the continental northern boreal region and the zone of discontinuous permafrost. Lying in the centre of the Mackenzie basin, this valley is an extensive flat headwater region with a high density of open water and peatlands. Several standard methods of measuring the physical properties of organic soils exist, although many of them have several drawbacks that limit their use. Organic soils, in particular, have unique properties that require special attention to ensure that the measured hydrological characteristics are represented as they exist in nature. The goal of this research was to devise an improved method of analyzing and measuring the physical and hydraulic properties of organic soil using MicroCT imagery. Specifically, this research seeks to determine if two and three-dimensional images of peat can be used to accurately characterize air-filled porosity, active porosity, pore size distribution, pore saturated area and capillarity of porous Sphagnum cells. Results indicate that measurements derived from these images are consistent with current literature. They also suggest that this non-destructive method is a valuable tool for measuring peat physical and hydraulic properties and that there is potential for additional research using CT technology.

  12. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    Science.gov (United States)

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  13. Hydraulic Structures : Caissons

    NARCIS (Netherlands)

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  14. Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these

  15. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  16. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  17. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  18. Estimation of hydraulic conductivities of Yucca Mountain tuffs from sorptivity and water retention measurements

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-06-01

    The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, Nevada, are among the most important data needed as input for the site-scale hydrological model of the unsaturated zone. The difficult and time-consuming nature of hydraulic conductivity measurements renders it infeasible to directly measure this property on large numbers of cores. Water retention and sorptivity measurements, however, can be made relatively rapidly. The sorptivity is, in principle, a unique functional of the conductivity and water retention functions. It therefore should be possible to invert sorptivity and water retention measurements in order to estimate the conductivity; the porosity is the only other parameter that is required for this inversion. In this report two methods of carrying out this inversion are presented, and are tested against a limited data set that has been collected by Flint et al. at the USGS on a set of Yucca Mountain tuffs. The absolute permeability is usually predicted by both methods to within an average error of about 0.5 - 1.0 orders of magnitude. The discrepancy appears to be due to the fact that the water retention curves have only been measured during drainage, whereas the imbibition water retention curve is the one that is relevant to sorptivity measurements. Although the inversion methods also yield predictions of the relative permeability function, there are yet no unsaturated hydraulic conductivity data against which to test these predictions

  19. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  20. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  1. Integrated hydrological modelling of a managed coastal Mediterranean wetland (Rhone delta, France: initial calibration

    Directory of Open Access Journals (Sweden)

    P. Chauvelon

    2003-01-01

    Full Text Available This paper presents a model of a heavily managed coastal Mediterranean wetland. The hydrosystem studied , called ``Ile de Camargue', is the central part of the Rhone river delta. It comprises flat agricultural drainage basins, marshes, and shallow brackish lagoons whose connection to the sea is managed. This hydrosystem is subject to strong natural hydrological variability due to the combination of a Mediterranean climate and the artificial hydrological regime imposed by flooded rice cultivation. To quantify the hydrological balance at different spatial and temporal scales, a simplified model is developed — including the basin and the lagoons — using a time step that enables the temporal dynamic to be reproduced that is adapted to data availability. This modelling task takes into account the functioning of the natural and anthropogenic components of the hydrosystem. A conceptual approach is used for modelling drainage from the catchment, using a GIS to estimate water input for rice irrigation. The lagoon system is modelled using a two-dimensional finite element hydrodynamic model. Simulated results from the hydrodynamic model run under various hydro-climatic forcing conditions (water level, wind speed and direction, sea connection are used to calculate hydraulic exchanges between lagoon sub units considered as boxes. Finally, the HIC ('Hydrologie de l’Ile de Camargue' conceptual model is applied to simulate the water inputs and exchanges between the different units, together with the salt balance in the hydrosystem during a calibration period. Keywords: water management,conceptual hydrological model, hydrodynamic model, box model, GIS, Rhone delta, Camargue.

  2. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  3. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    Science.gov (United States)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  4. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    Science.gov (United States)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two

  5. Advances in river ice hydrology 1999-2003

    Science.gov (United States)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  6. Mechanical and Hydrologic Effects of Riparian Vegetation on Critical Conditions for Streambank Stability: Upper Truckee River, California

    Science.gov (United States)

    Simon, A.; Pollen, N. L.; Langendoen, E. J.

    2005-05-01

    The Upper Truckee River is the single largest contributor of sediment to Lake Tahoe with a large proportion of the suspended-sediment load coming from eroding streambanks. Recent advances in quantifying streambank processes highlight the combined effects of hydraulic erosion at the bank toe with geotechnical stability of the upper part of the bank and resulted in the development of a deterministic model of bank-toe erosion and streambank stability (Simon et al., 1999). The use of riparian vegetation in schemes of bank stabilization and stream restoration have become popular but are often implemented on a trial and error basis because of a lack of quantifiable information on the mechanical and hydrologic effects of vegetation on bank stability. This study, conducted along an unstable reach of the Upper Truckee River, combines field data with numerical modeling to quantify (1) hydraulic and geotechnical driving and resisting forces that control bank failures, (2) the mechanical and hydrologic effects of vegetation on shear strength, and (3) the critical conditions for bank stability with and without indigenous riparian species. Tests were conducted using three top-bank treatments: bare (control), Lemmon's willow, and young Lodgepole pine. The susceptibility of the bank toe to erosion by hydraulic forces was quantified by conducting submerged jet tests of in situ material to determine the erodibility coefficient (k) and the critical shear stress of the material. Drained, shear-strength parameters (cohesion and friction angle) of the banks were determined from borehole shear tests at various depths. Pore-water pressure and matric suction were monitored at three depths (30, 100, and 150 cm) with digital tensiometers to calculate changes in apparent cohesion for the period (September 2003 - May 2004) and to differentiate between the hydrologic effects of the two species. Root reinforcement of the two species was quantified by determining the relation between root

  7. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others

    2017-04-15

    The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)

  8. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    Science.gov (United States)

    Morin, Roger H.; LeBlanc, Denis R.; Troutman, Brent M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.

  9. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  10. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    Science.gov (United States)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  11. Hydrologic Impacts of Landslide Disturbances: Implications for Remobilization and Hazard Persistence

    Science.gov (United States)

    Mirus, Benjamin B.; Smith, Joel B.; Baum, Rex L.

    2017-10-01

    Landslides typically alter hillslope topography, but may also change the hydrologic connectivity and subsurface water-storage dynamics. In settings where mobile materials are not completely evacuated from steep slopes, influences of landslide disturbances on hillslope hydrology and susceptibility to subsequent failures remain poorly characterized. Since landslides often recur at the site of previous failures, we examine differences between a stable vegetated hillslope (VH) and a recent landslide (LS). These neighboring hillslopes exhibit similar topography and are situated on steep landslide-prone coastal bluffs of glacial deposits along the northeastern shore of Puget Sound, Washington. Our control hillslope, VH, is mantled by a heterogeneous colluvium, supporting a dense forest. In early 2013, our test hillslope, LS, also supported a forest before a landslide substantially altered the topography and disturbed the hillslope. In 2015, we observed a clay-rich landslide deposit at LS with sparse vegetation and limited root reinforcement, soil structures, and macropores. Our characterization of the sites also found matrix porosity and hydraulic conductivity are both lower at LS. Continuous monitoring during 2015-2016 revealed reduced effective precipitation at VH (due to canopy interception), an earlier seasonal transition to near-saturated conditions at LS, and longer persistence of positive pore pressures and slower drainage at LS (both seasonally and between major storm events). These differences, along with episodic, complex slope failures at LS support the hypothesis that, despite a reduced average slope, other disturbances introduced by landsliding may promote the hydrologic conditions leading to slope instability, thus contributing to the persistence of landslide hazards.

  12. Hydrologic impacts of landslide disturbances: Implications for remobilization and hazard persistence

    Science.gov (United States)

    Mirus, Benjamin B.; Smith, Joel B.; Baum, Rex L.

    2017-01-01

    Landslides typically alter hillslope topography, but may also change the hydrologic connectivity and subsurface water-storage dynamics. In settings where mobile materials are not completely evacuated from steep slopes, influences of landslide disturbances on hillslope hydrology and susceptibility to subsequent failures remain poorly characterized. Since landslides often recur at the site of previous failures, we examine differences between a stable vegetated hillslope (VH) and a recent landslide (LS). These neighboring hillslopes exhibit similar topography and are situated on steep landslide-prone coastal bluffs of glacial deposits along the northeastern shore of Puget Sound, Washington. Our control hillslope, VH, is mantled by a heterogeneous colluvium, supporting a dense forest. In early 2013, our test hillslope, LS, also supported a forest before a landslide substantially altered the topography and disturbed the hillslope. In 2015, we observed a clay-rich landslide deposit at LS with sparse vegetation and limited root reinforcement, soil structures, and macropores. Our characterization of the sites also found matrix porosity and hydraulic conductivity are both lower at LS. Continuous monitoring during 2015-2016 revealed reduced effective precipitation at VH (due to canopy interception), an earlier seasonal transition to near-saturated conditions at LS, and longer persistence of positive pore pressures and slower drainage at LS (both seasonally and between major storm events). These differences, along with episodic, complex slope failures at LS support the hypothesis that, despite a reduced average slope, other disturbances introduced by landsliding may promote the hydrologic conditions leading to slope instability, thus contributing to the persistence of landslide hazards.

  13. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    Science.gov (United States)

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology

  14. Chapter 1: Hydrologic exchange flows and their ecological consequences in river corridors

    Science.gov (United States)

    Harvey, Judson

    2016-01-01

    The actively flowing waters of streams and rivers remain in close contact with surrounding off-channel and subsurface environments. These hydrologic linkages between relatively fast flowing channel waters, with more slowly flowing waters off-channel and in the subsurface, are collectively referred to as hydrologic exchange flows (HEFs). HEFs include surface exchange with a channel’s marginal areas and subsurface flow through the streambed (hyporheic flow), as well as storm-driven bank storage and overbank flows onto floodplains. HEFs are important, not only for storing water and attenuating flood peaks, but also for their role in influencing water conservation, water quality improvement, and related outcomes for ecological values and services of aquatic ecosystems. Biogeochemical opportunities for chemical transformations are increased by HEFs as a result of the prolonged contact between flowing waters and geochemically and microbially active surfaces of sediments and vegetation. Chemical processing is intensified and water quality is often improved by removal of excess nutrients, metals, and organic contaminants from flowing waters. HEFs also are important regulators of organic matter decomposition, nutrient recycling, and stream metabolism that helps establish a balanced and resilient aquatic food web. The shallow and protected storage zones associated with HEFs support nursery and feeding areas for aquatic organisms that sustain aquatic biological diversity. Understanding of these varied roles for HEFs has been driven by the related disciplines of stream ecology, fluvial geomorphology, surface-water hydraulics, and groundwater hydrology. A current research emphasis is on the role that HEFs play in altered flow regimes, including restoration to achieve diverse goals, such as expanding aquatic habitats and managing dissolved and suspended river loads to reduce over-fertilization of coastal waters and offset wetland loss. New integrative concepts and models are

  15. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    International Nuclear Information System (INIS)

    Moline, G.R.

    1999-01-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO 2 through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system

  16. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  17. Spatial Variability and Geostatistical Prediction of Some Soil Hydraulic Coefficients of a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi

    2017-02-01

    Full Text Available Introduction: Saturated hydraulic conductivity and the other hydraulic properties of soils are essential vital soil attributes that play role in the modeling of hydrological phenomena, designing irrigation-drainage systems, transportation of salts and chemical and biological pollutants within the soil. Measurement of these hydraulic properties needs some special instruments, expert technician, and are time consuming and expensive and due to their high temporal and spatial variability, a large number of measurements are needed. Nowadays, prediction of these attributes using the readily available soil data using pedotransfer functions or using the limited measurement with applying the geostatistical approaches has been receiving high attention. The study aimed to determine the spatial variability and prediction of saturated (Ks and near saturated (Kfs hydraulic conductivity, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of a calcareous soil. Material and Methods: The study was carried out on the soil series of Daneshkadeh located in the Bajgah Agricultural Experimental Station of Agricultural College, Shiraz University, Shiraz, Iran (1852 m above the mean sea level. This soil series with about 745 ha is a deep yellowish brow calcareous soil with textural classes of loam to clay. In the studied soil series 50 sampling locations with the sampling distances of 16, 8 , and 4 m were selected on the relatively regular sampling design. The saturated hydraulic conductivity (Ks, near saturated hydraulic conductivity (Kfs, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of the aforementioned sampling locations was determined using the Single Ring and Droplet methods. After, initial statistical processing, including a normality test of data, trend and stationary analysis of data, the semivariograms of each studied hydraulic attributes were

  18. Probability based hydrologic catchments of the Greenland Ice Sheet

    Science.gov (United States)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  19. Hydraulic characterisation of karst systems with man-made tracers

    International Nuclear Information System (INIS)

    Werner, A.

    1998-01-01

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR) [de

  20. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  1. Hydraulic hoisting and backfilling

    Science.gov (United States)

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  2. Recent developments in the conceptual geologic and hydrologic understanding of the WIPP site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1987-01-01

    Hydrologic and geochemical characterization of the WIPP site has progressed significantly since the 1980 WIPP Final Environmental Impact Statement. In 1980, the entire Rustler Formation was modeled as a single hydrologic unit, assumed to be isotropic, single-porosity, and completely confined. Variability within the Rustler was evaluated only on the basis of testing at individual wells. In the 1983 WIPP Site and Preliminary Design Validation effort, the Salado Formation, in which the WIPP facility is being constructed, was assumed to be anhydrous, except for fluid inclusions and mineralogically bound water. Recent hydrologic and tracer testing at the WIPP indicates: 1) The local importance of dual-porosity behavior in hydraulic response and transport in parts of the Culebra Dolomite Member of the Rustler Formation; 2) the presence of distinct high- and low-transmissivity regions within the Culebra; and 3) the possible importance of vertical fluid flow within the Rustler. Recent analyses indicate that fluids encountered in the WIPP facility and in experimental brine-migration studies are grain-boundary fluids, chemically distinct from fluid inclusions. Fluid-inclination compositions appear to have been determined shortly after the halite deposition. Because of the times required for diagenetic reactions controlling their compositions, the grain-boundary fluids within the Salado probably have a residence time of several million years

  3. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  4. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    International Nuclear Information System (INIS)

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  5. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  6. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  7. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  8. El Nino, La Nina and the Colombian hydrology prediction and forecast

    International Nuclear Information System (INIS)

    Poveda J, G.; Mesa S, O.J.

    1995-01-01

    The climatic phenomenon known as El Nino-Southern Oscillation (ENSO) Phenomenon has two phases: El Nino (Warm Phase) and La Nina (Cold phase). Both phases (Warm and cold) insult the Earth Planet hydrology and climatology and particularly the South America tropical zone, something which includes Colombia. This oscillation (Warm and cold) occurs in monthly time scale to multi - annual (until 6 years) time scale. As a rule, El Nino produces stronger and extended dry periods, while La Nina increases rains frequency and produces maximum wealth in water currents. A quantitative analysis of both phases (warm and cold) influence in Colombian rivers wealth measured in 50 different stations is presented. Also the frequency histograms, the average and the typical deviation of wealth monthly average for El Nino years and La Nina years, as well as for the evaluated total period are presented. With the objective of confirming the strong influence that exercise the oceanic- atmospherical phenomena that occur in South Pacific Ocean on Colombian hydrology, correlation analysis with Southern Oscillation Index (SOI) and temperatures variation on Indian and Pacific Ocean is presented. The topic ENSO phenomenon Predictions and Forecasts with relation to planning of hydraulics resources managing projects at Colombia is discussed

  9. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  10. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  11. Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Qian Feng

    2016-09-01

    Full Text Available Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20° were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1. The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w, stream power was the best predictor of sediment yield rate (R2 = 0.884. Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897. The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.

  12. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  13. Time-REferenced data Kriging (TREK): mapping hydrological statistics given their time of reference

    Science.gov (United States)

    Porcheron, Delphine; Leblois, Etienne; Sauquet, Eric

    2016-04-01

    A major issue in water sciences is to predict runoff parameters at ungauged sites. Estimates can be obtained by various methods. Among them, geostatistical approaches provide interpolation methods that consequently use explicit assumptions on the variable of interest. Geostatistical techniques have been applied to precipitation and temperature fields and later extended to estimate runoff features considered as basin-support variates along the river network (e.g. Gottschalk, 1993; Sauquet et al., 2000; Skoien et al., 2006; Gottschalk et al., 2011). To obtain robust estimations, the first step is to collect a relevant dataset. Sauquet et al. (2000) and Sauquet (2006) suggest including a large number of catchments with long and common observation periods to ensure both reliability and temporal consistency in runoff estimates. However most observation networks evolve with time. Several choices are thus possible to define an optimal reference period maximizing either spatial or temporal overlap. However, the constraints usually lead to discard a significant number of stations. Time-REferenced data Kriging method (TREK) has been developed to overcome this issue. Here is proposed a method of geostatistical estimation considering the temporal support over which a hydrological statistic has been estimated. This allows attenuating the loss of data previously caused by the application of a strict reference period. The time reference remains for the targeted map itself. The weights depend on the observation period of the data included in the dataset and how near this is to the target period. In this presentation, the concepts of TREK will be introduced and thereafter illustrated to map mean annual runoff in France. References Gottschalk, L., 1993, Correlation and covariance of runoff. Stochastic Hydrology and Hydraulics 7(2), 85-101. Sauquet, E., Gottschalk, L. and Leblois, E., 2000, Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation

  14. Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology

    Science.gov (United States)

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...

  15. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    Science.gov (United States)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  16. Hydrochemical investigations in crystalline bedrock in relation to existing hydraulic conditions: Klipperaas test-site Smaaland, Southern Sweden

    International Nuclear Information System (INIS)

    Smellie, J.; Larsson, N.Aa.; Wikberg, P.; Puigdomenech, I.; Tullborg, E.L.

    1987-09-01

    This report of the Klipperaas test-site area has been structured to allow a full discussion of all the component procedures employed during the study, and to evaluate their respective use in such a site specific programme. For example, the suitability of the sampled groundwaters, in terms of representative compositions for the hydrogeological environment sampled, are thoroughly assessed before their use in the geochemical modelling procedures. The major hydrologic and chemical parameters considered for the Klipperaas area are similar to those previously described for the other sites. Respectively, these parameters referred to: 1) hydraulic conductivity and hydraulic head, 2) the pH and carbonate contents of the groundwaters, 3) the sodium, calcium and chloride contents of the groundwaters, 4) the groundwater redox-sensitive parameters, 5) the uranium geochemistry, and 6) the environmental isotopic characteristics of the groundwaters. For the Klipperaas site area additional borehole measurements using tubewave and radar techniques have been carried out, and the application of geochemical modelling to the groundwater data has been attempted. (With 40 refs.) (authors)

  17. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1997 annual progress report

    International Nuclear Information System (INIS)

    Alumbaugh, D.L.

    1997-01-01

    'It is the objective of this proposed study to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This fundamentally new approach to site characterization and monitoring will provide detailed knowledge about hydrological properties, geological heterogeneity and the extent and movement of contamination. HHGIT combines electrical resistivity tomography (ERT) to geophysically sense a 3D volume, statistical information about fabric of geological formations, and sparse data on moisture and contaminant distributions. Combining these three types of information into a single inversion process will provide much better estimates of spatially varied hydraulic properties and three-dimensional contaminant distributions than could be obtained from interpreting the data types individually. Furthermore, HHGIT will be a geostatistically based estimation technique; the estimates represent conditional mean hydraulic property fields and contaminant distributions. Thus, this method will also quantify the uncertainty of the estimates as well as the estimates themselves. The knowledge of this uncertainty is necessary to determine the likelihood of success of remediation efforts and the risk posed by hazardous materials. Controlled field experiments will be conducted to provide critical data sets for evaluation of these methodologies, for better understanding of mechanisms controlling contaminant movement in the vadose zone, and for evaluation of the HHGIT method as a long term monitoring strategy.'

  18. Calibration process of highly parameterized semi-distributed hydrological model

    Science.gov (United States)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group

  19. Estimating Runoff From Roadcuts With a Distributed Hydrologic Model

    Science.gov (United States)

    Cuhaciyan, C.; Luce, C.; Voisin, N.; Lettenmaier, D.; Black, T.

    2008-12-01

    Roads can have a substantial effect on hydrologic patterns of forested watersheds; the most noteworthy being the resurfacing of shallow groundwater at roadcuts. The influence of roads on hydrology has compelled hydrologists to include water routing and storage routines in rainfall-runoff models, such as those in the Distributed Hydrologic Soil Vegetation Model (DHSVM). We tested the ability of DHSVM to match observed runoff in roadcuts of a watershed in the Coast Range of Oregon. Eight roadcuts were instrumented using large tipping bucket gauges designed to capture only the water entering the roadside ditch from an 80-m long roadcut. The roadcuts were categorized by the topography of the upstream hillside as either swale, planar, or ridge. The simulation was run from December 2002 to December 2003 at a relatively fine spatial resolution (10-m). Average observed soil depths are 1.8-m across the watershed, below which there lies deep and highly weathered sandstone. DHSVM was designed for relatively impermeable bedrock and shallow soils; therefore it does not provide a mechanism for deep groundwater movement and storage. In the geologic setting of the study basin, however, water is routed through the sandstone allowing water to pass under roads through the parent material. For this reason a uniformly deep soil of 6.5-m with a decreased decay in conductivity with depth was used in the model to allow water to be routed beneath roadcuts that are up to 5.5-m in height. Up to three, typically shallow, soil layers can be modeled in DHSVM. We used the lowest of the three soil layers to mimic the hydraulically-well-connected sandstone exposed at deeper roadcuts. The model was calibrated against observed discharge at the outlet of the watershed. While model results closely matched the observed hydrograph at the watershed outlet, simulated runoff at an upstream gauge and the roadside ditches were varied and often higher than those observed in the field. The timing of the field

  20. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  1. Subsea Hydraulic Leakage Detection and Diagnosis

    OpenAIRE

    Stavenes, Thomas

    2010-01-01

    The motivation for this thesis is reduction of hydraulic emissions, minimizing of process emergency shutdowns, exploitation of intervention capacity, and reduction of costs. Today, monitoring of hydraulic leakages is scarce and the main way to detect leakage is the constant need for filling of hydraulic fluid to the Hydraulic Power Unit (HPU). Leakage detection and diagnosis has potential, which would be adressed in this thesis. A strategy towards leakage detection and diagnosis is given....

  2. Mine flooding and barrier pillar hydrology in the Pittsburgh basin

    International Nuclear Information System (INIS)

    Leavitt, B.R.

    1999-01-01

    Pennsylvania began requiring barrier pillars between mines as early as 1930. The Ashley formula, resulting from a early commission on the problem, requires 20 feet of coal plus a thickness of coal equal to four times the seam height plus an additional thickness of coal equal to one tenth of the overburden thickness, or the maximum potential hydraulic head. For a 6-foot thick coal seam under 400 feet of cover, the barrier would be 20+24+40=84 feet. The Ashley formula is intended to protect coal miners from a catastrophic failure of a barrier pillar which has a high head of water impounded behind it. The paper gives several examples of flooded and unflooded mines and the performance of their barrier pillars with respect to acid mine drainage. It is concluded that for all practical purposes, barrier pillars designed with the Ashley formula are able to hydrologically isolate mines from one another. This hydrologic isolation promotes the inundation of closed mines. Inundation effectively stops acid formation, thus, fully inundated mines do not represent a perpetual source of acid mine drainage. Infiltrating ground water improves the mine water chemistry resulting in a net alkaline discharge which has greatly lowered iron concentrations. The best locations for acid mine drainage treatment plants is at the lowest surface elevation above the mine with mine flooded to near that elevation

  3. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  4. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  5. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  6. Unit-bar migration and bar-trough deposition: impacts on hydraulic conductivity and grain size heterogeneity in a sandy streambed

    Science.gov (United States)

    Korus, Jesse T.; Gilmore, Troy E.; Waszgis, Michele M.; Mittelstet, Aaron R.

    2018-03-01

    The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity ( K v) is highly variable in space and time, and controls the rate of stream-aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10-20 cm of water and migrated 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low- K v zones formed in the subsequent heterogeneous bar downstream of the original 15-40-cm-thick bar front and past abandoned bridge pilings. These low- K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.

  7. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China.

    Science.gov (United States)

    Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin

    2015-03-01

    Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.

  8. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison results

    Science.gov (United States)

    Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik

    2015-04-01

    The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They

  9. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  10. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  11. The hydrological and the hydrogeological framework of the Lottenbachtal, Bochum, Germany

    Science.gov (United States)

    Alhamed, Mohammad

    2017-03-01

    This study was performed to investigate the hydrological and the hydrogeological framework of the Lottenbachtal, Germany. Long-term climatic data were statistically analyzed, water and soil samples were collected and analyzed, stream flow discharge was measured and separated, the hydrological balance of this catchment was calculated and a hydrological and hydrogeological conceptual model was constructed. The study area is characterized mainly by the precipitation value ranged between 0.1 and 5 mm/day. The actual evapotranspiration constitutes 31.90 % of the total precipitation, the direct surface runoff constitutes 61.04 %, the soil storage constitutes 3 % and the groundwater recharge of the Lottenbachtal constitutes only 4 % of the total precipitation. The Lottenbachtal has largely affected the diversity of the land use, which includes forests, arable areas, abandoned coal mines and settlement areas. The soil of the forested area is represented by relatively high acidic conditions and relatively high sulfate concentrations, while the soil of the arable areas is represented by near-neutral conditions associated with relatively high concentrations of nutrients and other chemical elements (calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate). The settlement areas are characterized by huge blocks of concrete and backfills, which are rich in calcium and magnesium carbonates. The effects of this diversity in the land use on groundwater and surface water quality resulting by leaching the chemical elements from the soil covers and the other materials. These effects are represented by the following complex water types of Ca-Na-Mg-Cl-SO4-HCO3, Ca-Mg-HCO3-SO4, Ca-Na-Mg-Cl-SO4, Ca-Na-Mg-Cl-SO4 and Ca-HCO3, which represent the diversity of the flow paths of the water as well as to mixing processes. The diversity of the land use also affected the physical hydrological-hydrogeological characteristics of the study area by increasing the direct surface runoff and

  12. Hydrological evaluation of a peri-urban stream and its impact on ecosystem services potential

    Directory of Open Access Journals (Sweden)

    Caro-Borrero Angela

    2015-01-01

    The rivers of the Magdalena–Eslava sub-basin are among the few remaining surficial water sources in Mexico City. These rivers are located in an area classified as a Soil Conservation Zone, which has been intensely managed for decades. The aims of this paper are (1 to perform a hydrological evaluation of two urban streams and identify their relationship with the provision of hydrological ecosystem services via (i a hydraulic balance analysis, (ii a hydro-geomorphological characterization of each stream, (iii an estimate of present and potential hydraulic erosion, (iv the determination of physicochemical and bacteriological parameters and (v a description of macroinvertebrates, macroalgae and their habitats in order to (2 identify the impacts of socio-economic dynamics on the responses of this rural-urban lotic system. Our results show that water flow, forest cover and hydro-geomorphologic heterogeneity are key to sustaining ecosystem functioning, especially in the high and middle sections of the basin. The highest potential provision of water for direct use was recorded in the sub-basin’s middle section; however, the stream channels in that section have lost their natural water flow due to a water management infrastructure built to regulate flow during the rainy season. This intervention can be viewed as a regulation of HESs as water management infrastructure alters the transport of sediment and reduces available natural habitat. The provision of quality water in the lower area of the sub-basin has been seriously compromised by the establishment of illegal urban settlements. A relationship between biologically diverse ecological traits and their response capabilities was established and can be considered an indicator of current HES potential. Therefore, this sub-basin may constitute an example of good management and maximizing potential HESs in an urban-rural setting based on improved management strategies that could be applied in other developing nations.

  13. Hydrologic study of the unsaturated zone adjacent to a radioactive-waste disposal site at the Savannah River Plant, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Gruber, P.

    1980-01-01

    Unsaturated hydraulic conductivity as a function of soil-water content and soil-water pressure head of field soils in the vicinity of a low-level radioactive-waste disposal site was measured for a period of 28 days following steady-state infiltration. Tensiometer and a neutron probe measurements were replicated four times at various depth intervals of from 12.0 to 120.00 inches below land surface in two 12 foot square plots. Values of soil-water content, soil-water flux, and hydraulic conductivity at each depth were calculated during the period of drainage using a computer program called SOIL. After drainage of soil-water through the 120 inch profile ceased, duplicate undisturbed soil cores from opposite sides of each plot and from disturbed and undisturbed sites within the burial grounds were recovered and subjected to pressure-plate analysis for the calculation of unsaturated hydraulic conductivity. Laboratory analyses also included the determination of soil bulk density, particle-size distribution, and saturated hydraulic conductivity. Calculation of unsaturated hydraulic conductivity in the laboratory was made using a computer program called HYDRO, based upon the relationship of the soil-water content/soil-water pressure curve. Soils in the study area and the burial ground exhibited similar physical and hydrologic characteristics. Field derived hydraulic conductivity correlated well with laboratory derived conductivity. Variability of soil characteristics due to burial operations were minimal when compared to undisturbed natural soils in the study area. Two textural discontinuities were found to exist in the soil profile at depths of 12 to 24 inches and at 130 inches, which inhibit soil-water movement and thereby reduce the quantity and rate of recharge to the underlying water-table aquifer

  14. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  15. Hydrology and environmental aspects of Erie Canal (1817-99)

    Science.gov (United States)

    Langbein, Walter Basil

    1976-01-01

    As the first major water project in the United States, the old Erie Canal provides an example of the hydrological and environmental consequences of water development. The available record shows that the project aroused environmental fears that the canal might be impaired by the adverse hydrologic effects of land development induced by the canal. Water requirements proved greater than anticipated, and problems of floods and hydraulic inefficiencies beset navigation throughout its history. The Erie Canal proved the practicality of major hydraulic works to the extent that operations and maintenance could cope with the burdens of deficiencies in design. The weight of prior experience that upland streams, such as the Potomac and Mohawk Rivers, had proved unsatisfactory for dependable navigation, led to a decision to build an independent canal which freed the location from the constraints of river channels and made possible a cross-country water route directly to Lake Erie. The decision on dimensioning the canal prism--chiefly width and depth-involved balance between a fear of building too small and thus not achieving the economic potentials, and a fear of building too expensively. The constraints proved effective, and for the first part of its history the revenues collected were sufficient to repay all costs. So great was the economic advantage of the canal that the rising trend in traffic soon induced an enlargement of the canal cross section, based upon a new but riskier objective-build as large as the projected trend in toll revenues would finance. The increased revenues did not materialize. Water supplies were a primary concern for both the planners and the operators of the canal. Water required for lockage, although the most obvious to the planners, proved to be a relatively minor item compared with the amounts of water that were required to compensate for leakage through the bed and banks of the canal. Leakage amounted to about 8 inches of depth per day. The total

  16. Applicability of slug interference testing of hydraulic characterization of contaminated aquifer sites

    International Nuclear Information System (INIS)

    Spane, F.A.; Swanson, L.C.

    1993-10-01

    Aquifer test methods available for characterizing hazardous waste sites are sometimes restricted because of problems with disposal of contaminated groundwater. These problems, in part, have made slug tests a more desirable method of determining hydraulic properties at such sites. However, in higher permeability formations (i.e., transmissivities ≥ 1 x 10 -3 m 2 /s), slug test results often cannot be analyzed and give, at best, only a lower limit for transmissivity. A need clearly exists to develop test methods that can be used to characterize higher permeability aquifers without removing large amounts of contaminated groundwater. One hydrologic test method that appears to hold promise for characterizing such sites is the slug interference test. To assess the applicability of this test method for use in shallow alluvial aquifer systems, slug interference tests have been conducted, along with more traditional aquifer testing methods, at several Hanford multiple-well sites. Transmissivity values estimated from the slug interference tests were comparable (within a factor of 2 to 3) to values calculated using traditional testing methods, and made it possible to calculate the storativity or specific yield for the intervening test formation. The corroboration of test results indicates that slug interference testing is a viable hydraulic characterization method in transmissive alluvial aquifers, and may represent one of the few test methods that can be used in sensitive areas where groundwater is contaminated

  17. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  18. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    Science.gov (United States)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  19. Field and office instructions in stream gauging for the Hydrological Survey of Zambia

    Science.gov (United States)

    Bidwell, L.E.

    1971-01-01

    The importance of water to the basic needs of man is self- evident and needs no particular emphasis. The importance of water to a developing economy cannot be overemphasized. A few decades ago, hydrology was a division of hydraulic engineering and was a tool for project survey, plan, and design. Today hydrology still remains an important part of planning and management of water use projects, but it is imperative that surface and ground-water basic data networks be designed and operated from the standpoint of both present and future water needs. Water problems are ever increasing and ever changing and preparation for the future water demands of Zambia requires knowledge of the hydrology of the country instead of the examination of piecemeal samples for each water use project. The hydrologic survey of Zambia needs to be under the guidance of competent and imaginative hydrologists solidly trained in all elements of basic data collection and analysis and not in the hands of water project planners. Hydrology is a science which requires the highest order of teamwork and the hydrologist will need the help and advice of many employees within the organization to operate the network, provide adequate research, and examine the water needs of the country. It must be thoroughly understood that communication is essential between the hydrological survey and water project planners from both the government and private sectors. It is very important to define the aims and duties of the Hydrological Branch of the Water Affairs Department in a clear cut "Statement of Policy". Personal copies of the statement should be made available to all professional employees and technicians. The reasons for the existence of the Branch may be self-apparent to heads of the organization, but to all other employees the reasons may be vague and unknown. Every member of the technical and administrative staff would benefit by an understanding of the purpose of his work. Nebulous ideas of the function of a

  20. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping...

  1. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  2. Simulation and Hydrologic Modeling of Urban Watershed for Flooding Forecast: The case of the Rio das Antas in the city of Anápolis-GO

    Directory of Open Access Journals (Sweden)

    Eduardo Dourado Argolo

    2016-12-01

    Full Text Available The study area is located along the Rio das Antas basin in the city of Anápolis, Goiás. This study exemplifies an urban area exposed to flooding by rainwater. Decline in the permeability of the river basin area is result of significant real state development in recent years. This study proposes to simulate water flows and respective flooding areas along different sections of the River in response to different rainfall intensities. The simulated flow rates are the result of interpretation of land use scenarios and hydrologic modeling of the river basin area. The rational method and the Bernoulli equation were used in the hydraulic simulation model of the computer program HEC-RAS (Hydrologic Engineering Center's River Analysis System...

  3. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  4. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    Science.gov (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi

  5. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration

    Directory of Open Access Journals (Sweden)

    R. Dommain

    2010-10-01

    Full Text Available This article explores the hydrological constraints on the existence of forested peat domes (peat swamp forests in the humid tropics, the self-regulation mechanisms that enable them to persist and the implications for restoration of damaged domes. The most important requirement for the preservation of peat is permanent saturation by water. The variable input of precipitation must be translated into a constant water supply to the peat mound. In intact tropical peat swamp domes, water is stored above the peat surface in depressions between hummocks that surround tree trunks and between spreading buttress roots. This above-ground water store is analogous to the water stored in the loose upper layer of peat and vegetation in Sphagnum bogs. The horizontal differentiation of the peat swamp forest floor into hummocks with limited hydraulic conductivity and depressions with high storage capacity resembles the hummock-hollow patterning of these Sphagnum bogs. Hummocks and other surface elements functionally resemble V-notch weirs that regulate water availability. Buttressed trees play a key role in providing the structural elements for hydrological self-regulation. An additional level of regulation is found in the concentric zonation of forest types with increased presence of buttressed trees on steeper margins. Conservation and restoration efforts should take into account the inter-relationships between trees, water and peat and the hydrological feedbacks that operate as a consequence.

  6. A method to investigate inter-aquifer leakage using hydraulics and multiple environmental tracers

    Science.gov (United States)

    Priestley, Stacey; Love, Andrew; Wohling, Daniel; Post, Vincent; Shand, Paul; Kipfer, Rolf; Tyroller, Lina

    2016-04-01

    concentrations as well as hydrochemical evidence of mixing with shallower groundwater with shorter residence times. References Alley W. M. Healy R. W. Labaugh J. W. Reilly T. E. 2002. Hydrology - Flow and storage in groundwater systems. Science 296: 1985-1990. Cherry J. A. Parker, B. L. 2004. Role of Aquitards in the Protection of Aquifers from Contamination: A "State of Science" Report. Denver, USA. AWWA Research Foundation. Love A. J. Herczeg A. L. Armstrong D. Stadter F. Mazor E. 1993. Groundwater-Flow Regime within the Gambier Embayment of the Otway Basin, Australia - Evidence from Hydraulics and Hydrochemistry. Journal of Hydrology 143: 297-338. Tóth J. 2009. Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization. Cambridge University Press.

  7. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  8. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  9. Hydrogeology of Melton Valley determined from hydraulic head measuring station data

    International Nuclear Information System (INIS)

    Dreier, R.B.; Toran, L.E.

    1989-06-01

    The hydraulic head measuring stations (HHMSs) are well clusters that provide data required for evaluating both the transition between shallow and deep groundwater system(s) and the nature of the deep system(s). This information can be used to aid the characterization of the local hydrologic framework as dictated by state and federal regulatory agencies. Specifically this project provides a means for defining the lower boundary of the uppermost aquifer and for identifying potential pathways for off-site contaminant migration for shallow, intermediate, and deep groundwater flow. In addition, this project provides some of the geologic and hydrologic background information required to perform a risk assessment for individual waste sites. The objectives of the HHMS general plant projects are threefold: (1) to characterize potentiometric head levels in and near waste management areas in Melton Valley, (2) to characterize the geology in Melton Valley, and (3) to determine groundwater quality at their respective locations. This report presents results of data collected from wells constructed in FY 1986 and FY 1988. To meet these objectives, each HHMS was designed to consist of three telescoping wells, approximately 25 ft apart. The deepest well was drilled to approximately 400 ft, and the intermediate and shallow wells are approximately 200 and 80 ft deep, respectively. The open interval extends at least 20 ft below the bottom of the cased section of each well. 25 refs., 25 figs., 8 tabs

  10. Regional frameworks applied to hydrology: can landscape-based frameworks capture the hydrologic variability?

    Science.gov (United States)

    R. McManamay; D. Orth; C. Dolloff; E. Frimpong

    2011-01-01

    Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...

  11. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively

  12. Water movement through plant roots - exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Science.gov (United States)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu

    2017-12-01

    In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation

  13. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    T. Cohen Liechti

    2012-02-01

    Full Text Available In the framework of the African DAms ProjecT (ADAPT, an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin.

    Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42, the Famine Early Warning System product 2.0 (FEWS RFE2.0 and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC morphing technique (CMORPH are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps.

    The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each sub-basin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular meshes.

    In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating the rainfall by nearly 50%. The statistics of TRMM and FEWS estimates show quite similar results.

    Due to its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin.

  14. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Directory of Open Access Journals (Sweden)

    C. Jackisch

    2017-07-01

    Full Text Available The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study and the hydrological processes (companion study Angermann et al., 2017, this issue.

  15. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Science.gov (United States)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  16. Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors

    Science.gov (United States)

    Singer, Michael B.; Harrison, Lee R.; Donovan, Patrick M.; Blum, Joel D.; Marvin-DiPasquale, Mark C.

    2016-01-01

    The biogeochemical cycling of metals and other contaminants in river-floodplain corridors is controlled by microbial activity responding to dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, inundation history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this within a Northern California river system with a legacy of landscape-scale 19th century hydraulic gold mining. We combine hydraulic modeling, Hg measurements in sediment and biota, and first-order calculations of mercury transformation to assess the potential role of river floodplains in producing monomethylmercury (MMHg), a neurotoxin which accumulates in local and migratory food webs. We identify frequently inundated floodplain areas, as well as floodplain areas inundated for long periods. We quantify the probability of MMHg production potential (MPP) associated with hydrology in each sector of the river system as a function of the spatial patterns of overbank inundation and drainage, which affect long-term redox history of contaminated sediments. Our findings identify river floodplains as periodic, temporary, yet potentially important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the hydrologic record. We suggest that inundation is an important driver of MPP in river corridors and that the entire flow history must be analyzed retrospectively in terms of inundation magnitude and frequency in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods or low-flow periods. MMHg bioaccumulation within the aquatic food web in this system may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn. There is a long-term pattern of MPP under the current flow regime that is likely to be

  17. Use of Isotopic Techniques for the Assessment of Hydrological Interactions Between Ground and Surface Waters - Rio Man, Cienaga Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, P.; Dapena, C.; Betancur, T. [Universidad de Antioquia, Medellin (Colombia)

    2013-07-15

    The Man River basin is located in the lower foothills of the western and central ranges of the tropical Andes, Colombia. In this area hydrological studies and hydrochemical analyses were carried out and isotopic techniques applied to describe and understand the interactions between ground and surface waters. To expand this model and to include elements other than local hydrodynamics, relationships between regional precipitation, recharge, regional flow paths and hydraulic gradients controlling water flows from big rivers to groundwater are currently being explored. Accordingly, an isotope local meteoric water line was derived and it was discovered that the relationship between ground and surface waters is similar in wet and dry seasons. Precipitation constitutes the main recharge source, base flow is important in supporting flow in rivers, streams and wetlands, and evaporation causes effects over water systems in dry periods. A tendency towards increasing air temperatures has been detected in the Man River; this change may cause negative impacts over the hydrological system, affecting evapotranspiration- recharge processes. (author)

  18. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  19. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    Science.gov (United States)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  20. Evaluation of post fire changes in soil properties and influence on the hydrological and erosive dynamics in a Mediterranean watershed

    Science.gov (United States)

    Sanz, Inés; Aguilar, Cristina; Millares, Agustín

    2013-04-01

    In the last fifty years, forest fires and changes in land use and management practices have had a significant influenceon the evolution of soil loss processes in the Mediterranean area. Forest fires have immediate effects in hydrological processes mainly due to sudden changes in soil properties and vegetation cover. After a fire there is an increase in runoff processes and peak flows and thus in the amount and composition of the sediments produced. Silting in dams downstream is often reported so the description of the post-fire hydrological processes is crucial in order to optimize decision making. This study analyzes a micro-watershed of 25 ha in the south of Spain that suffered a fire in October 2010 burning around a 2 km2 area. As the erosive processes in this area are directly related to concentrated overland flow, an indirect assessment of soil loss is presented in this work based on evaluating changes in runoff in Mediterranean post-fire situations. For this, the study is divided into two main parts. Firstly, changes in soil properties and vegetation cover are evaluated. Secondly, the effects of these changes in the hydrological and erosive dynamics are assessed.The watershed had been monitored in previous studies so soil properties and the vegetation cover before the fire took place were already characterized. Besides, the hydrological response was also available through an already calibrated and validated physically-based distributed hydrological model. For the evaluation of soil properties, field measurement campaigns were designed. Philip Dunne's tests for the determination of saturated hydraulic conductivity, as well as moisture content and bulk density measurements were carried out in both unaltered and burned soil samples. Changes in the vegetation cover fraction were assessed through desktop analysis of Landsat-TM5 platform satellite images as well as through visual inspection in the field campaigns. The analysis of the hydraulic conductivity revealed

  1. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10 0 to 10 2 m 2 /d, with 65% of the calculated estimate values occurring between 10 1 to 10 2 m 2 d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt

  2. A VRML-Based Data Portal: Hydrology of the Hubbard Brook Experimental Forest and Mirror Lake Sub-Basin

    Science.gov (United States)

    Becker, M. W.; Bursik, M. I.; Schuetz, J. W.

    2001-05-01

    The Hubbard Brook Experimental Forest (HBEF) of Central New Hampshire has been a focal point for collaborative hydrologic research for over 40 years. A tremendous amount of data from this area is available through the internet and other sources, but is not organized in a manner that facilitates teaching of hydrologic concepts. The Mirror Lake Watershed Interactive Teaching Database is making hydrologic data from the HBEF and associated interactive problem sets available to upper-level and post-graduate university students through a web-based resource. Hydrologic data are offered via a three-dimensional VRML (Virtual Reality Modeling Language) interface, that facilitates viewing and retrieval in a spatially meaningful manner. Available data are mapped onto a topographic base, and hot spots representing data collection points (e.g. weirs) lead to time-series displays (e.g. hydrographs) that provide a temporal link to the spatially organized data. Associated instructional exercises are designed to increase understanding of both hydrologic data and hydrologic methods. A pedagogical module concerning numerical ground-water modeling will be presented as an example. Numerical modeling of ground-water flow involves choosing the combination of hydrogeologic parameters (e.g. hydraulic conductivity, recharge) that cause model-predicted heads to best match measured heads in the aquifer. Choosing the right combination of parameters requires careful judgment based upon knowledge of the hydrogeologic system and the physics of ground-water flow. Unfortunately, students often get caught up in the technical aspects and lose sight of the fundamentals when working with real ground-water software. This module provides exercises in which a student chooses model parameters and immediately sees the predicted results as a 3-D VRML object. VRML objects are based upon actual Modflow model results corresponding to the range of model input parameters available to the student. This way, the

  3. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  4. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  5. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    Operations at the Idaho National Laboratory (INL) have the potential to contaminate the underlying Eastern Snake River Plain (ESRP) aquifer. Methods to quantitatively characterize unsaturated flow and recharge to the ESRP aquifer are needed to inform water-resources management decisions at INL. In particular, hydraulic properties are needed to parameterize distributed hydrologic models of unsaturated flow and transport at INL, but these properties are often difficult and costly to obtain for large areas. The unsaturated zone overlying the ESRP aquifer consists of alternating sequences of thick fractured volcanic rocks that can rapidly transmit water flow and thinner sedimentary interbeds that transmit water much more slowly. Consequently, the sedimentary interbeds are of considerable interest because they primarily restrict the vertical movement of water through the unsaturated zone. Previous efforts by the U.S. Geological Survey (USGS) have included extensive laboratory characterization of the sedimentary interbeds and regression analyses to develop property-transfer models, which relate readily available physical properties of the sedimentary interbeds (bulk density, median particle diameter, and uniformity coefficient) to water retention and unsaturated hydraulic conductivity curves.

  6. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would -pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure

  7. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    Science.gov (United States)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  8. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw

    2017-09-01

    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  9. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  10. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    Science.gov (United States)

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  11. FUNCTIONS OF HYDROLOGICAL OBJECTS IN THE AREAS OF POST-MINING OPEN PIT “WŁADYSŁAWÓW”

    Directory of Open Access Journals (Sweden)

    Mirosława Maria Gilewska

    2015-10-01

    Full Text Available Operated by lignite mine “Adams” coal deposits are located in the upland area of ​​the Turkish, belonging to the South Plains macro-region of Wielkopolska. A feature of this region are not only low rainfall, but also the lack of water reservoirs and large rivers. Mining activity has caused major changes in the hydrological network, not just for liquidation, postpone or reconstruction of riverbeds, but also the creation of new objects that collect water. These include settling the waters “dirty”, as well as reservoirs formed in excavation voids as part of a water reclamation. After the end of coal mining operation of these facilities is dependent on hydrology and hydraulic engineering conditions. This problem will be shown on the example of dirty water clarifier and final excavation undergoing water reclamation opencast mining areas Władysławów. Outcrop ended its activities in 2013. The final excavation is no outflow basin with a capacity of 42 million m3, located within the river basin Topiec constituting the left-hand tributary of the Warta.

  12. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal

    Directory of Open Access Journals (Sweden)

    Laxmi Prasad Devkota

    2015-09-01

    New hydrological insights for the region: The study found that climate change does not pose major threat on average water availability. However, temporal flow variations are expected to increase in the future. The magnitude of projected flow for given return periods, however, strongly depends on the climate model run considered. The ECHAM05 results show higher flow changes than those estimated from the HADCM3 outputs. A relation was derived to estimate projected flood flow as a function of return period and flow estimated from historical series. Amidst the uncertainties, these predictions provide reasonable insight for re-consideration of design standards or design values of hydraulic structures under climate change.

  13. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  14. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  15. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  16. Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Directory of Open Access Journals (Sweden)

    F. Meunier

    2017-12-01

    Full Text Available In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil–root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact

  17. HashDist: Reproducible, Relocatable, Customizable, Cross-Platform Software Stacks for Open Hydrological Science

    Science.gov (United States)

    Ahmadia, A. J.; Kees, C. E.

    2014-12-01

    Developing scientific software is a continuous balance between not reinventing the wheel and getting fragile codes to interoperate with one another. Binary software distributions such as Anaconda provide a robust starting point for many scientific software packages, but this solution alone is insufficient for many scientific software developers. HashDist provides a critical component of the development workflow, enabling highly customizable, source-driven, and reproducible builds for scientific software stacks, available from both the IPython Notebook and the command line. To address these issues, the Coastal and Hydraulics Laboratory at the US Army Engineer Research and Development Center has funded the development of HashDist in collaboration with Simula Research Laboratories and the University of Texas at Austin. HashDist is motivated by a functional approach to package build management, and features intelligent caching of sources and builds, parametrized build specifications, and the ability to interoperate with system compilers and packages. HashDist enables the easy specification of "software stacks", which allow both the novice user to install a default environment and the advanced user to configure every aspect of their build in a modular fashion. As an advanced feature, HashDist builds can be made relocatable, allowing the easy redistribution of binaries on all three major operating systems as well as cloud, and supercomputing platforms. As a final benefit, all HashDist builds are reproducible, with a build hash specifying exactly how each component of the software stack was installed. This talk discusses the role of HashDist in the hydrological sciences, including its use by the Coastal and Hydraulics Laboratory in the development and deployment of the Proteus Toolkit as well as the Rapid Operational Access and Maneuver Support project. We demonstrate HashDist in action, and show how it can effectively support development, deployment, teaching, and

  18. Results of monitoring at Olkiluoto in 2013. Hydrology and hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Ahokas, H.; Komulainen, J.; Nummela, J.; Pentti, E.; Turku, J. [Poeyry Finland Oy, Vantaa (Finland); Karvonen, T. [WaterHope, Helsinki (Finland); Aro, S.

    2014-12-15

    The impact of the construction of ONKALO is monitored by measuring and observing numerous different parameters related to hydrology, geochemistry, environment, rock mechanics and foreign materials. The Hydrological Monitoring Programme consists of the following parameters: groundwater level, hydraulic head, flow conditions in open drillholes, transverse flow, hydraulic conductivity, groundwater salinity (in situ EC), precipitation (including snow), sea-water level, surface flow (runoff), infiltration, ground frost, leakages in tunnels, and water balance in the tunnel system and in Korvensuo Reservoir. This Report focuses on hydrogeological parameters. Other parameters, like precipitation, ground frost etc. will be reported in the Monitoring Report of Environment. Updated monitoring program was introduced in the beginning of 2012. The updated program will be used for the period before repository operation. Only minor changes were implemented. Monitoring has been carried out according to plan. This Report presents the results for the year 2013. Excavation of the access tunnel was completed in 2012. Demonstration tunnels 3 and 4 were excavated and central tunnel 1 was continued from chainage 4366-22 m to chainage 4366-60 m in 2013. Total inflow into ONKALO down to chainage 4580 m including shaft ONK-KU2 down to level -437 m was on average 35 l/min in 2013. The mapping of water leakages and moisture conditions on the tunnel walls and the ceiling has been continued. The general pattern of leakages has remained similar during the construction of ONKALO. Most significant differences are caused by seasonal effects like condensation of warm ventilation air on tunnel walls and ceiling. The changes observed in the groundwater level in observation tubes in the overburden and in shallow drillholes in the bedrock are not necessarily caused by the construction of ONKALO. However, weak indications of a local decrease in groundwater level have been observed. Effects on the head

  19. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  20. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  1. Estimating Hydraulic Resistance for Floodplain Mapping and Hydraulic Studies from High-Resolution Topography: Physical and Numerical Simulations

    Science.gov (United States)

    Minear, J. T.

    2017-12-01

    One of the primary unknown variables in hydraulic analyses is hydraulic resistance, values for which are typically set using broad assumptions or calibration, with very few methods available for independent and robust determination. A better understanding of hydraulic resistance would be highly useful for understanding floodplain processes, forecasting floods, advancing sediment transport and hydraulic coupling, and improving higher dimensional flood modeling (2D+), as well as correctly calculating flood discharges for floods that are not directly measured. The relationship of observed features to hydraulic resistance is difficult to objectively quantify in the field, partially because resistance occurs at a variety of scales (i.e. grain, unit and reach) and because individual resistance elements, such as trees, grass and sediment grains, are inherently difficult to measure. Similar to photogrammetric techniques, Terrestrial Laser Scanning (TLS, also known as Ground-based LiDAR) has shown great ability to rapidly collect high-resolution topographic datasets for geomorphic and hydrodynamic studies and could be used to objectively quantify the features that collectively create hydraulic resistance in the field. Because of its speed in data collection and remote sensing ability, TLS can be used both for pre-flood and post-flood studies that require relatively quick response in relatively dangerous settings. Using datasets collected from experimental flume runs and numerical simulations, as well as field studies of several rivers in California and post-flood rivers in Colorado, this study evaluates the use of high-resolution topography to estimate hydraulic resistance, particularly from grain-scale elements. Contrary to conventional practice, experimental laboratory runs with bed grain size held constant but with varying grain-scale protusion create a nearly twenty-fold variation in measured hydraulic resistance. The ideal application of this high-resolution topography

  2. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    Science.gov (United States)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  3. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  4. Inherent Limitations of Hydraulic Tomography

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  5. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  6. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  7. Modeling of hydrologic perturbations during reverse circulation drilling: 1, System and model description

    International Nuclear Information System (INIS)

    Sagar, B.; Connelly, M.P.; Long, P.E.

    1988-05-01

    The Hanford site located in southeastern Washington state was under consideration for the location of a high-level nuclear waste repository. As a part of site investigation, a borehole of depth > 3000 ft was drilled using reverse circulation drilling technique with water as the drilling fluid. After completion of drilling, seven piezometers were to be installed in the borehole with their lower ends at different depths to measure equilibrated hydraulic heads and aquifer response during future pumping tests. The hydrologic perturbations caused during the drilling, clean up, and piezometer installation process were of primary concern. A numerical model was used to predict these perturbations and determine efficiency of borehole cleanup. It was found that the boundary condition at the borehole was the most difficult to model. 9 refs., 5 figs

  8. visCOS: An R-package to evaluate model performance of hydrological models

    Science.gov (United States)

    Klotz, Daniel; Herrnegger, Mathew; Wesemann, Johannes; Schulz, Karsten

    2016-04-01

    pivotal tool in model evaluation. They allow inferences about different systematic model-shortcomings and are an efficient way for communicating these in practice (Schulz et al., 2015). The evaluation and construction of such water balances is implemented with the presented package. During the (manual) calibration of a model or in the scope of model development, many model runs and iterations are necessary. Thus, users are often interested in comparing different model results in a visual way in order to learn about the model and to analyse parameter-changes on the output. A method to illuminate these differences and the evolution of changes is also included. References: • Gupta, H.V.; Wagener, T.; Liu, Y. (2008): Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrol. Process. 22, doi: 10.1002/hyp.6989. • Klemeš, V. (1986): Operational testing of hydrological simulation models, Hydrolog. Sci. J., doi: 10.1080/02626668609491024. • Kling, H.; Stanzel, P.; Fuchs, M.; and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi: 10.1080/02626667.2014.959956. • Schulz, K., Herrnegger, M., Wesemann, J., Klotz, D. Senoner, T. (2015): Kalibrierung COSERO - Mur für Pro Vis, Verbund Trading GmbH (Abteilung STG), final report, Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Vienna, Austria, 217pp. • Zambrano-Bigiarini, M; Bellin, A. (2010): Comparing Goodness-of-fit Measures for Calibration of Models Focused on Extreme Events. European Geosciences Union (EGU), Geophysical Research Abstracts 14, EGU2012-11549-1.

  9. Sediment distribution and hydrologic conditions of the Potomac aquifer in Virginia and parts of Maryland and North Carolina

    Science.gov (United States)

    McFarland, Randolph E.

    2013-01-01

    Sediments of the heavily used Potomac aquifer broadly contrast across major structural features of the Atlantic Coastal Plain Physiographic Province in eastern Virginia and adjacent parts of Maryland and North Carolina. Thicknesses and relative dominance of the highly interbedded fluvial sediments vary regionally. Vertical intervals in boreholes of coarse-grained sediment commonly targeted for completion of water-supply wells are thickest and most widespread across the central and southern parts of the Virginia Coastal Plain. Designated as the Norfolk arch depositional subarea, the entire sediment thickness here functions hydraulically as a single interconnected aquifer. By contrast, coarse-grained sediment intervals are thinner and less widespread across the northern part of the Virginia Coastal Plain and into southern Maryland, designated as the Salisbury embayment depositional subarea. Fine-grained intervals that are generally avoided for completion of water-supply wells are increasingly thick and widespread northward. Fine-grained intervals collectively as thick as several hundred feet comprise two continuous confining units that hydraulically separate three vertically spaced subaquifers. The subaquifers are continuous northward but merge southward into the single undivided Potomac aquifer. Lastly, far southeastern Virginia and northeastern North Carolina are designated as the Albemarle embayment depositional subarea, where both coarse- and fine-grained intervals are of only moderate thickness. The entire sediment thickness functions hydraulically as a single interconnected aquifer. A substantial hydrologic separation from overlying aquifers is imposed by the upper Cenomanian confining unit. Potomac aquifer sediments were deposited by a fluvial depositional complex spanning the Virginia Coastal Plain approximately 100 to 145 million years ago. Westward, persistently uplifted granite and gneiss source rocks sustained a supply of coarse-grained sand and gravel

  10. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  11. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  12. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  13. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  14. Sustainability Evaluation Framework of Urban Stormwater Drainage Options for Arid Environments Using Hydraulic Modeling and Multicriteria Decision-Making

    Directory of Open Access Journals (Sweden)

    Mohammad Alhumaid

    2018-04-01

    Full Text Available Stormwater drainage systems in urban areas located in arid environmental regions generally consist of storm-sewer networks and man-made ponds for the collection and disposal of runoff, respectively. Due to expansion in cities’ boundaries as a result of population growth, the capacity of existing drainage systems has been exhausted. Therefore, such systems overflow even during the smaller (than the design return period floods. At the same time, changing rainfall patterns and flash floods due to climate change are other phenomena that need appropriate attention. Consequently, the municipalities in arid environmental regions are facing challenges for effective decision-making concerning (i improvement needs for drainage networks for safe collection of stormwater, (ii selection of most feasible locations for additional ponds, and (iii evaluation of other suitable options, such as micro-tunneling. In this research, a framework has been developed to evaluate different stormwater drainage options for urban areas of arid regions. Rainfall-runoff modeling was performed with the help of Hydrological-Engineering-Centre, Hydrological-Modelling-System (HEC-HMS. To evaluate the efficacy of each option for handling a given design flood, hydraulic-modeling was performed using SewerGEMS. Meteorological and topographical data was gathered from the Municipality of Buraydah and processed to generate different inputs required for hydraulic modeling. Finally, multicriteria decision-making (MCDM was performed to evaluate all the options on the basis of four sustainability criteria, i.e., flood risk, economic viability, environmental impacts, and technical constraints. Criteria weights were established through group decision-making using the Analytic Hierarchy Process (AHP. Preference-Ranking-Organization-Method for Enrichment-Evaluation (PROMETHEE II was used for final ranking of stormwater drainage options. The proposed framework has been implemented on a case of

  15. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  16. hydrological study of the basin of Tunja using isotopics technical

    International Nuclear Information System (INIS)

    Camacho R, Gloria; Hernandez Luis

    1992-01-01

    In the carried out study, it is analyzed the generalities in the first place on the city of Tunja, keeping in mind the aspects of Topography, Climate Population and the projection of this last one until the year 2020, and of equal it forms the demand of drinkable water for these same projections. Then it is the Superficial Hydrology of the area in study, keeping in mind the physiographic parameters of the basin, behavior pluviometrical graphic, flows and evapotranspiration, towards them to calculate this way the infiltration and power to end up determining the hydraulic balance of the area. In the concerning to Geology, this it was carried out on the base of the rising of stratigraphic columns made in having traveled by different roads and roads bordering to the study area; based on this columns it was carried out a geologic map with all the characteristics of the formations in the area

  17. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  18. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    International Nuclear Information System (INIS)

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  19. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  20. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  1. Applicability estimation of flowmeter logging for detecting hydraulic pass

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  2. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  3. Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress

    Directory of Open Access Journals (Sweden)

    Filipović Vilim

    2018-06-01

    Full Text Available Global climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR. To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP. Sequential modeling using HYDRUS (2D/3D was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014 showed that water repellency increases surface runoff in non-structured soils at hillslopes.

  4. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a co...... to a continous rotation of an electric generator. The experiments document efficiencies and losses for the conversion process. The experiments are used for verification and update of a computer model.......Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  5. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    International Nuclear Information System (INIS)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells

  6. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  7. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    Science.gov (United States)

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  8. Process of preparing hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  9. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; De Vita, P.; Napolitano, E.

    2012-01-01

    Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is

  10. HESS Opinions "The art of hydrology"

    NARCIS (Netherlands)

    Savenije, H.H.G.

    2008-01-01

    Hydrological modelling is the same as developing and encoding a hydrological theory. A hydrological model is not a tool but a hypothesis. The whole discussion about the inadequacy of hydrological models we have witnessed of late, is related to the wrong concept of what a model is. Good models don't

  11. Geospatial technology applications in forest hydrology

    Science.gov (United States)

    S.S. Panda; E. Masson; S. Sen; H.W. Kim; Devendra Amatya

    2016-01-01

    Two separate disciplines, hydrology and forestry, together constitute forest hydrology. It is obvious that forestry and forest hydrology disciplines are spatial entities. Forestry is the science that seeks to understand the nature of forests throygh their life cycle and interactions with the surrounding environment. Forest hydrology includes forest soil water, streams...

  12. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  13. Hydraulics submission for Middlesex County, NJ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  14. Hydraulics submission for Gloucester County, NJ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  15. Physical and Hydrological Meaning of the Spectral Information from Hydrodynamic Signals at Karst Springs

    Science.gov (United States)

    Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.

    2017-12-01

    Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto

  16. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  17. HYDROLOGY, CALHOUN COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, MONTGOMERY COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, DOUGLAS COUNTY, MINNESOTA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, NESHOBA COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, LEFLORE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, NEWTON COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. Weber County Hydrology Report

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, LEAKE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, CHISAGO COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, HOUSTON COUNTY, ALABAMA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating ALood discharges for a ALood Insurance...

  7. HYDROLOGY, WAYNE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. Hydrology, OCONEE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, SUNFLOWER COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, CALHOUN COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, OSCEOLA COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. HYDROLOGY, STEARNS COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, TIPPAH COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, Lawrence County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  15. HYDROLOGY, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  16. HYDROLOGY, SIMPSON COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, CLAIBORNE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, LAFAYETTE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, Yazoo COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, GILCHRIST COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, GLADES COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  2. HYDROLOGY, LEE COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  3. HYDROLOGY, GREENE County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  4. Modelling the Hydraulic Behaviour of Growing Media with the Explicit Finite Volume Solution

    Directory of Open Access Journals (Sweden)

    Marco Carbone

    2015-02-01

    Full Text Available The increasing imperviousness of urban areas reduces the infiltration and evapotranspiration capacity of urban catchments and results in increased runoff. In the last few decades, several solutions and techniques have been proposed to prevent such impacts by restoring the hydrological cycle. A limiting factor in spreading the use of such systems is the lack of proper modelling tools for design, especially for the infiltration processes in a growing medium. In this research, a physically-based model, employing the explicit Finite Volume Method (FVM, is proposed for modelling infiltration into growing media. The model solves a modified version of the Richards equation using a formulation which takes into account the main characteristics of green infrastructure substrates. The proposed model was verified against the HYDRUS-1D software and the comparison of results confirmed the suitability of the proposed model for correctly describing the hydraulic behaviour of soil substrates.

  5. Curricula and Syllabi in Hydrology.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of papers is intended to provide a means for the exchange of information on hydrological techniques and for the coordination of research and data collection. The objectives and trends in hydrological education are presented. The International Hydrological Decade (IHD) Working Group on Education recommends a series of topics that…

  6. Modelling food-web mediated effects of hydrological variability and environmental flows.

    Science.gov (United States)

    Robson, Barbara J; Lester, Rebecca E; Baldwin, Darren S; Bond, Nicholas R; Drouart, Romain; Rolls, Robert J; Ryder, Darren S; Thompson, Ross M

    2017-11-01

    Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Understanding, Classifying, and Selecting Environmentally Acceptable Hydraulic Fluids

    Science.gov (United States)

    2016-08-01

    traditional mineral oil; therefore, the life cycle costs over time may be reduced . REPLACEMENT OF EXISTING HYDRAULIC FLUIDS: Hydraulic fluids in existing...properly maintaining the fluid can extend the time interval between fluid changes, thus reducing the overall operating cost of the EA hydraulic fluid. It...Environmentally Acceptable Hydraulic Fluids by Timothy J. Keyser, Robert N. Samuel, and Timothy L. Welp INTRODUCTION: On a daily basis, the United States Army

  8. Promoting water hydraulics in Malaysia: A green educational approach

    Science.gov (United States)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  9. Comparative analysis of hydraulic crane-manipulating installations transport and technological machines and industrial robots hydraulic manipulators

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-09-01

    Full Text Available The article presents results of comparative analysis of hydraulic crane-manipulator installations of mobile transport and technological machines and hydraulic manipulators of industrial robots. The comparative analysis is based on consid-eration of a wide range of types and sizes indicated technical devices of both domestic and foreign production: 1580 structures of cranes and more than 450 structures of industrial robots. It was performed in the following areas: func-tional purpose and basic technical characteristics; a design; the loading conditions of the model and failures in operation process; approaches to the design, calculation methods and mathematical modeling. The conclusions about the degree of similarity and the degree of difference hydraulic crane-manipulator installations of transport and technological ma-chines and hydraulic industrial robot manipulators from the standpoint of their design and modeling occurring in them during operation of dynamic and structural processes.

  10. Design of An Energy Efficient Hydraulic Regenerative circuit

    Science.gov (United States)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  11. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  12. Hydrologic Services Course.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  13. Hydrology model evaluation at the Hanford Nuclear Waste Facility

    International Nuclear Information System (INIS)

    1977-04-01

    One and two-dimensional flow and contaminant transport computer models have been developed at Hanford to assess the rate and direction of contaminant movement from waste disposal sites. The primary objective of this work was to evaluate the potential improvement in accuracy that a three-dimensional model might offer over the simpler one and two-dimensional models. INTERA's hydrology contaminant transport model was used for this evaluation. Although this study was conceptual in nature, an attempt was made to relate it as closely as possible to Hanford conditions. Two-dimensional model runs were performed over the period of 1968 to 1973 using estimates of waste discharge flows, tritium concentrations, vertically averaged values of aquifer properties and boundary conditions. The well test interpretation runs confirmed the applicability of the areal hydraulic conductivity distribution. Velocity fields calculated by the two-dimensional and three-dimensional models and surface concentration profiles calculated by the two-dimensional and three-dimensional models show significant differences. Vertical concentration profiles calculated by a three-dimensional model show better qualitative agreement with the limited observed concentration profile data supplied by ARHCO

  14. Fundamental test results of a hydraulic free piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, A.; Ito, T. [Toyohashi University of Technology (Japan). Dept. of Mechanical Engineering

    2004-10-01

    The hydraulic free piston internal combustion engine pump that has been constructed and tested in this work is the opposed piston, two-stroke cycle, uniflow scavenging, direct fuel injection, and compression ignition type. The opposed engine pistons reciprocate the hydraulic pump pistons directly and the hydraulic power to be used in the hydraulic motors is generated. The hydraulic pressure generated is substantially constant. The opposed free pistons rest after every gas cycle and hydraulic power is continuously supplied by a hydraulic accumulator during the free pistons' rest. The smaller the hydraulic flow output, the longer the duration of the rest. Every gas cycle is performed under a fixed working condition independent of hydraulic power output. The test results in this work indicate that the number of gas cycles per second of the free piston engine pump is directly proportional to hydraulic flow output. The opposed free pistons operate every 53.2 s when hydraulic flow output is 1.02 cm{sup 3}/s; at that time hydraulic power output is 0.0124 kW. Hydraulic thermal efficiency, the ratio of hydraulic energy produced to fuel energy consumed, has been measured in the range 0.0124 kW to 4.88 kW of hydraulic power output and it has become clear that hydraulic thermal efficiency in this range is constant. The measured value of hydraulic thermal efficiency is 31 per cent. It has been demonstrated that hydraulic thermal efficiency is kept constant even if hydraulic power output is very small. (author)

  15. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  16. Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling

    Directory of Open Access Journals (Sweden)

    A. Molina

    2009-10-01

    well, as the error on the simulated total outflow volumes is below 13% for 15 out of 16 cases. However, predicting infiltration amounts is difficult: the high sensitivity of model results to some crucial hydraulic parameters (runoff width, hydraulic conductivity and sorptivity is one of the reasons why the relationships between model parameter values and gully features are relatively weak.

    The results obtained from the field experiments show that gully systems are key elements in the hydrological connectivity of degraded landscapes. The transfer of overland flow and sediment from the slopes towards the river system highly depends on the presence/absence of vegetation in the gully beds and should therefore be accounted for in assessments of landscape degradation and/or recovery.

  17. Hydrology

    Science.gov (United States)

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  18. Hydraulic nuts (hydranuts) for critical bolted joints

    International Nuclear Information System (INIS)

    Greenwell, S.

    2008-01-01

    HydraNuts replace the original nut and torquing equipment, combining the two functions into one system. Designed for simple installation and operation, HydraNuts are fitted to the stud bolts. Once all HydraNuts are fitted to the application, flexible hydraulic hoses are connected, forming a closed loop hydraulic harness, allowing simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a pumping unit and the resultant load generated is transferred to the studs and flange closure is obtained. Locking rings are rotated into place, supporting the tensioned load mechanically after hydraulic pressure is released. The hose harness is removed. (author)

  19. Hydraulic description of a flood event with optical remote sensors: a constructive constraint on modelling uncertainties

    Science.gov (United States)

    Battiston, Stéphanie; Allenbach, Bernard

    2010-05-01

    The exceptional characteristics of the December 2003 Rhône flood event (particularly high water flows, extent of the affected area, important damages especially in the region of Arles) make it be considered as a reference flood episode of this French river and a very well-known event. During the crisis, the International Charter "Space and Major Disasters" was triggered by the French Civil Protection for the rapid mapping of the flooding using Earth Observation imagery in order to facilitate crisis operations. As a result, more than 60 satellite images covering the flood were acquired over a 10 days period following the peak flow. Using the opportunity provided by this incomparable data coverage, the French Ministry of the Environment ordered a study on the evaluation of remote sensing's potential benefits for flood management. One of the questions asked by the risk managers was: what type of flood information can be provided by the different remote sensing platforms? Elements of response were delivered mainly in the form of a comprehensive compilation of maps and illustrations, displaying the main hydraulic elements (static ones as well as dynamic ones), initially listed and requested by hydrologists (more precisely, by a regional engineering society specialised in hydraulics and hydrology and in charge of a field campaign during the event), observed on different optical images of the flood event having affected the plain between Tarascon (upstream) and Arles (downstream). It is seen that a careful mapping of all flood traces visible on remote sensing event imagery - apparent water, moisture traces, breaches, overflows, stream directions, impermeable boundaries … - delivers a valuable vision of the flood's occurrence combining accuracy and comprehensiveness. In fact, optical imagery offers a detailed vision of the event : moisture traces complete flood traces extent; the observation of draw-off directions through waterproof barriers reveals hydraulic

  20. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz

    2013-10-01

    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  1. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  2. Assessing hydrological changes in a regulated river system over the last 90 years in Rimac Basin (Peru)

    Science.gov (United States)

    Vega-Jácome, Fiorella; Lavado-Casimiro, Waldo Sven; Felipe-Obando, Oscar Gustavo

    2018-04-01

    Hydrological changes were assessed considering possible changes in precipitation and regulation or hydraulic diversion projects developed in the basin since 1960s in terms of improving water supply of the Rimac River, which is the main source of fresh water of Peru's capital. To achieve this objective, a trend analysis of precipitation and flow series was assessed using the Mann-Kendall test. Subsequently, the Eco-flow and Indicators of Hydrologic Alteration (IHA) methods were applied for the characterization and quantification of the hydrological change in the basin, considering for the analysis, a natural period (1920-1960) and an altered period (1961-2012). Under this focus, daily hydrologic information of the "Chosica R-2" station (from 1920 to 2013) and monthly rainfall information related to 14 stations (from 1964 to 2013) were collected. The results show variations in the flow seasonality of the altered period in relation to the natural period and a significant trend to increase (decrease) minimum flows (maximum flows) during the analyzed period. The Eco-flow assessment shows a predominance of Eco-deficit from December to May (rainy season), strongly related to negative anomalies of precipitation. In addition, a predominance of Eco-surplus was found from June to November (dry season) with a behavior opposite to precipitation, attributed to the regulations and diversion in the basin during that period. In terms of magnitude, the IHA assessment identified an increase of 51% in the average flows during the dry season and a reduction of 10% in the average flows during the rainy season (except December and May). Furthermore, the minimum flows increased by 35% with shorter duration and frequency, and maximum flows decreased by 29% with more frequency but less duration. Although there are benefits of regulation and diversion for developing anthropic activities, the fact that hydrologic alterations may result in significant modifications in the Rimac River ecosystem

  3. Topographic variations of water supply and plant hydraulics in a mountainous forest

    Science.gov (United States)

    Tai, X.; Mackay, D. S.; Ewers, B. E.; Parsekian, A.; Sperry, J.; Beverly, D.; Speckman, H. N.; Ohara, N.; Fantello, N.; Kelleners, T.; Fullhart, A. T.

    2017-12-01

    How plants respond to variable local water supply in complex soil-topography systems is not clear although critical. This has been attributed to a lack of integrated models that can resolve relevant hydrological and physiological mechanisms and intensive field monitoring to inform/evaluate such a model. This research addresses these knowledge gaps by leveraging a newly developed distributed plant hydraulics model, ParFlow-TREES, and detailed geophysical and physiological measurements. Observations of sap flow, leaf water potentials, micrometeorology, and electrical resistivity tomography (ERT) are combined with the model to examine the key mechanisms affecting the spatial distribution of soil water and tree water stress. Modeling results showed higher soil water condition at bottom of the hillslope on average, corroborating the ERT-derived soil moisture observations. Hydraulic traits are critical to capture the sap flux dynamics of species with contrasting leaf water potential regulation strategies and heterogeneous soil drying at different hillslope positions. These results suggested the integrated effect of topography and plants on the evolvement of soil moisture distribution. Furthermore, sensitivity analysis demonstrated the importance of using distributed observations to validate/calibrate distributed models. Focusing on lumped variables or only one particular variable might give misleading conclusions. Co-located observations improve the characterization of plant traits and local living environment, providing key information needed as a first step in resolving the form and function of the critical zone from bedrock to atmosphere. We will discuss the broader implications and potential applications of this intensive data-model comparison at other sites and greater spatial extent.

  4. A review on hydraulic fracturing of unconventional reservoir

    Directory of Open Access Journals (Sweden)

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  5. Hydraulic characterization of " Furcraea andina

    Science.gov (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  6. Status of the art: hydraulic conductivity of acid- fractures; Condutividade hidraulica de fratura acida: estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Valdo Ferreira [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LENEP/UENF), Macae, RJ (Brazil). Centro de Ciencia e Tecnologia. Lab. de Engenharia e Exploracao de Petroleo; Campos, Wellington [PETROBRAS, RJ (Brazil). E and P Engenharia de Producao. Gerencia de Completacao e Avaliacao], e-mail: wcampos@petrobras.com.br

    2010-06-15

    This paper presents a review of the hydraulic conductivity models developed for acid fractures in almost four decades of studies in petroleum engineering. These studies have often benefited from theories and experiments carried out in areas of knowledge such as physics, geology, hydrology, fluid mechanics, rock mechanics and tribology. The review showed that the pioneer study of Nierode and Kruk (1973) is still used in commercial software and influences the current studies. There was significant evolution on the quantitative surface topography characterization of the fractures and their impact on the hydraulic conductivity. The same occurred for the effects of acid dissolution on the rock resistance. Improvements on correlations similar to the Nierode and Kruk can be applied at once on the acid fracturing project and evaluation practice for the cases of rough dissolution pattern. A method to consider the overall conductivity from heterogeneous channels and roughness pattern was recently proposed. The complexity of the theoretical fundaments, specially the range of validity of the equations in face of the simplifications assumed, the difficulty of performing representative laboratory and field experiments, the difficulty of characterizing quantitatively the fractures surface topography and its effects on the conductivity, and the large variety of rocks and acid systems keep this subject open for research. (author)

  7. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  8. Environmental isotope hydrology

    International Nuclear Information System (INIS)

    1973-01-01

    Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32 Si and 238 U/ 234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. (author)

  9. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes

    2013-01-01

    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  10. Recent developments in stochastic modeling and upscaling of hydrologic properties in tuff

    International Nuclear Information System (INIS)

    Rautman, C.A.; Robey, T.H.

    1992-01-01

    A set of detailed geostatistical simulations of porosity has been produced for a layered stratigraphic sequence of welded and nonwelded volcanic tuffs at Yucca Mountain, Nevada. The simulations are produced using a composite. model of spatial continuity and they are highly conditioned to abundant drill hole (core) information. A set of derivative simulations of saturated hydraulic conductivity has been produced, in the absence of conditioning data, using a cross-variable relationship developed from similar data elsewhere. The detailed simulations reproduce both the major stratigraphic units and finer scale layering indicated by the drill hole data. These simulations have been scaled up several order of magnitude to represent block-scale effective hydrologic properties suitable for use in numerical modeling of groundwater flow and transport. The upscaling process involves the reformulation of a previously reported method that iteratively adapts an initial arbitrary grid to ''homogenize'' the detailed hydraulic properties contained within the adjusted cell limits and to minimize the size of cell in highly heterogeneous regions. Although the computation of the block-effective property involves simple numerical averaging, the blocks over which these averages are computed are relatively homogeneous, which reduces the numerical difficulties involved in averaging non-additive properties, such as permeability. The entire process of simulation and upscaling is rapid and computationally efficient compared with alterative techniques. It is thus suitable for the Monte Carlo evaluation of the uncertainty in site characterization as it affects the results of groundwater flow and transport calculations

  11. Hydrologic Synthesis Across the Critical Zone Observatory Network: A Step Towards Understanding the Coevolution of Critical Zone Function and Structure

    Science.gov (United States)

    Wlostowski, A. N.; Harman, C. J.; Molotch, N. P.

    2017-12-01

    The physical and biological architecture of the Earth's Critical Zone controls hydrologic partitioning, storage, and chemical evolution of precipitated water. The Critical Zone Observatory (CZO) Network provides an ideal platform to explore linkages between catchment structure and hydrologic function across a gradient of geologic and climatic settings. A legacy of hypothesis-motivated research at each site has generated a wealth of data characterizing the architecture and hydrologic function of the critical zone. We will present a synthesis of this data that aims to elucidate and explain (in the sense of making mutually intelligible) variations in hydrologic function across the CZO network. Top-down quantitative signatures of the storage and partitioning of water at catchment scales extracted from precipitation, streamflow, and meteorological data will be compared with each other, and provide quantitative benchmarks to assess differences in perceptual models of hydrologic function at each CZO site. Annual water balance analyses show that CZO sites span a wide gradient of aridity and evaporative partitioning. The aridity index (PET/P) ranges from 0.3 at Luquillo to 4.3 at Reynolds Creek, while the evaporative index (E/P) ranges from 0.3 at Luquillo (Rio Mamayes) to 0.9 at Reynolds Creek (Reynolds Creek Outlet). Snow depth and SWE observations reveal that snowpack is an important seasonal storage reservoir at three sites: Boulder, Jemez, Reynolds Creek and Southern Sierra. Simple dynamical models are also used to infer seasonal patterns of subsurface catchment storage. A root-zone water balance model reveals unique seasonal variations in plant-available water storage. Seasonal patterns of plant-available storage are driven by the asynchronicity of seasonal precipitation and evaporation cycles. Catchment sensitivity functions are derived at each site to infer relative changes in hydraulic storage (the apparent storage reservoir responsible for modulating streamflow

  12. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  13. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  14. Hydrological simulation of the Brahmaputra basin using global datasets

    Science.gov (United States)

    Bhattacharya, Biswa; Conway, Crystal; Craven, Joanne; Masih, Ilyas; Mazzolini, Maurizio; Shrestha, Shreedeepy; Ugay, Reyne; van Andel, Schalk Jan

    2017-04-01

    Brahmaputra River flows through China, India and Bangladesh to the Bay of Bengal and is one of the largest rivers of the world with a catchment size of 580K km2. The catchment is largely hilly and/or forested with sparse population and with limited urbanisation and economic activities. The catchment experiences heavy monsoon rainfall leading to very high flood discharges. Large inter-annual variation of discharge leading to flooding, erosion and morphological changes are among the major challenges. The catchment is largely ungauged; moreover, limited availability of hydro-meteorological data limits the possibility of carrying out evidence based research, which could provide trustworthy information for managing and when needed, controlling, the basin processes by the riparian countries for overall basin development. The paper presents initial results of a current research project on Brahmaputra basin. A set of hydrological and hydraulic models (SWAT, HMS, RAS) are developed by employing publicly available datasets of DEM, land use and soil and simulated using satellite based rainfall products, evapotranspiration and temperature estimates. Remotely sensed data are compared with sporadically available ground data. The set of models are able to produce catchment wide hydrological information that potentially can be used in the future in managing the basin's water resources. The model predications should be used with caution due to high level of uncertainty because the semi-calibrated models are developed with uncertain physical representation (e.g. cross-section) and simulated with global meteorological forcing (e.g. TRMM) with limited validation. Major scientific challenges are seen in producing robust information that can be reliably used in managing the basin. The information generated by the models are uncertain and as a result, instead of using them per se, they are used in improving the understanding of the catchment, and by running several scenarios with varying

  15. Hydrologic assessment and numerical simulation of groundwater flow, San Juan Mine, San Juan County, New Mexico, 2010–13

    Science.gov (United States)

    Stewart, Anne M.

    2018-04-03

    Coal combustion byproducts (CCBs), which are composed of fly ash, bottom ash, and flue gas desulfurization material, produced at the coal-fired San Juan Generating Station (SJGS), located in San Juan County, New Mexico, have been buried in former surface-mine pits at the San Juan Mine, also referred to as the San Juan Coal Mine, since operations began in the early 1970s. This report, prepared by the U.S. Geological Survey in cooperation with the Mining and Minerals Division of the New Mexico Energy, Minerals and Natural Resources Department, describes results of a hydrogeologic assessment, including numerical groundwater modeling, to identify the timing of groundwater recovery and potential pathways for groundwater transport of metals that may be leached from stored CCBs and reach hydrologic receptors after operations cease. Data collected for the hydrologic assessment indicate that groundwater in at least one centrally located reclaimed surface-mining pit has already begun to recover.The U.S. Geological Survey numerical modeling package MODFLOW–NWT was used with MODPATH particle-tracking software to identify advective flow paths from CCB storage areas toward potential hydrologic receptors. Results indicate that groundwater at CCB storage areas will recover to the former steady state, or in some locations, groundwater may recover to a new steady state in 6,600 to 10,600 years at variable rates depending on the proximity to a residual cone-of-groundwater depression caused by mine dewatering and regional oil and gas pumping as well as on actual, rather than estimated, groundwater recharge and evapotranspirational losses. Advective particle-track modeling indicates that the number of particles and rates of advective transport will vary depending on hydraulic properties of the mine spoil, particularly hydraulic conductivity and porosity. Modeling results from the most conservative scenario indicate that particles can migrate from CCB repositories to either the

  16. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  17. Global hydrological droughts in the 21st century under a changing hydrological regime

    NARCIS (Netherlands)

    Wanders, Niko|info:eu-repo/dai/nl/364253940; Wada, Yoshi|info:eu-repo/dai/nl/341387819; van Lanen, H.A.J

    2015-01-01

    Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that

  18. Development of a Historical Hydrological online research and application platform for Switzerland - Historical Hydrological Atlas of Switzerland (HHAS)

    Science.gov (United States)

    Wetter, Oliver

    2017-04-01

    It is planned to develop and maintain a historical hydrological online platform for Switzerland, which shall be specially designed for the needs of research and federal, cantonal or private institutions being interested in hydrological risk assessment and protection measures. The aim is on the one hand to facilitate the access to raw data which generally is needed for further historical hydrological reconstruction and quantification, so that future research will be achieved in significantly shorter time. On the other hand, new historical hydrological research results shall be continuously included in order to establish this platform as a useful tool for the assessment of hydrological risk by including the long term experience of reconstructed pre-instrumental hydrological extreme events like floods and droughts. Meteorological parameters that may trigger extreme hydrological events, like monthly or seasonally resolved reconstructions of temperature and precipitation shall be made accessible in this platform as well. The ultimate goal will be to homogenise the reconstructed hydrological extreme events which usually appeared in the pre anthropogenic influence period under different climatological as well as different hydrological regimes and topographical conditions with the present day state. Long term changes of reconstructed small- to extreme flood seasonality, based on municipal accounting records, will be included in the platform as well. This helps - in combination with the before mentioned meteorological parameters - to provide an increased understanding of the major changes in the generally complex overall system that finally causes hydrological extreme events. The goal of my presentation at the Historical Climatology session is to give an overview about the applied historical climatological and historical hydrological methodologies that are applied on the historical raw data (evidence) to reconstruct pre instrumental hydrological events and meteorological

  19. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  20. Hydrology

    International Nuclear Information System (INIS)

    Obando G, E.

    1989-01-01

    Isotopical techniques are used in hydrology area for exploration, evaluation and exploration of water investigation. These techniques have been used successfully and are often the best or only means for providing certain hydrogeological parameters

  1. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  2. OHD/HL - National Weather Hydrology Laboratory

    Science.gov (United States)

    Laboratory Branches Hydrologic Software Engineering Branch (HSEB) Hydrologic Science and Modeling Branch enter or select the go button to submit request City, St Go Science Research and Collaboration Hydrology Subversion Usage Guidelines updated 11/18/2008 Other Documents Science Algorithm Description Document (doc

  3. Five Guidelines for Selecting Hydrological Signatures

    Science.gov (United States)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to

  4. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  5. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Moser, H.

    1976-01-01

    The nuclear techniques used in hydrology are usually tracer techniques based on the use of nuclides either intentionally introduced into, or naturally present in the water. The low concentrations of these nuclides, which must be detected in groundwater and surface water, require special measurement techniques for the concentrations of radioactive or of stable nuclides. The nuclear techniques can be used most fruitfully in conjunction with conventional methods for the solution of problems in the areas of hydrology, hydrogeology and glacier hydrology. Nuclear techniques are used in practice in the areas of prospecting for water, environment protection and engineering hydrogeology. (orig.) [de

  6. Proceedings of the 7. annual workshop of the CEATI Water Management Group : water management 2006 : collecting and managing hydrologic data

    International Nuclear Information System (INIS)

    2006-01-01

    This workshop by the Water Management Interest Group of CEATI focused on the development and methods and tools needed to optimize hydraulic processes while maintaining safe and environmentally-sound operations. In particular, it addressed issues regarding watershed management and water use planning, meteorological forecasting, operational modeling, data acquisition techniques, and impact assessment. Hydrologic data must be acquired and processed in order to effectively operate water control structures. It was noted that although data requirements may change from basin to basin, depending on seasonal forecasting, quality data is the foundation of all hydrological operational modelling and decision support software packages. As such, better acquisition methods and equipment are needed along with well designed networks and modern control applications. The first session of this workshop dealt with network data collection offered an opportunity to expand network design criteria standards and technologies that can offer support for cost effective maintenance to achieve acceptable levels of reliability and accuracy. The second session on quality control and data validation explored potential solutions for improved methods and techniques in quality control. The third session on data sharing and network coordination examined ways that companies and government agencies manage and share hydrologic data. The workshop featured 22 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  7. Pneumatic and hydraulic microactuators: a review

    International Nuclear Information System (INIS)

    De Volder, Michaël; Reynaerts, Dominiek

    2010-01-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston–cylinder and drag-based microdevices. (topical review)

  8. Curricula and Syllabi in Hydrology. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 22. Second Edition.

    Science.gov (United States)

    Chandra, Satish, Ed.; Mostertman, L. J., Ed.

    Hydrology is the science dealing with the earth's waters, their occurrence, circulation, and distribution, their chemical and physical properties, and their reaction with the environment. As such, hydrology is an indispensible requirement for planning in the field of water resources. Objectives for, spectrum of, and topics for education in…

  9. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  10. Preliminary description of hydrologic characteristics and contaminant transport potential of rocks in the Pasco Basin, south-central Washington

    International Nuclear Information System (INIS)

    Deju, R.A.; Fecht, K.R.

    1979-03-01

    This report aims at consolidating existing data useful in defining the hydrologic characteristics of the Pasco Basin within south-central Washington. It also aims at compiling the properties required to evaluate contaminant transport potential within individual subsurface strata in this basin. The Pasco Basin itself is a tract of semi-arid land covering about 2,000 square miles in south-central Washington. The regional geology of this basin is dominated by tholeiitic flood basalts of the Columbia Plateau. The surface hydrology of the basin is dominated by the Yakima, Snake, and Columbia rivers. Short-lived ephemeral streams may flow for a short period of time after a heavy rainfall or snowmelt. The subsurface hydrology of the Pasco Basin is characterized by an unconfined aquifer carrying the bulk of the water discharged within the basin. This aquifer overlies a series of confined aquifers carrying progressively smaller amounts of groundwater as a function of depth. The hydraulic properties of the various aquifers and non-water-bearing strata are characterized and reported. A summary of the basic properties is tabulated. The hydrochemical data obtained are summarized. The contaminant transport properties of the rocks in the Pasco Basin are analyzed with emphasis on the dispersion and sorption coefficients and the characteristics of the potential reactions between emplaced waste and the surrounding medium. Some basic modeling considerations of the hydrogeologic systems in the basin with a brief discussion of model input requirements and their relationship to available data are presented

  11. Proceedings of the 14. workshop of the Committee on River Ice Processes and the Environment : hydraulics of ice covered rivers

    International Nuclear Information System (INIS)

    Morse, B.; Bergeron, N.; Gauthier, Y.

    2007-01-01

    Ice processes play a significant role in the hydrologic regime of Canadian rivers. The Committee on River Ice Processes and the Environment (CRIPE) identifies high-priority topics for research and development and promotes research programs at Canadian colleges and universities. This workshop reviewed the hydraulic aspects of river ice phenomena in an effort to clarify the effects of ice cover on river flow characteristics. Other issues of concern were also discussed, notably ice formation, ice jams, winter operation of hydroelectric power plants, environmental aspects of river ice, and climate change. The workshop featured 12 poster sessions and 40 presentations, of which 5 have been catalogued separately for inclusion in this database. refs., tabs., figs

  12. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  13. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  14. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  15. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J P

    1996-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  16. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    Energy Technology Data Exchange (ETDEWEB)

    D’Auria, F; Rohatgi, Upendra S.

    2017-01-12

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  17. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  18. Robust Prediction of Hydraulic Roughness

    Science.gov (United States)

    2011-03-01

    Manning’s n were required as input for further hydraulic analyses with HEC - RAS . HYDROCAL was applied to compare different estimates of resistance... River Restoration Science Synthesis (NRRSS) demonstrated that, in 2007, river and stream restoration projects and funding were at an all time high...behavior makes this parameter very difficult to quan- tify repeatedly and accurately. A fundamental concept of hydraulic theory in the context of river

  19. DCS Hydraulics Submittal, Bullock County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  20. DCS Hydraulics Submittal, Butler County, Alabama, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...