WorldWideScience

Sample records for mill effluents suggests

  1. Removal of contaminants in a paper mill effluent by Azolla caroliniana

    Directory of Open Access Journals (Sweden)

    D. Sivakumar

    2015-09-01

    Full Text Available This study was focused on removal of various parameters in paper mill effluent using a method called bioremediation by Azolla caroliniana.  The experimental investigations have been carried out using Azolla caroliniana for conducting the sorption study with various dilution ratios (2, 4, 6, 8, and 10, pH (3, 4, 5, 6, 7, 8 and 9 and biomass (200, 400, 600, 800 and 1000 g. The maximum removal percentage of TDS, BOD and COD in a paper mill effluent was obtained at the optimum dilution ratio of 6, pH of 8 and biomass of 800 g. The results of this study indicated that the maximum removal percentage of TDS, BOD and COD in a paper mill effluent was 82.3 %, 88.6 % and 79.1 % respectively.  Also, the study focused on uptake of TDS, BOD and COD in paper mill effluent by Azolla caroliniana through bioaccumulation factor and translocation factor. The results of bioaccumulation factor revealed that TDS, BOD and COD in paper mill effluent were adsorbed by Azolla caroliniana.  The results of translocation factor revealed that the roots of Azolla caroliniana translocate the TDS, BOD and COD in a paper mill effluent to the shoots of Azolla caroliniana. From the results, this study concluded that bioremediation by Azolla caroliniana could be effectively used for removing TDS, BOD and COD in a paper mill effluent. This study also suggested that Azolla caroliniana may be used for removing various contaminants, not only from paper mill effluent, but also from any other industrial effluents.

  2. Evaluation of full strength paper mill effluent for electricity generation ...

    African Journals Online (AJOL)

    0615306y

    2011-11-07

    Nov 7, 2011 ... 26 ± 2% when effluent of the same type was fed to MFCs operated in a ..... Aquatic toxicity from pulp and paper mill ... that potentially disrupt neuroendocrine control of fish reproduction. ... Effect of humic acids on electricity.

  3. bioelectricity production from cassava mill effluents using microbial ...

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... cassava mill effluent using the MFC technology. Keywords: Bioelectricity ... acceptors for its unlimited availability and its high redox potential [18]. ..... compounds in cells including nucleic acid and other material susceptible to ...

  4. Photocatalytical polishing of paper-mill effluents.

    Science.gov (United States)

    Moiseev, A; Schroeder, H; Kotsaridou-Nagel, M; Geissen, S U; Vogelpohl, A

    2004-01-01

    Photocatalytic oxidation (PCO) is a promising technology for purification of biological pretreated wastewater or destruction of non-biodegradable compounds. For this reason PCO has been investigated as a last step of purification of biologically pre-treated paper-mill effluents. The influence of the parameters pH, TiO2-modification, TiO2-concentration, catalyst re-use, concentration of substances to be oxidised (wastewater quality) has been determined. The TOC of the biologically pretreated wasterwater was up to 55 mg L(-1). This wastewater was treated with a previously presented aerated cascade photoreactor which was modified for batch experiments. A high specific oxidation rate of up to 0.76 g TOC m(-2) h(-1) as well as a complete TOC mineralization has been achieved after the optimisation of the process parameters. The complete destruction of recalcitrant compounds will offer the opportunity to reuse the wastewater in the production process. The increase of the BOD5/TOC ratio after a short irradiation period indicates the transformation of recalcitrant organic compounds to better biodegradable intermediates. The use of PCO as a pre-treatment step for the enhancement of the biodegradability of wastewater, containing recalcitrant or inhibitory compounds is an alternative to a long and energy-intensive total pollutant mineralization.

  5. The Relationship Between Organic Loading and Effects on Fish Reproduction for Pulp Mill Effluents Across Canada.

    Science.gov (United States)

    Martel, Pierre H; O'Connor, Brian I; Kovacs, Tibor G; Van Den Heuvel, Michael R; Parrott, Joanne L; McMaster, Mark E; MacLatchy, Deborah L; Van Der Kraak, Glen J; Hewitt, L Mark

    2017-02-21

    This study builds upon the work of a multiagency consortium tasked with determining cost effective solutions for the effects of pulp mill effluents on fish reproduction. A laboratory fathead minnow egg production test and chemical characterization tools were used to benchmark eighty-one effluents from twenty mills across Canada, representing the major pulping, bleaching and effluent treatment technologies. For Kraft and mechanical pulp mills, effluents containing less than 20 mg/L BOD5 were found to have the greatest probability of having no effects. Organic loading, expressed as the total detected solvent-extractable components by gas chromatography/mass spectrometry (GC/MS), also correlate with decreased egg laying. Exceptions were found for specific Kraft, mechanical and sulfite mills, suggesting yet unidentified, causative agents are involved. Recycled fibre mill effluents, tested for the first time, were found to have little potential for reproductive effects despite large variations in BOD5 and the GC/MS profiles. Effluent treatment systems across all production types were generally efficient, achieving a combined 82-98 % BOD5 removal. Further reductions of final effluent organic loadings towards the target of less than 20 mg/L are recommended and can be realized through biotreatment optimization, the reduction of organic losses associated with production upsets and selecting best available technologies that reduce organic loadings to biotreatment.

  6. Modelling anaerobic codigestion of manure with olive oil mill effluent

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ellegaard, L.; Ahring, B.K.

    1997-01-01

    A mathematical model describing the combined anaerobic degradation of complex organic material, such as manure, and a lipid containing additive, such as olive oil mill effluents, has been developed based on a model previously described (Angelidaki et al. 1993). The model has been used to simulate...... anaerobic codigestion of cattle manure together with olive oil mill effluent (OME) and the simulations were compared with experimental data. Simulation data indicated that lack of ammonia, needed as nitrogen source for synthesis of bacterial biomass and as an important pH buffer, could be responsible...

  7. Bioplastic production using wood mill effluents as feedstock.

    Science.gov (United States)

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  8. Effects of ozone on kraft process pulp mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, A. (Stanley Industrial Consultants, Edmonton, Alberta (Canada)); Smith, D.W. (Univ. of Alberta, Edmonton, (Canada))

    1992-12-01

    Effluent from a kraft process pulp mill was studied in a batch reactor for ozone doses between 50 and 200 mg O[sub 3]/L to identify the suitability of ozone application locations in the treatment process and see the improvements in biotreatability of wastewaters from a kraft process pulp mill. Laboratory acclimatized seed were used for (Biochemical Oxygen Demand) BOD tests for ozonated and unozonated samples. The inhibitory effects were minimized by using optimum dilutions. The studies were divided into three major sections: characterization of mill effluent; ozone system calibration, and reactor design; and ozonation of mill effluent. Seed for BOD tests were acclimatized in batch units for primary, bleach and secondary effluents separately. The results were analyzed using the [open quote]t[close quote] test for paired experiments and an ANOVA table for statistical confirmation. Residuals were plotted to check the assumptions of constant variance and normal distribution. It was concluded that ozone is most effective for the removal of color and the increase of BOD in secondary effluent. 21 refs., 9 figs., 7 tabs.

  9. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent.

    Science.gov (United States)

    Haq, Izharul; Kumar, Sharad; Kumari, Vineeta; Singh, Sudheer Kumar; Raj, Abhay

    2016-03-15

    Due to high pollution load and colour contributing substances, pulp and paper mill effluents cause serious aquatic and soil pollution. A lignin-degrading bacterial strain capable of decolourising Azure-B dye was identified as lignin peroxidase (LiP) producing strain LD-5. The strain was isolated from pulp and paper mill effluent contaminated site. Biochemical and 16S rDNA gene sequence analysis suggested that strain LD-5 belonged to the Serratia liquefaciens. The strain LD-5 effectively reduced pollution parameters (colour 72%, lignin 58%, COD 85% and phenol 95%) of real effluent after 144h of treatment at 30°C, pH 7.6 and 120rpm. Extracellular LiP produced by S. liquefaciens during effluent decolourisation was purified to homogeneity using ammonium sulfate (AMS) precipitation and DEAE cellulose column chromatography. The molecular weight of the purified lignin peroxidase was estimated to be ∼28kDa. Optimum pH and temperature for purified lignin peroxidase activity were determined as pH 6.0 and 40°C, respectively. Detoxified effluent was evaluated for residual toxicity by alkaline single cell (comet) gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism. The toxicity reduction to treated effluent was 49.4%. These findings suggest significant potential of S. liquefaciens for bioremediation of pulp and paper mill effluent.

  10. Biological removal of phyto-sterols in pulp mill effluents.

    Science.gov (United States)

    Mahmood-Khan, Zahid; Hall, Eric R

    2013-12-15

    Phyto-sterols and extractives found in pulp mill effluents are suspected to cause endocrine abnormalities in receiving water fish. The control of sterols in pulp mill effluents through biological secondary wastewater treatment was studied using two lab-scale bioreactor systems. After achieving a stable performance, both bioreactor systems successfully removed (>90%) sterols and the estimated biodegradation was up to 80%. Reactor 1 system operating at 6.7 ± 0.2 pH effectively treated pulp mill effluent sterols spiked up to 4500 μg/L in 11 h HRT and 11 day SRT. However, Reactor 2 system operating at 7.6 ± 0.2 pH performed relatively poorly. Retention time reductions beyond critical values deteriorated the performance of treatment systems and quickly reduced the sterols biodegradation. The biodegradation loss was indicated by mixed liquor sterols content that started increasing. This biodegradation loss was compensated by the increased role of bio-adsorption and the overall sterols removal remained relatively high. Hence, a relatively small (20-30%) loss in the overall sterols removal efficiency did not fully reflect the associated major (60-70%) loss in the sterols biodegradation because the amount of sterols accumulated in the sludge due to adsorption increased so the estimate of sterols removal through adsorption increased from 30-40% to 70-80% keeping the overall sterols removal still high.

  11. Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents

    Science.gov (United States)

    Denslow, N.D.; Kocerha, J.; Sepulveda, M.S.; Gross, Timothy; Holm, S.E.

    2004-01-01

    Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations. ?? 2004 Elsevier B.V. All rights reserved.

  12. Ferti-irrigational effect of paper mill effluent on agronomical characteristics of Abelmoschus esculentus L. (Okra).

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2013-11-15

    The ferti-irrigational effect of an agro-based paper mill effluent on Abelmoschus esculentus (var. IHR-31) was investigated. Different doses of paper mill effluent viz. 5, 10, 25, 50, 75 and 100% were used for fertigation ofA. esculentus along with bore well water (control). The study revealed that paper mill effluent had significant (p 0.05) changes in WHC and bulk density of the soil were observed after irrigation with paper mill effluent. The agronomical performance of A. esculentus was increased from 5 to 25% and decreased from 50 to 100% concentration of paper mill effluent as compared to control in both seasons. The heavy metals concentration was increased in A. esculentus from 5 to 100% concentrations of paper mill effluent in both seasons. Biochemical components like crude proteins, crude fiber and crude carbohydrates were found maximum with 25% paper mill effluent in both seasons. The order of Contamination Factor (Cf) of various heavy metals was Cr > Cd > Mn > Zn > Cu for soil and Zn > Mn > Cu > Cr > Cd for A. esculentus plants after fertigation with paper mill effluent. Therefore, paper mill effluent can be used as a biofertigant after appropriate dilution to improve yield of A. esculentus.

  13. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogenetic or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.

  14. Silica removal from newsprint mill effluents with aluminum salts

    OpenAIRE

    Latour Romero, Isabel; Miranda Carreño, Rubén; Blanco Suárez, Ángeles

    2013-01-01

    The main obstacle for the implementation of reverse osmosis (RO) in a treatment chain to reuse the effluent of a newsprint mill as fresh water is the high silica content of the water, which produces severe scaling on the membrane, thus, limiting its recovery. Coagulation is one of the preferred methods to reduce silica concentration. Five aluminum based coagulants have been tested at five dosages (500-2500 ppm) and three pHs (8.3, 9.5 and 10.5). All products showed their best efficiency a...

  15. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents.

  16. Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent

    OpenAIRE

    Jamal I. Daoud; Md. Z. Alam

    2010-01-01

    Problem statement: Palm oil mill effluent discharged by the oil palm industries is considered as the mixed of high polluted effluent which is abundant (about 20 million tonnes year-1) and its effect contributes to the serious environmental problems through the pollution of water bodies. Approach: The aim of this study was to identify the potential of low cost substrate such as Palm Oil Mill Effluent (POME) for the production of cellulase enzyme by liquid state bioconversion. The filamentous f...

  17. The possibility of palm oil mill effluent for biogas production

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2008-01-01

    Full Text Available The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Indonesia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil (Elaeis guiinensis Jacq.. The aims of the research were to (i characterize palm oil mill effluent which will be used as source of biogas production, (ii know the biotic and abiotic factors which effect POME substrate for biogas production by anaerobic digestion in bulk system. The results show that POME sludge generated from PT Pinago Utama mill is viscous, brown or grey and has an average total solid (TS content of, 26.5-45.4, BOD is 23.5-29.3, COD is 49.0-63.6 and SS is 17.1-35.9 g/L, respectively. This substrate is a potential source of environmental pollutants. The biotic factors were kind and concentration of the inoculums, i.e. seed sludge of anaerobic lagoon II and 20% (w/v respectively. Both physical and chemical factors such as pre-treated POME pH, pH neutralizer matter Ca (OH2, temperature ≥40oC, agitation effect to increase biogas production, but in both coagulant concentration, FeCl2 were not.

  18. Altered reproduction in fish exposed to pulp and paper mill effluents: roles of individual compounds and mill operating conditions.

    Science.gov (United States)

    Hewitt, L Mark; Kovacs, Tibor G; Dubé, Monique G; MacLatchy, Deborah L; Martel, Pierre H; McMaster, Mark E; Paice, Michael G; Parrott, Joanne L; van den Heuvel, Michael R; van der Kraak, Glen J

    2008-03-01

    For the last 20 years, studies conducted in North America, Scandinavia, and New Zealand have shown that pulp and paper mill effluents affect fish reproduction. Despite the level of effort applied, few leads are available regarding the factors responsible. Effluents affect reproduction in multiple fish species, as evidenced by decreased gonad size, decreased circulating and gonadal production of reproductive steroids, altered expression of secondary sex characteristics, and decreased egg production. Several studies also have shown that effluent constituents are capable of accumulating in fish and binding to sex steroid receptors/ binding proteins. Studies aimed at isolating biologically active substances within the pulping and papermaking process have provided clues about their source, and work has progressed in identifying opportunities for in-mill treatment technologies. Following comparisons of manufacturing processes and fish responses before and after process changes, it can be concluded that effluent from all types of mill processes are capable of affecting fish reproduction and that any improvements could not be attributed to a specific process modification (because mills normally performed multiple modifications simultaneously). Improved reproductive performance in fish generally was associated with reduced use of molecular chlorine, improved condensate handling, and liquor spill control. Effluent biotreatment has been effective in reducing some effects, but biotreated effluents also have shown no difference or an exacerbation of effects. The role of biotreatment in relation to effects on fish reproduction remains unclear and needs to be resolved.

  19. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond.

    Science.gov (United States)

    Usha, M T; Sarat Chandra, T; Sarada, R; Chauhan, V S

    2016-08-01

    A mixed culture of microalgae, containing two Scenedesmus species, was analysed to determine its potential in coupling of pulp and paper mill effluent treatment and microalgal cultivation. Laboratory studies suggested that 60% concentration of wastewater was optimum for microalgal cultivation. A maximum of 82% and 75% removal of BOD and COD respectively was achieved with microalgal cultivation in outdoor open pond. By the end of the cultivation period, 65% removal of NO3-N and 71.29% removal of PO4-P was observed. The fatty acid composition of mixed microalgal culture cultivated with effluent showed the palmitic acid, oleic acid, linoleic acid and α-linolenic acid as major fatty acids. The results obtained suggest that pulp and paper mill effluent could be used effectively for cultivation of microalgae to minimise the freshwater and nutrient requirements.

  20. Analysis and Physico-Chemical Parameters of Sarvar Devla Sugar Mill Studies of Effluents

    Directory of Open Access Journals (Sweden)

    R. K. Pathak

    2012-12-01

    Full Text Available The physico-chemical characteristics contents in the effluents discharged from Neoly sugar mill have been explored. The physico-chemical parameters such as colour, odour, temperature, pH, electrical conductivity, COD, BOD, alkalinity, total hardness,Ca+2, Mg+2, chloride, of the effluent collected from the various sites between the exit point at the mill and discharge point In, have been determined.

  1. A comparative study on the membrane based palm oil mill effluent (POME) treatment plant.

    Science.gov (United States)

    Ahmad, A L; Chong, M F; Bhatia, S

    2009-11-15

    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.

  2. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test.

    Science.gov (United States)

    Haq, Izharul; Kumar, Sharad; Raj, Abhay; Lohani, Mohtashim; Satyanarayana, G N V

    2017-02-01

    A lignin peroxidases-producing Serratia liquefaciens was used for bioremediation of pulp and paper (P&P) mill effluent. The treatment led to reduction of chemical oxygen demand (COD), colour, lignin and phenolic content by 84%, 72%, 61% and 95%, respectively. The effluent detoxification was studied by genotoxicity assays using Allium cepa L. (onion) root tip cells. Genotoxicity studies included measuring mitotic index (MI), chromosomal aberrations (CA) and nuclear abnormalities (NA) in root tip cells following treatment with 25, 50, 75 and 100% (v/v) of effluent. The root tip cells grown in untreated effluent showed a significant decrease in MI from 69% (control) to 32%, 27%, 22% and 11% at 25%, 50%, 75% and 100% effluent concentration, respectively. This indicated that the untreated effluent was highly cytotoxic in nature. Further, root tip cells, when treated with different concentrations of effluent showed various CA and NA including c-mitosis, stickiness, chromosome loss, chromosome break, anaphase bridge, multipolar anaphase, vagrant chromosomes, micronucleated and binucleated cells. The MI observed in root tip cells grown in bacterial treated effluents at similar concentrations (25, 50, 75 and 100% v/v) showed an increase of 33%, 36%, 42% and 66%. CA showed a substantial decrease and in some instances, complete absence of CA was also observed. The findings suggest that S. liquefaciens culture could be a potential bacterial culture for bioremediation of P&P mill effluent, as it is effective in substantial lowering of pollutants load as well as reduces the cytotoxic and genotoxic effects of effluent.

  3. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  4. A survey of Canadian mechanical pulp and paper mill effluents: insights concerning the potential to affect fish reproduction.

    Science.gov (United States)

    Kovacs, Tibor G; Martel, Pierre H; O'Connor, Brian I; Hewitt, L Mark; Parrott, Joanne L; McMaster, Mark E; MacLatchy, Deborah L; Van Der Kraak, Glen J; Van Den Heuvel, Michael R

    2013-01-01

    Building on breakthroughs recently made at kraft mills, a survey of mechanical pulp and paper mill effluents was undertaken to gain insights concerning potential effects on fish reproduction. Effluents from seven Canadian mills were characterized chemically for conventional parameters such as biochemical oxygen demand (BOD) and total suspended solids (TSS). Each sample was further subjected to solvent extraction followed by gas chromatographic separation for the determination of resin/fatty acids and for the estimation of a gas chromatography (GC) profile index. Each mill effluent was assessed for the potential to affect fish reproduction in the laboratory using a five day adult fathead minnow (Pimephales promelas) egg production bioassay with exposures to 100% effluent. The seven effluents were found to have substantial variation both in terms of chemical characterization and effects on fish reproduction. Temporal variations were also noted in effluent quality at mills sampled on different occasions. Similar to what has been observed for kraft mills, a general trend of greater reductions in egg production caused by effluents with greater BOD concentrations and GC profile indices was noted. Effluents with BOD > 25 mg/L and GC Profile indices >5.0 caused a complete cessation of egg production. At the same time, about half of the total effluents sampled had BOD reproductive effects caused by such effluents is presently unclear. The effluent quality parameters considered in this study may require further refinement to address their utility in predicting the adverse reproductive effects induced by effluents from mechanical pulp and paper mills.

  5. Pretreatment of Palm Oil Mill Effluent (POME Using Magnetic Chitosan

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2011-01-01

    Full Text Available Chitosan is a natural organic polyelectrolyte of high molecular weight and charge density; obtained from deacetylation of chitin. This study explored the potential and effectiveness of applying chitosan-magnetite nanocomposite particles as a primary coagulant and flocculent, in comparison with chitosan for pre-treatment of palm oil mill effluent (POME. A series of batch coagulation processes with chitosan-magnetite nanocomposite particles and chitosan under different conditions, i.e. dosage and pH were conducted, in order to determine their optimum conditions. The performance was assessed in terms of turbidity, total suspended solids (TSS and chemical oxygen demand (COD reductions. Chitosan-magnetite particles showed better parameter reductions with much lower dosage consumption, compared to chitosan, even at the original pH of POME, i.e. 4.5. At pH 6, the optimum chitosan-magnetite dosage of 250 mg/L was able to reduce turbidity, TSS and COD levels by 98.8%, 97.6% and 62.5% respectively. At this pH, the coagulation of POME by chitosan-magnetite was brought by the combination of charge neutralization and polymer bridging mechanism. On the other hand, chitosan seems to require much higher dosage, i.e. 370 mg/L to achieve the best turbidity, TSS and COD reductions, which were 97.7%, 91.7% and 42.70%, respectively. The synergistic effect of cationic character of both the chitosan amino group and the magnetite ion in the pre-treatment process for POME brings about enhanced performance for effective agglomeration, adsorption and coagulation.

  6. Effect of paper mill effluent on germination of green gram (Phaseolus aureus Roxb.) and growth behaviour of it's seedlings.

    Science.gov (United States)

    Malla, Luna; Mohanty, B K

    2005-06-01

    Effect of paper mill effluents on Phaseolus aureus Roxb was studied. The effluent significantly inhibited germination of root and shoot length. The bio-chemical injury does not appear spontaneously but with the increase in effluent treatment there is reduction in observed biochemical parameters (chlorophyll, protein, amino acid, nuclic acids and carbohydrate) which are negatively correlated. The shoots of the seedlings were found to be resistant; whereas roots of the seedlings were susceptible to paper mill effluent treatment.

  7. Strategies for decolorization and detoxification of pulp and paper mill effluent.

    Science.gov (United States)

    Garg, Satyendra K; Tripathi, Manikant

    2011-01-01

    The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various

  8. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.

    Science.gov (United States)

    Hall, Timothy J; Ragsdale, Renee L; Arthurs, William J; Ikoma, Joan; Borton, Dennis L; Cook, Diana L

    2009-04-01

    Watershed characteristics, study streams, sample sites, mills, and mill effluents are provided for 4 streams included in a long-term study to assess potential effects of pulp and paper mill effluents on US receiving waters. The study streams are Codorus Creek (Pennsylvania, USA), Leaf River (Mississippi, USA) and McKenzie and Willamette rivers (Oregon, USA) and were chosen to represent a blend of mill process types, effluent concentrations, and coldwater/warmwater stream systems. The described effluent quality, water quality, and habitat data sets encompass the initial 7 to 8 y of a study anticipated to continue >10 y and provide a backdrop to a series of articles describing periphyton, macroinvertebrate, and fish community properties in these same streams. The mean in-stream waste concentration (IWC) for these 4 effluent discharges was 32.4%, 2.0%, 0.5%, and 0.2% v/v for Codorus Creek and Leaf, McKenzie, and Willamette rivers, respectively, as compared with a median of 0.4% for US mills. Effluent quality measurements included Selenastrum capricornutum, Ceriodaphnia dubia, and Pimephales promelas chronic bioassays as sanctioned by the US Environmental Protection Agency for estimating effluent effects on receiving-water aquatic communities. Based on mean bioassay inhibition concentration for a 25% effect and on mean IWC, a margin of safety against adverse biological effects of 2, 25, 137, and 150 times was indicated for Codorus Creek and Leaf, McKenzie, and Willamette rivers, respectively. Habitat and water quality assessment was carried out over a gradient of sample sites above and below the effluent discharge to determine nonmill-related conditions that might interfere with interpretation of effluent effects. Noneffluent related localized differences in conditions for some parameters, including current velocity (McKenzie River), and surface incident photosynthetically active radiation (Codorus Creek and Willamette River) occurred at the sample stations immediately

  9. Influence of long term irrigation with pulp and paper mill effluent on the bacterial community structure and catabolic function in soil.

    Science.gov (United States)

    Tripathi, Binu Mani; Kumari, Priyanka; Weber, Kela P; Saxena, Anil Kumar; Arora, Dilip Kumar; Kaushik, Rajeev

    2014-03-01

    Microbial communities play a vital role in maintaining soil health. A multiphasic approach to assess the effect of pulp and paper mill effluent on both the structure and function of microbial soil communities is taken. Bacterial communities from agricultural soils irrigated with pulp and paper mill effluent were compared to communities form soils irrigated with well water. Samples were taken from fields in the state of Uttarakhand, India, where pulp and paper mill effluent has been used for irrigation for over 25 years. Comparisons of bacterial community structure were conducted using sequencing of the 16S rRNA gene from both isolates and clone libraries attained from the soil. Community-level physiological profiling was used to characterize the functional diversity and catabolic profile of the bacterial communities. The multiphasic approach using both physiological and molecular techniques proved to be a powerful tool in evaluating the soil bacterial community population and population differences therein. A significant and consistent difference in the population structure and function was found for the bacterial communities from soil irrigated with effluent in comparison to fields irrigated with well water. The diversity index parameters indicated that the microbial community in pulp and paper mill effluent irrigated fields were more diverse in both structure and function. This suggests that the pulp and paper mill effluent is not having a negative effect on the soil microbial community, but in fact may have a positive influence. In terms of soil health, this finding supports the continued use of pulp and paper mill effluent for irrigation. This is however only one aspect of soil health which was evaluated. Further studies on soil resistance and robustness could be undertaken to holistically evaluate soil health in this situation.

  10. Evaluation of the Phytotoxic and Genotoxic Potential of Pulp and Paper Mill Effluent Using Vigna radiata and Allium cepa

    OpenAIRE

    Izharul Haq; Vineeta Kumari; Sharad Kumar; Abhay Raj; Mohtashim Lohani; Ram Naresh Bhargava

    2016-01-01

    Pulp and paper mill effluent induced phytotoxicity and genotoxicity in mung bean (Vigna radiata L.) and root tip cells of onion (Allium cepa L.) were investigated. Physicochemical characteristics such as electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), and total phenols of the pulp and paper mill effluent were beyond the permissible limit specified for the discharge of effluent in inland water bodies. Compared to control plants, seedling exposed to ...

  11. Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And ...

    African Journals Online (AJOL)

    Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And Enzyme Activities In ... Sandy loam soil in Egbema, Rivers State was impacted with POME at different levels and ... Light application caused significant increase in total heterotrophic, ... The most affected were the nitrifying bacteria followed by phosphate ...

  12. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process...

  13. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  14. Paper and board mill effluent treatment with the combined biological-coagulation-filtration pilot scale reactor.

    Science.gov (United States)

    Afzal, Muhammad; Shabir, Ghulam; Hussain, Irshad; Khalid, Zafar M

    2008-10-01

    Pilot scale reactor based on combined biological-coagulation-filtration treatments was designed and evaluated for the treatment of effluent from a paper and board mill. Biological treatment by fed batch reactor (FBR) followed by coagulation and sand filtration (SF) resulted in a total COD and BOD reduction of 93% and 96.5%, respectively. A significant reduction in both COD (90%) and BOD (92%) was also observed by sequencing batch reactor (SBR) process followed by coagulation and filtration. Untreated effluent was found to be toxic, whereas the treated effluents by either of the above two processes were found to be non-toxic when exposed to the fish for 72h. The resultant effluent from FBR-coagulation-sand filtration system meets National Environmental Quality Standards (NEQS) of Pakistan and can be discharged into the environment without any risks.

  15. Sequential anaerobic and aerobic treatment of pulp and paper mill effluent in pilot scale bioreactor.

    Science.gov (United States)

    Singh, Pratibha

    2007-01-01

    In the present study sequential anaerobic and aerobic treatment in two step bioreactor was performed for removal of colour in the pulp and paper mill effluent. In anaerobic treatment, colour 50%, lignin 62%, COD 29%, absordable organic halides (AOX) 25% and phenol 29% were reduced in eight days. The anaerobically treated effluent was separately applied in bioreactor in presence of fungal strain, Paecilomyces sp., and bacterial strain, Microbrevis luteum. Data of study indicated reduction in colour 80%, AOX 74%, lignin 81%, COD 93% and phenol 76 per cent by Paecilomyces sp. where as Microbrevis luteum showed removal in colour 59%, lignin 71%, COD 86%, AOX 84% and phenol 88% by day third when 7 days anaerobically treated effluent was further treated by aerobic microorganisms. Change in pH of the effluent and increase in biomass of microorganism's substantiated results of the study, which was concomitant to the treatment method.

  16. Ovulation but not milt production is inhibited in fathead minnows (Pimephales promelas) exposed to a reproductively inhibitory pulp mill effluent

    OpenAIRE

    Waye, Andrew; Lado, Wudu E; Martel, Pierre H; Arnason, John T.; Vance L Trudeau

    2014-01-01

    Background A 5-day fathead minnow (FHM) spawning assay is used by industry to monitor pulp mill effluent quality, with some mill effluents capable of completely inhibiting spawning. The purpose of this report is to characterize the effect of an inhibitory effluent on egg and milt production in FHM. Methods Eight tanks were treated with an inhibitory effluent while eight were kept with clean water. Each tank contained two males and four females as per the 5-day FHM spawning assay used by indus...

  17. Biological activity of bleached kraft pulp mill effluents before and after activated sludge and ozone treatments.

    Science.gov (United States)

    Lopes, Alessandra Cunha; Mounteer, Ann H; Stoppa, Teynha Valverde; Aquino, Davi Santiago

    2013-01-01

    Eucalyptus bleached kraft pulp production, an important sector of the Brazilian national economy, is responsible for generating large volume, high pollutant load effluents, containing a considerable fraction of recalcitrant organic matter. The objectives of this study were to quantify the biological activity of the effluent from a eucalyptus bleached kraft pulp mill, characterize the nature of compounds responsible for biological activity and assess the effect of ozone treatment on its removal. Primary and secondary effluents were collected bimonthly over the course of one year at a Brazilian bleached eucalypt kraft pulp mill and their pollutant loads (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), adsorbable organic halogen (AOX), lignin, extractives) and biological activity (acute and chronic toxicity and estrogenic activity) quantified. The effluent studied did not present acute toxicity to Daphnia, but presented the chronic toxicity effects of algal growth inhibition and reduced survival and reproduction in Ceriodaphnia, as well as estrogenic activity. Chronic toxicity and estrogenic activity were reduced but not eliminated during activated sludge biological treatment. The toxicity identification evaluation revealed that lipophilic organic compounds (such as residual lignin, extractives and their byproducts) were responsible for the toxicity and estrogenic activity. Ozone treatment (50 mg/L O(3)) of the secondary effluent eliminated the chronic toxicity and significantly reduced estrogen activity.

  18. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India.

    Science.gov (United States)

    Mishra, Swayamprabha; Mohanty, Monalisa; Pradhan, Chinmay; Patra, Hemanta Kumar; Das, Ritarani; Sahoo, Santilata

    2013-05-01

    The present investigation aims to assess the phytoremediation potential of six aquatic macrophytes, viz. Eichhornia crassipes, Hydrilla verticillata, Jussiaea repens, Lemna minor, Pistia stratiotes and Trapa natans grown in paper mill effluent of JK Paper mill of Rayagada, Orissa, for remediation of heavy metals. The experiment was designed in pot culture experiments. Assessment of physico-chemical parameters of paper mill effluent showed significant decrease in pH, conductivity, total dissolved solids, total suspended solids, chlorine, sulphur, biological and chemical oxygen demand after growth of macrophytes for 20 days. Phytoremediation ability of these aquatic macrophytic species for copper (Cu) and mercury (Hg) was indicated by assessing the decrease in the levels of heavy metals from effluent water. Maximum reduction (66.5 %) in Hg content of untreated paper mill effluent was observed using L. minor followed by T. natans (64.8 %). L. minor showed highest reduction (71.4 %) of Cu content from effluent water followed by E. crassipes (63.6 %). Phytoextraction potential of L. minor was remarkable for Hg and Cu, and bioaccumulation was evident from bioconcentration factor values, i.e. 0.59 and 0.70, respectively. The present phytoremediation approach was considered more effective than conventional chemical treatment method for removing toxic contaminants from paper mill effluent.

  19. ALTERED DEVELOPMENT AND REPRODUCTION IN MOSQUITOFISH EXPOSED TO PULP AND PAPER MILL EFFLUENT IN THE FENHOLLOW RIVER, FLORIDA USA

    Science.gov (United States)

    Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...

  20. Bioremediation of Palm Oil Mill Effluent (POME) Polluted Soil Using Microorganisms Found in Organic Wastes

    OpenAIRE

    Okwute, Ojonoma L.; Ijah, Udeme J.J.

    2014-01-01

    The aim of this study was to demonstrate the use of chicken droppings and cow dung in the amendment of soil polluted with palm oil mill effluent (POME) in bioremediation. Soil polluted with 20 % raw (POME) in the laboratory was amended with different concentrations of chicken droppings, cow dung and a combination of the wastes (10 %, 20 % and 30 %). Isolation, characterization and identification of microorganisms were carried out and compared over time with respect to the different concentrat...

  1. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME)

    OpenAIRE

    H. Hadiyanto; Muhamad Maulana Azimatun Nur; Ganang Dwi Hartanto

    2012-01-01

    Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME), this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%). The objective of the ...

  2. Identification of sublethal toxicants in a BC coastal pulp and paper mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff, C.V.; Pickard, J.; Kinnee, K. [BC Research Inc., Vancouver, BC (Canada); Dwernychuk, W. [Hatfield Consultants Ltd., West Vancouver, BC (Canada); Birkholz, D. [EnviroTest Lab., Edmonton, AB (Canada); Kilback, D. [Pacifica Papers, Powell River, BC (Canada)

    2001-06-01

    BC Research Inc. conducted a toxicity identification evaluation to identify the different compounds comprised in the mill Outfall number 1 effluent. The Environmental Effects Monitoring program had determined that these compounds were responsible for sublethal effects to organisms. Echinoderm species like the sand dollar, Dendraster excentricus Eshscholtz, the purple sea urchin, Stronglyocentrotus purpuratus Stimpson, and the marine algae, Champia parvula had suffered toxicity caused by the mill effluent. The last several Environmental Effects Monitoring testing periods had shown the sublethal toxicity of the Outfall number 1 effluent to echinoderms was very consistent. Based on the high cost and shipping associated with the Champia bioassays, toxicity tests conducted during the peak spawning season of the sea urchin and the non significant difference between the sensitivity of the sand dollar and the purple sea urchin, the purple sea urchin was selected to evaluate the toxicity of the manipulated samples for the tests. The tests conducted were: a baseline toxicity test performed immediately upon receipt of the effluent sample, the pH adjustment filtration test to determine if the toxic compound can be removed using filtration, the pH adjustment aeration test to determine if volatile compounds in the sample are toxic, the pH adjustment solid phase extraction test to determine the level of toxicity from organic compounds and metal chelates that can be removed by solid phase extraction. The results indicated that it seems high molecular weight molecules were responsible for the sublethal toxicity observed. Two different sources could be responsible: lignin derived macromolecules, and polymer compounds used as flocculants and sizing agents. Further testing of the pulp mill effluent to identify the source of the toxic high molecular weight compounds was recommended. 22 refs., 4 tabs., 6 figs.

  3. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-10

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H2O2/Fe2+), UV, UV/H2O2, photo-Fenton (UV/H2O2/Fe2+), ozonation and peroxone (ozone/H2O2) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H2O2/Fe2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used.

  4. Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection.

    Science.gov (United States)

    Chamorro, Soledad; Vergara, Juan P; Jarpa, Mayra; Hernandez, Victor; Becerra, Jose; Vidal, Gladys

    2016-10-14

    Stigmasterol is a phytosterol contained in Kraft mill effluent that is able to increase over 100% after aerobic biological treatment. This compound can act as an endocrine disrupter as its structure is similar to that of cholesterol. The aim of this study was to evaluate the removal of stigmasterol from Kraft mill effluents treated by a moving bed biofilm reactor (MBBR) with steroidal metabolite detection. The MBBR was operated for 145 days, with a hydraulic retention time of 2 days. Stigmasterol and steroidal metabolites were detected by gas chromatography with a flame ionization detector during MBBR operation. The results show that the MBBR removed 87.4% of biological oxygen demand (BOD5), 61.5% of chemical oxygen demand (COD), 24.5% of phenol and 31.5% of lignin, expressed in average values. The MBBR system successfully removed 100% of the stigmasterol contained in the influent (33 µg L(-1)) after 5 weeks of operation. In that case, the organic load rate was 0.343 kg COD m(-3) d(-1). Furthermore, different steroidal compounds (e.g., testosterone propionate, stigmast-4-en-3-one, 5α-pregnan-12-one-20α-hydroxy, 5α-pregnane-3,11,20-trione and 3α-hydroxy-5α-androstane-11,17-dione were detected in the Kraft mill effluent as potential products of phytosterol biotransformation.

  5. Influence of crude oil and pulp and paper mill effluent on mixed infections of Trichodina cottidarium and T. saintjohnsi (Ciliophora) parasitizing Myoxocephalus octodecemspinosus and M. scorpius

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R.A.; Barker, D.E.; Williams-Ryan, K.; Hooper, R.G. (Memorial Univ., St. John' s, NF (Canada))

    1994-01-01

    Samples of longhorn sculpin (Myoxocephalus octodecemspinosus) were exposed to sediment contaminated with crude oil or pulp and paper mill effluent for periods up to 13 months in the laboratory. Other samples were collected at sites where crude oil or effluent from a pulp and paper mill are discharged. The intensity of gill infections of Trichodina spp. on exposed fish was significantly higher than on controls 5, 9, and 13 months after exposure. The intensity of the ciliates was also greater on sculpins collected near an oil-receiving terminal than on those sampled 5 km from the polluted site. Field collections of longhorn and shorthorn (Myoxocephalus scorpius) sculpins at and distant from a pulp and paper mill had high and low intensities of the ciliates, respectively. Similarly, the intensity of trichodinid ciliates was also significantly greater in longhorn sculpins exposed to effluent-contaminated sediment than in controls 5 months after exposure. The results suggest that the intensity of gill-inhibiting species such as trichodinids in susceptible fish hosts increases after chronic exposure to crude oil and to pulp and paper mill effluent, and the parasites may serve as indicators of pollution. 24 refs., 4 figs., 1 tab.

  6. Factors affecting treatment of palm oil mill effluent using enzyme from Aspergillus niger ATCC 6275

    Directory of Open Access Journals (Sweden)

    Chantaphaso, S.

    2001-11-01

    Full Text Available Powdered enzyme was produced by freeze-drying the enzyme solution extracted from 3 days culture of Aspergillus niger ATCC 6275 on palm cake with the addition of 0.2% glucose and 2% urea. The product yield was 38% by weight. The half-life of the enzyme was 9 months keeping at 4ºC. The enzyme was tested with decanter effluent with different characteristics from two palm oil mills. The decanter effluent possessing high suspended solid (SS and low oil (9.5 g/l content was selected for studying the factors affecting the separation of SS and oil as bulking solid. Results indicated that the effluent must contain oil not less than 15 g/l so that the bulking solid would occur from the reaction of the enzyme (with xylanase activity of 200 U/ ml after incubation at 40ºC for 6 h. Minimum concentrations of the enzyme from A. niger ATCC 6275 and commercial xylanase (Meicellase were 200 and 600 U/ml, respectively. The optimum pH was 4.5. Treatment of palm oil mill effluent by the enzyme from A. niger ATCC 6275 for 3 h under the optimum conditions resulted in 78% separation of suspended solids with oil & grease removal of 95% and COD reduction of 35%.

  7. MASCULINIZATION OF FEMALE MOSQUITO FISH IN KRAFT MILL EFFLUENT -CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY.

    Science.gov (United States)

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...

  8. Evaluation of the Phytotoxic and Genotoxic Potential of Pulp and Paper Mill Effluent Using Vigna radiata and Allium cepa

    Directory of Open Access Journals (Sweden)

    Izharul Haq

    2016-01-01

    Full Text Available Pulp and paper mill effluent induced phytotoxicity and genotoxicity in mung bean (Vigna radiata L. and root tip cells of onion (Allium cepa L. were investigated. Physicochemical characteristics such as electrical conductivity (EC, biological oxygen demand (BOD5, chemical oxygen demand (COD, and total phenols of the pulp and paper mill effluent were beyond the permissible limit specified for the discharge of effluent in inland water bodies. Compared to control plants, seedling exposed to 100% effluent concentration showed a reduction in root and shoot length and biomass by 65%, 67%, and 84%, respectively, after 5 days of treatment. A. cepa root tip cells exposed to effluent concentrations ranging from 25 to 100% v/v showed a significant decrease in mitotic index (MI from 32 to 11% with respect to control root tip cells (69% indicating effluent induced cytotoxicity. Further, the effluent induced DNA damage as evidenced by the presence of various chromosomal aberrations like stickiness, chromosome loss, anaphase bridge, c-mitosis, tripolar anaphase, vagrant chromosome, and telophase bridge and micronucleated and binucleated cell in A. cepa. Findings of the present study indicate that pulp and paper mill effluents may act as genotoxic and phytotoxic agents in plant model system.

  9. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.

  10. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.

  11. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  12. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.

  13. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  14. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste

    Energy Technology Data Exchange (ETDEWEB)

    Foo, K.Y.; Hameed, B.H. [School of Chemical Engineering, Engineering Campus, University of Science Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-06-15

    Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

  15. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma;

    2016-01-01

    and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter...

  16. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter...

  17. Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Kim Hoong Ng

    2014-07-01

    Full Text Available The current work reported on the use of different formulations of Cu/TiO2 photocatalysts for the UV-irradiation of palm oil mills effluent (POME. Different copper loadings, viz. 2 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt% were doped onto titania. XRD pattern confirmed the presence of anatase TiO2 as primary phase due to mild calcination temperature (573 K. Photo-decomposition of POME over 20 wt% Cu/TiO2 exhibited the highest conversion (27.0% attributed to its large pore diameter (20.0 nm. In addition, optimum loading was 0.83 g/l. © 2014 BCREC UNDIP. All rights reservedReceived: 5th January 2014; Revised: 8th April 2014; Accepted: 8th April 2014[How to Cite: Hoong, N.K., Deraman, M.R., Ang, C.H., Chong, S.K., Kong, Z.Y., Khan, M.R., Cheng, C.K., (2014. Phototreatment of Palm Oil Mill Effluent (POME over Cu/TiO2 Photocatalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 121-127. (doi:10.9767/bcrec.9.2.6011.121-127][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6011.121-127

  18. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  19. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  20. Effluent monitoring at a bleached kraft mill: directions for best management practices for eliminating effects on fish reproduction.

    Science.gov (United States)

    Martel, Pierre H; Kovacs, Tibor G; O'connor, Brian I; Semeniuk, Sharon; Hewitt, L Mark; Maclatchy, Deborah L; McMaster, Mark E; Parrott, Joanne L; van den Heuvel, Michael R; Van Der Kraak, Glen J

    2011-01-01

    A long-term monitoring study was conducted on effluents from a bleached kraft pulp and paper mill located in Eastern Canada. The study was designed to gain insights into temporal effluent variability with respect to fish reproduction as it related to production upsets, mill restarts and conditions affecting biological treatment performance. Final effluent quality was monitored between February 2007 and May 2009 using biochemical and chemical oxygen demand, total suspended solids, resin and fatty acids, a gas chromatographic profiling index, and the presence of methyl substituted 2-cyclopentenones. Selected effluent samples were evaluated for effects on fish reproduction (egg production) using a shortened version of the adult fathead minnow reproductive test. The events relating to negative effects on fish reproduction were upsets of the pulping liquor recovery system resulting in black liquor losses, operational upsets of the hardwood line resulting in the loss of oxygen delignification filtrates, and conditions that reduced the performance of biological treatment (e.g., mill shutdown and low ambient temperatures). The reductions in egg production observed in fathead minnow were associated with biochemical oxygen demand values > 20 mg/L, GC profiling indices > 1.2 and the presence of methyl-substituted 2-cyclopentenones at concentrations > 100 μg/L. This study demonstrated the importance of both in-plant measures for controlling the loss of organics as well as the optimum operation of biological effluent treatment for eliminating effluent-related effects on fish reproduction (egg production) in the laboratory.

  1. Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jamal I. Daoud

    2010-01-01

    Full Text Available Problem statement: Palm oil mill effluent discharged by the oil palm industries is considered as the mixed of high polluted effluent which is abundant (about 20 million tonnes year-1 and its effect contributes to the serious environmental problems through the pollution of water bodies. Approach: The aim of this study was to identify the potential of low cost substrate such as Palm Oil Mill Effluent (POME for the production of cellulase enzyme by liquid state bioconversion. The filamentous fungus Trichoderma harzianum was used for liquid state bioconversion of POME for cellulase production. Statistical optimization was carried out to evaluate the physico-chemical parameters (factors for maximum cellulase production by 2-level fractional factorial design with six central points. The polynomial regression model was developed using the experimental data including the effects of linear, quadratic and interaction of the factors. The factors involved were substrate (POME and co-substrate (wheat flour concentrations, temperature, pH, inoculum and agitation. Results: Statistical analysis showed that the optimum conditions were: Temperature of 30°C, substrate concentration of 2%, wheat flour concentration of 3%, pH of 4, inoculum of 3% and agitation of 200 rpm. Under these conditions, the model predicted the enzyme production to be about 14 FPU mL-1. Analysis Of Variance (ANOVA of the design showed a high coefficient of determination (R2 value of 0.999, thus ensuring a high satisfactory adjustment of the quadratic model with the experimental data. Conclusion/Recommendations: This study indicates a better solution for waste management through the utilization of POME for cellulase production that could be used in the industrial applications such as bioethanol production.

  2. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  3. Evaluation of total phosphorus and total nitrogen methods in pulp mill effluents.

    Science.gov (United States)

    Cook, D L; Frum, N L

    2004-01-01

    Under the Clean Water Action Plan, the US Environmental Protection Agency is requiring states to establish numeric criteria for phosphorus and nitrogen. In preparation for the development of nutrient criteria NCASI undertook a research project to conduct a comparative study of methods for the determination of total phosphorus and total nitrogen in pulp and paper mill matrices. This paper presents results of a single laboratory method evaluation and comparative study of digestion techniques and analytical methods for the determination of total phosphorus (TP) and total nitrogen (TN) in pulp and paper mill secondary treated effluents. Analytical methods included EPA Methods 365.2 and 365.4 for TP. TN and total kjeldahl nitrogen (TKN) methods included EPA Methods 351.2, 351.4, and 353.2. Examinations of sample preservation and storage stability were conducted. Substitution of mercuric sulfate with copper sulfate during block digestion resulted in higher blank levels and method detection limits. TP measurements using EPA Method 365.4 (autoanalyzer) were found to be accurate with a positive bias as determined using matrix spike experiments. Sample digestion by acidic persulfate oxidation or mercuric sulfate block digestion in conjunction with EPA Method 365.4 yielded low blank levels (averages of 0.01 and 0.02 mg/L, respectively), precision of 2.1 and 2.4% relative standard deviations, respectively, and accuracy expressed as an average recovery (%R) of 117% for both. EPA Method 351.2 (autoanalyzer) was more precise than EPA Method 351.4 (ammonia probe). Accuracy (%R) for EPA Method 351.2 ranged from 81 to 95%, depending on the digestion technique applied, and was 55% when EPA Method 351.4 was utilized. Investigation of a method utilizing basic to acidic persulfate oxidation for the simultaneous determination of TN and TP using only two analytical techniques was found to be effective at concentrations above 1 mg/L in pulp mill effluents.

  4. Palm oil mill effluent treatment using coconut shell – based activated carbon: Adsorption equilibrium and isotherm

    Directory of Open Access Journals (Sweden)

    Kaman Sherlynna Parveen Deshon

    2017-01-01

    Full Text Available The current ponding system applied for palm oil mill effluent (POME treatment often struggle to comply with the POME discharge limit, thus it has become a major environmental concern. Batch adsorption study was conducted for reducing the Chemical Oxygen Demand (COD, Total Suspended Solids (TSS and Color of pre-treated POME using coconut shell-based activated carbon (CS-AC. The CS-AC showed BET surface area of 744.118 m2/g, with pore volume of 04359cm3/g. The adsorption uptake was studied at various contact time and POME initial concentration. The CS-AC exhibited good ability with average percentage removal of 70% for COD, TSS and Color. The adsorption uptake increased over time and attained equilibrium in 30 hours. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Based on the coefficient regression and sum of squared errors, the Langmuir isotherm described the adsorption of COD satisfactorily, while best described the TSS and Color adsorption; giving the highest adsorption capacity of 10.215 mg/g, 1.435 mg/g, and 63.291 PtCo/g respectively. The CS-AC was shown to be a promising adsorbent for treating POME and was able to comply with the Environmental Quality Act (EQA discharge limit. The outcome of treated effluent using CS-AC was shown to be cleaner than the industrial biologically treated effluent, achieved within shorter treatment time.

  5. Treatment of Pulp Mill D-Stage Bleaching Effluent Using a Pilot-Scale Electrocoagulation System.

    Science.gov (United States)

    Perng, Yuan-Shing; Wang, Eugene I-Chen

    2016-03-01

    A pilot-scale study was conducted using electrocoagulation technology to treat chlorine dioxide bleaching-stage effluent of a local pulp mill, with the purpose of evaluating the treatment performance. The operating variables were the current density (0 ~ 133.3 A/m(2)) and hydraulic retention time (HRT, 6.5 ~ 16.25 minutes). Water quality indicators investigated were the conductivity, suspended solids (SS), chemical oxygen demand (COD), true color, and hardness. The results showed that electrocoagulation technology can be used to treat D-stage bleaching effluent for water reuse. Under the operating conditions studied, the removal of conductivity and COD always increased with increases in either the current density or HRT. The highest removals obtained at 133.3 A/m(2) and an HRT of 16.25 minutes for conductivity, SS, COD, true color, and hardness were respectively 44.2, 98.5, 75.0, 85.9, and 36.9% with aluminum electrodes. Iron electrodes were not applicable to the D-stage effluent due to formation of dark-colored ferric complexes.

  6. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  7. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    Science.gov (United States)

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  8. The Utilization of Water Hyacinth (Eichhorniacrassipes) as Aquatic Macrophage Treatment System (AMATS) in Phytoremediation for Palm Oil Mill Effluent (POME)

    OpenAIRE

    Innocent Chukwunonso Ossai; Fauziah S. H.; Ghufran Redzwan

    2014-01-01

    The need for edible oil has increased resulting with a consequent boost in palm oil production. As a result, production of palm oil mill effluent (POME) which is one of the by-products of the milling process has also increased. In Malaysia, palm oil industry is identified as one of the agricultural industries that generate the highest pollution load into the rivers throughout the country. Some palm oil mills store POME in ponds or lagoons in the hope of treating and detoxifying it. Often ti...

  9. Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Hassan, Mohd Ali; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2005-06-01

    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.

  10. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced. The anaerobic...

  11. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    DEFF Research Database (Denmark)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME...

  12. Growth, induction, and substrate specificity of dehydroabietic acid-degrading bacteria isolated from a kraft mill effluent enrichment.

    Science.gov (United States)

    Bicho, P A; Martin, V; Saddler, J N

    1995-09-01

    We investigated resin acid degradation in five bacteria isolated from a bleach kraft mill effluent enrichment. All of the bacteria grew on dehydroabietic acid (DHA), a resin acid routinely detected in pulping effluents, or glycerol as the sole carbon source. None of the strains grew on acetate or methanol. Glycerol-grown, high-density, resting-cell suspensions were found to undergo a lag for 2 to 4 h before DHA degradation commenced, suggesting that this activity was inducible. This was further investigated by spiking similar cultures with tetracycline, a protein synthesis inhibitor, at various times during the DHA disappearance curve. Cultures to which the antibiotic was added prior to the lag did not degrade DHA. Those that were spiked with the antibiotic after the lag phase (4 h) degraded DHA at the same rate as did controls with no added tetracycline. Therefore, de novo protein synthesis was required for DHA biodegradation, confirming that this activity is inducible. The five strains were also evaluated for their ability to degrade other resin acids. All strains behaved in a similar fashion. Unchlorinated abietane-type resin acids (abietic acid, DHA, and 7-oxo-DHA) were completely degraded within 7 days, whereas pimarane resin acids (sandaracopimaric acid, isopimaric acid, and pimaric acid) were poorly degraded (25% or less). Chlorination of DHA affected biodegradation, with both 12,14-dichloro-DHA and 14-chloro-DHA showing resistance to degradation. However, 50 to 60% of the 12-chloro-DHA was consumed within the same period.

  13. The assessment of human exposure to radionuclides from a uranium mill tailings release and mine dewatering effluent.

    Science.gov (United States)

    Ruttenber, A J; Kreiss, K; Douglas, R L; Buhl, T E; Millard, J

    1984-07-01

    This study provides an assessment of human exposure to radiation from a river system contaminated by radionuclides of the 238U decay series released through a dam break at a uranium mill tailings pond and by the continuous discharge of dewatering effluent from 2 uranium mines. The in vivo analyses of radionuclides in 6 Navajo Indians who lived near the river indicate no detectable elevations above background concentrations. Dose estimates for inhalation of suspended river sediment indicate a maximum annual 50-yr dose commitment of 204 mrem to the endosteum. Estimates of doses (50-yr dose commitments) from the ingestion of livestock range between 1 mrem (to liver) and 79 mrem (to bone) suggest that the major contribution to human exposure is from mine dewatering effluent that has been continuously released into the river system for many years. Although the estimated exposures do not exceed existing state or federal regulations, their magnitude justifies further measurement of radionuclides in animals and in the natural environment and the consideration of strategies to reduce radiation exposure to humans and animals.

  14. Olive Mill Effluent Spreading Effects on Water Retention of Tunisian Sandy Loam Soil

    Directory of Open Access Journals (Sweden)

    Hamdi SAHRAOUI

    2014-01-01

    Full Text Available Olive mill effluents (OME are characterized by their nutrients content and their adhesive and hydrophobic properties. An experiment was carried out at an olive growing area in Tunisia, “Sidi Bou Ali”, to identify the impact of spreading over OME on physical soil characteristics. Three treatments were in situ monitored, namely T0 (Control, T1 (25 m3/ha and T2 (50 m3/ha, over a period of 4 months. Measurements were conducted monthly corresponding respectively to D1, D2, D3 and D4. Water retention curves were established by a physical capillary model in porous medium. Results showed that the two applied OME doses induced a decrease in water retention, especially for potential matrixes above pF 2 corresponding to the water available range. No significant differences were found between the treated soil plots T1 and T2.doi:10.14456/WJST.2014.27

  15. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    Science.gov (United States)

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  16. Biological decolourisation of pulp mill effluent using white rot fungus Trametes versicolor.

    Science.gov (United States)

    Srinivasan, S V; Murthy, D V S; Swaminathan, T

    2012-07-01

    The conventional biological treatment methods employed in the pulp and paper industries are not effective in reducing the colour and chemical oxygen demand (COD). The white-rot fungi are reported to have the ability to biodegrade the lignin and its derivatives. This paper is focused on the biological treatment of pulp mill effluent from a bagasse-based pulp and paper industry using fungal treatment. Experiments were conducted using the white rot fungus, Trametes versicolor in shake flasks operated in batch mode with different carbon sources. The decolourisation efficiencies of 82.5% and 80.3% were obtained in the presence of 15 g/L and 5 g/L of glucose and sucrose concentrations respectively with a considerable COD reduction. The possibility of reusing the grown fungus was examined for repeated treatment studies.

  17. Evaluation of Lipid Content in Microalgae Biomass Using Palm Oil Mill Effluent (Pome)

    Science.gov (United States)

    Kamyab, Hesam; Chelliapan, Shreeshivadasan; Shahbazian-Yassar, Reza; Din, Mohd Fadhil Md; Khademi, Tayebeh; Kumar, Ashok; Rezania, Shahabaldin

    2017-08-01

    The scope of this study is to assess the main component of palm oil mill effluent (POME) to be used as organic carbon for microalgae. The applicable parameters such as optical density, chlorophyll content, mixed liquor suspended solid, mixed liquor volatile suspended solid, cell dry weight (CDW), carbon:total nitrogen ratio and growth rate were also investigated in this study. The characteristics and morphological features of the isolates showed similarity with Chlorella. Chlorella pyrenoidosa ( CP) was found to be a dominant species in POME and Chlorella vulgaris ( CV) could grow well in POME. Furthermore, the optimal lipid production was obtained at the ratio 95:05 CDW with highest lipid production by CP compared to CV. At day 20, CDW for CV species was obtained at 193 mg/L and with lipid content at 56 mg/L. Finally, the concentration ratio at 50:50 showed a higher absorbance of chlorophyll a for both strains.

  18. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process....... Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates....... Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...

  19. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  20. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  1. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  2. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  3. Integration of biological method and membrane technology in treating palm oil mill effluent.

    Science.gov (United States)

    Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  4. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  5. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  6. Enhancement of biogas production from olive mill effluent (OME) by co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Keskin, Tugba; Yuruyen, Aysegul [Bioengineering Department, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2008-12-15

    The olive oil has a healthy image during its consumption due to its oleic acid content, which may prevent some human diseases. Ironically, by-products of olive mill production such as olive mill effluent (OME) and olive cake pose a serious environmental risk where it is produced. In this study, feasibility of using some agro-industrial residue streams such as cheese whey (CW) and laying hen litter (LHL) in order to enhance the methane production of OME was investigated. For this purpose, biochemical methane potential (BMP) assay was carried out for both raw OME alone and OME mixed with varying amount of other substrates such as LHL and CW in the serum bottles, respectively. Corresponding methane production values for various mixtures of the organic residue streams used in this study were determined. It was demonstrated that co-digestion of OME with LHL significantly enhanced the biodegradability of OME which was too low if it was digested alone. Over 90% increase in biogas production was obtained when digesting OME with LHL. The biogas production increased only 22%, when CW was used for the same purpose. It was demonstrated that the biodegradability of OME could be significantly enhanced by co-digestion and thereby integrated management of OME using anaerobic degradation could be proposed as an economically viable and ecologically acceptable solution for the safe disposal of OME. (author)

  7. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  8. Toxicity evaluation in a paper recycling mill effluent by coupling bioindicator of aging with the toxicity identification evaluation method in nematode Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoyi; SHEN Lulu; YU Hongxia; WANG Dayong

    2008-01-01

    Toxicity identification evaluation (TIE) can be used to determine the specific toxicant(s) in industrial effluents. In the current study,the authors have attempted to combine the advantages of the model organism, Caenorhabditis elegans, with the virtues of the TIE technique, to evaluate and identify the toxicity on aging from a paper recycling mill effluent. The results indicate that only the toxicities from mixed cellulose (MC) filtration and EDTA treatment are similar to the baseline aging toxicity, suggesting that the suspect toxicants inducing aging toxicity may largely be the heavy metal substances in this industrial effluent. Examination of the accumulation of intestinal autofluorescence in adult animals further confirms that the short lifespans are actually due to accelerated aging. In addition,exposure to fractions of EDTA manipulations cannot result in severe defects of reproduction and locomotion behaviors in C. elegans.Moreover, high levels of Ca, Al, and Fe in the effluent may account for the severe toxicity on aging of exposed nematodes, by TIE assay. The study here provides a new method for evaluating environmental risk and identifying toxicant(s) from the industrial effluent using C. elegans.

  9. Aerobic effluent treatment with lower electric power consumption. Survey of results from questionnaire sent out to Swedish pulp and paper mills with biological effluent treatment plants; Aerob rening med laegre elfoerbrukning. Sammanstaellning av enkaetsvar fraan svenska skogsindustrier med biologisk rening

    Energy Technology Data Exchange (ETDEWEB)

    Sivard, Aasa; Simon, Olle

    2010-12-15

    A survey of the energy situation at 23 Swedish pulp and paper mills with aerobic effluent treatment plants has been performed. The electricity consumption for aeration equipment is about 80 % of the total electricity consumption. Proposed measures to increase energy efficiency are regular measurements of energy consumption, better control of the oxygen level in some mills and evaluation of measures to use the heat in process effluent before and after biological treatment

  10. Comment on 'evaluation of dechlorination mechanisms during anaerobic fermentation of blached kraft mill effluent by W.J. Parker, E.R. Hall and G.J. Farquhar'

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    Comment on "Evaluation of dechlorination mechanisms during anaerobic fermentation of bleached kraft mill effluent", is put forth. The data reproduced in Table 1 does not seem to be authentic as the method of preprationo of the chlorinated organic...

  11. A field-based approach for assessing the impact of paper pulp mill effluent on the metbolite profile of fathead minnows (Pimephales promelas)

    Science.gov (United States)

    Although evidence indicates that exposure to effluent from paper pulp mills (PME) can alter the body condition, secondary sexual characteristics, and reproductive success of aquatic organisms, there is currently little understanding of the biochemical mechanisms for these effects...

  12. Microorganism Degradation Efficiency in BOD Analysis Formulating a Specific Microbial Consortium in a Pulp and Paper Mill Effluent

    Directory of Open Access Journals (Sweden)

    Luis Alberto Ordaz-Díaz

    2014-10-01

    Full Text Available Pulp and paper mills are a major source of pollution, generating huge amounts of intensely colored effluent that goes to the receiving end of a wastewater treatment plant. The biochemical oxygen demand test (BOD5 relies heavily on the microorganism metabolic capability added to the test as seeding material. The seeding material in the testing is obtained from sewage sampling or from commercial sources. Specific organic pollutants that are present in paper and pulp mill effluent can only be degraded by specific microbes; therefore, common sewage or synthetic seed may lead to erroneous BOD5 estimations. In this study, specific microbial species were selected to evaluate their degradation efficiency, both individually and in combination. The microorganisms selected in the formulated seed exhibit BOD5 in a reproducible and synergistic manner. The formulation of this specific microbial consortium can be used to develop bioremediation strategies.

  13. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats

    OpenAIRE

    Ajiboye, John A.; Erukainure, Ochuko L; Lawal, Babatunde A.; Nwachukwu, Viola A.; Tugbobo-Amisu, Adesewa O.; Okafor, Ebelechukwu N.

    2015-01-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p 

  14. Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology.

    Science.gov (United States)

    Neoh, Chin Hong; Yahya, Adibah; Adnan, Robiah; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-05-01

    The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.

  15. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  16. Using Py-GC/MS to fingerprint additives associated with paper mill effluent toxicity episodes

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2012-10-01

    Full Text Available solid at the bottom. 0.23 Main sewer, colourless effluent with few suspended solids. 0.33 Primary clarifier inlet, brown effluent with some solids at the bottom. 9.8 Primary clarifier outfall #2, brown effluent with some solids at the bottom. 20....6 Influent feed corn line, brown effluent with some solids at the bottom. 9.4 Equalisation basin, brown effluent with some solids at the bottom. 14.2 Contact chamber, brown effluent with some sludge at the bottom. 69.7 Aeration outfall, colourless effluent...

  17. Phytoremediation Potential of Vetiver System Technology for Improving the Quality of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Negisa Darajeh

    2014-01-01

    Full Text Available Palm oil mill effluent (POME, a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST. This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD and chemical oxygen demand (COD. In this study, two different concentrations of POME (low and high were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.

  18. Phytoremediation of palm oil mill secondary effluent (POMSE) by Chrysopogon zizanioides (L.) using artificial neural networks.

    Science.gov (United States)

    Darajeh, Negisa; Idris, Azni; Fard Masoumi, Hamid Reza; Nourani, Abolfazl; Truong, Paul; Rezania, Shahabaldin

    2017-05-04

    Artificial neural networks (ANNs) have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the nonlinear relationships between variables in complex systems. In this study, ANN was applied for modeling of Chemical Oxygen Demand (COD) and biodegradable organic matter (BOD) removal from palm oil mill secondary effluent (POMSE) by vetiver system. The independent variable, including POMSE concentration, vetiver slips density, and removal time, has been considered as input parameters to optimize the network, while the removal percentage of COD and BOD were selected as output. To determine the number of hidden layer nodes, the root mean squared error of testing set was minimized, and the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the quick propagation (QP) algorithm had minimum root mean squared error and absolute average deviation, and maximum coefficient of determination. The importance values of the variables was included vetiver slips density with 42.41%, time with 29.8%, and the POMSE concentration with 27.79%, which showed none of them, is negligible. Results show that the ANN has great potential ability in prediction of COD and BOD removal from POMSE with residual standard error (RSE) of less than 0.45%.

  19. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    Science.gov (United States)

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    Directory of Open Access Journals (Sweden)

    Joy O. Iwuagwu

    2014-01-01

    Full Text Available Palm oil mill effluent (POME is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the fermentation was carried out at 150 rpm, 28 ± 2°C using an inoculum size of 1 mL of 106 cells. Yeasts were isolated from POME, dump site, and palm wine. The POME had chemical oxygen demand (COD 114.8 gL−1, total solid 76 gL−1, total suspended solid (TSS 44 gL−1 and total lipid 35.80 gL−1. Raw POME supported accumulation of 4.42 gL−1 dry yeast with amino acid content comparable or superior to the FAO/WHO standard for feed use SCP. Peak COD reduction (83% was achieved with highest biomass accumulation in 96 h using Saccharomyces sp L31. POME can be used as carbon source with little or no supplementation to achieve waste-to-value by producing feed grade yeast with reduction in pollution potential.

  1. Adsorption of residual oil from palm oil mill effluent using rubber powder

    Directory of Open Access Journals (Sweden)

    A.L. Ahmad

    2005-09-01

    Full Text Available A synthetic rubber powder was used to adsorb the residual oil in palm oil mill effluent (POME. POME is the wastewater produced by the palm oil industry. It is a colloidal suspension which is 95-96% water, 0.6-0.7% oil and 4-5% total solids including 2-4% suspended solids originating in the mixing of sterilizer condensate, separator sludge and hydrocyclone wastewater. POME contains 4,000 mg dm-3 of oil and grease, which is relatively high compared to the limit of only 50 mg dm-3 set by the Malaysian Department of Environment. A bench-scale study of the adsorption of residual oil in POME using synthetic rubber powder was conducted using a jar test apparatus. The adsorption process was studied by varying parameters affecting the process. The parameters were adsorbent dosage, mixing speed, mixing time and pH. The optimum values of the parameters were obtained. It was found that almost 88% removal of residual oil was obtained with an adsorbent dosage of 30 mg dm-3 and mixing speed of 150 rpm for 3 hr at a pH 7. Adsorption equilibrium was also studied, and it was found that the adsorption process on the synthetic rubber powder fit the Freundlich isotherm model.

  2. Characterization of Oily and Non-Oily Natural Sediments in Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Reem A. Alrawi

    2013-01-01

    Full Text Available Palm oil is one of the many vegetable oils widely consumed around the world. The production of palm oil requires voluminous amount of water with the concurrent generation of large amount of wastewater known as palm oil mill effluent (POME. POME is a mixture of water, oil, and natural sediments (solid particles and fibres.There is a dearth of information on the physical properties of these POME sediments. This study intends to distinguish the physical properties of oily and non-oily POME sediments which include sediment size, particle size distribution (PSD, sediment shape, sediment surface morphology, and sediment density. These characterizations are important for future researches because these properties have significant effects on the settling process that occurs either under natural gravity or by coagulations. It was found that the oily and non-oily POME sediments have different sizes with nonspherical irregular shapes, and because of that, the aspect ratio (AR and circularity shape factors were adopted to describe the shapes of these sediments. The results also indicate that the density of oily POME sediment decreases as the sediment size increases.

  3. Removal of phenol by activated carbons prepared from palm oil mill effluent sludge

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Mariatul F.MANSOR; Radziah WAHID

    2006-01-01

    The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely,thermal activation at 300, 500 and 800℃, and physical activation at 150℃ (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.

  4. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    Science.gov (United States)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  5. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    Science.gov (United States)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  6. Catalytic wet oxidation of the pretreated synthetic pulp and paper mill effluent under moderate conditions.

    Science.gov (United States)

    Garg, Anurag; Mishra, I M; Chand, Shri

    2007-01-01

    In the present study, catalytic wet oxidation (CWO) was investigated for the destruction of organic pollutants in the thermally pretreated effluent from a pulp and paper mill under moderate temperature and pressure conditions. The thermal pretreatment studies were conducted at atmospheric pressure and 368K using copper sulfate as a catalyst. The thermal pretreatment reduced COD by about 61%. The filtrate of the thermal pretreatment step was used at pH 8.0 for CWO at 383-443K temperature and a total pressure of 0.85MPa for 4h. Catalysts used for the reaction include copper sulfate, 5% CuO/95% activated carbon, 60% CuO/40% MnO(2), and 60% CuO/40% CeO(2). Maximum COD reduction was found to be 89% during CWO step using 5% CuO/95% activated carbon with a catalyst loading of 8gl(-1) at 443K and 0.85MPa total pressure. Overall COD reduction for the pretreatment and the CWO was found to be 96%. Besides this, 60% CuO/40% CeO(2) catalyst also exhibited the similar activity as that of obtained with 5% CuO/95% activated carbon catalyst at 423K temperature and 0.85MPa total pressure. The pH of the solution during the experimental runs decreases initially due to the formation of carboxylic acid and then increases due to the decomposition of acids.

  7. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-07-01

    Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

  8. Phytoremediation potential of a novel fern, Salvinia cucullata, Roxb. Ex Bory, to pulp and paper mill effluent: Physiological and anatomical response.

    Science.gov (United States)

    Das, Suchismita; Mazumdar, Kisholay

    2016-11-01

    The study was conducted with an aim to remediate effluent from a pulp and paper mill, after treating it for 28 days with an aquatic fern, Salvinia cucullata. The effluent had high BOD, COD, TS, TSS, TDS, P, hardness and chloride, and several heavy metals (Cd, Cu, Cr, Ni, Pb, Mg, Mn, Fe and Zn) above national limits. However, the plant survived a wide range of effluent concentrations (25%, 50%, 75% and 100%, v/v), and flourished well, particularly at 25% (v/v), resisted membrane injury and generation of H2O2 and O2, showed better growth and induced all the major antioxidant enzymes. The plants also induced lipid peroxidation. Most of the elemental profiles were higher than the toxic levels stipulated for plants, indicating tolerance to metal. In fact, barring Fe, for Cr, Cu, Pb, Zn, Mg and P, at all the effluent doses, and for Cd, Ni and Mn, up to 75% (v/v) effluent, greater concentrations were observed in leaf than in root. This plant was more suited for nutrient removal, as it effectively reduced BOD, Zn, Fe, Ni, Mg, P and increased dissolve oxygen. Further, pH, hardness, chloride, TS and Mn was reduced optimally by 25-50% (v/v) treatments. SEM revealed prominent structural damages from 50 to 100% treatments. Presence of Pb as well as Fe in the EDX peaks were observed in the cortex rather than in the root vascular zone. This plant could be suggested to be an effective phytoremediator of multi-contaminant effluent with maximum benefit at low doses (25-50%, v/v).

  9. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    Science.gov (United States)

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp.

  10. Optimal Condition of Fenton's Reagent to Enhance the Alcohol Production from Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    Supawadee Sinnaraprasat

    2011-07-01

    Full Text Available Application of Fenton's reaction for a proper hydrolysis step is an essential and important step in obtaining a higher level of readily biodegradable sugars from palm oil mill effluent (POME for improving the alcohol production by using immobilized Clostridium acetobutylicum. The objective of this research was, therefore, to investigate the optimum condition of Fenton's reaction in terms of COD: H2O2 ratios (w/w and H2O2: Fe2+ ratios (molar ratio used to oxidize carbohydrate and high molecular organic compounds into simple sugars, which are further fermented into alcohol. The experiments were carried out at H2O2: Fe2+ ratios (molar ratios of 5, 10, 20, 30 and 40 and the COD: H2O2 ratios (w/w of 50, 70, 100 and 130 (initial COD about 50,000 mg/L. The total sugar concentrations and organic compounds biodegradability (BOD5/COD ratios were also used for investigating suitable conditions for Fenton's reaction. The concentration of Fenton's reagent at H2O2:Fe2+ and COD:H2O2 ratio of 20 and 130 was identified as the optimum operating condition for the highest simple sugars of about 0.865% and BOD5/COD ratios of 0.539. The alcohol productions were carried out in the continuous stirred tank reactors (CSTR under an anaerobic continuous immobilization system. At a hydraulic retention time of 12 hours and POME pH of 4.8, the maximum total ABE concentration of 495 mg/L and the ABE yield of 0.236 grams of ABE produced/gram of reducing sugars were achieved at the mixed polyvinyl alcohol (PVA and palm oil ash (POA ratio of 10 : 3.

  11. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water).

    Science.gov (United States)

    Abinandan, S; Bhattacharya, Ribhu; Shanthakumar, S

    2015-01-01

    Microalgae are product of sustainable development owing to its ability to treat variety of wastewater effluents and thus produced biomass can serve as value added product for various commercial applications. This paper deals with the cultivation of microalgae species namely Chlorella pyrenoidosa and Scenedesmus abundans in rice mill effluent (i.e., paddy soaked water) for nutrient removal. In order to investigate the nutrient removal capability, microalgae are subjected to cultivation in both raw and autoclaved samples. The maximum phosphate removal by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 98.3% and 97.6%, respectively, whereas, the removal of ammoniacal nitrogen by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 92% and 90.3%, respectively. The growth (measured in terms of chlorophyll content) of Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 3.88 mg/l and 5.55 mg/l, respectively. The results indicate the suitability of microalgae cultivation in rice mill effluent treatment for nutrient removal.

  12. Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica-alginate-fungi biocomposites.

    Science.gov (United States)

    Duarte, Katia; Justino, Celine I L; Pereira, Ruth; Panteleitchouk, Teresa S L; Freitas, Ana C; Rocha-Santos, Teresa A P; Duarte, Armando C

    2013-01-01

    This study attempts a treatment strategy of a bleached kraft pulp mill effluent with Rhizopus oryzae or Pleurotus sajor caju encapsulated on silica-alginate (biocomposite of silica-alginate-fungi, with the purpose of reducing its potential impact in the environment. Active (alive) or inactive (death by sterilization) Rhizopus oryzae or Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the bleached kraft pulp mill effluent. The treatment of bleached kraft pulp mill effluent by active and inactive biocomposites was performed throughout 29 days at 28°C. The efficiency of treatment was evaluated by measuring the removal of organic compounds, chemical oxygen demand and the relative absorbance ratio over time. Both fungi species showed potential for removal of organic compounds, colour and chemical oxygen demand. Maximum values of reduction in terms of colour (56%), chemical oxygen demand (65%) and organic compounds (72-79%) were attained after 29 days of treatment of bleached kraft pulp mill effluent by active Rhizopus oryzae biocomposites. The immobilization of fungi, the need for low fungal biomass, and the possibility of reutlization of the biocomposites clearly demonstrate the industrial and environmental interest in bleached kraft pulp mill effluent treatment by silica-alginate-fungi biocomposites.

  13. Edible oil mill effluent; a low-cost source for economizing biodiesel production: Electrospun nanofibrous coalescing filtration approach

    Directory of Open Access Journals (Sweden)

    Mohammad Javad A. Shirazi

    2014-03-01

    Full Text Available Biofuels have increased in popularity because of rising oil prices and the need for energy security. However, finding new raw sources for biodiesel production is still challenging. The oil which comes from wastewater effluent generated in edible oil mills (EOM can be considered a low-cost, widely available, emerging and interesting source for biodiesel production. This study tries to improve the coalescing filtration by using electrospun nanofibrous filters for oil recovery from the EOM effluent. In order to improve the separation efficiency of the filters, thermal treatments (90oC to 150oC were used. Results indicate that oil recovery using coalescing filtration is a promising method for providing a new source for making biodiesel production more economical.

  14. An Innovative Device to Convert Olive Mill Wastewater into a Suitable Effluent for Feeding Purple Non-Sulfur Photosynthetic Bacteria

    Directory of Open Access Journals (Sweden)

    Pietro Carlozzi

    2015-08-01

    Full Text Available A device (prototype with a working volume of 200 L was used to deplete olive mill wastewater (OMW of polyphenols. The OMW transformed into feedstock by means of the device was then used for feeding a lab-scale photobioreactor, just for testing the production of bioH2. The main novelty of this prototype consists in the combination of several adsorbent matrices and the exploitation of their synergic action. In this investigation, three matrices have been used: active carbon, Azolla and zeolite. The device was operated at an olive oil company located in the heart of the Chianti zone (Province of Florence, Italy. The efficiency of polyphenol removal obtained using the device was ≥96%. The multi-matrix effluent (MMeff generated was then used to obtain three different culture broths containing 25%, 50% and 100% of MMeff, respectively. The diluted (with water culture broths were suitable for hydrogen generation, with the highest hydrogen production rate (12.7 mL H2/Lculture/h being obtained using 50% MMeff. The hydrogen yields were: 334 mL H2/L of MMeff, when feeding the photofermenter with pure effluent (100%; 1308 mL H2/L of MMeff, with the half-diluted effluent (50%, v/v; and 432 mL H2/L of MMeff, with the highest-diluted effluent (25%, v/v.

  15. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  16. Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester

    Science.gov (United States)

    Irvan; Trisakti, B.; Tomiuchi, Y.; Harahap, U.; Daimon, H.

    2017-06-01

    The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

  17. Assessment of reproductive effects in largemouth bass (Micropterus salmoides) exposed to bleached/unbleached kraft mill effluents

    Science.gov (United States)

    Sepulveda, M.S.; Ruessler, D.S.; Denslow, N.D.; Holm, S.E.; Schoeb, T.R.; Gross, T.S.

    2001-01-01

    This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of efffluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17??-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.

  18. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G. [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada); Law, R. David, E-mail: dlaw@lakeheadu.ca [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada)

    2012-10-15

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  19. Soil remediation of degraded coastal saline wetlands by irrigation with paper mill effluent and plowing

    Institute of Scientific and Technical Information of China (English)

    XIA Meng-jing; LIU Zhi-mei; LU Zhao-hua

    2012-01-01

    Combined with anti-waterlogging ditches,irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal saline-alkaline wetlands.Three treatments were employed,viz.,control (CK),irrigated with 10 cm depth of TPME (I),and plowing to 20 cm deep before irrigating 10 cm depth of TPME (IP).Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%.Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating.With anti-waterlogging ditches,salts were drained out of soil.Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%,respectively,but there was no significant difference compared with CK,indicating that this irrigation rate was not heavy enough to remarkably reduce soil salinity and sodicity.Thus,irrigation rate should be enhanced in order to reach better effects of desalinization and desodication.Irrigation with TPME significantly increased soil organic matter,alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matmr in TPME.Plowing increased soil air circulation,so as to enhance mineralization of organic matter and lead to the loss of organic matter; however,plowing significantly improved soil alkali-hydrolyzable nitrogen and available phosphorus.Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity.Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment),while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment).Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK.Phosphatase in IP-treatment was significantly higher than that in CK.Compared to I-treatment,IP-treatment improved

  20. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  1. Evaluation of ion exchange resins for the removal of dissolved organic matter from biologically treated paper mill effluent.

    Science.gov (United States)

    Bassandeh, Mojgan; Antony, Alice; Le-Clech, Pierre; Richardson, Desmond; Leslie, Greg

    2013-01-01

    In this study, the efficiency of six ion exchange resins to reduce the dissolved organic matter (DOM) from a biologically treated newsprint mill effluent was evaluated and the dominant removal mechanism of residual organics was established using advanced organic characterisations techniques. Among the resins screened, TAN1 possessed favourable Freundlich parameters, high resin capacity and solute affinity, closely followed by Marathon MSA and Marathon WBA. The removal efficiency of colour and lignin residuals was generally good for the anion exchange resins, greater than 50% and 75% respectively. In terms of the DOM fractions removal measured through liquid chromatography-organic carbon and nitrogen detector (LC-OCND), the resins mainly targeted the removal of humic and fulvic acids of molecular weight ranging between 500 and 1000 g mol(-1), the portion expected to contribute the most to the aromaticity of the effluent. For the anion exchange resins, physical adsorption operated along with ion exchange mechanism assisting to remove neutral and transphilic acid fractions of DOM. The column studies confirmed TAN1 being the best of those screened, exhibited the longest mass transfer zone and maximum treatable volume of effluent. The treatable effluent volume with 50% reduction in dissolved organic carbon (DOC) was 4.8 L for TAN1 followed by Marathon MSA - 3.6L, Marathon 11 - 2.0 L, 21K-XLT - 1.5 L and Marathon WBA - 1.2 L. The cation exchange resin G26 was not effective in DOM removal as the maximum DOC removal obtained was only 27%. The resin capacity could not be completely restored for any of the resins; however, a maximum restoration up to 74% and 93% was achieved for TAN1 and Marathon WBA resins. While this feasibility study indicates the potential option of using ion exchange resins for the reclamation of paper mill effluent, the need for improving the regeneration protocols to restore the resin efficiency is also identified. Similarly, care should be taken

  2. Utilizing Palm Oil Mill Effluent Compost for Improvement of Acid Mineral Soil Chemical Properties and Soybean Yield

    Directory of Open Access Journals (Sweden)

    Ermadani Ermadani

    2013-09-01

    Full Text Available Effluent from a palm oil mill contains organic matters and nutrients. It can result in water pollution when it is discharged into river without treatment. One way to manage this effluent is through composting that has potential to allow the recycling of effluent nutrients in a sustainable and environmentally friendly manner so that it can be used as organic fertilizer. This study wasintended to evaluate the benefit of effluent compost application to improve soil chemical properties and soybean yield. Effluent wascomposted with chicken manure and lime for eight weeks. A pot experiment of which each pot was filled with 10 kg of soil (Ultisolwas conducted in a screen house from April to November 2012 at the Experimental Farm, University of Jambi, Muaro JambiResidency. The treatments were without compost (adding 0,25 g Urea, 0,75 g SP-36 and 0,50 g KCl and compost application with amounts of 12,5 ml, 25 ml, 37,5 ml, 50 ml, 62,5 ml, and 75 ml. The indicator plant was soybean. The treatments were arranged in acompletely randomized design and replicated four times. Results of study showed a significant improvement of soil chemicalproperties with compost application in which application of 75 ml compost resulted in the highest increase of pH, organic C, cationexchange capacity, total N, available P, exchangeable cations (K, Ca, Mg. Furthermore, the dry weight of shoot, pod number and dryweight of seed increased significantly with compost application. The highest dry weight of seed was 28 g (equivalent to 2, 82 t ha-1obtained by compost application of 75 ml (equivalent to 15 t ha -1.

  3. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    Science.gov (United States)

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased.

  4. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    Directory of Open Access Journals (Sweden)

    Azhari S. Baharuddin

    2010-01-01

    Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

  5. Four marine-derived fungi for bioremediation of raw textile mill effluents

    Digital Repository Service at National Institute of Oceanography (India)

    Verma, A.K.; Raghukumar, C.; Verma, P.; Shouche, Y.S.; Naik, C.G.

    in their chemical characteristics and pH (Hai et al. 2007). Therefore, no single organism can detoxify and decolorize them. Efficiency of marine-derived fungi in treatments of such effluents has largely remained unexplored. Marine-derived fungi grow and produce...-yield and two basidiomycetes with relatively high titer of laccase were used for bioremediation. Efficiency of the whole cultures (in situ) in removal of color and toxicity, reduction in COD and total phenolics from these two effluents was studied...

  6. Four marine-derived fungi for bioremediation of raw textile mill effluents.

    Science.gov (United States)

    Verma, Ashutosh Kumar; Raghukumar, Chandralata; Verma, Pankaj; Shouche, Yogesh S; Naik, Chandrakant Govind

    2010-04-01

    Textile dye effluents pose environmental hazards because of color and toxicity. Bioremediation of these has been widely attempted. However, their widely differing characteristics and high salt contents have required application of different microorganisms and high dilutions. We report here decolorization and detoxification of two raw textile effluents, with extreme variations in their pH and dye composition, used at 20-90% concentrations by each of the four marine-derived fungi. Textile effluent A (TEA) contained an azo dye and had a pH of 8.9 and textile effluent B (TEB) with a pH of 2.5 contained a mixture of eight reactive dyes. The fungi isolated from mangroves and identified by 18S and ITS sequencing corresponded to two ascomycetes and two basidiomycetes. Each of these fungi decolorized TEA by 30-60% and TEB by 33-80% used at 20-90% concentrations and salinity of 15 ppt within 6 days. This was accompanied by two to threefold reduction in toxicity as measured by LC(50) values against Artemia larvae and 70-80% reduction in chemical oxygen demand and total phenolics. Mass spectrometric scan of effluents after fungal treatment revealed degradation of most of the components. The ascomycetes appeared to remove color primarily by adsorption, whereas laccase played a major role in decolorization by basidiomycetes. A process consisting of a combination of sorption by fungal biomass of an ascomycete and biodegradation by laccase from a basidiomycete was used in two separate steps or simultaneously for bioremediation of these two effluents.

  7. Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw.

    Science.gov (United States)

    Kalmis, Erbil; Azbar, Nuri; Yildiz, Hasan; Kalyoncu, Fatih

    2008-01-01

    In this study, cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw substrate containing tap water and olive mill effluent (OME) mixture containing varying volume of OME was studied in order to investigate the feasibility of using OME as an alternative wetting agent and OME's impact on some fundamental food quality characteristics of mushrooms. Time period for mycelial colonization, primordium initiation and first harvest were comparatively evaluated with the control group. It was shown that the use of OME and tap water mixture consisting of OME up to 25% volumetrically was possible for the purpose of commercial mushroom production. Experimental results obtained from substrate containing 25% OME mixture showed no statistically significant difference compared to control group. The negative effects of increasing volume of OME in the mixture were also indicated by bioefficiency, which was found to be 13.8% for substrates wetted with 100% OME, whereas bioefficiency was 53.6% for control group. Increasing volume of OME in the mixture resulted in deformation of fruit body shape, whereas no significant difference in food quality was observed due to the higher amount of OME. This work suggested that the use of OME up to 25% as moisturizer could be considered, especially for the locations having significant number of olive mills and mushroom producers, both as an environmentally friendly solution for the safe and ecological disposal of OME and a practical way for recovering OME's economic value thereby.

  8. Comparative assessment of olive oil mill effluents from three-phase and two-phase systems, treated for hydrogen production.

    Science.gov (United States)

    Rouvalis, A; Iliopoulou-Georgudaki, J

    2010-10-01

    By-products of a two-phase and a three-phase olive oil mill process treated in an anaerobic fermentation system for hydrogen production, were evaluated by three bioassays: the zebrafish Danio rerio embryo test and two microbiotests, Thamnotoxkit F and Daphtoxkit F™ pulex. Samples from both processes were classified as "very toxic" with LC(50) values ranging from 1.52% (T. platyurus 24 h test) to 4.48% (D. pulex 48 h-LC₅₀). Toxicity values were differently correlated to physicochemical parameters showing different degree of influence. The treated effluents of both process systems remained very toxic showing the necessity for further treatment, aiming to environmentally safe discharges.

  9. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  10. Impact analysis of palm oil mill effluent on the aerobic bacterial ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... 2Department of Biological Sciences, University of Abuja, Abuja, Nigeria. Accepted 14 ... This was done by culturing soil samples from an effluent dumpsite ... or no treatment and is usually discharged into the ... its denitrification products can have on the environment. .... methods in the study of ecology.

  11. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances.

  12. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment.

    Science.gov (United States)

    Ochando-Pulido, J M; Hodaifa, G; Victor-Ortega, M D; Rodriguez-Vives, S; Martinez-Ferez, A

    2013-12-15

    In this work, complete reclamation of the olive mill effluents coming from a two-phase olive oil extraction process (OME-2) was studied on a pilot scale. The developed depuration procedure integrates an advanced oxidation process based on Fenton's reagent (secondary treatment) coupled with a final reverse osmosis (RO) stage (purification step). The former aims for the removal of the major concentration of refractory organic pollutants present in OME-2, whereas the latter provides efficient purification of the high salinity. Complete physicochemical composition of OME-2 after the secondary treatment was examined, including the particle size distribution, organic matter gradation and bacterial growth, in order to assess the selection of the membrane and its fouling propensity. Hydrodynamics and selectivity of the membrane were accurately modelized. Upon optimization of the hydrodynamic conditions, the RO membrane showed stable performance and fouling problems were satisfactorily overcome. Steady-state permeate flux equal to 21.1 L h(-1)m(-2) and rejection values up to 99.1% and 98.1% of the organic pollutants and electroconductivity were respectively attained. This ensured parametric values below standard limits for reuse of the regenerated effluent, e.g. in the olives washing machines, offering the possibility of closing the loop and thus rending the production process environmentally friendly. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats.

    Science.gov (United States)

    Ajiboye, John A; Erukainure, Ochuko L; Lawal, Babatunde A; Nwachukwu, Viola A; Tugbobo-Amisu, Adesewa O; Okafor, Ebelechukwu N

    2015-09-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p < 0.05) in serum total cholesterol, triglyceride, and vLDL. Feeding on POME led to significant increase (p < 0.05) in cholesterol, triglyceride and LDL levels in brain tissues. Increased hepatic LDL level was also observed in POME fed rats. Except for hepatic triglyceride and tissues HDL level, a rather reduced level of the studied lipids was observed in the serum and tissues of palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent.

  14. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats

    Directory of Open Access Journals (Sweden)

    John A. Ajiboye

    2015-09-01

    Full Text Available The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p < 0.05 in serum total cholesterol, triglyceride, and vLDL. Feeding on POME led to significant increase (p < 0.05 in cholesterol, triglyceride and LDL levels in brain tissues. Increased hepatic LDL level was also observed in POME fed rats. Except for hepatic triglyceride and tissues HDL level, a rather reduced level of the studied lipids was observed in the serum and tissues of palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent.

  15. Bioremediation of Agro-Based Pulp Mill Effluent by Microbial Consortium Comprising Autochthonous Bacteria

    Directory of Open Access Journals (Sweden)

    Virendra Kumar

    2012-01-01

    Full Text Available Small-scale agro-based pulp and paper mills are characterized as highly polluting industries. These mills use Kraft pulping process for paper manufacturing due to which toxic lignified chemicals are released into the environment. Lack of infrastructure, technical manpower, and research and development facilities restricts these mills to recover these chemicals. Therefore, the chemical oxygen demand (COD of the emanating stream is quite high. For solving the above problem, four bacteria were isolated from the premises of agro-based pulp and paper mill which were identified as species of Pseudomonas, Bacillus, Pannonibacter, and Ochrobacterum. These bacteria were found capable of reducing COD up to 85%–86.5% in case of back water and 65-66% in case of back water : black liquor (60 : 40, respectively, after acclimatization under optimized conditions (pH 6.8, temperature 35°C, and shaking 200 rpm when the wastewater was supplemented with nitrogen and phosphorus as trace elements.

  16. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR).

    Science.gov (United States)

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2010-08-01

    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.

  17. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure.

    Science.gov (United States)

    Brockmeier, Erica K; Jayasinghe, B Sumith; Pine, William E; Wilkinson, Krystan A; Denslow, Nancy D

    2014-01-01

    Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.

  18. The Effect of Fe Concentration on the Quality and Quantity of Biogas Produced From Fermentation of Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Irvan Matseh

    2012-10-01

    Full Text Available The purpose of this research is to study the effect of Fe concentration as a trace metal on the quality and quantity of biogas produced from the fermentation of palm oil mill effluent (POME. Raw POME as feed was obtained from one of the palm oil mills belong to PTPN IV, other materials used were hydrochloric acid, sodium bicarbonate, and trace metals. Observed variables were volume of biogas, concentration of Fe in raw POME and biodigester, degradation rate of total solid (TS and volatile solid (VS, M-Alkalinity, pH, H2S and CO2 concentration in biogas at hydraulic retention time (HRT 6 days. Before HRT of 6 days reached, initial trace metal compositions were 25.2 mg/L of Fe, 0.42 mg/L of Co, and 0.49 mg/L of Ni. After that, composition of trace metal were consisted only Co and Ni. The results showed that Fe as a trace metal did not affect the production or quantity of biogas. When Fe concentration reached over to 330 mg/L then concentration of CH4, total solid (TS and volatile solid (VS decreased. Moreover, the higher the Fe contents the smaller of H2S production. Fe content in POME from the same mill had different concentration, as the consequence biogas with different H2S concentrations were produced as well. Thus, Fe in the trace metals is no longer required if high concentration of Fe already existed in POME because it can reduce the formation of H2S. In addition, too high concentration of Fe in POME can be toxic for microorganism in the fermentation of biogas.

  19. Removal of Organic Pollutants and Decolorization of Bleaching Effluents from Pulp and Paper Mill by Adsorption using Chemically Treated Oil Palm Empty Fruit Bunch Fibers

    Directory of Open Access Journals (Sweden)

    Mohd Shaiful Sajab

    2014-06-01

    Full Text Available Treatment of bleaching effluents from pulp and paper mills using oil palm empty fruit bunch (EFB fibers as an adsorbent was conducted to remove color and organic pollutants. Empty fruit bunch fibers were chemically modified with polyethylenimine to enhance the adsorption capacity toward anionic species in the effluents. Effluents from the primary clarifier and aerated treatment pond were treated, and the performance of the adsorbent was investigated in terms of decolorization, total organic carbon, and oxygen demand level. Increasing adsorbent dosage and lower pH resulted in greater adsorption performance. The highest decolorization and reduction of total organic carbon of the effluents were 95.0% and 58.2%, respectively. The adsorption equilibrium can be achieved after 4 h of the adsorption process.

  20. Pilot-scale comparison of thermophilic aerobic suspended carrier biofilm process and activated sludge process in pulp and paper mill effluent treatment.

    Science.gov (United States)

    Suvilampi, J E; Rintala, J A

    2004-01-01

    Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.

  1. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Gregorio [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom); Johnson, Anbu Clemensis, E-mail: acj265@yahoo.com [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Bachmann, Robert T. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 1988 Vendor City, 7800 Taboh Naning, Alor Gajah, Melaka (Malaysia); Williams, Ceri J. [Yorkshire-Forward, Victoria House, Victoria Place, LS11 5AE Leeds (United Kingdom); Burgoyne, Andrea; Edyvean, Robert G.J. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m{sup -3} day{sup -1} during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L{sub biogas}L{sub reactor}{sup -1}day{sup -1}, respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  2. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis.

    Science.gov (United States)

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T; Williams, Ceri J; Burgoyne, Andrea; Edyvean, Robert G J

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 degrees C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20L fixed-bed reactor at 37 degrees C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m(-3)day(-1) during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L(biogas)L(reactor)(-1)day(-1), respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  3. Electrochemical treatment of olive mill wastewater: Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools

    Institute of Scientific and Technical Information of China (English)

    Chokri Belaid; Moncef Khadraoui; Salma Mseddi; Monem Kallel; Boubaker Elleuch; Jean Francois Fauvarque

    2013-01-01

    Problems related with industrials effluents can be divided in two parts:(1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes.This investigation deals with these two aspects,an electrochemical treatment method of an olive mill wastewater (OMW) under pla ttmized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination.The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution.Indeed,87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation.Moreover,55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced.On the other hand,UV-Visible spectrophotometry,Gaz chromatography/mass spectrometry,cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR)showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW.It was concluded that electrochemical oxidation in a modified Gaignard reactor is a promising process for the destruction of all phenolic compounds present in OMW.Among the monitoring analytical tools applied,cyclic voltammetry and 13C NMR are among the techniques that are introduced for the first time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance.

  4. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  5. Effect of cassava mill effluent on biological activity of soil microbial community.

    Science.gov (United States)

    Igbinosa, Etinosa O

    2015-07-01

    This study assessed the effect of cassava effluent on soil microbiological characteristics and enzymatic activities were investigated in soil samples. Soil properties and heavy metal concentrations were evaluated using standard soil analytical and spectroscopic methods, respectively. The microbiological parameters measured include microbial biomass carbon, basal soil respiration, catalase, urease, dehydrogenase activities and number of culturable aerobic bacteria, fungi and actinomycetes. The pH and temperature regime vary significantly (p Soil organic carbon content gave significant positive correlations with microbial biomass carbon, basal soil respiration, catalase activity and dehydrogenase activity (r = 0.450, 0.461, 0.574 and 0.591 at p soil microbial density demonstrates a marked decrease in total culturable numbers of the different microbial groups of the polluted soil samples. Soil contamination decreased catalase, urease and dehydrogenase activities. The findings revealed that soil enzymes can be used as indices of soil contamination and bio-indicator of soil quality.

  6. Effect of paper mill effluents on accumulation of heavy metals in coconut trees near Nanjangud, mysore district, Karnataka, India

    Science.gov (United States)

    Fazeli, M. Sharif; Sathyanarayan, S.; Satish, P. N.; Muthanna, Lata

    1991-01-01

    Physicochemical characteristics of wastewater from one of the paper mills near Nanjangud and the differential accumulation of heavy metals in parts of coconut trees growing in the area irrigated directly by the wastewaters of a paper mill were investigated. The total dissolved and suspended solids of wastewater were 1,136.9 mg/l and 2,185.4 mg/l, respectively. Biological oxygen demand (BOD) expands and COD is beyond the tolerance limit proposed by Indian standards. The concentrations of heavy metals like Cu, Pb, Zn, Ni, Co, and Cd in coconut water, root, and leaf are higher than the limits suggested by World Health Organization. Survival of coconut trees irrigated by polluted waters indicates tolerance to toxic heavy metals. Since coconut forms part of human food chain, accumulation of toxic heavy metals may lead to organic disorders.

  7. Production of biomethane from palm oil mill effluent (POME) with fed batch system in beam-shaped digester

    Science.gov (United States)

    Aznury, Martha; Amin, Jaksen M.; Hasan, Abu; Himmatuliza, Astinesia

    2017-05-01

    Palm oil mill effluent (POME) is the biggest liquid waste which is produced from palm oil production. POME are containing organic matter, high levels of biological oxygen demand (BOD) and chemical oxygen demand (COD) were 28000 mg/L and 48000 mg/L. To reduce the levels of pollution caused by POME, is necessary to do stages of processing using a biological process that involves aerobic and anaerobic bacteria so that it can be utilized as a new product that has economic value, one is biogas. The processing into biogas in anaerobic performed by fed batch system. In the ratio between POME and activated microorganismes are 70:30%. The process of anaerobic fermentation in fed batch is done by time variation of the addition of the substrate. The mixture of POME and activated microorganismes were fermented for a month and then after one month substrates were added gradually as much as 1 liter into the digester with a variety of additional time are 1, 2, and 5 days. The interval of addition of the substrate give effect to the pH and the quantity of biogas produced. The highest increasing of the quantity of biomethane was 25.14 mol% at the time the addition of substrate every fifth day.

  8. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Optimization of photocatalytic degradation of palm oil mill effluent in UV/ZnO system based on response surface methodology.

    Science.gov (United States)

    Ng, Kim Hoong; Cheng, Yoke Wang; Khan, Maksudur R; Cheng, Chin Kui

    2016-12-15

    This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 2(3) full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value.

  10. Effect of Agitation on Acidogenesis Stage of Two-Stage Anaerobic Digestion of Palm Oil Mill Effluent (POME) into Biogas

    Science.gov (United States)

    Trisakti, B.; Irvan; Adipasah, H.; Taslim; Turmuzi, M.

    2017-03-01

    The acidogenesis stage in two-stage anaerobic digestion of palm oil mill effluent (POME) was studied in a continuous stirred tank reactor (CSTR). This research investigated the effect of agitation rate on the growth of microorganisms, the degradation of organic substances, and volatile fatty acids (VFA) production and composition. Initially, the suitable loading up was determined by varying the HRT 6.7, 5.0, and 4.0 days in a 2 L CSTR with agitation rate 50 rpm, pH 6.0 ± 0.2, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 25, 50, 100, and 200 rpm. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and volatile fatty acids (VFA) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce VFA. The highest growth of microorganisms was achieved at HRT 4.0 day with microorganism concentration was 20.62 mg VSS/L and COD reduction was 15.7%. The highest production of total VFA achieved was 5,766.61 mg/L mg/L at agitation rate 200 rpm, with concentration of acetic acid, propionic acid and butyric acid were 1,889.23; 1,161.43; and 2,725.95 mg/L, respectively. While degradation VS and COD were 16.61 and 38.79%.

  11. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent

    Science.gov (United States)

    AbdulRahman, A.; Latiff, A. A. A.; Daud, Z.; Ridzuan, M. B.; D, N. F. M.; Jagaba, A. H.

    2016-07-01

    Several studies have been conducted on the removal of heavy metals from palm oil mill effluent. In this study, cow bones were developed as an adsorbent for the removal of cadmium II from POME. A batch experiment was conducted to investigate the effectiveness of the prepared activated cow bone powder for the sorption of cadmium II from raw POME. The experiment was carried out under fixed conditions using 100mg/L raw POME combined with different adsorbent dosage of CBP of 184.471 Ra(nm) surface roughness. The equilibrium adsorption capacity of the hydrophobic CBP of average contact angle 890 was determined from the relationship between the initial and equilibrium liquid phase concentrations of POME. The optimum adsorption of cadmium II on CBP was at 10g adsorbent dosage for sample 1 and 2 at 97.8% and 96.93% respectively. The least uptake was at 30g adsorbent weight for both samples at average of 95.1% for both samples. The effective removal of cadmium ion showed that CBP has a great potential for the treatment of heavy metal in POME.

  12. Ferti-irrigational impact of sugar mill effluent on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2014-11-01

    Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.

  13. A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2009-01-01

    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.

  14. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME...... and 98% biodegradability. Meanwhile, the maximum methane potential of EFB was 202mL CH4/gVS-added corresponding to 79.1m3 CH4/ton EFB with 38% biodegradability. Co-digestion of EFB with POME enhanced microbial biodegradability and resulted in 25–32% higher methane production at mixing ratios of 0.4:1, 0.......8:1 and 2.3:1 on VS basis than digesting EFB alone. The methane yield was 276–340mL CH4/gVS-added for co-digestion of EFB with POME at mixing ratios of 0.4:1–2.3:1, while minor improvement was observed at mixing ratios of 6.8:1 and 11:1 (175–197mL CH4/gVS-added). The best improved was achieved from co...

  15. The effect of the natural bentonite to reduce COD in palm oil mill effluent by using a hybrid adsorption-flotation method

    Science.gov (United States)

    Dewi, Ratni; Sari, Ratna; Syafruddin

    2017-06-01

    Palm oil mill effluent is waste produced from palm oil processing activities. This waste are comingfrom condensate water, process water and hydrocyclone water. The high levels of contaminants in the palm oil mill effluent causes the waste becomes inappropriate to be discharged to water body before processing, one of the most major contaminants in wastewater is fats, oils and COD.This study investigated the effectiveness of chemically activated bentonite that serves as an alternative to reduce the COD in adsorption and floatation based palm oil effluent waste processing. Natural bentonite was activated by using nitrit acid and benzene. In the existing adsorption material to improve COD reduction capability whereas the flotation method was used to further remove residual effluent which is still remain after the adsorption process. An adsorption columns which operated in batch was used in the present study. By varying the circulation time and adsorbent treatment (activated and non-activated), it was shown that percentage of COD reduction reached 75% at the circulation time of 180 minutes for non activated adsorbent. On the other hand the percentof COD reduction in adsorption and flotation process using activated bentonite reached as high as 88% and 93% at the circulation time of 180 minutes.

  16. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.

    Science.gov (United States)

    Chinnasamy, Senthil; Bhatnagar, Ashish; Hunt, Ryan W; Das, K C

    2010-05-01

    Industrial and municipal wastewaters are potential resources for production of microalgae biofuels. Dalton - the Carpet Capital of the World generates 100-115 million L of wastewater d(-1). A study was conducted using a wastewater containing 85-90% carpet industry effluents with 10-15% municipal sewage, to evaluate the feasibility of algal biomass and biodiesel production. Native algal strains were isolated from carpet wastewater. Preliminary growth studies indicated both fresh water and marine algae showed good growth in wastewaters. A consortium of 15 native algal isolates showed >96% nutrient removal in treated wastewater. Biomass production potential and lipid content of this consortium cultivated in treated wastewater were approximately 9.2-17.8 tons ha(-1) year(-1) and 6.82%, respectively. About 63.9% of algal oil obtained from the consortium could be converted into biodiesel. However further studies on anaerobic digestion and thermochemical liquefaction are required to make this consortium approach economically viable for producing algae biofuels.

  17. Kinetics of pulp mill effluent treatment by ozone-based processes

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chun-Han; Hsieh, Po-Hung [School of Forestry and Resource Conservation, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan (China); Chang, Meng-Wen [Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Sec., Taipei, 104, Taiwan (China); Chern, Jia-Ming, E-mail: jmchern@ttu.edu.tw [Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Sec., Taipei, 104, Taiwan (China); Chiang, Shih-Min [Bureau of Environmental Protection Tainan County, No. 78, Sec. 2, Changrong Rd., Sinying City, Tainan County 730, Taiwan (China); Tzeng, Chewn-Jeng [CECI Engineering Consultants, Inc., Taiwan, No. 185, Sec. 2, Chinhai Rd., Taipei, 106, Taiwan (China)

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  18. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.

    Science.gov (United States)

    Janssen, Albert J H; Lens, Piet N L; Stams, Alfons J M; Plugge, Caroline M; Sorokin, Dimitri Y; Muyzer, Gerard; Dijkman, Henk; Van Zessen, Erik; Luimes, Peter; Buisman, Cees J N

    2009-02-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual CODorganic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH4 (80-90 vol.%), CO2 (10-20 vol.%) and H2S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H2S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.

  19. Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; CHI Lina; LONG Xiuhua; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill ettluent (POME).The reactor had been operated continuously at 35℃ for 514 d,with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m3·d).The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand,high COD removal of 91% Was obtained at two days’ of hydraulic retention time (HRT),and the highest OLR of 17.5 kg COD/(m3·d).On the other hand,only 46% COD in raw POME Was transformed into biogas in which the methane content was about 70% (v/v).A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane Was 56%.Volatile fatty acid (VFA) accumulation was observed in the later operation stage,and this Was settled by supplementing trace metal elements.On the whole,the system exhibited good stability in terms of acidity and alkalinity.Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed.

  20. Odours from pulp mill effluent treatment ponds: the origin of significant levels of geosmin and 2-methylisoborneol (MIB).

    Science.gov (United States)

    Watson, Susan B; Ridal, Jeff; Zaitlin, Beryl; Lo, Amy

    2003-06-01

    Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.

  1. Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent

    Science.gov (United States)

    Teerapatsakul, Churapa

    2016-01-01

    Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process. PMID:28154483

  2. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent.

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    Full Text Available The biosynthesis and characterization of medium chain length poly-3-hydroxyalkanoates (mcl-PHA produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. The biosynthesis of mcl-PHA in this newly isolated microorganism follows a growth-associated trend. Mcl-PHA accumulation ranging from 49.7 to 68.9% on cell dry weight (CDW basis were observed when fatty acids ranging from octanoic acid (C(8:0 to oleic acid (C(18:1 were used as sole carbon and energy source. Molecular weight of the polymer was found to be ranging from 55.7 to 77.7 kDa. Depending on the type of fatty acid used, the (1H NMR and GCMSMS analyses of the chiral polymer showed a composition of even and odd carbon atom chain with monomer length of C4 to C14 with C8 and C10 as the principal monomers. No unsaturated monomer was detected. Thermo-chemical analyses showed the accumulated PHA to be semi-crystalline polymer with good thermal stability, having a thermal degradation temperature (T(d of 264.6 to 318.8 (± 0.2 (oC, melting temperature (T(m of 43. (± 0.2 (oC, glass transition temperature (T(g of -1.0 (± 0.2 (oC and apparent melting enthalpy of fusion (ΔH(f of 100.9 (± 0.1 J g(-1.

  3. Subchronic metabolic effects and toxicity of a simulated pulp mill effluent on juvenile lake trout, Salmo trutta m. lacustris

    Energy Technology Data Exchange (ETDEWEB)

    Oikari, A.; Linstroem-Seppae, P.Ku.; Kukkonen, J.

    1988-12-01

    Juvenile lake trout (Salmo trutta m. lacustris) were exposed for 7 weeks to 0.05X and 0.2X 96-hr LC50 concentrations of simulated bleached kraft pulp mill effluent (KME - Sa + CP). A sulfate soap preparation, composed mainly of resin and fatty acids, with added chlorophenols (CP, tri-, tetra-, and penta-CP) was used as the toxicant mixture. Concentrations of free CP in plasma and free and conjugated CP in bile were proportional to their concentrations in the water. The greatest total gradient between bile and water CP was 5.2 X 10(4) for pentachlorophenol. The activity of a liver polysubstrate monooxygenase (PSMO) system, assayed with three model substrates, increased 40 to 67% due to KME - Sa + CP. However, the increase was not directly dependent on the exposure concentration. In contrast to PSMO, activities of conjugating enzymes (p-nitrophenol UDP-glucuronosyl and glutathione transferases) were decreased in the liver. Increased concentration of glutathione was noted in the liver and kidney. In addition, a small (9%) but significant decrease in blood hemoglobin concentration was observed at the higher exposure concentration. Although growth rate of lake trout was markedly decreased due to KME - Sa + CP, hydromineral balance and carbohydrate metabolism in fish were unaffected, indicating possible physiological compensation. On the other hand, lethality tests with lake trout preexposed to KME - Sa + CP at 0.2 X LC50 revealed decreased tolerance, whereas at the lower exposure concentration it was unchanged. We therefore conclude that various physiological adjustments in trout during subchronic exposures were not adaptive in terms of short-term tolerance.

  4. Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process

    Science.gov (United States)

    Amosa, Mutiu Kolade

    2016-10-01

    Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking (η = 2) down to cake filtration (η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.

  5. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    Science.gov (United States)

    Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.

    2017-06-01

    This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .

  6. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    Directory of Open Access Journals (Sweden)

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  7. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process

    Energy Technology Data Exchange (ETDEWEB)

    Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); Palm Oil Product and Technology Research Center, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110 (Thailand); Birkeland, Nils-Kaare [Department of Biology and Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020 Bergen (Norway)

    2009-09-15

    The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l{sup -1} d{sup -1} gave a maximum hydrogen yield of 0.27 l H{sub 2} g COD{sup -1} with a volumetric hydrogen production rate of 9.1 l H{sub 2} l{sup -1} d{sup -1} (16.9 mmol l{sup -1}h{sup -1}). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 {+-} 3.5%, 92 {+-} 3%, 57 {+-} 2.5% and 78 {+-} 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l{sup -1} d{sup -1}) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME). (author)

  8. Pemanfaatan Biogas (Gas Methan) Dari Hasil Pengolahan Palm Oil Mill Effluent (Pome) Secara Anaerobic Sebagai Bahan Bakar Unit Oil Refinery Dan Pencegah Pencemaran Lingkungan Di Pt.Multimas Nabati Asahan, Batu Bara

    OpenAIRE

    sitorus, Syaiful bahri

    2016-01-01

    Palm oil production in Indonesia continues to increase, thereby increasing the amount of waste therefore to decimate environmental pollution load in the waste in the processing of palm oil in the palm oil mills in PT.Multimas Nabati Asahan, Batu Bara has made Palm Oil Mill Effluent (POME) by using Anaerobic technology to produce biogas which can be utilized as fuel for burning palm oil mills in the refinery unit Multimas 200 palm oil mills, once the reduced pollutant load will be processed b...

  9. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    OpenAIRE

    Seyed Ehsan Hosseini; Ghobad Bagheri; Mostafa Khaleghi; Mazlan Abdul Wahid

    2015-01-01

    Biogas released from palm oil mill effluent (POME) could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4) has...

  10. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    OpenAIRE

    Seyed Ehsan Hosseini; Ghobad Bagheri; Mostafa Khaleghi; Mazlan Abdul Wahid

    2015-01-01

    Biogas released from palm oil mill effluent (POME) could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4) has...

  11. Mutagenicity and organic halogen determination in body fluids and tissues of rats treated with drinking water and pulp mill bleachery effluent concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Monarca, S.; Hongslo, J.K.; Kringstad, A.; Carlberg, G.E.

    1984-01-01

    Concentrates of either drinking water or chlorination stage pulp mill effluent were injected intraperitonally into rats. Urine, feces, liver, and adipose tissues were treated for mutagenic activity and analysed for organic halogen. For both sample types nearly all the organic halogen taken up, eighteen percent from the chlorination stage sample and four percent from the drinking water sample, was excreted via the urine during the first day. Weak mutagenic activity could only be found in the urine collected the first day from animals treated with the highest dose of drinking water. 31 references, 5 tables.

  12. Arsenic mass balance in a paper mill and impact of the arsenic release from the WWTP effluent on the Moselle River.

    Science.gov (United States)

    Michon, C; Pons, M-N; Bauda, P; Poirot, H; Potier, O

    2011-01-01

    Rivers used for drinking water production might be subject to anthropogenic pollution discharge upstream of the intake point. This problem was investigated in the case of the Moselle River, used for water production in Nancy (350,000 inhabitants) and which might be impacted by industrial activities 60 km upstream. The arsenic flux of a pulp and paper mill discharging in the Moselle River at this location has been more specifically investigated. The main sources of arsenic in that mill seemed to be the recovered papers and the gravel pit water used as feed water. The arsenic input related to wood and bark was limited. The main arsenic outputs from the plant were the paper produced on site and the deinking sludge. The arsenic concentration in the effluent of the wastewater treatment plant (WWTP) was not correlated to the one in the gravel pit water, but may depend on the operating conditions of the WWTP or the changes in processes of the mill. The impact of this anthropogenic source of arsenic on the Moselle River was slightly larger in summer, when the flowrate was lower. Globally the impact of the paper mill on the Moselle River water quality was limited in terms of arsenic.

  13. Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Kraak, G.J.; Munkittrick, K.R.; McMaster, M.E.; Portt, C.B.; Chang, J.P. (Department of Zoology, University of Guelph, Ontario (Canada))

    1992-08-01

    Recent studies have demonstrated reproductive problems in white sucker (Catostomus commersoni) exposed to bleached kraft pulp mill effluent (BKME) at Jackfish Bay on Lake Superior. These fish exhibit delayed sexual maturity, reduced gonadal size, reduced secondary sexual characteristics, and circulating steroid levels depressed relative to those of reference populations. The present studies were designed to evaluate sites in the pituitary-gonadal axis of prespawning white sucker affected by BKME exposure. At the time of entry to the spawning stream, plasma levels of immunoreactive gonadotropin (GtH)-II (LH-type GtH) in male and female white sucker were 30- and 50-fold lower, respectively, than the levels in fish from a reference site. A single intraperitoneal injection of D-Arg6, Pro9N-Et sGnRH (sGnRH-A, 0.1 mg/kg) increased plasma GtH levels in male and female fish at both sites, although the magnitude of the response was greatly reduced in BKME-exposed fish. Fish at the BKME site did not ovulate in response to sGnRH-A, while 10 of 10 fish from the reference site ovulated within 6 hr. Plasma 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17,20 beta-P) levels were depressed in BKME-exposed fish and unlike fish at the reference site, failed to increase in response to sGnRH-A. Testosterone levels in both sexes and 11-ketostestosterone levels in males were elevated in fish from the reference site but were not further increased by GnRH treatment. In contrast, BKME-exposed fish exhibit a transitory increase in testosterone levels in response to the GnRH analog. In vitro incubations of ovarian follicles obtained from fish at the BKME site revealed depressed basal secretion of testosterone and 17,20 beta-P and reduced responsiveness to the GtH analog human chorionic gonadotropin and to forskolin, a direct activator of adenylate cyclase.

  14. Growth and antioxidant response of Brassica rapa var. rapa L. (turnip) irrigated with different compositions of paper and board mill (PBM) effluent.

    Science.gov (United States)

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Saeed, Zohaib; Shaheen, Muhammad Ashraf; Akhtar, Naeem; Majeed, Abdul

    2013-05-01

    Current study presents the effect of irrigation with different compositions (0%, 20%, 40%, 60%, 80% and 100%) of PBM effluent on growth and antioxidant potential of Brassica rapa var. rapa L. plants. Seeds were exposed to different PBM effluent compositions, which resulted in significant decrease in their germination potential with elevated delay index. Significant changes in growth parameters (plant height, number of leaves and leaf area) were recorded for turnip plants at regular intervals (25, 50 and 75 d) as function of PBM effluent proportion. Response of biochemical and antioxidant constituents in different parts of turnip, against stress induced by PBM effluent, was assessed by estimating the contents of chlorophyll (a+b), carotenoids, protein, phenolics, flavonoids, ascorbic acid and malondialdehyde. Antioxidant activity was evaluated by measuring DPPH radical scavenging potential. The results of this study suggest that the impact of PBM effluent irrigation is dependent on concentration of effluent in irrigation mixture and is very clear on plant growth and antioxidant attributes. Maximum benefits were secured at 40% PBM effluent to irrigate turnip plants till maturity while higher concentrations were found useful for shorter period (25-50 d).

  15. A comparative study of biopolymers and alum in the separation and recovery of pulp fibres from paper mill effluent by flocculation.

    Science.gov (United States)

    Mukherjee, Sumona; Mukhopadhyay, Soumyadeep; Pariatamby, Agamuthu; Ali Hashim, Mohd; Sahu, Jaya Narayan; Sen Gupta, Bhaskar

    2014-09-01

    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.

  16. Isolation and characterization of resin acid degrading bacteria found in effluent from a bleached kraft pulp mill.

    Science.gov (United States)

    Morgan, C A; Wyndham, R C

    1996-05-01

    Thirteen resin acid degrading bacteria enriched on abietic or dehydroabietic acids were isolated from waste water from the aerated stabilization basin of a bleached kraft pulp mill. Standard biochemical tests were used to characterize each isolate. Each isolate was tested for its ability to degrade six abietane- and pimarane-type resin acids. Resin acid concentrations were determined by high pressure liquid chromatography and UV absorbance. Cluster analysis based on phenotypic characteristics identified two distinct clusters of degraders that differed in their ability to utilize carbohydrates as carbon sources. Fatty acid methyl ester analysis of representative isolates from each cluster identified A19-6a and D11-13 as Comamonas and Alcaligenes species, respectively. To determine genotypic relatedness, enterobacterial repetitive intergenic consensus sequences were used to amplify genomic DNA fragments from 10 isolates. These results supported the phenotypic analysis for all isolates tested except A19-5 and A19-6b. These two organisms were clustered closely together based on phenotype but had distinctly different banding patterns, suggesting that they are not related genotypically. All isolates degraded a subset of the six resin acid congeners. Isolates A19-3, A19-6a, A19-6b, and D11-37 were the most effective at degrading all six congeners.

  17. Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis.

  18. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach.

    Science.gov (United States)

    Gan, Pei Pei; Ng, Shi Han; Huang, Yan; Li, Sam Fong Yau

    2012-06-01

    The present study reports the synthesis of gold nanoparticles (AuNps) from gold precursor using palm oil mill effluent (POME) without adding external surfactant, capping agent or template. The biosynthesized AuNps were characterized by using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). According to the image analysis performed on a representative TEM micrograph by counting 258 particles, the obtained AuNps are predominantly spherical with an average size of 18.75 ± 5.96 nm. In addition, some triangular and hexagonal nanoparticles were also observed. The influence of various reaction parameters such as reaction pH, concentration of gold precursor and interaction time to the morphology and size of biosynthesized AuNps was investigated. This study shows the feasibility of using agro waste material for the biosynthesis of AuNps which is potentially more scalable and economic due to its lower cost.

  19. A novel application of red mud-iron on granulation and treatment of palm oil mill effluent using upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Ahmad, Anwar

    2014-01-01

    The performance of the upflow anaerobic sludge blanket reactor that used red mud-iron (RM-Fe) for methane production for the treatment of palm oil mill effluent (POME) at various hydraulic retention time (HRT) was determined. POME was used as the substrate carbon source. The biogas production rate was 1.7 l biogas/h with a methane yield of 0.78 l CH4/g CODremoved and chemical oxygen demand (COD) removal was 85% at POME concentration of 30 g COD/l at HRT 16 h. The reactor R2 showed average methane content of biogas and COD reduction of 78% and 85% at 400 mg/l RM-Fe. Significant increase in the granule diameter (up to 2900 μm) in R2 was compared to control R1 (up to 86 μm) at end of the experiment.

  20. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Science.gov (United States)

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs).

  1. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.

    Science.gov (United States)

    Devi, Parmila; Saroha, Anil K

    2014-06-01

    The risk analysis was performed to study the bioavailability and eco-toxicity of heavy metals in biochar obtained from pyrolysis of sludge of pulp and paper mill effluent treatment plant. The sludge was pyrolyzed at different temperatures (200-700°C) and the resultant biochar were analyzed for fractionation of heavy metals by sequential extraction procedure. It was observed that all the heavy metals get enriched in biochar matrix after pyrolysis, but the bioavailability and eco-toxicity of the heavy metals in biochar were significantly reduced as the mobile and bioavailable heavy metal fractions were transformed into the relatively stable fractions. Moreover, it was observed that the leaching potential of heavy metals decreased after pyrolysis and the best results were obtained for biochar pyrolyzed at 700°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    . The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  3. 顺铣与逆铣的比较及铣床改进建议%Comparison of Climb-milling to Up-cut-milling and Suggestions on Improving Milling Machine

    Institute of Scientific and Technical Information of China (English)

    王敏之

    2012-01-01

    阐述了顺铣与逆铣的不同特点.指出普通铣床纵向进给机构普遍采用滑动丝杠限制了运用顺铣法的结构性缺陷.提出机床厂可将普通铣床的纵向进给机构改装成滚珠丝杠的建议,使之发挥更好的作用.%The difference between the climb-milling and the up-cut-milling was elaborated. The structural defect was pointed out that the use of the climb-milling method was limited by the level sliding feed mechanism of ordinary milling machine. It is proposed that the level feed mechanism of ordinary milling machine in the machine tool plant can be modified into ball screw pair, so that a greater economic efficiency is played by it.

  4. 40 CFR 420.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming... tube mills, carbon and specialty. Subpart G Pollutant or pollutant property BPT effluent...

  5. The effects of olives harvest period and production year on olive mill wastewater properties - evaluation of Pleurotus strains as bioindicators of the effluent's toxicity.

    Science.gov (United States)

    Ntougias, Spyridon; Gaitis, Fragiskos; Katsaris, Panagiotis; Skoulika, Stavroula; Iliopoulos, Nikiforos; Zervakis, Georgios I

    2013-07-01

    Olive mill wastewater (OMW) generated during the oil extraction from Olea europea L. var. koroneiki olives was sampled at the beginning, the middle and the end of the harvesting season for three successive crop production years, and from four olive mills. OMW samples were examined in respect to their physicochemical characteristics, fatty acid composition of the lipid fraction, and adverse effects on biomass production of nine white-rot fungi of the basidiomycetous genus Pleurotus. Total N, nitrogen species, potassium and phosphate concentrations as well as total phenolics content of OMW samples were influenced by the crop year but not from the harvest period (albeit higher values for nitrate, nitrite, phosphate and potassium as well as total phenolics contents were obtained during ripening of olives), whereas protein concentration, total organic carbon and total solids were not significantly affected by the crop year or the harvest period. In addition, fatty acids composition, i.e. nC14:0, nC16:1Δ9cis, nC17:1Δ10cis, nC18:0, nC18:1Δ9cis, nC22:0 and nC24:0 varied significantly during different crop years and harvest periods. Olive fruits maturity and biannual alternate-bearing appear to play key-roles in the fatty acid variation detected in OMW samples. OMW toxicity as evaluated by the mycelium growth of Pleurotus strains was influenced significantly by the phenolic content of OMW samples obtained during three successive crop years; in contrast, the olives harvest period did not affect Pleurotus biomass production. Hence, experimental data indicated that selected Pleurotus strains could serve as bioindicators of OMW toxicity. Development of viable OMW detoxification processes as well as the exploitation of the effluent's fertilizing value are discussed in the light of the above findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of agitation on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    Science.gov (United States)

    Trisakti, Bambang; Irvan, Zahara, Intan; Taslim, Turmuzi, Muhammad

    2017-05-01

    This study is an assessment of the effect of agitation on biogas production on methanogenesis stage. Methanogenesis is the second stage of two-stage anaerobic digestion of palm oil effluent (POME) into biogas. The purpose of this study is to get the effect of agitation on growth of microorganisms, degradation of organic substances, and biogas production and composition. Initially, the suitable loading up was determined by varying the HRT at 100, 40, 6, and 4 days in the continuous stirred tank reactor (CSTR) with agitation rate 100 rpm, pH 6.7-7.5, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 50, 100, 150, and 200 rpm. The substrate used was the effluent of the acidogenesis stage that fed to the CSTR four times a day. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Production and composition of biogas were also determined by measuring the volume of biogas and content of H2S and CO2. The result showed that the pH and alkalinity it was still within the range of methanogenesis process. The growth of microorganisms were increased with the increasing of agitation rate. However, the best degradation of organic substances, biogas production, and biogas composition were achieved at 100 rpm. The VS decomposition, COD removal, biogas production, CO2 content, and CH4 content at 100 rpm were 67.44 ± 3.59%, 81.00%, 58.87 ± 6.27 L/kg-ΔVS, 23.36%, and 76.64%, respectively.

  7. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst.

    Science.gov (United States)

    Subramonian, Wennie; Wu, Ta Yeong; Chai, Siang-Piao

    2017-02-01

    In this work, heterogeneous photocatalysis was used to treat pulp and paper mill effluent (PPME). Magnetically retrievable Fe2O3-TiO2 was fabricated by employing a solvent-free mechanochemical process under ambient conditions. Findings elucidated the successful incorporation of Fe2O3 into the TiO2 lattice. Fe2O3-TiO2 was found to be an irregular and slightly agglomerated surface morphology. In comparison to commercial P25, Fe2O3-TiO2 exhibited higher ferromagnetism and better catalyst properties with improvements in surface area (58.40 m(2)/g), pore volume (0.29 cm(3)/g), pore size (18.52 nm), and band gap (2.95 eV). Besides, reusability study revealed that Fe2O3-TiO2 was chemically stable and could be reused successively (five cycles) without significant changes in its photoactivity and intrinsic properties. Additionally, this study demonstrated the potential recovery of Fe2O3-TiO2 from an aqueous suspension by using an applied magnetic field or sedimentation. Interactive effects of photocatalytic conditions (initial effluent pH, Fe2O3-TiO2 dosage, and air flow-rate), reaction mechanism, and the presence of chemical oxidants (H2O2, BrO3(-), and HOCl) during the treatment process of PPME were also investigated. Under optimal conditions (initial effluent pH = 3.88, [Fe2O3-TiO2] = 1.3 g/L, and air flow-rate = 2.28 L/min), the treatment efficiency of Fe2O3-TiO2 was 98.5% higher than the P25. Based on Langmuir-Hinshelwood kinetic model, apparent rate constants of Fe2O3-TiO2 and P25 were 9.2 × 10(-3) and 2.7 × 10(-3) min(-1), respectively. The present study revealed not only the potential of using magnetic Fe2O3-TiO2 in PPME treatment but also demonstrated high reusability and easy separation of Fe2O3-TiO2 from the wastewater.

  8. Adsorption of colour, TSS and COD from palm oil mill effluent (POME using acid-washed coconut shell activated carbon: Kinetic and mechanism studies

    Directory of Open Access Journals (Sweden)

    Sia Yong Yin

    2017-01-01

    Full Text Available The disposal of palm oil mill effluent (POME without proper treatment before being discharged into natural water sources has become undesirable because of high concentration of suspended solid (SS, oil and grease (O&G, chemical oxygen demand (COD and biological oxygen demand (BOD. This study investigated the feasibility of removing colour, total suspended solid (TSS and COD using acid-washed coconut shell based activated carbon (CSAC through the evaluation of the adsorption uptake as well as the adsorption kinetics and mechanism. The percentage removal of colour, TSS and COD from POME onto CSAC were 61%, 39%, 66%, respectively achieved within 48 hours of contact time. The kinetic models studied were pseudo-first-order (PFO, pseudo-second-order (PSO, and Elovich models. The intra-particle diffusion (IPD model was studied to interpret the adsorption diffusion mechanism. The adsorption of colour, TSS and COD onto CSAC were best interpreted by the PSO model, and well fitted by the Elovich model. The IPD and Boyd plots indicated that IPD and film diffusion controlled the adsorption of colour, TSS and COD onto the CSAC.

  9. Oil palm by product as an alternative feedstuff in Central Kalimantan: 1. The effect of feeding palm oil mill effluent on broiler’s performance

    Directory of Open Access Journals (Sweden)

    Ermin Widjaja

    2006-03-01

    Full Text Available Palm oil mill effluent, a by product of crude palm oil processing, is found in an exessive amount in Central Kalimantan. It is estimated that 400 ton of this material is produced per day by crude palm oil (CPO factory in this region. This material contains 12.63-17.41% crude protein, 9.98-25.79% crude fiber, 7.12-15.15% crude fat and 3217-3454 kcal/kg (gross energy. An experiment was conducted on broiler chickens of Hubbard strain in Kapuas District. The objectives of the experiment was to study the performance of broilers fed solid in the diet. The experiment was arranged in a completely randomized design. The treatments were levels of solid in the diet, i.e., 0.0, 12.5, 25.0 and 37.5%. Four hundred broilers were devided into 4 treatment groups with 5 replications, consisted of 20 chickens in each replicate. The results of this experiment showed that diet containing 0.0, 12.5, 25.0 and 37.5% of solid respectively produced final live weight of broilers 2508, 2229 and 1880 g respectively, whereas control (0.0% of solid was 2712 g. Feed conversion of the treatments were 2.39, 2.76, 3.24 respectively and without solid as control was 2.36. It is concluded that diet containing as much as 12.5% of solid can be used in broiler ration.

  10. Combustion of Biogas Released from Palm Oil Mill Effluent and the Effects of Hydrogen Enrichment on the Characteristics of the Biogas Flame

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-01-01

    Full Text Available Biogas released from palm oil mill effluent (POME could be a source of air pollution, which has illustrated negative effects on the global warming. To protect the environment from toxic emissions and use the energy of POME biogas, POME is conducted to the closed digestion systems and released biogas is captured. Since POME biogas upgrading is a complicated process, it is not economical and thus new combustion techniques should be examined. In this paper, POME biogas (40% CO2 and 60% CH4 has been utilized as a fuel in a lab-scale furnace. A computational approach by standard k-ε combustion and turbulence model is applied. Hydrogen is added to the biogas components and the impacts of hydrogen enrichment on the temperature distribution, flame stability, and pollutant formation are studied. The results confirm that adding hydrogen to the POME biogas content could improve low calorific value (LCV of biogas and increases the stability of the POME biogas flame. Indeed, the biogas flame length rises and distribution of the temperature within the chamber is uniform when hydrogen is added to the POME biogas composition. Compared to the pure biogas combustion, thermal NOx formation increases in hydrogen-enriched POME biogas combustion due to the enhancement of the furnace temperature.

  11. Pilot-scale production of lipase using palm oil mill effluent as a basal medium and its immobilization by selected materials.

    Science.gov (United States)

    Asih, Devi Ratna; Alam, Md Zahangir; Alam, Zahangir; Salleh, Md Noor; Salleh, Noor; Salihu, Aliyu

    2014-01-01

    A pilot-scale production of lipase using palm oil mill effluent (POME) as a fermentation basal medium was carried out, and parameters for immobilization of the produced lipase were optimized. Lipase production in a 300-L bioreactor was performed using two proposed strategies, constant power per volume (P/V) and constant tip speed. Moreover, lipase immobilization on different materials was also investigated. Lipase production was performed using liquid-state bioconversion of POME as the medium and Candida cylindracea as the inoculum. The fermentation medium was composed of 1% total suspended solids (TSS) of POME, 0.5% (w/v) peptone, 0.7% (v/v) Tween-80, and 2.2% inoculum. The medium composition was decided on the basis of the medium optimization results of a previous study. The fermentation was carried out for 48 h at 30°C and pH 6. The maximum lipase production was 5.72U/mL and 21.34 U/mL, obtained from the scale-up strategies of constant tip speed and P/V, respectively. Four accessible support materials were screened for their potential use in immobilization. The most suitable support material was found to be activated carbon, with a maximum immobilization of 94%.

  12. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-02-14

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  13. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    Science.gov (United States)

    Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

    2013-06-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  14. Photodegradation of Polyphenols and Aromatic Amines in Olive Mill Effluents with Ni Doped C/TiO2

    Directory of Open Access Journals (Sweden)

    Delia Teresa Sponza

    2015-01-01

    Full Text Available Magnetic nickel coated carbon based titanium dioxide [C/TiO2/Ni] nanocomposites were used for photodegradation of polyphenols and total aromatic amines (TAAs metabolites from olive mill wastewaters (OMW at different operational conditions such as different mass ratios of C, TiO2, and Ni (1%/2%/5%; 5%/1%/2%; and 2%/5%/1%, being at increasing photodegradation times (15, 30, 45, 60, 75, 120, and 180 min, photocatalyst concentrations (100, 250, 500, and 1000 mg L−1, pH values (3.5, 4.0, 7.0, and 10.0 and temperatures (15°C, 25°C, 50°C, and 80°C, and being under 300 W ultraviolet (UV and 30 W sunlight irradiation. Under the optimized conditions, at pH=7.0, at 500 mg L−1 C/TiO2/Ni nanocomposite, under 300 W UV light, after 60 min, at 25°C, the maximum CODdissolved, total phenol, and TAAs removals were 99%, 90%, and 96%, respectively. Photodegradation removals in the OMW under sunlight and being lower than those under UV light.

  15. Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy.

    Science.gov (United States)

    Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Calisto, Vânia

    2017-03-01

    Pulp and paper industry produces massive amounts of sludge from wastewater treatment, which constitute an enormous environmental challenge. A possible management option is the conversion of sludge into carbon-based adsorbents to be applied in water remediation. For such utilization it is important to investigate if sludge is a consistent raw material originating reproducible final materials (either over time or from different manufacturing processes), which is the main goal of this work. For that purpose, different primary (PS) and biological sludge (BS) batches from two factories with different operation modes were sampled and subjected to pyrolysis (P materials) and to pyrolysis followed by acid washing (PW materials). All the materials were characterized by proximate analysis, total organic carbon (TOC) and inorganic carbon (IC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and N2 adsorption isotherms (specific surface area (SBET)and porosity determination). Sludge from the two factories proved to have distinct physicochemical properties, mainly in what concerns IC. After pyrolysis, the washing step was essential to reduce IC and to considerably increase SBET, yet with high impact in the final production yield. Among the materials here produced, PW materials from PS were those having the highest SBET values (387-488 m(2) g(-1)). Overall, it was found that precursors from different factories might originate final materials with distinct characteristics, being essential to take into account this source of variability when considering paper mill sludge as a raw material. Nevertheless, for PS, low variability was found between batches, which points out to the reliability of such residues to be used as precursors of carbon adsorbents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology.

    Science.gov (United States)

    Darajeh, Negisa; Idris, Azni; Fard Masoumi, Hamid Reza; Nourani, Abolfazl; Truong, Paul; Sairi, Nor Asrina

    2016-10-01

    While the oil palm industry has been recognized for its contribution towards economic growth and rapid development, it has also contributed to environmental pollution due to the production of huge quantities of by-products from the oil extraction process. A phytoremediation technique (floating Vetiver system) was used to treat Palm Oil Mill Secondary Effluent (POMSE). A batch study using 40 L treatment tanks was carried out under different conditions and Response Surface Methodology (RSM) was applied to optimize the treatment process. A three factor central composite design (CCD) was used to predict the experimental variables (POMSE concentration, Vetiver plant density and time). An extraordinary decrease in organic matter as measured by BOD and COD (96% and 94% respectively) was recorded during the experimental duration of 4 weeks using a density of 30 Vetiver plants. The best and lowest final BOD of 2 mg/L was obtained when using 15 Vetiver plants after 13 days for low concentration POMSE (initial BOD = 50 mg/L). The next best result of BOD at 32 mg/L was obtained when using 30 Vetiver plants after 24 days for medium concentration POMSE (initial BOD = 175 mg/L). These results confirmed the validity of the model, and the experimental value was determined to be quite close to the predicted value, implying that the empirical model derived from RSM experimental design can be used to adequately describe the relationship between the independent variables and response. The study showed that the Vetiver system is an effective method of treating POMSE.

  17. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, AB. Aziz Abdul; Daud, Zawawi; Ahmad, Zulkifli [Faculty of Civil and Enviromental Engineering, University Tun Hussein Onn (Malaysia)

    2011-07-01

    Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR) and hydraulic retention time (HRT) of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28{+-}2 C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37{+-}1 C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD) removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  18. Anaerobic digestion of palm oil mill effluent with lampung natural zeolite as microbe immobilization medium and digested cow manure as starter

    Science.gov (United States)

    Halim, Lenny; Mellyanawaty, Melly; Cahyono, Rochim Bakti; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Indonesia is well-known as the world's biggest palm oil producer with 32.5 million tons of annual production. Palm oil processing contributes to 60% wastewater, leading to environmental problem caused by excessive production of wastewater. This wastewater, i.e. Palm Oil Mill Effluent (POME), has high organic content (40,000-60,000 mg COD/L) which is potential for biogas production. However, its low pH value and long chain fatty acid content likely inhibit the anaerobic digestion. Porous media might reduce the inhibitory effect during POME digestion since the media act as both immobilization media for bacteria and as inhibitor adsorbent. Excessive amount of porous media might interfere with the nutrient consumption by microbes. There will be an optimum amount of porous media added, which depends on the wastewater characteristics. This research studied Lampung natural zeolite as immobilization media in digesting POME. The batch experiment was conducted for 40 days with different amount of natural zeolite, i.e. 0; 45; 100; and 200 g/g COD. Digested cow manure was used as the starter inoculum, considering the abundance of anaerobic bacteria therein. Zeolite addition was proven to accelerate COD reduction and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion. The addition of natural zeolite up to 45 g/g COD is considered enough to increase the COD removal (85.695 %), maintain the methane content up to 50%, and enhance the bacteria activity. However, larger amount of natural zeolite lowered the methane production and COD reduction, which indicated nutrient adsorption on to the media and hence caused decreasing nutrient access by the microbes.

  19. The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy

    Directory of Open Access Journals (Sweden)

    Alawi Sulaiman

    2009-01-01

    Full Text Available Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME and methane gas production. The effect of sludge recycling rate was studied by applying Organic Loading Rates (OLR (between 1.0 and 10.0 kgCOD m-3 day-1 at different sludge recycling rates (6, 12 and 18 m3 day-1. Results: At sludge recycling rate of 18 m3 day-1, the maximum OLR was 10.0 kgCOD m-3 day-1 with biogas and methane productivity of 1.5 and 0.9 m3 m-3 day-1, respectively. By increasing the sludge recycling rate the VFA concentration was controlled below its inhibitory limit (1000 mg L-1 and the COD removal efficiency recorded was above 95% which indicated good treatment performance for the digester. Two methanogens species (Methanosarcina sp. and Methanosaeta concilii had been identified from sludge samples obtained from the digester and recycled stream. Conclusion: By increasing the sludge recycling rate upon higher application of OLR, the treatment process was kept stable with high COD removal efficiency. The biogas and methane productivity were initially improved but reduced once OLR and recycling rate were increased to 10.0 kg COD m3 day-1 and 18 m3 day-1 respectively.

  20. A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

    2011-07-01

    Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  1. Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production

    Directory of Open Access Journals (Sweden)

    A. Sulaiman

    2009-01-01

    Full Text Available Problem statement: Refined Glycerin Wash Water (RGWW from the oleochemical industry contains high Chemical Oxygen Demand (COD and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME for its treatment and methane recovery. Approach: A large 500 m3 semi-commercial closed digester tank was used to study the effect of co-digesting POME and RGWW under mesophilic condition at different RGWW percentage. The digester performance in terms of COD removal efficiency and methane production rate and stability based on total Volatile Fatty Acids (VFA accumulation, Mixed Liquor Volatile Suspended Solid (MLVSS and pH were evaluated. Results: At 1.0% of RGWW co-digested, both COD removal efficiency and methane production rate showed satisfactory results with higher than 90% and 505 m3 day-1, respectively. However, once the percentage was increased to a maximum of 5.25%, COD removal efficiency remains high but the methane production rate reduced significantly down to 307 m3 day-1. At this stage, the digester was already unstable with high total VFA recorded of 913 mg L-1 and low cells concentration of 8.58 g L-1. This was probably due to the effect of plasmolysis on the methanogens at high concentration of NaCl in the digester of nearly 4000 mg L-1. Conclusion: Co-digesting of RGWW with high NaCl content and POME is satisfactory for COD removal but not for increasing the methane production.

  2. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    Science.gov (United States)

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  3. Research Progress of Pulp Mill Effluent Treatment with Ozonation and Catalytic Ozonation Technology%臭氧及催化臭氧氧化法处理制浆废水的研究进展

    Institute of Scientific and Technical Information of China (English)

    雷利荣; 李友明

    2013-01-01

    Ozonation is an environmentally friendly technology for wastewater treatment.Catalytic ozonation technology,based on generation of hydroxyl radical (· OH) with high oxidizing power by synergistic effect of catalyst and ozone molecules,effectively enhances degradation efficiency of organic pollutants existed in wastewater and becomes one of the promising wastewater treatment technologies with practical application potential.In this paper,basic mechanisms of degradation of organic pollutant by ozonation and catalytic ozonation technology were described in detail,and factors which influence treatment efficiency of pulp mill effluent with ozoration were discussed.Moreover,the recent research progress of the pulping effluent treatment with ozonation and ozonation catalytic ozonation technology was reviewed.The existing problems and future development trends about ozonation of pulp mill effluent were presented.%介绍了臭氧及催化臭氧氧化技术降解去除废水中有机物的机理,分析了影响臭氧处理制浆废水效果的主要因素.综述了近年来臭氧及催化臭氧氧化技术处理制浆废水的研究进展;指出此领域尚存在的问题,并对未来的发展方向进行了展望.

  4. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.

    Science.gov (United States)

    Baranitharan, E; Khan, Maksudur R; Prasad, D M R; Teo, Wee Fei Aaron; Tan, Geok Yuan Annie; Jose, Rajan

    2015-01-01

    Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L(-1)) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m(-2), 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.

  5. 絮凝法深度处理造纸废水%A Study on Advanced Treatment of Paper Mill Effluent by Different Flocculants

    Institute of Scientific and Technical Information of China (English)

    尚尉; 涂强; 孙墨杰

    2012-01-01

    The new type waste water treatment agent Fe2+ complexes was used to pretreat the effluent water in secondary clarification pond, and then the water was flocculated by polyacrylamide (PAM), Al2(SO4)3 and PAC respectively. By detecting the CODc, and colority, it was found that the PAC can reach the best effect, and the optimal condition of the wastewater treatment are as follows: pH at about 6 - 7,200 mg·L-1 of PAC and sedimentation time 3 h. At these conditions, the ultimate CODCr was 85mg·L-1, colority was 30 times, which can meet the Discharge Standard of Water Pollutants for Pulp and Paper Industry (GB 3544- 2008). The PAC is of high efficiency, low cost, and friendly environmental, it will be widely used in advanced treatment of paper mill wastewater.%采用新型废水处理剂Fe2+配合物,预处理二沉池出水,然后分别用聚丙烯酰胺(PAM)、Al2(SO4)3、聚合氯化铝(PAC)三种絮凝剂进行絮凝处理。通过检测废水的COD和色度等指标,结果发现聚合氯化铝效果最佳。确定最优条件为:废水pH值6~7,聚合氯化铝的投放量为200mg·L-1,沉降时间3h。最终出水COD可降至85mg·L-1,色度为32倍。达到了《制浆造纸工业水污染物排放标准》(GB3544—2008)的排放要求。聚合氯化铝用于造纸废水深度处理效率高、成本低、绿色环保,具有很好的应用前景。

  6. Coagulation-Sedimentation-Extraction Pretreatment Methods for The Removal of Suspended Solids and Residual Oil From Palm Oil Mill Effluent (Pome

    Directory of Open Access Journals (Sweden)

    Abdul Latif Ahmad, Norliza Ibrahim , Suzylawati Ismail and Subhash Bhatia

    2012-08-01

    Full Text Available Suspended solids and residual oil removal in a liquid are relevant to numerous research areas and industry. The suspended solid cannot be removed completely by plain settling. Large and heavy particles can settle out readily, but smaller and lighter particles settle very slowly or in some cases do not settle at all. Because of this, it requires efficient physical-chemical pretreatment methods.   Our current research is to study the pretreatment methods in the removal of suspended solids and residual oil content in POME. Preliminary analysis shows that POME contains 40,000 mg/L suspended solid and 4,000 mg/L oil and grease content that relatively very high compared to the maximum allowable limit by the Malaysian Department of Environment which are only 400 mg/L and 50 mg/L respectively. The methods chosen were coagulation-sedimentation method for suspended solids removal and solvent extraction for residual oil removal.  Jar test apparatus was used as the standard procedure for bench-scale testing and alum was used as the coagulant. Parameters studied were alum dosage, mixing time, mixing speed, sedimentation time and pH. For removal of residual oil, six different organic solvents; n-hexane, n-heptane, benzene, petroleum ether, pentane and petroleum benzene were used. For every solvent the effect of solvent ratio, mixing time, mixing speed and pH were analyzed. The results show that the optimum conditions in removal of suspended solid from POME were at pH 4.11, sedimentation time of 100 minutes and 150 rpm mixing speed with 1.5 hr mixing time. N-hexane give the best performance in extracting residual oil from POME with solvent to POME ratio of 6:10. It was estimated about 0.54 grams of oil and grease can be extracted with optimum variables at pH 4, mixing speed of 200 rpm, and 20 minutes mixing time.  Key Words: palm oil mill effluent, coagulation, suspended solid, residual oil, solvent extraction.

  7. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  8. Development of a sequential injection-liquid microextraction procedure with GC-FID for analysis of short-chain fatty acids in palm oil mill effluent.

    Science.gov (United States)

    Pruksatrakul, Thapanee; Phoopraintra, Pattamaporn; Wilairat, Prapin; Chaiyen, Pimchai; Chantiwas, Rattikan

    2017-04-01

    Short-chain fatty acids, such as acetic, propionic, butyric, iso-valeric and valeric acids, play an important role in methanogenesis activity for biogas production processes. Thus, simple and rapid procedures for monitoring the levels of short-chain fatty acids are requisite for sustaining biogas production. This work presents the development of a sequential injection-liquid microextraction (SI-LME) procedure with GC-FID analysis for determination of short-chain fatty acids. GC-FID was employed for detection of the short-chain fatty acids. Calibration curves were linear with good coefficients of determination (r(2)>0.999), using methacrylic acid as the internal standard. Limits of quantification (LOQ) were in the range of 0.03-0.19mM. The SI-LME procedure employed tert-butyl methyl ether (TBME) as the extracting solvent. Various SI-LME conditions were investigated and optimized to obtain the highest recovery of extraction. With these optimized conditions, an extraction recovery of the five key short-chain fatty acids of 67-90% was obtained, with less than 2% RSD (n=3). The final SI-LME procedure employed two fluidic zones of TBME with a single aqueous fluidic zone of sample sandwiched between the TBME zones, with 5 cycles of flow reversal at a flow rate of 5µL/s for the extraction process. Intra- and inter-day precision values were 0.5-4.0% RSD and 3.3-4.8% RSD, respectively. Accuracy based on percentage of sample recovery were in the range of 69-96, 102-107, and 82-101% (n=4) for acetic, propionic and butyric acids, respectively. The proposed method was applied for the measurement of short-chain fatty acids in palm oil mill effluents used in biogas production in a factory performing palm oil extraction process. The SI-LME method provides improved extraction performance with high precision, and is both simple and rapid with its economical extraction technique. The SI-LME procedure with GC-FID has strong potential for use as a quality control process for monitoring

  9. Bleaching of olive mill wastewater by clay in the presence of hydrogen peroxide; Decoloration d'effluents liquides des huileries d'olives par des sols argileux en presence du peroxyde d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Oukili, O.; Chaouch, M.; Rafiq, M. [Faculte des Sciences, Lab. de Chimie des Materiaux et de l' Environnement, Fes (Morocco); Hadji, M. [Laboratoire de Controle des Eaux, R.A.D.E.E.F., Fes (Morocco); Hamdi, M. [INSAT, Lab. de Microbiologie de l' Environnement, Fes (Morocco); Benlemlih, M. [Faculte des Sciences, Lab. de Microbiologie de l' Environnement, Fes (Morocco)

    2001-04-01

    Treatment of olive mill wastewater (OMW) with clayey soils in the presence of hydrogen peroxide (H{sub 2}O{sub 2}) allows the elimination of phenolic compounds responsible for the black-brownish color of this industrial effluent. The aim of this research was to define optimal physicochemical parameters for the bleaching of OMW with clay in the presence of hydrogen peroxide. Two clayey soil powders were tested (A and B) and the results obtained indicate that high bleaching could be reached after 24 hours exposure of OMW to 7 % (W/V) clay material A in the presence of 0.5 % (V/V) hydrogen peroxide. Under these conditions, the bleaching led to about 87 % decrease of polyphenols (PF) and a 66 % decrease of the Chemical Oxygen Demand (COD). The structure of clay and its concentration in iron salts have an effective adsorbent and catalytic effect on the removal of the majority of polyphenols. (authors)

  10. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  11. Palm Oil Milling Wastes and Sustainable Development

    Directory of Open Access Journals (Sweden)

    A. C. Er

    2011-01-01

    Full Text Available Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of wastes into resources. Approach: A longitudinal study was carried out from 2003-2010 via, initially a field survey and subsequently a key informant approach with observation as a complementation for both. Results: Solid wastes, inclusive of solid wastes derived from air emissions and palm oil mil effluent, have a utility function with zero wastage. The principal source of effluent is palm oil mill effluent. Treated palm oil mill effluent is utilized for cropland application by plantation-based palm oil mills. However, independent mills discharge treated palm oil mill effluent in accordance to environmental parameters into receiving waterways. Methane is also released by palm oil mill effluent. Biogas from palm oil mill effluent and biomass energy from solid wastes are potential sources of renewable energy in Malaysia. Conclusion: In general, the wastes from palm oil milling are returned to the field for cropland application, utilized in-house or in the plantation, or sold to third parties. Thus, there is progress made towards sustainable development. The addition of new technologies and replacement of old mills will help to reduce the carbon footprint. However, at this juncture, the feed-in tariff for renewable energy is not financially attractive. If the biogas and biomass renewable energy sector were to take-off, enhancement in the value chain would occur and in tandem further progress towards sustainable development can be attained.

  12. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U/sub 3/O/sub 8/ mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U/sub 3/O/sub 8/. The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables.

  13. Agent orange herbicides, organophosphate and triazinic pesticides analysis in olive oil and industrial oil mill waste effluents using new organic phase immunosensors.

    Science.gov (United States)

    Martini, Elisabetta; Merola, Giovanni; Tomassetti, Mauro; Campanella, Luigi

    2015-02-15

    New immunosensors working in organic solvent mixtures (OPIEs) for the analysis of traces of different pesticides (triazinic, organophosphates and chlorurates) present in hydrophobic matrices such as olive oil were developed and tested. A Clark electrode was used as transducer and peroxidase enzyme as marker. The competitive process took place in a chloroform-hexane 50% (V/V) mixture, while the subsequent enzymatic final measurement was performed in decane and using tert-butylhydroperoxide as substrate of the enzymatic reaction. A linear response of between about 10nM and 5.0μM was usually obtained in the presence of olive oil. Recovery tests were carried out in commercial or artisanal extra virgin olive oil. Traces of pesticides were also checked in the oily matrix, in pomace and mill wastewaters from an industrial oil mill. Immunosensors show good selectivity and satisfactory precision and recovery tests performed in olive oil gave excellent results.

  14. Biosynthesis of poly-beta-hydroxyalkanoates by Sphingopyxis chilensis S37 and Wautersia sp. PZK cultured in cellulose pulp mill effluents containing 2,4,6-trichlorophenol.

    Science.gov (United States)

    Tobella, Lorena M; Bunster, Marta; Pooley, Amalia; Becerra, José; Godoy, Felix; Martínez, Miguel A

    2005-09-01

    Poly-beta-hydroxyalkanoates (PHA) polymer is synthesized by different bacterial species. There has been considerable interest in the development and production of biodegradable polymers; however, the high cost of PHA production has restricted its applications. Kraft cellulose industry effluents containing 2,4,6-trichlorophenol (10 or 20 microg ml(-1)) were used by the bacteria Sphingopyxis chilensis S37 and Wautersia sp. PZK to synthesize PHA. In this condition, S. chilensis S37 was able to grow and degrade 2,4,6-trichlorophenol (ca. 60%) and 80% of these cells accumulated PHA. Wautersia PZK completely degraded 2,4,6-TCP and more than 90% of the cells accumulated PHA in 72 h. The PHA detection was performed by flow cytometry and polyester composition was characterized by gas chromatography-mass spectroscopy (GC-MS), indicating that these polymers are made by 3-hydroxybutyric acid and 3-hydroxyhexadecanoic acid for S37 and PZK strains, respectively. Results demonstrated that strains' growth and PHA production and composition are not modified in cellulose effluents with or without 2,4,6-TCP (10-20 microg ml(-1)). Therefore, our results indicate that S. chilensis S37 and Wautersia sp. PZK are able to degrade a toxic compound such as a 2,4,6-TCP and simultaneously produce a valuable biopolymer using low-value substrates.

  15. Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Hassan, Mohd Ali; Tokura, Mitsunori; Shirai, Yoshihito

    2013-11-01

    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified.

  16. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    Science.gov (United States)

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.

  17. High biodegradation levels of 4,5,6-trichloroguaiacol by Bacillus sp. isolated from cellulose pulp mill effluent Altos níveis de biodegradação do 4,5,6-tricloroguaiacol por Bacillus sp. isolado de efluente de indústria de polpa de celulose

    Directory of Open Access Journals (Sweden)

    E.C. Tondo

    1998-10-01

    Full Text Available An aerobic Gram positive spore-forming bacterium was isolated from cellulose pulp mill effluent. This microorganism, identified as Bacillus sp. and named IS13, was able to rapidly degrade the organic chlorinated compound 4,5,6-trichloroguaiacol (4,5,6-TCG from a culture containing 50 mg/l, which corresponds to about 3x104 times the concentration found in the original effluent. The biodegradation of this compound, usually found in cellulose pulp mill effluents, was evaluated by spectrophotometry and gas chromatography analysis. During 4,5,6-TCG decreasing, the lack of by-products had shown by such analysis lead to verify the possibility of either adsorption or absorption of 4,5,6-TCG by the cells, instead of real biodegradation. There were no traces of 4,5,6-TCG after lysozyme and SDS cell disruption. Vigorous extraction was applied before spectrophotometry analysis and there was no release of residual 4,5,6-TCG. Plasmid isolation was attempted by using different protocols. The best results were reached by CTAB method, but no plasmid DNA was found in Bacillus sp. IS13. The results suggest that genes located at the bacterial chromosome might mediate the high decrease of 4,5,6-TCG. The importance of this work is that, in being a natural ocurring microorganism, Bacillus sp. IS13, can be used as inoculum in plant effluents to best organochlorinated compounds biodegradation.Isolou-se uma bactéria gram positiva, esporulada a partir de efluente de fábrica de polpa de celulose. Esse microrganismo, identificado como Bacillus sp. e nomeado IS13, foi capaz de degradar rapidamente o composto orgânico clorado 4,5,6-tricloroguaiacol (4,5,6-TCG presente em meio de cultura a uma concentração de 50mg/L. Essa concentração equivale a 3x104 vezes mais 4,5,6-TCG que a concentração encontrada no efluente original. A biodegradação desse composto foi analisada por espectrofotometria de varredura e cromatografia gasosa. A falta de sub-produtos de degrada

  18. Phyto-extraction of heavy metals and biochemical changes with Brassica nigra L. grown in rayon grade paper mill effluent irrigated soil.

    Science.gov (United States)

    Singh, Uday Veer; Abhishek, Amar; Bhaskar, Monika; Tandan, Neeraj; Ansari, Nasreen Ghazi; Singh, Netra Pal

    2015-01-01

    In this study, distribution of metal accumulation and their biological changes of Indian mustard plants (Brassica nigra L.) grown in soil irrigated with different concentration of rayon grade paper effluent (RGPE, 25%, 50%, 75%, 100%, v/v) were studied. A pronounced effect was recorded at 50% (v/v) RGPE on germination of seeds, amylase activity and other growth parameters in Indian mustard plants. An increase in the chlorophyll and protein contents was also recorded at 75%). A significant increase lipid peroxidation was recorded, which was evidenced by the increased malondialdehyde (MDA) content in shoot, leaves and seeds in tested plant at all the concentrations of RGPE. This Indian mustard plants (Brassica nigra L.) are well adapted for tolerance of significant amount of heavy metals due to increased level of antioxidants (cysteine and ascorbic acid) in root shoot and leaves of treated plants at all concentration of RGPE. Moreover, it is also important that RGPE should be treated to bring down the metal concentration well within the prescribed limit prior to use in agricultural soil for ferti-irrigation.

  19. A Novel Photocatalyst with Ferromagnetic Core Used for the Treatment of Olive Oil Mill Effluents from Two-Phase Production Process

    Directory of Open Access Journals (Sweden)

    Javier Miguel Ochando-Pulido

    2013-01-01

    Full Text Available Photocatalytic degradation of olive oil mill wastewater from two-phase continuous centrifugation process was studied. A novel photocatalyst with ferromagnetic properties was characterized and investigated. The degradation capacity of the photocatalytic process of olive oil washing wastewater (OMW and mixture of olives and olive oil (1 v/v washing wastewaters (MOMW was demonstrated. At lab-scale, the %COD removal and residence time (τ for MOMW and OMW were 58.4% (τ=2 h and 21.4% (τ=3 h, respectively. On the other hand, at pilot scale, 23.4% CODremoval, 19.2% total phenolsremoval, and 28.1% total suspended solidsremoval were registered at the end of the UV/TiO2 process for OMW, whereas 58.3% CODremoval, 27.5% total phenolsremoval, and 25.0% total suspended solidsremoval for MOMW. Also, before the UV/TiO2 reaction, a pH-T flocculation operation as pretreatment was realized. The overall efficiency of the treatment process for MOMW was up to 91% of CODremoval, in contrast with 33.2% of CODremoval for OMW.

  20. METODE EKSTRAKSI PELARUT BERBANTUAN ULTRASONIK UNTUK RECOVERY MINYAK DARI LIMBAH CAIR PABRIK KELAPA SAWIT Application of Ultrasound-assisted Solvent Extraction for Recovery of Oil from Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2012-05-01

    Full Text Available In this study, application of ultrasound-assisted solvent extraction for recovery of oil from palm oil mill effluent (POMEwas studied. Extraction conditions such as volume ratio of POME to solvent, extraction time and type of solvent were investigated. Extraction was carried out at room temperature with total volume (POME and solvent of 300 ml. The experimental results showed that ultrasound-assisted extraction provided higher yield than without ultrasound using mechanical stirring. The highest oil yield of 0.265 % obtained at ultrasound-assisted extraction condition of volume ratio of POME to solvent 5:1, extraction time of 60 minutes using n-hexane as solvent. The highest oil yield and carotene concentration were obtained by n-hexane. Meanwhile, there was no significant differenece of carotene concentration obtained from ultrasound-assisted and without ultrasound-assisted extraction. ABSTRAK Penelitian ini bertujuan mempelajari metode ekstraksi pelarut berbantuan ultrasonik untuk recovery minyak dari limbahcair pabrik kelapa sawit. Ekstraksi dilakukan pada temperatur kamar dengan menggunakan volum total campuran (limbah dan pelarut sebanyak 300 ml. Variabel penelitian yang digunakan adalah rasio volum limbah terhadap pelarut (1:1; 2:1; 4:1; dan 5:1, waktu ekstraksi (30, 60, 90 dan 120 menit, dan jenis pelarut (n-heksan dan petroleum eter. Hasil penelitian menunjukkan bahwa ekstraksi berbantuan ultrasonik menghasilkan rendemen minyak yang lebih besar dibandingkan ekstraksi tanpa bantuan ultrasonik dengan menggunakan pengadukan mekanik. Rendemen minyak tertinggi sebesar 0,265 % diperoleh pada proses ekstraksi berbantuan ultrasonik dengan rasio volum limbah terhadap pelarut 5:1, waktu ekstraksi 90 menit dengan menggunakan pelarut n-heksan. Rendemen minyak dan konsentrasi karoten yang lebih tinggi diperoleh pada ekstraksi menggunakan pelarut n-heksan. Metode ekstraksi pelarut berbantuan ultrasonik dan tanpa bantuan ultrasonik memberikan perbedaan

  1. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent Emprego de Bacillus pumilus CBMAI 0008 e Paenibacillus sp. CBMAI 868 para remoção da cor do efluente da indústria papeleira

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2009-06-01

    Full Text Available Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour.Bacillus pumilus e Paenibacillus sp. foram aplicados separadamente no efluente da indústria papeleira a pH 7,0, 9,0 e 11,0, para verificação da remoção da cor e da DQO. As remoções da cor real e DQO após 48h a pH 9,0 foram, respectivamente, de 41,87% e 22,08% após o tratamento com B. pumilus e 42,30% e 22,89% após tratamento com Paenibacillus sp. As massas molares dos compostos presentes no efluente não tratado e tratado foram determinadas por cromatografia de permeação em gel. O emprego dos microrganismos reduziu os compostos responsáveis pela cor do efluente da indústria papeleira.

  2. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Vara Saritha

    2010-02-01

    Full Text Available Two fungi (unidentified were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of these fungi was also tested, and the clearance zone was obtained in the plate assay.

  3. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    OpenAIRE

    Vara Saritha; Avasn Maruthi; Mukkanti, K.

    2010-01-01

    Two fungi (unidentified) were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of t...

  4. Surface water contamination by uranium Mining/Milling activities in Northern guangdong province, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Song, Gang; Chen, Yongheng; Zhu, Li [Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou (China); Liu, Juan [Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou (China); Department of Geosciences, National Taiwan University, Taipei (China); Li, Hongchun [Department of Geosciences, National Taiwan University, Taipei (China); Xiao, Tangfu [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou (China)

    2012-12-15

    The northern region of Guangdong Province, China, has suffered from the extensive mining/milling of uranium for several decades. In this study, surface waters in the region were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for the concentrations of uranium (U), thorium (Th), and non-radioactive metals (Fe, Mn, Mg, Li, Co, Cu, Ni, and Zn). Results showed highly elevated concentrations of the studied radionuclides and metals in the discharged effluents and the tailing seepage of the U mining/milling sites. Radionuclide and heavy metal concentrations were also observed to be overall enhanced in the recipient stream that collected the discharged effluents from the industrial site, compared to the control streams, and rivers with no impacts from the U mining/milling sites. They displayed significant spatial variations and a general decrease downstream away from upper point-source discharges of the industrial site. In addition, obvious positive correlations were found between U and Th, Fe, Zn, Li, and Co (R{sup 2} > 0.93, n = 28) in the studied water samples, which suggest for an identical source and transport pathway of these elements. In combination with present surface water chemistry and chemical compositions of uraniferous minerals, the elevation of the analyzed elements in the recipient stream most likely arose from the liquid effluents, processing water, and acid drainage from the U mining/milling facilities. The dispersion of radionuclides and hazardous metals is actually limited to a small area at present, but some potential risk should not be negligible for local ecosystem. The results indicate that environmental remediation work is required to implement and future cleaner production technology should be oriented to avoid wide dispersion of radioactivity and non-radioactive hazards in U mining/milling sites. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Toxicities effects of pharmaceutical, olive mill and textile wastewaters before and after degradation by Pseudomonas putida mt-2

    Directory of Open Access Journals (Sweden)

    Mansour Hedi

    2012-02-01

    Full Text Available Abstract Background Removal of numerous classes of chemical pollutants from the industrial wastewater such as textile, pharmaceutical and olive mill using conventional wastewater treatment, is incomplete and several studies suggested that improvement of this situation would require the application of biological treatment techniques. Dyes, polyphenols and drugs are an environmental pollutants extremely toxics to plants and other living organisms including humans. These effluents were previously treated by Pseudomonas putida. The main of this work was to evaluate the in vivo toxicity of the three wastewaters. Methods Writhes and convulsant effect of effluents were carried out and were compared to the treated effluents. Only pharmaceutical wastewater was exhibited a convulsant effect which observed in mice treated by effluent. On the other hand, all industrial wastewater induced significantly an algogenic effects particularly when mice were treated by the pharmaceutical wastewater (Number of writhes = 44. Conclusion Toxicity was totally removed when mice were treated by the bio remediated effluent. This indicates that P. putida was able to completely detoxify the toxic industrial effluent.

  6. Treatment of Olive Mill Wastewater with Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2012-03-01

    Full Text Available The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW. Two free water surface (FWS constructed wetlands, one without (CW1 and one with effluent recirculation (CW2, were operated for a two-year period with diluted OMW (1:10 and evaluated in terms of the removal of COD, TSS, TKN, NH4+-N, NO3−-N, TP and total phenols. The organic loading rate of CWs was adjusted to 925 kg BOD/ha·d. In CW1 the removal efficiency averaged 80%, 83%, 78%, 80%, and 74% for COD, TSS, TKN, TP, and total phenols, respectively, during the operation period. Effluent recirculation further improved the treatment efficiency which approached 90%, 98%, 87%, 85%, and 87% for COD, TSS, TKN, TP, and total phenols, respectively. Constructed wetlands also showed high removal efficiency for NH4+-N. Nitrate concentration maintained low in both CWs basins, probably due to the prevalence of high denitrification rates that efficiently removed the NO3--N produced by NH4+-N oxidation. Despite the increased removal percentages, pollutant concentration in effluent exceeded the allowable limits for discharge in water bodies, suggesting that additional practices, including enhanced pre-application treatment and/or higher dilution rates, are required to make this practice effective for OMW management.

  7. Quality of effluents from Hattar Industrial Estate

    Institute of Scientific and Technical Information of China (English)

    SIAL R.A.; CHAUDHARY M.F.; ABBAS S.T.; LATIF M.I.; KHAN A.G.

    2006-01-01

    Of 6634 registered industries in Pakistan, 1228 are considered to be highly polluting. The major industries include textile, pharmaceutical, chemicals (organic and inorganic), food industries, ceramics, steel, oil mills and leather tanning which spread all over four provinces, with the larger number located in Sindh and Punjab, with smaller number in North Western Frontier Province (NWFP) and Baluchistan. Hattar Industrial Estate extending over 700 acres located in Haripur district of NWFP is a new industrial estate, which has been developed with proper planning for management of industrial effluents. The major industries located in Hattar are ghee industry, chemical (sulfuric acid, synthetic fiber) industry, textile industry and pharmaceuticals industry.These industries, although developed with proper planning are discharging their effluents in the nearby natural drains and ultimately collected in a big drain near Wah. The farmers in the vicinity are using these effluents for growing vegetables and cereal crops due to shortage of water. In view of this discussion, there is a dire need to determine ifthese effluents are hazardous for soil and plant growth. So, effluents from different industries, sewage and normal tap water samples were collected and analysed for pH,electrical conductivity (EC), total soluble salts (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, cations and anions and heavy metals. The effluents of ghee and textile industries are highly alkaline. EC and TSS loads of ghee and textile industries are also above the National Environmental Quality Standards (NEQS), Pakistan. All the effluents had residual sodium carbonates (RSCs), carbonates and bicarbonates in amounts that cannot be used for irrigation. Total toxic metals load in all the effluents is also above the limit i.e. 2.0 mg/L. Copper in effluents of textile and sewage, manganese in ghee industry effluents and iron contents in all the effluents were higher

  8. The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill ...

    African Journals Online (AJOL)

    2009-10-28

    Oct 28, 2009 ... few electro-oxidation reactions have been carried out on the effluent of a pulp mill which uses the acid ... agent, high temperatures and pressures are necessary and the ... Early studies on graphite, copper, platinum and.

  9. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The feasibility of using vibratory ball milled South African bentonite clay for neutralization and attenuation of inorganic contaminants from acidic and metalliferous mine effluents has been evaluated. Treatment of acid mine drainage (AMD...

  10. Occurrence of Thiobacillus ferroxidans and Thiobacillus thio-oxidans in effluent, basin of reject and boot-rejections of uranium extraction mine: mill industrial complex of Pocos de Caldas, MG, Brazil; Ocorrencia de Thiobacillus ferrooxidans e Thiobacillus thiooxidans em efluentes, bacia de rejeito e bota-foras de mina de extracao de uranio - complexo minero-industrial de Pocos de Caldas, MG

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena de Azevedo [Comissao Nacional de Energia Nuclear, Pocos de Caldas, MG (Brazil). Laboratorio; Garcia Junior, Oswaldo [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica

    2000-07-01

    The sulfated minerals present in mining areas may cause serious environmental problems, because of the chemolithotrophic bacteria action of the gender Thiobacillus, mainly the T. ferroxidans and T. thio-oxidans. These microorganisms are able to oxidize mineral sulfates, elementary sulfur and the ferrous ion (T. ferroxidans), being capable of mobilizing radionuclides as the uranium for the environment. In this context, this study had the aim of investigating the occurrence and the fluctuations in the T. ferroxidans and T. thio-oxidans populations, in mine, effluent, tailing dam and waste rock of the Mine and Mill Industrial Complex of Pocos de Caldas-MG (ICPC). The relative seasonal behavior of some variables, when evaluated simultaneously indicated that the high values of oxidation-reduction potential, the low values of pH, the detection of the largest percentages of incidence and highest values of T. ferroxidans and T. thio-oxidans counting, observed in the sites 075, BIA, CM, BF4, BF8 and BE, indicated that these are the principal places of mine acid drainage occurrence and bio-leaching bacteria action in the ICPC and be considered critical sites, faced to a possible decommission measure. (author)

  11. Effluent characterization and different modes of reuse in agriculture-a model case study.

    Science.gov (United States)

    Das, Madhumita; Kumar, Ashwani

    2009-06-01

    High-quality waters are steadily retreating worldwide. Discharge of industrial effluent in the environment again declines soil/water quality to a great extent. On the other hand, effluent reuse in agriculture could be a means to conserve natural resources by providing assured water supply for growing crops. But industrial effluents are highly variable in nature, containing a variety of substances, and all are not favorable for farming. Appraisal and developing modes of effluent reuse is therefore a prerequisite to enable its proper use in agriculture. Effluents of various industries were assessed and approaches for their use in farming were developed for a particular region in this study. As per availability of effluents, the same could be implemented in other water-scarce areas. Effluents of 20 different industrial units were characterized by 24 attributes. Comparing these with corresponding irrigation water quality standards, the probability of their reuse was interpreted in the first approach. On the basis of relevant properties of major soil types dominated in a particular region, the soil-based usability of effluent was worked out in the second approach. By emphasizing the limitation of groundwater development where it went beyond 50% exploitation level, the land form and major soil type were then identified by applying a soil-based effluent reuse approach; the area-specific suitability of its use was perceived in the third approach. On the basis of irrigation water quality standards, the irrigation potentials of paper mill, fermentation (breweries and distilleries), and sugar factory effluents were recognized. In a soil-based approach, the compatibility of effluent with soil type was marked with A (preferred) and B (moderately preferred) classes and, compiling their recurring presence, the unanimous preference for paper mill effluent followed by rubber goods manufacturing industries/marine shrimp processing units, fermentation, and sugar mills was noted

  12. Selenium accumulation and reproduction in birds breeding downstream of a uranium mill in northern Saskatchewan, Canada.

    Science.gov (United States)

    Weech, Shari A; Scheuhammer, Anton M; Wayland, Mark E

    2012-01-01

    Selenium (Se) concentrations in aquatic invertebrates and bird eggs collected along the treated effluent receiving environment of the Key Lake uranium mill in northern Saskatchewan were significantly greater than from nearby reference areas, and in some cases (e.g., eggs of common loons--Gavia immer) were higher than commonly used thresholds for adverse reproductive effects in birds (i.e., 5 μg/g dry weight in diet; 12-15 μg/g dry weight in eggs). Mean Se concentrations in tree swallow (Tachycineta bicolor) eggs reached a maximum of 13.3 μg/g dry weight at the point of treated effluent discharge and exhibited a gradient of decreasing Se concentrations with increasing distance from the effluent discharge, probably reflecting both effluent dilution and local site fidelity by nesting swallows. In some cases, high intra-clutch variability in Se concentrations in mallard (Anas platyrhynchos) and tree swallow eggs was observed in high-Se sites, suggesting that a single egg randomly sampled from a nest in an area of higher Se exposure may not be representative of Se concentrations in other eggs from the same nest. Overall, tree swallow reproductive success was similar in both exposed and reference areas.

  13. Effect of Industrial Effluent on the Growth of Marine Diatom ...

    African Journals Online (AJOL)

    Michael Horsfall

    higher volume of water could not affect the growth rate of phytoplankton. It is more important .... density at the start and the end of the growth period, and t is the time .... pulp mill effluents on estuarine phytoplankton ... Havunders. Serie Plankton.

  14. The microbiology of olive mill wastes.

    Science.gov (United States)

    Ntougias, Spyridon; Bourtzis, Kostas; Tsiamis, George

    2013-01-01

    Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependent. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes.

  15. Valorization of palm oil (mill) residues. Identifyin and solving the challenges

    NARCIS (Netherlands)

    Elbersen, H.W.; Meesters, K.P.H.; Bakker, R.R.C.

    2013-01-01

    This report explains in brief how the palm oil production system is set-up and how by-products of palm oil extraction (Empty Fruit Bunch (EFB), Mesocarp Fibre, Shells and Palm Oil Mill Effluent (POME)) are generated in the Palm oil Mill and what the composition of each stream is. Then the options ar

  16. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead... copper, lead, zinc, gold, silver, or molybdenum bearing ores or any combination of these ores from open... pollutants discharged from mills that use the froth-flotation process alone, or in conjunction with other...

  17. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  18. Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills

    OpenAIRE

    Yahaya S. Madaki

    2013-01-01

    Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME) into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm o...

  19. Genotoxicity of industrial wastes and effluents.

    Science.gov (United States)

    Claxton, L D; Houk, V S; Hughes, T J

    1998-06-01

    In excess of several million pounds of genotoxic and/or carcinogenic industrial wastes are released into the U.S. environment each year. Chemical characterization of these waste materials can rarely provide an adequate assessment of their genotoxicity and potential hazard. Bioassays do not require prior information about chemical composition and can effectively assess the genotoxicity of complex waste materials. The most commonly used genotoxicity assay has been the Salmonella mutagenicity assay. Results with this system have shown that the genotoxic potency of industrial wastes can vary over 10 orders of magnitude, from virtually nondetectable to highly potent. Industries employing similar industrial processes generally release wastes of similar potency. Extremely high potency wastes include those from furazolidone and nitrofurfural production. Pulp and paper mills, steel foundries, and organic chemical manufacturing facilities also discharge wastes of noteworthy potency. Treatment and remediation of some wastes, such as pulp and paper mill effluents, have been shown to reduce or eliminate genotoxicity. However, in other cases, treatment and remediation have been shown to enhance genotoxicity, such as for fungal treatment of oils. Analyses of samples collected from areas known to receive industrial wastes and effluents have shown that genotoxins can accumulate in the receiving environment and have adverse effects on indigenous biota. The evaluation of hazardous wastes and effluents by genotoxicity assays may provide data useful not only for hazard identification but for comparative risk assessment.

  20. Avaliação do emprego de microfiltração para remoção de fibras do efluente de branqueamento de polpa celulósica Evaluation of the use of microfiltration for removal of fiber from bleaching pulp mill effluent

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Santos Amaral

    2013-03-01

    Full Text Available O processo de branqueamento é o estágio em que ocorre a maior perda de fibras durante a fabricação de polpa celulósica. Além de ser uma perda de produto, estas fibras aumentam a concentração de matéria orgânica do efluente dificultando seu tratamento. O objetivo deste trabalho foi avaliar o emprego de microfiltração (MF na remoção de fibras de efluente de branqueamento alcalino de polpa celulósica. Foi empregada membrana de poli(éter imida com tamanho médio de poros de 0,5 µm e área de filtração de 0,05 m². O efeito das condições operacionais no fluxo permeado foi avaliado através do monitoramento do perfil de fluxo durante a operação em diferentes condições de velocidade de escoamento (Reynolds de 1.226, 1.653 e 2.043, pH da alimentação (7, 10 e 10,6, temperatura (28, 43 e 48°C e pressão de operação através da avaliação da pressão crítica. Os resultados mostraram que a MF é um processo eficiente para remoção de fibras, apresentado 99% eficiência de remoção de sólidos suspensos. O melhor desempenho da operação de MF foi obtido empregando pH 7, pressão de 1 bar e Re de 1.653. Os resultados mostram que a redução do fluxo se deve principalmente à formação de torta.The bleaching process is the stage where there is the greatest loss of fibers during the pulp production. Besides being a waste of product, these fibers increase the concentration of organic matter in the effluent and make the treatment of effluent more difficult. The aim of this study was to evaluate the use of microfiltration (MF in the removal of fiber of effluent of alkaline bleaching pulp mill. The membrane employed was hollow fiber poly (ether imide, with average pore size of 0.5 µm and filtration area of 0.05 m². The effect of operating conditions on the permeate flux was evaluated by monitoring the flux profile during operation in different conditions of flow velocity (Reynolds 1,226, 1,653 and 2,043, pH of feeding (7, 10

  1. Biomass torrefaction mill

    Energy Technology Data Exchange (ETDEWEB)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  2. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  3. 75 FR 71463 - Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration

    Science.gov (United States)

    2010-11-23

    ... Employment and Training Administration Woodland Mills Corporation Mill Spring, NC; Notice of Revised... of Woodland Mills Corporation, Mill Spring, North Carolina, to apply for Trade Adjustment Assistance... yarn produced by Woodland Mills Corporation, Mill Spring, North Carolina Woodland Mills...

  4. Paper mill wastewater detoxification by solar photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, C.; Funken, K.H.; Oliveira, L. de; Tzschirner, M. [German Aerospace Center, Inst. of Technical Thermodynamics - Solar Research, Cologne (Germany); Machado, A.E.H. [Lab. de Fotoquimica - Inst. de Quimica, Univ. Federal de Uberlandia, Uberlandia, MG (Brazil)

    2003-07-01

    In the WATER project the German Aerospace Center, DLR, and the Universidade Federal de Uberlandia, UFU, analyse the possibilities of treating paper mill effluents by solar photocatalysis for the paper mill of the Brazilian paper producer Votorantim Celulose e Papel, VCP, at Luiz Antonio, SP, Brazil. The degradation of the bio-polymer lignin is a vast problem in paper production. The tests have shown that treatment by the photocatalyst TiO{sub 2} and solar radiation is an ecological future oriented approach to solve this problem. The treatment of lignin containing process water by solar photocatalysis was optimised and the economics for solar treatment plants of different sizes was estimated to check the possibilities for implementing the technology in industrial processes. (orig.)

  5. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  6. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  7. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  8. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  9. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  10. Beneficial uses of paper mill residuals for New York State`s recycled-paper mills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report evaluates the New York paper mill industry in terms of the productive management and treatment of solid wastes. It identifies current efforts by recycling mills to beneficially use paper mill residuals (often called sludge) and suggests additional options that should be considered by the industry in general and individual mills in particular. It also examines the regulations and economics affecting the mills and suggests actions that could improve the industry`s ability to convert wastes to value-added products. The report recommends that the mills should continue measures to reduce fiber and filler clay losses, promote the transfer of usable fiber and clay to mills able to use them, upgrade sludge dewatering capabilities, and take a more regional approach to solid waste disposal problems. State agencies are urged to support these efforts, encourage the development and commercialization of new beneficial use technologies, and reduce regulatory barriers whenever possible.

  11. Treatment of industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cahey, A.G.

    1977-01-01

    The textbook is designed for students of water resources technology and as a guide for water quality engineers and those concerned with industrial effluents. The authors come from water authorities, industry and the academic world. Among the subjects considered are microbes and effluent treatments; legal aspects of pollution; analytical techniques; bio-oxidation; physical treatment; biological and ecological aspects of waste treatment; biological treatment of coke-oven liquors; water tracing.

  12. Revitalizing America's Mills: A Report on Brownfields Mill Projects

    Science.gov (United States)

    This report focuses on mills -- former textile, wood, paper, iron, and steel mills. The report describes the challenges and opportunities of mill sites with case studies highlighting some of the most creative solutions from across the country.

  13. Effects of pulp mill chlorate on Baltic Sea algae.

    Science.gov (United States)

    Rosemarin, A; Lehtinen, K J; Notini, M; Mattson, J

    1994-01-01

    The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.

  14. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment.

  15. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  16. The validation of two novel separation technologies in a ZLE concept via in-mill research at recovered paper mill Niederauer Mühle (Germany)

    NARCIS (Netherlands)

    Gubelt, G.; Lumpe, C.; Verstraeten, E.; Joore, L.

    2001-01-01

    As economic circumstances change and environmental legislation tightens, paper mills are forced to minimise their energy and water consumption to produce minimum emissions. A competitive product based water treatment concept to Zero Liquid Effluent (ZLE) is based on the 'five-fraction model'. To rem

  17. IDENTIFICATION OF WOOD AND BARK EXTRACTIVES AND THEIR TOXICOLOGICAL EFFECTS ON THE TMP EFFLUENTS

    Institute of Scientific and Technical Information of China (English)

    XiaokunZhang; MohiniSain

    2004-01-01

    Wood extractives in model TMP effluents and bio-treated TMP mill effluent were extracted, isolated with liquid-liquid extraction, and analyzed with GC/MS following sylilation. Acute and chronic toxicity of the effluent samples were tested with Ceriodaphnia dubia. Wood and bark extractives are responsible for the toxicity of the TMP effluent to aquatic life. Resin and fatty acids have a dominating contribution to acute toxicity. Removal of them from the effluent cannot deplete all toxicants, some neutral extractives such as phytosterols, are still chronically toxic to Ceriodaphnia dubia. Wood bark has a dramatic impact on acute toxicity of the TMP effluent. Only 5% of spruce bark addition can increase acute toxicity by 38.4%. However, it has a reverse trend for chronic toxicity, which indicates that some neutral wood extractives may play important role in chronic toxicity of the TMP effluent as well. Successful control of the debarking process and debark effluents is essential for achieving high-quality effluent treatment.

  18. IDENTIFICATION OF WOOD AND BARK EXTRACTIVES AND THEIR TOXICOLOGICAL EFFECTS ON THE TMP EFFLUENTS

    Institute of Scientific and Technical Information of China (English)

    Xiaokun Zhang; Mohini Sain

    2004-01-01

    Wood extractives in model TMP effluents and bio-treated TMP mill effluent were extracted, isolated with liquid-liquid extraction, and analyzed with GC/MS following sylilation. Acute and chronic toxicity of the effluent samples were tested with Ceriodaphnia dubia. Wood and bark extractives are responsible for the toxicity of the TMP effluent to aquatic life. Resin and fatty acids have a dominating contribution to acute toxicity. Removal of them from the effluent cannot deplete all toxicants, some neutral extractives such as phytosterols, are still chronically toxic to Ceriodaphnia dubia. Wood bark has a dramatic impact on acute toxicity of the TMP effluent. Only 5% of spruce bark addition can increase acute toxicity by 38.4%. However, it has a reverse trend for chronic toxicity, which indicates that some neutral wood extractives may play important role in chronic toxicity of the TMP effluent as well. Successful control of the debarking process and debark effluents is essential for achieving high-quality effluent treatment.

  19. Evaluation of the cytogenotoxicity of textile effluents using Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Sandro Barbosa

    2011-08-01

    Full Text Available The cytotoxic and genotoxic potential of the raw (EB and treated (ET effluents of two textile mills located in south of Minas Gerais State that have their effluents treated at the same Effluent Treatment Plant was investigated using the Allium cepa test system. Cytotoxicity was evaluated by the root elongation and mitotic index (MI endpoints and the genotoxicity was assessed by de determination of chromosome aberrations (CA.The effluent samples were tested at the concentrations 0 (ultrapure water, 25, 50, 75, and 100 % (v/v. A Completely Randomized Design with four replicates of 30 seeds was used. The effluent samples in almost all tested concentrations promoted an increase in root elongation compared to the negative control and this effect was probably related to nutrients levels and organic matter in effluent samples. A lower MI at all concentrations of ET compared to EB. The highest MI was observed at 100% (v/v concentration of both effluents. The highest rates of CA occurred at concentrations 75% (v/v of EB and 100% (v/v of both effluents. The effluent samples showed no cytotoxic effect, but cell division occurred disorderly, leading to increase rate of AC, revealing a genetoxic effect. Improvements in the wastewater treatment are needed to reduce environmental impacts.

  20. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent.

  1. Using treated municipal wastewater in a linerboard mill -- legal, political, and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, W. (Montville Water Pollution Control Authority, Montville, CT (United States)); Scogin, R. (Rand-Whitney Containerboard, L.P., Montville, CT (United States)); Cobery, J.E. (Bingham, Dana and Gould, Boston, MA (United States))

    1994-10-01

    When plans to expand production at an antiquated mill were jeopardized by an inadequate source of process water, the mill explored the possibility of producing first-quality linerboard using treated municipal wastewater. This paper outlines the legal, technical, and political issues encountered in developing a plan that would allow the mill to use effluent from a municipal wastewater treatment system. The technology is available to make reuse of municipal wastewater feasible, as evidence by the closed-loop delivery and discharge system describe in this report. Nevertheless, legal and political concerns make the implementation process arduous and time consuming.

  2. Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available Problem Statement: Oil palm production is a major agricultural industry in Malaysia. In 2006, palm oil mills in Malaysia produced more than 58 million tonnes of Palm Oil Mill Effluent (POME. Existing treatment in a series of open lagoons at high ambient temperatures, results in the uncontrolled production of methane and carbon dioxide, which are both green house gases (GHGs. With the increased worldwide concern on environmentally friendly production processes particularly the emission of methane, it is important to develop an alternative concept for POME treatment. This study elucidates the effects of pre-treatment of palm oil mill effluent by microwave irradiation and ultrasonic on anaerobic digestion. Approach: Effects of pre-treatment on sludge characterisation parameters were monitored. The Soluble Chemical Oxygen Demand (SCOD/total COD ratio and biodegradability of soluble organic matter increased significantly after both the pre-treatments which indicated an increase in disintegration of the floc structure of the sludge. Three identical bioreactors with working volume of 5 litres were used as anaerobic digesters at 32-35°C. The reactors were separately fed with pre-treated sludge (microwave, ultrasonic and combination of microwave and ultrasonic and control sludge at different Hydraulic Retention Times (HRT to check for the production of methane. Results: The maximum SCOD/TCOD ratio reached almost 29% after 30 min of ultrasonic treatment, while it was 45% after 7 min of microwave irradiation. The BOD5/SCOD ratio also increased after the pre-treatments suggesting the biodegradability of the soluble organic material increased during the treatment. It was observed that TVFA released was increased after both the treatments, with microwave treatment showing a higher yield of TVFA. Greatest enhancement in methane production was shown by the 3 min microwave plus 10 min ultrasonic treatment. Conclusion: The microwave in combination with

  3. Pitt Mill Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Oder, R.R.; Borzone, L.A.

    1990-05-01

    Results of a technical and economic evaluation of application of the Pitt Mill to fine coal grinding are presented. The Pitt Mill is a vertically oriented, batch operated, intermediate energy density (0. 025 kW/lb media), stirred ball mill. The mill grinds coal from coarse sizes (typically 3/16 inch or 4 mesh topsize) to the 10 micron to 20 micron mean particle diameter size range in a single step using a shallow grinding bed containing inexpensive, readily available, course grinding media. Size reduction is efficient because of rapid product circulation through the grinding bed caused by action of a novel circulation screw mounted on the agitator shaft. When a dispersant is employed, the grinding can be carried out to 50% to 60% solids concentration. Use of coarse grinding media offers the possibility of enhanced mineral liberation because size reduction is achieved more by impact shattering than by attrition. The batch method offers the possibility of very close control over product particle size distribution without overproduction of fines. A two- phase program was carried out. In the first phase, Grinding Studies, tests were run to determine a suitable configuration of the Pitt Mill. Machine design parameters which were studied included screw configuration, media type, agitator RPM, time, media size, and slurry chamber aspect ratio. During the last part of this phase of the program, tests were carried out to compare the results of grinding Pocahontas seam, Pittsburgh {number sign}8, and East Kentucky Mingo County coals by the Pitt Mill and by a two-stage grinding process employing a Netzsch John mill to feed a high energy density (0.05 kW/Lb media) disc mill. 22 refs., 25 tabs.

  4. Soil amendement with olive mill wastewater: impact of storage before spreading

    Energy Technology Data Exchange (ETDEWEB)

    Kachouri, S.; Ayed, L.; Assas, N.; Marouani, L.; Macarie, H.; Hamdi, M.

    2009-07-01

    The olive oil production performed by the traditional three-phase process generates considerable amounts of olive mill wastewater (OMW) that is a liquid effluent, red to dark coloured depending on its level of oxidation. OMW is well known for the ecological problems it causes owing to the highly toxic polyphenolic compounds it contains. (Author)

  5. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution with ...

  6. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents

    OpenAIRE

    Liebgott, Pierre-Pol; Labat, Marc; Amouric, Agnès; Tholozan, Jean-Luc; Lorquin, Jean

    2008-01-01

    To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2-(p-hydroxyphenyl)-ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4-hydrox...

  7. Characteristics of treated effluents and their potential applications for producing concrete.

    Science.gov (United States)

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.

  8. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  9. John Stuart Mill on Freedom, Education, and Social Reform.

    Science.gov (United States)

    Carbone, Peter F.

    1983-01-01

    Examines the social philosophy of John Stuart Mill, emphasizing his views on freedom, education, and social reform. Considers Mill's individualism and reformism, the conflict between freedom and control that characterizes his work, and the importance of freedom and education. Suggests caution in drawing educational implications from his work. (DAB)

  10. John Stuart Mill on Freedom, Education, and Social Reform.

    Science.gov (United States)

    Carbone, Peter F.

    1983-01-01

    Examines the social philosophy of John Stuart Mill, emphasizing his views on freedom, education, and social reform. Considers Mill's individualism and reformism, the conflict between freedom and control that characterizes his work, and the importance of freedom and education. Suggests caution in drawing educational implications from his work. (DAB)

  11. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    Directory of Open Access Journals (Sweden)

    S. Motozuka

    2015-09-01

    Full Text Available Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the {001} planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method.

  12. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    Energy Technology Data Exchange (ETDEWEB)

    Motozuka, S.; Hayashi, K. [Department of Mechanical Engineering, Gifu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495 (Japan); Tagaya, M. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Morinaga, M. [Toyota Physical and Chemical Research Institute, 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-09-15

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method.

  13. Assembly, start and operation of an activated sludge reactor for the industrial effluents treatment: physico chemical and biological parameters

    Directory of Open Access Journals (Sweden)

    Márcia Regina Assalin

    2008-05-01

    Full Text Available Although of the immense available bibliography regarding the activated sludge process, little it is found in relation to the basic procedure to be adopted to implant, to activate and to monitor a reactor of activated sludge in laboratory scales. This article describes the assembly, departure and operation of an activated sludge system, operating in continuous process, at a laboratory scale, to study effluents treatments, using as example, Kraft E1 pulp mill effluent. Factors as biodegradability of the effluent to be treated, stationary state of the reactor, conventional operation parameters as physical chemistry and biological parameters are presented.

  14. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    Science.gov (United States)

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  15. Adopting strategies to improve the efficiency of ozonation in the real-scale treatment of olive oil mill wastewaters.

    Science.gov (United States)

    Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M

    2010-12-01

    In this experimental work the ozone action on the depuration of olive oil mill wastewater is studied for different operational conditions based on an actual industrial treatment plant. It was verified that the application of a Mn-Ce-O catalyst prepared at the laboratory, with a Mn/Ce molar proportion of 70/30, enhances the depuration efficiency and the effluent biodegradability. Ozonation operation at the natural pH of the effluent is recommended. Moreover, the integration of the Fenton process as a pretreatment improves the final chemical oxygen demand removal and enables a totally biodegradable effluent to be obtained, as confirmed by respirometric techniques.

  16. NOISE IN TEXTILE MILLS

    Directory of Open Access Journals (Sweden)

    P. Meshgi

    1977-06-01

    Full Text Available The mean noise levels were measured in the different sections of six representative mills in the Isfahan area, and audiometric measurements were made in 282 male workers employed in these mills. The mean noise levels were on average 95 dBA in the weaving sections and 88 d BA in the spinning sections. The audiometric findings showed a significant loss of gearing in the textile workers as compared to controls who were employed in a quiet environment. The study indicated that noisiness depended; on the whole, on the age and number of machines deployed per unit area of shop-floor. On the basis of this study certain recommendations were made to improve the working conditions.

  17. Soil Quality after Six Years of Paper Mill Industrial Wastewater Application

    Directory of Open Access Journals (Sweden)

    Ivan Carlos Carreiro Almeida

    Full Text Available ABSTRACT The application of wastewater to irrigate soils may be an attractive option for paper mills, especially when the effluents can also provide nutrients to plants. Since there could be negative environmental effects, such activity must be preceded by a thorough evaluation of the consequences. The changes in soil quality of a Neossolo Flúvico Distrófico (Typic Udifluvent were evaluated over a period of six years of irrigation with treated effluent from a wood pulp company. Although effluent application for six years did not affect soil resistance to penetration and soil hydraulic conductivity, it promoted a decrease in the mean size of aggregates and an increase in clay dispersion. Effluent application increased soil pH but did not change exchangeable Ca and Mg contents and organic carbon. After a full rotation of eucalyptus cultivation common in Brazil (six years, no negative effects in tree growth were found due to effluent irrigation. However, effluent addition caused higher values of Na adsorption ratio and intermediate electrical conductivity in the soil, which indicates a possible negative effect on soil quality if the application continues over a longer period. Therefore, a monitoring program should be carried out during subsequent crop rotations, and alternatives must be studied to obtain better effluent quality, such as adding Ca and Mg to the wastewater and using gypsum in the soil.

  18. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    accommodate a trial run of inert single base pellet feed for use in a twin screw extruder. 15. SUBJECT TERMS INIT248, Advanced Propellant Technology...Bldg. 4909-5 – Shear Roll Mill Pilot Plant at the Radford Army Ammunition Plant (RFAAP) in order to produce pellet feed for a twin screw extruder used...propellant to simulate feed for a twin screw extruder. Preventive maintenance procedures were in progress in final preparation for running with

  19. In vitro fermentation of olive oil mill wastewaters using sheep rumen liquor as inoculum: Olive mill wastewaters an alternative for ruminant's nutrition

    OpenAIRE

    Moufida Aggoun; Rabah Arhab; Nassima Leulm; Malika Barkat

    2014-01-01

    Olive oil mill wastewaters (OMWW) are the main liquid effluents generated by the olive oil production industry. This liquid, considered pollutant and toxic, is characterised by its high content of organic matter including mainly sugars and fats, and phenols compounds, which can be used in ruminants feeding. The purpose of this study is to valorise this agricultural by-product in ruminant feeding by estimation its in vitro degradability in presence of ovine ruminale microbiota comparatively to...

  20. Textile effluent biodegradation potentials of textile effluent-adapted ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... for water and the dwindling supply has made the treatment and reuse of industrial ... They also diminish the water quality. ... wastewater and drains (textile effluent adapted bacteria) and isolates from a ...

  1. Analysis and anaerobic degradation of wool scouring and olive oil mill wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Rindone, B. (Milan Univ. (Italy). Dipt. di Chimica Organica e Industriale); Andreoni, V. (Turin Univ. (Italy). Ist. di Microbiologia e Industrie Agrarie); Rozzi, A. (Politecnico, Milan (Italy). Ist. di Ingegneria Sanitaria); Sorlini, C. (Milan Univ. (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiologiche)

    1991-03-01

    Two types of fatty industrial wastewaters, wool scouring effluents (WSE) and olive oil mill effluents (OME) were analysed (lipids, phenols and COD), and were then treated anaerobically in laboratory-scale fixed bed filters. Approximately 50% of the organic compounds in both wastewaters was degraded at two days of hydraulic residence time. A higher biogas production was obtained when using OME rather than WSE. This experimental study confirmed that anaerobic digestion can be considered as a roughing treatment in a multi-step process for industrial fatty wastewaters. (orig.).

  2. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  3. Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills

    Directory of Open Access Journals (Sweden)

    Yahaya S. Madaki

    2013-10-01

    Full Text Available Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm oil mills operators on current advance POME treatment technology (PTT in relation to achieving zero discharge concepts. The survey attempted to identify the key issues about the PTT in respect to feasibility of zero discharge concepts in palm oil mills. The results shows that, although palm oil mills generate a lot of different types of wastes during processing of Fresh Fruit Bunches, according to the operators and available literature, POME is the most difficult waste to manage. The results also shows that, palm oil mills cannot meet up with the new discharge limits of 20ppm of BOD and zero emission using only conventional open or closed pounding system

  4. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  5. Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions

    Directory of Open Access Journals (Sweden)

    M. Broseghini

    2017-02-01

    Full Text Available This paper contains data and supporting information of and complementary to the research article entitled “Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments” (Broseghini et al., [1]. Calcium fluoride (CaF2 was ground using two jars of different shape (cylindrical and half-moon installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time. Scanning Electron Microscopy (SEM images and X-Ray Powder Diffraction data (XRPD were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008 [2] analysis of XRPD data required the hypothesis of a bimodal distribution of sizes – respectively ground (fine fraction and less-to-not ground (coarse fraction – confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013 [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.

  6. PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Chiew Wei Puah

    2013-01-01

    Full Text Available The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of Greenhouse Gas (GHG such as methane and carbon dioxide emissions by avoiding the formation of liquid biomass in the form of Palm Oil Mill Effluent (POME. The attributional Life Cycle Assessment (LCA shows the improved milling process contributes to significant reduction of GHG emission from palm oil mills as compared to the process of capturing biogas from POME. The palm based food source contains phytonutrients, namely carotenoids, tocols (tocopherol and tocotrienols and water soluble polyphenols.

  7. The Potential of Extended Aeration System for Sago Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Wahi A. Rashid

    2010-01-01

    Full Text Available Problem statement: Sago effluent contains large amount of organic material which has a potential to cause water pollution. In order to reduce this problem, an experiment was conducted to remove organic material from sago effluent using lab scale of Extended Aeration (EA system. Approach: The EA system consisted of the combination of physical and biological treatment unit. For Physical Treatment Unit (PTU, the sago effluent was filtered using 710 µm mesh size filter. For Biological Treatment Unit (BTU, the effluent were mixed and aerated with activated sago sludge for 48 h. The treatment efficiency with respect to Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS removal were evaluated and compared with regulatory requirement by Department of Environment, Malaysia. Results: The result showed, the EA system could reduce BOD, COD and TSS up to 84, 87.8 and 73% respectively, however it did not comply with the regulatory requirement. Conclusion: This study suggested the EA system have potential to be apply on sago effluent, however it should be integrated with additional treatment unit to achieve the effluent quality standard.

  8. Electrochemical treatment of textile dyes and dyehouse effluents

    Energy Technology Data Exchange (ETDEWEB)

    Chatzisymeon, Efthalia [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Xekoukoulotakis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Coz, Alberto [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Kalogerakis, Nicolas [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Mantzavinos, Dionissios [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece)]. E-mail: mantzavi@mred.tuc.gr

    2006-09-21

    The electrochemical oxidation of textile effluents over a titanium-tantalum-platinum-iridium anode was investigated. Batch experiments were conducted in a flow-through electrolytic cell with internal recirculation at current intensities of 5, 10, 14 and 20 A, NaCl concentrations of 0.5, 1, 2 and 4% and recirculation rates of 0.81 and 0.65 L/s using a highly colored, synthetic effluent containing 16 textile dyes at a total concentration of 361 mg/L and chemical oxygen demand (COD) of 281 mg/L. Moreover, an actual dyehouse effluent containing residual dyes as well as various inorganic and organic compounds with a COD of 404 mg/L was tested. In most cases, quantitative effluent decolorization was achieved after 10-15 min of treatment and this required low energy consumption; conversely, the extent of mineralization varied between 30 and 90% after 180 min depending on the operating conditions and the type of effluent. In general, treatment performance improved with increasing current intensity and salinity and decreasing solution pH. However, the use of electrolytes not containing chloride (e.g. FeSO{sub 4} or Na{sub 2}SO{sub 4}) suppressed degradation. Although the acute toxicity of the actual effluent to marine bacteria Vibrio fischeri was weak, it increased sharply following treatment, thus suggesting the formation of persistent toxic by-products.

  9. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  10. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large d...

  11. Metabolites of chlorinated syringaldehydes in fish bile as biomarkers of exposure to bleached eucalypt pulp effluents.

    Science.gov (United States)

    Brumley, C M; Haritos, V S; Ahokas, J T; Holdway, D A

    1996-04-01

    Metabolites of chlorinated phenolic compounds in fish bile have been found to be sensitive biomarkers of bleached pulp mill effluent exposure. Chlorinated syringaldehydes are largely unstudied chlorophenolics found in bleached hardwood effluent. Sand flathead (Platycephalus bassensis), Australian marine fish, were exposed to 100% chlorine dioxide-bleached eucalypt pulp effluent at concentrations of 0.5, 2, and 8% (v/v) for 4 days. Metabolites of 2-chlorosyringaldehyde (2-CSA), the predominant chlorophenolic in this effluent, were measured in the bile. The major metabolite was the conjugate of 2-chloro-4-hydroxy-3,5-dimethoxy-benzylalcohol (2-CB-OH), the reduced product of 2-CSA. 2-CB-OH was found in all fish exposed to diluted effluent and was concentrated in the bile over 1000 times above 2-CSA levels in the effluent. A separate experiment examined the metabolic fate of 2,6-dichlorosyringaldehyde (2,6-DCSA), which is one of the major chlorophenolics in chlorine-bleached eucalypt pulp effluent. Sand flathead were exposed to 2,6-DCSA by intraperitoneal injection at 15 mg/kg or through the water to 0.5, 2, or 8 micrograms/liter for 4 days. Analysis of the bile revealed the major metabolite of 2,6-DCSA to be the conjugate of 2,6-dichloro-4-hydroxy-3,5-dimethoxybenzylalcohol, which was found in all exposed fish and was concentrated in the bile over 20,000 times above 2,6-DCSA exposure levels. Results reveal that the analysis of metabolites of chlorinated syringaldehydes in fish bile can provide a biomarker of bleached hardwood effluent exposure that is sensitive to low levels of exposure, specific to certain bleaching sequences, and correlates well with exposure concentrations.

  12. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Rytwo, Giora, E-mail: rytwo@telhai.ac.il [Tel Hai College, Dept. of Environmental Sciences, Upper Galilee 12210 (Israel); Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Lavi, Roy; Rytwo, Yuval; Monchase, Hila [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Dultz, Stefan [Institute of Soil Science, Leibniz University Hannover, Herrenhaeuser Str. 2, D-30419 Hannover (Germany); Koenig, Tom N. [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel)

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: Black-Right-Pointing-Pointer Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). Black-Right-Pointing-Pointer In smectite based nanocomposites intercalation of the polymer was measured. Black-Right-Pointing-Pointer In sepiolite based nanocomposites no changes in the spacing were observed. Black-Right-Pointing-Pointer Colloidal neutralization is the main clarification process in WW but not in OMW. Black-Right-Pointing-Pointer Several cycles of

  13. 40 CFR 426.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.67 Effluent limitations guidelines representing the degree of effluent...

  14. 40 CFR 430.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Secondary Fiber Deink Subcategory § 430.92 Effluent limitations representing the degree of effluent...

  15. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Science.gov (United States)

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  16. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  17. Methanization of industrial liquid effluents; Methanisation des effluents industriels liquides

    Energy Technology Data Exchange (ETDEWEB)

    Frederic, S.; Lugardon, A. [Societe Naskeo Environnement, 92 - Levallois-Perret (France)

    2007-09-15

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  18. Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart. and Panicum maximum (Jacq.

    Directory of Open Access Journals (Sweden)

    N.A. Noukeu

    2016-12-01

    Full Text Available In this study, effluents from 11 food processing industries from various sectors were characterized through analysis of physical and chemical parameters. In general, effluents pHs are between 4.07 and 7.63. Lead (Pb2+ and cadmium (Cd+ concentrations range from 0.083 to 1.025 mg/l and 0.052–0.158 mg/l respectively. The biodegradability of the effluent is very low. The principal component analysis (PCA grouped industries according to their organic matter levels; thus, stillage, livestock, molasses and sugar refinery effluents show some similarities, as well as confectionery, oil mill, dairy and brewery effluents. Forms of nitrogen measured show low levels of nitrites (NO2−, high levels of nitrates (NO3−, ammonium (NH4+ and Kjeldahl nitrogen (TKN. Among these effluents, a treatment trial with Eichhornia crassipes and Panicum maximum was applied to stillage effluent from Fermencam distillery. The results show that Panicum maximum and Eichhornia crassipes reduce pollutant loads of Fermencam's wastewater.

  19. Improvements in electric power system of the effluent treatment station of the hot strip mill no. 2 (ETE/LTQ-2); Melhorias no sistema de alimentacao eletrica da estacao de tratamento de efluentes do laminador de tiras a quente n. 2 (ETE/LTQ-2)

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Hamilton Geraldo; Pinho, Wilson Pereira de; Martinez, Flavio Costa; Rocha, Carlos Eduardo da [Companhia Siderurgica Nacional (CSN), Volta Redonda, RJ (Brazil). Gerencia de Distribuicao de Energeticos

    2011-12-21

    The ETE/LTQ-2 is an vital area for the production process of coiled hot rolled strip. Any problems in the operating functions in this station results in the loss production in the mill. This is what occurred in 2007 January when there was problems in the termination of the power cables from the transformer of the circuit B-521 and in December in the same year, when there was an explosion of the oil cutout switch, which resulted in serious injury to the production process of the LTQ-2. Thus, began a search process for solutions to improve the reliability and security of the electrical system that meets the motor pumps of the ETE/LTQ-2 to reduce the risk of interference in the production process in result of the electrical faults. In 2010 June, was completed the implementations of the solutions to improve this performance, which consisted of repowering the two power circuits of the ETE/LTQ-2 (B-521 and B-570), replacement of the transformers for others of higher power (3.75 MVA to 5.5 MVA) of both circuits and replacement the oil cutout switch for SF6 circuit breakers. (author)

  20. Byssinosis among jute mill workers.

    Science.gov (United States)

    Chattopadhyay, Bhaskar P; Saiyed, Habibullah N; Mukherjee, Ashit K

    2003-07-01

    Although byssinosis in jute mill workers remains controversial, studies in a few jute mills in West-Bengal, India, revealed typical byssinotic syndrome associated with acute changes in FEV1 on the first working day after rest. The present study on 148 jute mill workers is reported to confirm the occurrence of byssinosis in jute mill workers. Work related respiratory symptoms; acute and chronic pulmonary function changes among exposed workers were studied on the basis of standard questionnaire and spirometric method along with dust level, particle mass size distributions and gram-negative bacterial endotoxins. The pulmonary function test (PFT) changes were defined as per the recommendation of World Health Organization and of Bouhys et al. Total dust in jute mill air were monitored by high volume sampling, technique (Staplex, USA), Andersen cascade impactor was used for particle size distribution and personal exposure level was determined by personal sampler (Casella, London). Endotoxin in airborne jute dust was analysed by Lymulus Amebocyte Lysate (LAL) "Gel Clot" technique. Batching is the dustiest process in the mill. Size distribution showed that about 70-80% dust in diameter of jute mill workers are also suffering from byssinosis as observed in cotton, flask and hemp workers.

  1. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  2. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  3. INVESTIGATION ON HARDENED STEEL MILLING WITH MICRO-END MILL

    Institute of Scientific and Technical Information of China (English)

    HUYing-ning; WANGCheng-yong; WUXue-qi; QINZhe; ZENGBao-ping

    2004-01-01

    Tool wear and breakage of the micro-milling tool is an important problem for high speed machining of hardened steel die and mould. Dry milling of S136 hardened steel is carried out using TiA1N coated carbide micro-end mill (Ф2 mm). The effect of cutting speed, feed per tooth and radial depth of cut on cutting force is analyzed. Cutting parameters adapting to dry machining and strategy optimized for higher rate of material removal with lower cutting force are attained. Results of SEM observation show that the main failure patterns of micro-end mill are breakage of tool tip, wear and drop-off of surface coating, micro-chipping, and breakage of flank.

  4. Metal biosorption in lignocellulosic biofuel biorefinery effluent: an initial step towards sustainability of water resources.

    Science.gov (United States)

    Palumbo, Amanda J; Taylor, Sean C; Addison, Sarah L; Slade, Alison H; Glover, Chris N

    2012-09-01

    Biosorption of metals by microorganisms is a promising technology to remove accumulated non-process elements in highly recycled biorefinery process water. Removal of these elements would enable greater water reuse and reduce the environmental impact of effluent discharge. A model lignocellulosic ethanol biorefinery wastewater was created based on pulp mill effluent. This generated a wastewater with an environmentally realistic high loading of dissolved natural organic matter (900 mg/l), a potentially important factor influencing metal biosorption. Analysis of feedstock and pulp mill effluent indicated that Mn and Zn are likely to be problematic in highly recycled lignocellulosic ethanol biorefinery process water. Therefore, the growth of several bacteria and fungi from existing collections, and some isolated from pulp mill effluent were tested in the model wastewater spiked with Mn and Zn (0.2 mM). Wastewater isolates grew the best in the wastewater. Metal uptake varied by species and was much greater for Zn than Mn. A bacterium, Novosphingobium nitrogenifigens Y88(T), removed the most metal per unit biomass, 35 and 17 mg Mn/g. No other organism tested decreased the Mn concentration. A yeast, Candida tropicalis, produced the most biomass and removed the most total metal (38 % of Zn), while uptake per unit biomass was 24 mg Zn/g. These results indicate that microorganisms can remove significant amounts of metals in wastewater with high concentrations of dissolved natural organic matter. Metal sorption by autochthonous microorganisms in an anaerobic bioreactor may be able to extend water reuse and therefore lower the water consumption of future biorefineries.

  5. Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO2 and UV/ZnO photocatalytic systems: A comparative study.

    Science.gov (United States)

    Ng, Kim Hoong; Khan, Maksudur R; Ng, Yun Hau; Hossain, Sk Safdar; Cheng, Chin Kui

    2017-03-30

    In this study, we have employed a photocatalytic method to restore the liquid effluent from a palm oil mill in Malaysia. Specifically, the performance of both TiO2 and ZnO was compared for the photocatalytic polishing of palm oil mill effluent (POME). The ZnO photocatalyst has irregular shape, bigger in particle size but smaller BET specific surface area (9.71 m(2)/g) compared to the spherical TiO2 photocatalysts (11.34 m(2)/g). Both scavenging study and post-reaction FTIR analysis suggest that the degradation of organic pollutant in the TiO2 system has occurred in the bulk solution. In contrast, it is necessary for organic pollutant to adsorb onto the surface of ZnO photocatalyst, before the degradation took place. In addition, the reactivity of both photocatalysts differed in terms of mechanisms, photocatalyst loading and also the density of photocatalysts. From the stability test, TiO2 was found to offer higher stability, as no significant deterioration in activity was observed after three consecutive cycles. On the other hand, ZnO lost around 30% of its activity after the 1st-cycle of photoreaction. The pH studies showed that acidic environment did not improve the photocatalytic degradation of the POME, whilst in the basic environment, the reaction media became cloudy. In addition, longevity study also showed that the TiO2 was a better photocatalyst compared to the ZnO (74.12%), with more than 80.0% organic removal after 22 h of UV irradiation.

  6. Comparative embryotoxicity of pulp mill extracts in rainbow trout (Oncorhynchus mykiss), American flagfish (Jordanella floridae) and Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Orrego, Rodrigo; Guchardi, John; Beyger, Lindsay; Krause, Rachelle; Holdway, Douglas

    2011-08-01

    This study evaluated the effects of Chilean pulp mill effluent extracts (untreated, primary and secondary treated pulp mill effluents), along with steroid standards (testosterone and 17β-estradiol) and a wood extractive standard (beta-sitosterol) on developing post-fertilized fish embryos. Our study included a cold freshwater species, rainbow trout (Oncorhynchus mykiss), and two warm freshwater species American flagfish (Jordanella floridae) and Japanese medaka (Oryzias latipes). Embryotoxicity results included delay in time to hatch and decreased hatchability but no significant egg and larvae mortality was observed in the pulp mill extract exposed embryos. By contrast, significant early hatching and increased hatchability were observed in beta-sitosterol exposed embryos, along with high mortality of testosterone exposed embryos across species. Teratogenic responses were observed in medaka embryos in all treatments. Abnormalities were detected starting at development stages 19-20 (2-4 somite stages) and included optical deformities (micro-opthalmia, 1 or 2 eyes) and lack of development of brains and hearts. Additionally, phenotypic sex identification of surviving offspring found female-biased sex-ratios in all treatments except testosterone across species. Overall, our study indicated that Chilean pulp and paper mill extractives caused embryotoxicity (post-fertilized embryos) across species and irrespective of the effluent treatment. The effects were mainly associated with delayed time to hatch, decreased hatchability, and species-specific teratogenesis.

  7. Understanding milling induced changes: Some results

    Indian Academy of Sciences (India)

    K Chattopadhyay; N Ravishankar; T A Abinandanan; Viji Varghese

    2003-10-01

    The effect of mechanical milling on materials has been studied using simple model systems. The results show that milling leads to enhancement in both thermodynamic driving force and transport kinetics. A study of some characteristic physical properties of the milled samples in comparison to the bulk shows how milling affects the properties.

  8. Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill.

    Science.gov (United States)

    Yukseler, H; Uzal, N; Sahinkaya, E; Kitis, M; Dilek, F B; Yetis, U

    2017-12-01

    The present study was undertaken as the first plant scale application and evaluation of Best Available Techniques (BAT) within the context of the Integrated Pollution Prevention and Control/Industrial Emissions Directive to a textile mill in Turkey. A "best practice example" was developed for the textile sector; and within this context, BAT requirements for one of the World's leading denim manufacturing textile mills were determined. In order to achieve a sustainable wastewater management; firstly, a detailed wastewater characterization study was conducted and the possible candidate wastewaters to be reused within the mill were identified. A wastewater management strategy was adopted to investigate the possible reuse opportunities for the dyeing and finishing process wastewaters along with the composite mill effluent. In line with this strategy, production processes were analysed in depth in accordance with the BAT Reference Document not only to treat the generated wastewaters for their possible reuse, but also to reduce the amount of water consumed and wastewater generated. As a result, several applicable BAT options and strategies were determined such as reuse of dyeing wastewaters after treatment, recovery of caustic from alkaline finishing wastewaters, reuse of biologically treated composite mill effluent after membrane processes, minimization of wash water consumption in the water softening plant, reuse of concentrate stream from reverse osmosis plant, reducing water consumption by adoption of counter-current washing in the dyeing and finishing processes. The adoption of the selected in-process BAT options for the minimization of water use provided a 30% reduction in the total specific water consumption of the mill. The treatability studies adopted for both segregated and composite wastewaters indicated that nanofiltration is satisfactory in meeting the reuse criteria for all the wastewater streams considered. Copyright © 2017 Elsevier Ltd. All rights

  9. Chalk Line Mill, Anniston, AL

    Science.gov (United States)

    The Chalk Line Mill property was the site of a textile mill which operated from 1887 until 1994. Demolition activities in 2004 removed most of the structures on-site, but also left large, unsightly piles of debris scattered across this 14-acre property. The City applied for and received a $200,000 Brownfields cleanup grant in 2007 to address contamination on the property and the Appalachian Regional Commission provided an additional $150,000 in funding.

  10. Brookside Mills, Knox County, TN

    Science.gov (United States)

    Brookside Mills, located in Knox County, TN, was a textile mill that was founded in 1885 and at its peak employed over 1,000 people. Its former uses included fabric weaving, dying, and sewing operations. It was at some point a department store, and during a portion of its history, coal was used as an energy source. Weaving operations continued in some form at the Brookside factory until 1969. In 1996 the buildings were demolished.

  11. Splenotoxic effect of radiographic developer effluent on Wistar rats

    Directory of Open Access Journals (Sweden)

    Anthony C. Ugwu

    2016-05-01

    Results: Normal spleen histology was observed in the control group. In contrast, tissue degeneration and necrosis; lymphocytic infiltration as well as reduction of splenic follicles were observed in some of the test groups (IIA, IIB and IIIA. Interestingly, the toxic effects of the developer effluent on group IIIB administered with higher dose for a longer period of 28 days were not as severe as observed in the other test groups. Conclusions: The present study which indicated adverse effects of exposures to sub-lethal doses of developer effluent on Wistar rats' spleen tissues suggests the need for proper management and disposal of radiographic effluents. [Int J Res Med Sci 2016; 4(5.000: 1625-1631

  12. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  13. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    Science.gov (United States)

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.

  14. Preventing performance drops of coal mills due to high moisture content

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.

    2007-01-01

    Coal mills pulverize and dry the coal dust before it is blown into the furnace in coal-fired power plants. The coal mills can only deliver the requested coal flow if certain conditions are fulfilled. These are normally considered as constraints on individual variables. However, combinations of more...... coal is accumulated instead of being blown into the furnace. This paper suggests a simple method for preventing the accumulation of the coal in the mill, by limiting the requested coal flow considering the coal moisture content and the temperature outside the mill.  ...

  15. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  16. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents.

    Science.gov (United States)

    Singhal, V; Rai, J P N

    2003-02-01

    The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from wastewater for their metabolic use. Slurry of the two plants used for phytoremediation produced significantly more biogas than that produced by the plants grown in deionized water; the effect being more marked with plants used for phytoremediation of 20% pulp and paper mill effluent. Biogas production from channel grass was relatively greater and quicker (maximum in 6-9 days) than that from water hyacinth (in 9-12 days). Such variation in biogas production by the two macrophytes has been correlated with the changes in C, N and C/N ratio of their slurry brought by phytoremediation.

  17. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    Science.gov (United States)

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling.

  18. YANG-MILLS FIELD CAPACITOR

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-10-01

    Full Text Available The article presents a project of the capacitor in the Yang-Mills theory. Model capacitor represents the equipotential surfaces separated by a space. To describe the mechanism of condensation chromodynamics field used numerical models developed based on an average of the Yang-Mills theory. In the present study, we used eight-scalar component model that in the linear case is divided into two groups containing three or five fields respectively. In contrast to classical electrodynamics, a static model of the Yang-Mills is not divided into independent equations because of the nonlinearity of the model itself. However, in the case of a linear theory separation is possible. It is shown that in this particular case, the Yang-Mills theory is reduced to Poisson theory, which describes the electrostatic and magnetostatic phenomena. In the present work it is shown that in a certain region of the parameters of the capacitor of the Yang-Mills theory on the functional properties of the charge accumulation and retention of the field is similar to the capacitor of the electrostatic field or a magnet in magnetostatics. This means that in nature there are two types of charges, which are sources of macroscopic Yang-Mills field, which are similar to the properties of electric and magnetic charges in the Poisson theory. It is shown that in Yang-Mills only one type of charge may be associated with the distribution density of the substance, while another type of charge depends on the charge distribution of the first type. This allows us to provide an explanation for the lack of symmetry between electric and magnetic charges

  19. Theories of Suggestion.

    Science.gov (United States)

    Brown, W

    1928-02-01

    The word "suggestion" has been used in educational, scientific and medical literature in slightly different senses. In psychological medicine the use of suggestion has developed out of the earlier use of hypnotic influence.Charcot defined hypnosis as an artificial hysteria, Bernheim as an artificially increased suggestibility. The two definitions need to be combined to give an adequate account of hypnosis. Moreover, due allowance should be made for the factors of dissociation and of rapport in hypnotic phenomena.The relationships between dissociation, suggestibility, and hypnotizability.Theories of suggestion propounded by Pierre Janet, Freud, McDougall, Pawlow and others. Ernest Jones's theory of the nature of auto-suggestion. Janet explains suggestion in terms of ideo-motor action in which the suggested idea, because of the inactivity of competing ideas, produces its maximum effect. Freud explains rapport in terms of the sex instinct "inhibited in its aim" (transference) and brings in his distinction of "ego" and "ego-ideal" (or "super-ego") to supplement the theory. Jones explains auto-suggestion in terms of narcissism. McDougall explains hypnotic suggestion in terms of the instinct of self-abasement. But different instincts may supply the driving power to produce suggestion-effects in different circumstances. Such instincts as those of self-preservation (fear) and gregariousness may play their part. Auto-suggestion as a therapeutic factor is badly named. It supplements, but does not supplant the will, and makes complete volition possible.

  20. Noise exposure in oil mills

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar G

    2008-01-01

    Full Text Available Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM (Model-824, Larson and Davis, USA, equivalent SPL was measured at operator′s ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m x 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of

  1. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  2. Effect of milling on DSC thermogram of excipient adipic acid.

    Science.gov (United States)

    Ng, Wai Kiong; Kwek, Jin Wang; Yuen, Aaron; Tan, Chin Lee; Tan, Reginald

    2010-03-01

    The purpose of this research was to investigate why and how mechanical milling results in an unexpected shift in differential scanning calorimetry (DSC) measured fusion enthalpy (Delta(fus)H) and melting point (T(m)) of adipic acid, a pharmaceutical excipient. Hyper differential scanning calorimetry (hyper-DSC) was used to characterize adipic acid before and after ball-milling. An experimental study was conducted to evaluate previous postulations such as electrostatic charging using the Faraday cage method, crystallinity loss using powder X-ray diffraction (PXRD), thermal annealing using DSC, impurities removal using thermal gravimetric analysis (TGA) and Karl Fischer titration. DSC thermograms showed that after milling, the values of Delta(fus)H and T(m) were increased by approximately 9% and 5 K, respectively. Previous suggestions of increased electrostatic attraction, change in particle size distribution, and thermal annealing during measurements did not explain the differences. Instead, theoretical analysis and experimental findings suggested that the residual solvent (water) plays a key role. Water entrapped as inclusions inside adipic acid during solution crystallization was partially evaporated by localized heating at the cleaved surfaces during milling. The correlation between the removal of water and melting properties measured was shown via drying and crystallization experiments. These findings show that milling can reduce residual solvent content and causes a shift in DSC results.

  3. Comparative research of plasma-assisted milling and traditional milling in synthesizing AlN

    Science.gov (United States)

    Wang, Sen; Wang, Wenchun; Liu, Zhijie; Yang, Dezheng

    2017-06-01

    In this paper, traditional milling and discharge plasma-assisted milling are employed to synthesize aluminum nitride (AlN) powder at nanometer scale by milling the mixture of aluminum and lithium hydroxide monohydrate. AlN powders can be generated in traditional milling and plasma-assisted milling in an hour milling time. Differential thermal analysis curves show that the reaction temperature of the powders treated by plasma-assisted milling is lower than that of traditional milling. These results indicate that plasma-assisted milling has higher efficiency in the synthesis of AlN, getting smaller crystallite size and activating powder. Moreover, an optical emission spectrum is employed to demonstrate the active species in plasma. The different formation process of AlN in the two-milling process, and the promotion effects of plasma in the milling process are discussed.

  4. Suggested safeguards an

    African Journals Online (AJOL)

    MJM Venter

    ... COORDINATION. (FACILITATION OR CASE MANAGEMENT) IN SOUTH AFRICA ... SUGGESTED SAFEGUARDS AND LIMITATIONS FOR EFFECTIVE AND .... professional practice.27 They have to assess the situation; educate the parents.

  5. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently `los

  6. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... deviations from the ideal micro tool shape, dramatically changing the cutting edge profile as well as rake and clearance angles. This critically affects the performance of the micro tool leading to increased cutting forces and micro tool deflections with detrimental effects on the accuracy of the machined...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...

  7. Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool

    Energy Technology Data Exchange (ETDEWEB)

    Dolph, Melissa Commisso, E-mail: mdolph@mitre.org [The MITRE Corporation, McLean, VA 22102 (United States); Santeufemio, Christopher, E-mail: Christopher_Santeufemio@uml.edu [Campus Materials Characterization Labs, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2014-06-01

    In this paper, we compare the features observed on a Group III–V strained layer superlattice (SLS) materials system as a result of room temperature Ga{sup +} focused ion beam (FIB) milling to the features observed as a result of cryogenic FIB (cryo-FIB) milling at –135 °C under the same beam conditions (30 kV:1 nA). The features on the cryo-FIB milled material were observed both when the material was still cold and after it returned to room temperature. Although cryo-FIB milling yielded patterned features that were initially cleaner than comparable features defined by FIB milling at room temperature, we found that both room temperature FIB milling and cryo-FIB milling with subsequent sample warm-up resulted in the formation of Group III enriched features. These findings suggest that the structural and chemical properties of features fabricated by cryo-FIB milling are temperature-dependent, which is an important consideration when it comes to device fabrication. These dependencies will need to be better understood and controlled if cryo-FIB milling is to have future applications in this area.

  8. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    Science.gov (United States)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  9. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.

    Science.gov (United States)

    Mockos, Gregory R; Smith, William A; Loge, Frank J; Thompson, David N

    2008-03-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste-activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25 degrees C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  10. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  11. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  12. Soil Carbon 4 per mille

    Science.gov (United States)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  13. YANG-MILLS FIELD AMPLIFIER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-09-01

    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  14. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.

  15. Research Suggestions for Students

    Science.gov (United States)

    Holland, John L.

    1974-01-01

    Describes how to perform accurate research. Also includes suggestions for specific research projects under such headings as: (1) types; (2) environments; (3) interactions; (4) classification; (5) hexagonal model; and (6) differentiation. (HMV)

  16. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1984

    1984-01-01

    Contributors offer suggestions concerning parents as reading stimulators, book discussions, a test bank for the secondary school/college reading lab, standardized reading tests, television reading, plagiarism, vocabulary development, and book reports. (FL)

  17. Open To Suggestion.

    Science.gov (United States)

    Journal of Reading, 1988

    1988-01-01

    Suggests class activities in three short articles including: (1) "Students Evaluate Reading," by Lenore Sandel; (2) "Solving Verbal Analogies," by Edward J. Dwyer; and (3) "Becoming Testwise," by Dean Schoen. (RS)

  18. Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2008-09-01

    Full Text Available In this paper, a comparative study of the treatment of raw and biotreated (upflow anaerobic sludge blanket, UASB textile dye bath effluent using advanced oxidation processes (AOPs is presented. The AOPs applied on raw and biotreated textile dye bath effluent, after characterization in terms of COD, colour, BOD and pH, were ozone, UV, UV/H2O2 and photo-Fenton. The decolorization of raw dye bath effluent was 58% in the case of ozonation. However it was 98% in the case of biotreated dye bath effluent when exposed to UV/H2O2. It is, therefore, suggested that a combination of biotreatment and AOPs be adopted to decolorize dye bath effluent in order to make the process more viable and effective. Biodegradability was also improved by applying AOPs after biotreatment of dye bath effluent.

  19. Observer Based Fault Detection and Moisture Estimating in Coal Mill

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2008-01-01

    In this paper an observer-based method for detecting faults and estimating moisture content in the coal in coal mills is presented. Handling of faults and operation under special conditions, such as high moisture content in the coal, are of growing importance due to the increasing requirements to......In this paper an observer-based method for detecting faults and estimating moisture content in the coal in coal mills is presented. Handling of faults and operation under special conditions, such as high moisture content in the coal, are of growing importance due to the increasing...... requirements to the general performance of power plants. Detection  of faults and moisture content estimation are consequently of high interest in the handling of the problems caused by faults and moisture content. The coal flow out of the mill is the obvious variable to monitor, when detecting non-intended drops in the coal...... flow out of the coal mill. However, this variable is not measurable. Another estimated variable is the moisture content, which is only "measurable" during steady-state operations of the coal mill. Instead, this paper suggests a method where these unknown variables are estimated based on a simple energy...

  20. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    Science.gov (United States)

    Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.

    2015-01-01

    Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide

  1. Machine Shop. Module 6: Milling. Instructor's Guide.

    Science.gov (United States)

    Walden, Charles H.

    This document consists of materials for a 12-unit course on the following topics: (1) introduction to milling; (2) structure and accessories; (3) safety and maintenance; (4) cutting-tool variables; (5) basic set-up activities; (6) squaring a workpiece; (7) hole-making operations; (8) form milling; (9) machining keyways; (10) milling angular…

  2. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  3. Topological susceptibility for the SU(3) Yang--Mills theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We present the results of a computation of the topological susceptibility in the SU(3) Yang--Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to c...

  4. Defining a Minimum End Mill Diameter

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2015-01-01

    Full Text Available Industrial observations show that the standard mill designs in many cases do not provide a complete diversity of manufacturing operations, and a lot of enterprises are forced to design and manufacture special (original designs of tools. The information search has revealed a lack of end mill diameter calculations in publications. There is a proposal to calculate the end mill diameter either by empirical formulas [2, 3], or by selection from the tables [4].To estimate a minimum diameter of the end mill to perform the specified manufacturing operations based on the mill body strength the formulas are obtained. The initial data for calculation are the flow sheet of milling operation and properties of processed and tool materials. The end mill is regarded, as a cantilevered beam of the circular cross section having Dс diameter (mill core diameter with overhang Lв from rigid fixing and loaded by the maximum bending force and torque.In deriving the formulas were used the following well-reasoned assumptions based on the analysed sizes of the structural elements of the standard mills: a diameter of mill core is linearly dependent on the mill diameter and the overhang; the 4τ 2 to σ 2 4τ2 ratio is constant and equal to 0.065 for contour milling and 0.17 for slot milling.The formulas for calculating the minimum diameter are as follows:  3 обр в 1 121 1.1  K S L L D m C z    for contour milling;  3 обр в 1 207 1.1  K S L L D m C z    for slot milling.Obtained dependences that allow defining a minimum diameter of the end mill in terms of ensuring its strength can be used to design mills for contour milling with radius transition sections, holes of different diameters in the body parts and other cases when for processing a singlemill is preferable.Using the proposed dependencies for calculating a feed of the maximum tolerable strength is reasonable in designing the mills for slots.Assumptions used in deriving

  5. Soil carbon 4 per mille

    NARCIS (Netherlands)

    Mulder, V.L.

    2017-01-01

    The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil

  6. J. S. Mill on Education

    Science.gov (United States)

    Ryan, Alan

    2011-01-01

    Mill may be said either to have written rather little on education or to have written a very great deal. He himself distinguished between a "narrow" and a "wider" sense of education, the former limited to what happens in formal educational settings, the latter embracing all the influences that make us who and what we are. He wrote rather little on…

  7. Integration of micro milling highspeed spindle on a microEDM-milling machine set-up

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Hansen, Hans Nørgaard; Andolfatto, Loic

    2009-01-01

    In order to cope with repositioning errors and to combine the fast removal rate of micro milling with the precision and small feature size achievable with micro EDM milling, a hybrid micro-milling and micro-EDM milling centre was built and tested. The aim was to build an affordable set-up, easy...... by micro milling. Examples of test parts are shown and used as an experimental validation....

  8. Attitudes to Suggestions

    Institute of Scientific and Technical Information of China (English)

    PETER; JOHNSON

    2007-01-01

    As an Australian expat teaching English in China for over four years, I often encourage my students to not only learn the English language but also try to understand Western culture. This includes the fact that Westerners frequently initiate proactive suggestions on any aspects of soci-

  9. Suggestions for Teaching Practice

    Institute of Scientific and Technical Information of China (English)

    ZHAN Na-na

    2013-01-01

    Teacher development and teaching practice(TP) have caught the eyes of researchers at home and abroad for many years. Many western scholars hold that reflective teaching is an efficient way to promote teacher development, but traditional TP is prevailing in China. Based on the merits and demerits of traditional TP and reflective TP, the author hopes to provide some suggestions for the people involved to promote the development of teacher education.

  10. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  11. Biomanagement of paper mill sludge using an indegenous (Lampito mauritii) and two exotic (Eudrilus eugineae and Eisenia foetida) earthworms.

    Science.gov (United States)

    Banu, J R; Logakanthi, S; Vijayalakshmi, G S

    2001-07-01

    Paper mills have severe problem in disposing effluent or semisolid sludge despite repeated recycling. It requires treatment prior to disposal of sludge. In recent years biological treatment methods received much attention and considered as efficient low-cost treatment. One such method is vermiculture treatment. The present study was carried out to dispose the paper mill sludge biologically using 2 exotic species (Eudrilus eugineae and Eiseniafoetida) and an indigenous species (Lampito mauritii) of earthworm. The paper mill sludge in various concentration 25%,50% and 75% were subjected to vermitub treatment for a period of 60 days. During the period of study data were collected on reproductive strategies of earthworm and chemical analysis of wastes before and after treatment. Results obtained indicate that 25% concentration of sludge was ideal and of the three worms used Eiseniafoetida proved to be the best worm for biomanagement.

  12. Measurement of moisture in mill feed ore

    Energy Technology Data Exchange (ETDEWEB)

    Timm, A.R.; Moench, P.; Moisel, E. (Council for Mineral Technology, Randburg (South Africa))

    1985-04-01

    The control of the moisture in the feed to a mill is very important for efficient mill operation. Water is added continuously to the ore fed to a mill to maintain a suitable mix of ore and moisture in the mill. However, problems arise because of the large variation in the moisture content of the ore, which affects the efficiency of the grind. If too little moisture is present, the mill is unable to grind the ore finely enough, creating instead a thick 'porridge' that causes the mill to choke up. On the other hand, too much moisture results in inefficient grinding because the ore is flushed through the mill too quickly. Several techniques are available for measuring moisture and Mintek undertook an investigation in an attempt to develop a reliable robust moisture meter suitable for monitoring the moisture content of ore, which include the following: neutron backscattering, infrared absorption, microwaves, capacitance and moisture as a function of conductivity.

  13. Swim performance and energy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of a uranium mill.

    Science.gov (United States)

    Goertzen, Meghan M; Hauck, Dominic W; Phibbs, James; Weber, Lynn P; Janz, David M

    2012-01-01

    The Key Lake uranium milling operation (Saskatchewan, Canada) releases complex effluent into the local watershed. The objective of the current study was to investigate whether fish from an effluent-receiving waterbody exhibited differences in swimming performance and energy homeostasis compared to fish from a local reference site. Juvenile spottail shiner (Notropis hudsonius) were collected from a lake downstream of the uranium mill, and compared to fish collected from a nearby reference lake. Critical swimming speed (U(crit); fatigue velocity), tail beat frequency, and tail amplitude did not differ significantly when comparing fish collected from the exposure lake and reference lake. Captured shiner used in swim tests were considered fatigued, and metabolic endpoints were compared between this group and non-fatigued fish, which were treated similarly but not subjected to swim tests. In both non-fatigued and fatigued shiner, liver glycogen was significantly greater in fish collected from the exposure lake compared to the reference lake. However, it is unclear if this effect, and others related to condition, were the result of contaminant exposure or other environmental factors. While there were no differences in plasma lactate, hematocrit or liver triglycerides in non-fatigued fish between sites, only fatigued reference fish had increased lactate and hematocrit and decreased triglycerides. In non-fatigued fish, plasma glucose did not significantly differ between sites, but significantly decreased after swimming only in fish from the exposure lake. In summary, shiner from the exposure site demonstrated similar swim endurance and possessed greater energy stores despite metabolic alterations compared to shiner from the reference site. Therefore, because fish collected downstream of the uranium mill operation had similar swimming ability as fish from the reference lake, U(crit) test results presented here may not reflect or be indicative of metabolic effects of complex

  14. Plating effluent management in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Paine, P. [Environment Canada, Hull, PQ (Canada)

    2001-07-01

    There are some 600 firms in Canada classified as metal finishers, employing about 8,000 people; 60 per cent of these firms are located in Ontario. Annual sales are in the range of $800 million. About 25 per cent of the total effort is devoted to the automotive industry. Regulatory initiatives are based on the Toxic Substance Management Policy 1995 Framework, and involve multi-stakeholder consultation to identify, evaluate and recommend goals, targets, and management options to reduce exposure to hexavalent chromium, maximize the recycling of nickel and minimize the releases of cadmium from industry operations by promoting and encouraging appropriate P2 practices. Other regulatory initiatives follow from the Fisheries Act of 1970, the Metal Finishing Liquid Effluent Guidelines of 1977, and the Canadian Environmental Protection Act of 1988. There are also non-regulatory initiatives, such as the Metal Finishing Industry Pollution Project, a voluntary cooperative effort directed towards formulating plans to reduce toxic effluents from metal finishing operations and to develop and implement site-specific P2 plans. The various treatment technologies such as physico-chemical treatment of multi-metal rinse waters and periodic bath dumpings at on-site waste water treatment plants, water reduction practices to make more effective use of rinse water, evaporation, ion exchange, packed bed scrubbers, fume suppressants, composite mesh pads and separate ventilation for degreasing are also described. Specific case studies are cited to illustrate the various treatment technologies.

  15. Liquid effluent study characterization data

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    During the development of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), public comments were received regarding reduction of the discharge of liquid effluents into the soil column. As a result, the US Department of Energy (DOE), with concurrence of the Washington State Department of Ecology (WSDE)and the US Environmental Protection Agency (EPA), committed to a special project designed to document the discharge history and the charter of Hanford Site liquid discharges. The results of this project will be used in determining the need for additional waste stream analysis, and/or to negotiate additional milestones pertaining to such discharges in the Tri-Party Agreement. Wastestream sampling data collected prior to October 1989 were reported in the Waste Stream Characterization Report. Preliminary Stream-specific Reports were prepared which evaluated that data and proposed dangerous waste designations for each stream. This document contains the wastestream sampling and analysis data collected as part of the liquid effluent study. Data contained in this report were obtained from samples collected from October 1989 through March 1990. Information is presented on the wastestreams that have been sampled, the parameters analyzed, and the dates and times at which the samples were collected. This information will be evaluated in the final Stream-Specific Reports. 9 refs., 4 tabs.

  16. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent.

    Science.gov (United States)

    Brix, Kevin V; Gerdes, Robert; Grosell, Martin

    2010-10-01

    A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized.

  17. N=2 SYM Action as a BRST Exact Term, Topological Yang Mills and Instantons

    CERN Document Server

    Ulker, K

    2003-01-01

    By defining an extended BRST operator that includes the chiral part of N=2 global supersymmetry, it is shown that the full N=2 off-shell Super Yang Mills Action can be represented as an exact BRST term. The action written in this form suggests that the fields of the Topological Yang Mills theory can be defined in terms of composite fields of supersymmetry ghosts and N=2 fields in a natural way. Topological Yang Mills theory is obtained from the ordinary Euclidean N=2 SYM directly as field redefinitions without using twisting procedure. With the help of these results, relation between the recent instanton calculations in N=2 Super Yang Mills and Topological Yang Mills theories is also discussed.

  18. Animal alternatives for whole effluent toxicity testing ...

    Science.gov (United States)

    Since the 1940s, effluent toxicity testing has been utilized to varying degrees in many countries to assess potential ecological impacts and assist in determining necessary treatment options for environmental protection. However, it was only in the early 1980’s that toxicity based effluent assessments and subsequent discharge controls became globally important, when it was recognized that physical and chemical measurements alone did not protect the environment from potential impacts. Consequently, various strategies using different toxicity tests, whole effluent assessment techniques (incorporating bioaccumulation potential and persistence) plus supporting analytical tools have been developed over 30 years of practice. Numerous workshops and meetings have focused on effluent risk assessment through ASTM, SETAC, OSPAR, UK competent authorities, and EU specific country rules. Concurrent with this drive to improve effluent quality using toxicity tests, interest in reducing animal use has risen. The Health and Environmental Sciences Institute (HESI) organized and facilitated an international workshop in March 2016 to evaluate strategies for concepts, tools, and effluent assessments and update the toolbox of for effluent testing methods. The workshop objectives were to identify opportunities to use a suite of strategies for effluents, and to identify opportunities to reduce the reliance on animal tests and to determine barriers to implementation of new methodologie

  19. Animal alternatives for whole effluent toxicity testing ...

    Science.gov (United States)

    Since the 1940s, effluent toxicity testing has been utilized to varying degrees in many countries to assess potential ecological impacts and assist in determining necessary treatment options for environmental protection. However, it was only in the early 1980’s that toxicity based effluent assessments and subsequent discharge controls became globally important, when it was recognized that physical and chemical measurements alone did not protect the environment from potential impacts. Consequently, various strategies using different toxicity tests, whole effluent assessment techniques (incorporating bioaccumulation potential and persistence) plus supporting analytical tools have been developed over 30 years of practice. Numerous workshops and meetings have focused on effluent risk assessment through ASTM, SETAC, OSPAR, UK competent authorities, and EU specific country rules. Concurrent with this drive to improve effluent quality using toxicity tests, interest in reducing animal use has risen. The Health and Environmental Sciences Institute (HESI) organized and facilitated an international workshop in March 2016 to evaluate strategies for concepts, tools, and effluent assessments and update the toolbox of for effluent testing methods. The workshop objectives were to identify opportunities to use a suite of strategies for effluents, and to identify opportunities to reduce the reliance on animal tests and to determine barriers to implementation of new methodologie

  20. Direct nanofiltration of wastewater treatment plant effluent

    NARCIS (Netherlands)

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltr

  1. 40 CFR 420.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... representing the degree of effluent reduction attainable by the application of the best available technology... effluent reduction attainable by the application of the best available technology economically...

  2. 40 CFR 430.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Secondary Fiber Non-Deink Subcategory § 430.102 Effluent limitations representing the degree of effluent...

  3. 40 CFR 430.104 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Secondary Fiber Non-Deink Subcategory § 430.104 Effluent limitations representing the degree of effluent...

  4. Remediation of uranium mill tailings by an integrated biological and chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1992-01-01

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 [times] 10[sup [minus]3] and 2.3 [times] 10[sup [minus]3] mol/dry weight of alginate. The kinetic values, V[sub m] and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  5. Remediation of uranium mill tailings by an integrated biological and chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1992-12-31

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 {times} 10{sup {minus}3} and 2.3 {times} 10{sup {minus}3} mol/dry weight of alginate. The kinetic values, V{sub m} and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  6. EPA Enforcement and Compliance History Online: Water Effluent Charts Details

    Data.gov (United States)

    U.S. Environmental Protection Agency — Detailed Discharge Monitoring Report (DMR) data supporting effluent charts for one Clean Water Act discharge permit. Includes effluent parameters, amounts discharged...

  7. EPA Enforcement and Compliance History Online: Water Effluent Charts Downloads

    Data.gov (United States)

    U.S. Environmental Protection Agency — Detailed Discharge Monitoring Report (DMR) data supporting effluent charts for one Clean Water Act discharge permit. Includes effluent parameters, amounts discharged...

  8. Kraft pulp and paper mill wastewater treatment using fixed bed anaerobic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Damianovic, M. H. R. Z; Ruas, D.; Pires, E. C.; Foresti, E.

    2009-07-01

    The effluents of pulp mills contain a myriad of toxic compounds, biodegradable organic matter and sulfur compounds. to decrease the amount of fresh water required for pulp and paper production closed circuits are in use, however, higher concentrations of slat, as oxidized sulfur compounds, are encountered in the wastewaters. energy costs and new environmental concerns are motivating the use of anaerobic pretreatment as a way to decrease energy expenditure in the treatment plant together with lower sludge production. In anaerobic environment, the organic matter removal can follow methanogenic or sulfidogenic paths and with the latter simultaneous reduction of the oxidized sulfur compounds also occurs. (Author)

  9. Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1).

    Science.gov (United States)

    Boubaker, Fezzani; Ridha, Ben Cheikh

    2008-09-01

    The anaerobic digestion model No. 1 (ADM1), conceived by the international water association (IWA) task group for mathematical modelling of anaerobic digestion processes is a structured generic model which includes multiples steps describing biochemical and physicochemical processes encountered in the anaerobic degradation of complex organic substrates and a common platform for further model enhancement and validation of dynamic simulations for a variety of anaerobic processes. In this study the ADM1 model was modified and applied to simulate the mesophilic anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW). The ADM1 equations were coded and implemented using the simulation software package MATLAB/Simulink. The most sensitive parameters were calibrated and validated using updated experimental data of our previous work. The results indicated that the ADM1 model could simulate with good accuracy: gas flows, methane and carbon-dioxide contents, pH and total volatile fatty acids (TVFA) concentrations of effluents for various feed concentrations digested at different hydraulic retention times (HRTs) and especially at HRTs of 36 and 24 days. Furthermore, effluent alkalinity and ammonium nitrogen were successfully predicted by the model at HRTs of 12 and 24 days for some feed concentrations.

  10. PULPA CUBA MILL ENERGY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Juan Pedro Hernández Touset

    2015-10-01

    Full Text Available An energy study was performed at Pulpa Cuba Paper Mill, located in Sancti Spiritus, where an energy management system was applied according to NC: ISO 50001, in order to assess the energy system by applying energy management systems for energy and water reduction in the paper mill, in which the current steam generation, distribution and consumption system is diagnosed. The proposal of a modified energy scheme with 1 MW Backpressure Steam Turbine Generator and rehabilitation of the original boiler or installing a lower capacity boiler contributes to save financial resources by the concept of water, fuel and electricity. The implementation of four projects will save 3,095,574 CUC / y and an average payback period of about 1 year is expected.

  11. The impact of zinc oxide nanoparticles in freshwater mussels exposed to municipal effluents

    Directory of Open Access Journals (Sweden)

    Gagné F

    2016-08-01

    Full Text Available Zinc oxide nanoparticles (nano-ZnO are used in the production of transparent sunscreens and cosmetics, which are released into the environment through municipal effluents. The purpose of this study was to examine the toxicity of nano-ZnO to freshwater mussels (Elliptio complanata in the presence of municipal effluents. Mussels were exposed for 21 days at 15 o C to 1 and 10 µg/L nanoZnO, and ZnCl2 in the presence of a physico-chemically treated municipal effluent (3 and 10 % v/v. After the exposure period and a 24 h depuration step, mussels were analyzed for free Zn in gills, metallothioneins (MT, oxidative stress (production of malondialdehyde (MDA during lipid peroxidation, gonad alkali-labile phosphate (ALP levels and genotoxicity. Gill MT levels were increased at 10 µg/L nano-ZnO and ZnCl2 and in the presence of the municipal effluent. MT levels were positively correlated with free Zn in gills and negatively correlated with MDA levels, indicating its involvement in the prevention of oxidative stress. However, MDA levels were significantly related to DNA damage in gills, indicating that MT induction did not prevent oxidative-mediated damage in cells. Gonad ALP levels were increased by exposure to ZnCl2 and to the highest concentration of municipal effluent. DNA strand breaks were increased in mussels treated to nano-ZnO indepentely of municipal effluent. Multivariate discriminant function analysis revealed that control mussels differed from mussels exposed to the municipal effluent and from those exposed to nano-ZnO or ZnCl2 alone. When the municipal effluent was added, changes in MDA, MT and labile Zn were produced and formed another cluster, suggesting a change in the toxicity of the municipal effluent in the presence of nano-ZnO.

  12. ROLLING MILL SYSTEM DYNAMIC DESIGN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is studied how the aluminum foil chatter mark is produced and controlledThe stableness of hydraulic AGC system,fluid vibration of capsule system,and electromechanical coupling of AC/AC VVVF system and dec oupling are also studiedIt is shown that rolling mill design should go to syst em dynamic design from traditional designThe framed drawing of system dynamic design program is presented

  13. GLYCOSIDES FROM LINARIA VULGARIS MILL

    Directory of Open Access Journals (Sweden)

    Natalia Mashcenko

    2008-12-01

    Full Text Available A new flavonol glycoside, 5,4′-dimethylkaempferol 3-O-β-D-(6′′-α-Lrhamnopyranosyl -glucopyranoside, together with three known compounds were isolated from the n-butanolic soluble fraction of underground and aerial parts of Linaria vulgaris Mill, collected on the territory of Moldova. The characterisation of these compounds was achieved by various chromatographic and spectroscopic methods (IR, UV, 13C-NMR, 1H-NMR and MS.

  14. 40 CFR 469.14 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... Semiconductor Subcategory § 469.14 Effluent limitations representing the degree of effluent reduction attainable... of the best practicable control technology currently available (BPT): Subpart A—Semiconductor...

  15. 40 CFR 469.19 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE CATEGORY Semiconductor... conventional pollution control technology (BCT): Subpart A—Semiconductor BCT Effluent Limitations Pollutant...

  16. 40 CFR 415.512 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.512 Effluent limitations guidelines... available (BPT): Subpart AY—Potassium Iodide Pollutant or pollutant property BPT effluent...

  17. 40 CFR 426.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.62 Effluent limitations guidelines representing the degree of...

  18. 40 CFR 430.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Secondary Fiber Deink Subcategory § 430.93 Effluent limitations guidelines representing the degree of...

  19. 40 CFR 424.57 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.57 Effluent limitations guidelines representing the degree of...

  20. 40 CFR 424.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.53 Effluent limitations guidelines representing the degree of...

  1. 40 CFR 424.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.47 Effluent...

  2. 40 CFR 424.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.43 Effluent...

  3. The effects of nutrient limitation (nitrogen and phosphorus) on BOD removal from post-coagulated Pinus radiata sulfite pulp and paper mill wastewater in a baffled aerated stabilisation basin-laboratory pilot scale study.

    Science.gov (United States)

    Dewi, R; Van Leeuwen, J A; Everson, A; Nothrop, S C; Chow, C W K

    2011-01-01

    The use of coagulation and flocculation for tertiary treatment of pulp and paper mill effluent was investigated, where the evaluation was based on the removal of nitrogen (N), phosphorus (P) and BOD from post-coagulated wastewater. The study was undertaken on laboratory scale aerobic stabilisation basins (ASB). Two post coagulated (alum) wastewaters were studied, where the BOD:N:P ratios were 100:1.3:0.06 and 100:1.3:0.3. These wastewaters were treated in two identical concurrent simulations (A & B). The influent ratio for 'A' was selected representing the composition of actual coagulated Pinus radiata sulfite pulp effluent mixed with paper mill effluent. The input composition for 'B' represented a typical P concentration found in existing pulp and paper mill effluents. Unmodified sludge collected from a mill-pond was added at 4% v/v to each simulation replicating the treatment conditions at full-scale. Similar high percentage removals of BOD and COD occurred after 28 days (two HRTs) which were 94 and 67% respectively for 'A', and 98 and 70% respectively for 'B', where both remained at steady state during the third HRT. A statistical analysis of the data revealed that there was no significant difference in the sample variance of the BOD and COD results.

  4. Online SAG Mill Pluse Measurement and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Raj Rajamani; Jose Delgadillo; Vishal Duriseti

    2007-06-30

    The grinding efficiency of semi autogenous milling or ball milling depends on the tumbling motion of the total charge within the mill. Utilization of this tumbling motion for efficient breakage of particles depends on the conditions inside the mill. However, any kind of monitoring device to measure the conditions inside the mill shell during operation is virtually impossible due to the severe environment presented by the tumbling charge. An instrumented grinding ball, which is capable of surviving a few hours and transmitting the impacts it experiences, is proposed here. The spectrum of impacts collected over 100 revolutions of the mills presents the signature of the grinding environment inside mill. This signature could be effectively used to optimize the milling performance by investigating this signature's relation to mill product size, mill throughput, make-up ball size, mill speed, liner profile and ball addition rates. At the same time, it can also be used to design balls and liner systems that can survive longer in the mill. The technological advances made in electronics and communication makes this leap in instrumentation certainly viable. Hence, the instrumented grinding ball offers the ability to qualitatively observe and optimize the milling environment. An instrumented load cell package that can measure the force of impacts inside the grinding chamber of a mill is developed here. The signal from the instrumented load cell package is interpreted in terms of a histogram termed as an impact spectrum which is a plot of the number of impacts at a specific energy level against the energy. It reflects on the average force regime of the mill. The instrumented load cell package was calibrated against the ultra fast load cell which has been unanimously accepted as a standard to measure single breakage events. The load cell package was successfully used to produce impact spectra in an 8.5 inch lab scale mill. The mill speed and the ball size were varied to

  5. Structures,properties and responses to heat treatment of deformation processed Cu-15%Cr composite powders prepared by mechanical milling

    Institute of Scientific and Technical Information of China (English)

    刘京雷; 刘祖岩; 王尔德; 线恒泽

    2002-01-01

    Cu-15%Cr composite powders were produced from elemental powders by mechanical milling technique. The structures, properties and thermal stability of the composite powders were characterized by scanning and transmission electron microscopy (SEM and TEM, respectively), electron probe microanalysis(EPMA), X-ray diffractometry and microhardness testing. The results show that powders are first flattened into thin discs at the initial stage of milling and then evolved into spheroid on further milling. Lamellar structure in powders is produced after intermediate milling. The Cr laminas degenerate into particles uniformizing in Cu matrix with excessive milling. The microhardness values and internal strain sharply increase with increasing milling time. Nano-sized Cu grains were found by TEM analysis. The microstructural observations suggested that the composite powders have high thermal stability and both spherodisation and thermal grooving contribute to the instability of Cr laminas.

  6. Effects of endocrine disrupting chemicals from leather industry effluents on male reproductive system.

    Science.gov (United States)

    Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha

    2008-09-01

    The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (pGC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.

  7. Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Chandramohan, D.; Michel, F.C.; Reddy, C.A.

    stream_size 2 stream_content_type text/plain stream_name Biotechnol_Lett_18_105.pdf.txt stream_source_info Biotechnol_Lett_18_105.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  8. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    NARCIS (Netherlands)

    Janssen, A.J.H.; Lens, P.N.L.; Stams, A.J.M.; Plugge, C.M.; Sorokin, D.Y.; Muyzer, G.; Dijkman, H.; Zessen, van E.; Luimes, F.J.T.; Buisman, C.J.N.

    2009-01-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exempl

  9. Evaluation of Anaerobic Fluidized Bed Reactor for treating Sugar mill effluent - a Case Study

    Directory of Open Access Journals (Sweden)

    R. Mathiyazhagan

    2014-07-01

    Full Text Available Anaerobic treatment processes are credible options for providing sustainable treatment to biodegradable waste streams. The Anaerobic Fluidized Bed Reactor (AFBR is an evolving process that requires waste specific design methodologies based on kinetics of the specific process. The research was precisely an experimental study on AFBR having23.56 litres of effective volume to evaluate its treatment performance and gas recovery in terms of Chemical Oxygen Demand (COD, Hydraulic Retention Time(HRTand Organic Loading Rate (OLR. The synthetic sugar influent COD was variedfrom 1500 to 4000 mg/lit. The OLR for the operating flow rates were ranged from 1.36 to 28.8 Kg COD/m3 .day for HRT varied from 3.2 to 24 hrs. The maximum COD removal efficiency is 90.06 at an operating OLR of 3.42 Kg COD/m3 .day. The maximum biogas yield was observed at 0.28 m 3 /kg COD removed.

  10. Features of phospho- and amidohydrolases functioning in edaphotopes polluted by ore mill effluents

    Directory of Open Access Journals (Sweden)

    O. M. Artyushenko

    2006-02-01

    Full Text Available Influence of aerotechnogenic contamination of soils on activity of some hydrolytic enzymes of nitrogen and phosphorus cycles is examined. Biochemical mobilization of organophosphorous and nitrogen-bearing compounds in soils polluted by heavy metals is depressed to a variable extent. In descending order of sensitivity to the pollution, the studied enzymes ranked as follows: urease > alkaline phosphatase > arginase > АТPase > acid phosphatase > amidase.

  11. Biogas production through Co-digestion of palm oil mill effluent with ...

    African Journals Online (AJOL)

    4Department of Food Science and Technology, School of Engineering, ... Biogas production potentials from POME and CM as a single substrate were extensively ..... ammonia. Applied Microbiology Biotechnology. 38: 560–564. Angelika ...

  12. Mill Designed Bio bleaching Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current

  13. Phosphorus removal from secondary effluents through integrated constructed treatment system.

    Science.gov (United States)

    Xiong, Jibing; Qin, Yong; Mahmood, Qaisar; Liu, Hanhu; Yang, Dejun

    2011-01-01

    The treatment capacity of an integrated constructed treatment system (CTS) was explored which was designed to reduce phosphorus (P) from secondary effluents. The integrated CTS was combined with vertical-flow constructed wetland, floating bed and sand filter. The vertical wetland was filled from the bottom to the top with gravels, steel slag and peat. Vetiverzizanioides (L.) Nash was selected to grow in the vertical constructed wetland while Coixlacrymajobi L. was grown in floating bed. The results suggested that integrated CTS displayed excellent removal efficiency for chemical oxygen demand (COD), dissolved phosphorus (DP), and total phosphorus (TP). The average COD removal efficiency of the integrated CTS was 90.45% after 40 days of operation, the average DP and TP removal efficiencies of the integrated CTS were 97.43% and 96.40%, respectively. The integrated CTS has good potential in removing COD as well as P from secondary effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Novel spin glasses by mechanical milling

    Institute of Scientific and Technical Information of China (English)

    周国富; H.Bakker

    1996-01-01

    Novel spin-glass alloys were synthesized by milling intermetallic compounds and also by milling mixtures of crystalline elemental powder in a high-energy ball mill.Spin glass behaviour was found in amorphous Co2Ge,which was amorphised by milling in mechanically disordered crystalline GdAl2 in ball-milled crystalline and amorphous CoZr,and in mechanically alloyed Co-Cu,which formed a supersaturated f.c.c.solid solution.All these materials are binary alloys and tlie concentration of the magnetic element is high,which makes them novel types of spin glasses.It is shown that ball milling may not only lead to structural metallic glasses,but can also generate the magnetic pendant of a structural glass,namely the spin glass.

  15. Formation of surface coating on milling balls during milling of Cr powders

    Institute of Scientific and Technical Information of China (English)

    王成国; 齐宝森; 王瑞华

    2002-01-01

    The formation regularity of surface coating on milling balls during milling of Cr powders was investigated, revealing that the plastic deformation of the balls surface plays an important role in the formation of coating and that the stronger affinity between the powders and the balls is a necessary pre-condition for the coating. The size of Cr powders, the coating thickness and the microhardness vary consistently with milling time during milling. At initial milling stage, the powder size decreases, while the coating thickness and the microhardness increase, however, after milling for 24h, they all change slightly with prolonged milling, indicating a dynamic equilibrium between the powders cold welding and crashing, i.e. an almost equal rate for the powders attaching to and breaking off the milling balls.

  16. 75 FR 49524 - Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding...

    Science.gov (United States)

    2010-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated July 22, 2010,...

  17. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization o...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  18. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano;

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  19. STABILIZATION OF EXPANSIVE SOIL USING MILL SCALE

    OpenAIRE

    Y.I.Murthy

    2012-01-01

    The present paper deals with the evaluation of the mechanical properties of black cotton soil mixed with mill scale in varying proportions and comparing the same with the results of pure black cotton soil. The mechanical properties of mill scale and black cotton soil are individually determined first and then the two are combined in varying proportions. The properties like plastic limit, CBR and Permeability of the same are evaluated. It is found that mixing mill scale in varying proportions ...

  20. Mill, Liberty And The Facts Of Life

    OpenAIRE

    Stimson, Shannon C.; Milgate, Murray

    2001-01-01

    This paper examines John Stuart Mill's discussion of economic liberty and individual liberty, and his view of the relationship between the two. It explores how, and how effectively, Mill developed his arguments about the two liberties; reveals the lineages of thought from which they derived; and considers how his arguments were altered by political economists not long after his death. It is argued that the distinction Mill drew between the two liberties provided him with a framework of conc...

  1. Structural evolution of ball-milled permalloy

    Energy Technology Data Exchange (ETDEWEB)

    Brzozka, K., E-mail: kbrzozka@poczta.f [Technical University, Department of Physics (Poland); Oleksakova, D.; Kollar, P. [P.J. Safarik University, Department of Condensed Matter Physics, Institute of Physics, Faculty of Science (Slovakia); Szumiata, T.; Gorka, B.; Gawronski, M. [Technical University, Department of Physics (Poland)

    2006-02-15

    Two series of Fe{sub 19.8}Ni{sub 80.2} samples obtained by ball milling and differing in the form of starting material were investigated by Moessbauer spectroscopy. In the case of milled elemental powder, strong structural evolution was stated: both {alpha} and {gamma} phases arise and a small amount of pure iron is present as well. The annealing of as-milled powder at 490{sup o}C causes faster forming of {gamma}-(Ni-Fe) phase. Only slight changes in atomic order were stated in the series of milled polycrystalline ribbon.

  2. Process engineering with planetary ball mills.

    Science.gov (United States)

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  3. Cutting Characteristics of Force Controllable Milling Head

    Institute of Scientific and Technical Information of China (English)

    Shirakashi; Takahiro; Shibuya; Wataru

    2002-01-01

    In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cut...

  4. Robotic milling for rapid ceramic pototyping

    Institute of Scientific and Technical Information of China (English)

    HAN Guang-chao; ZHANG Hai-ou; WANG Gui-lan

    2005-01-01

    Robotic milling is a developing method for rapidly producing prototypes and parts, but the application is limited for materials such as wax, wood, plastic and light metal, etc. The reason for this is because of the robotic weak rigidity. In this paper, a method of robotic milling for ceramic prototyping is developed, one that has been successfully applied in a new rapid hard tooling technology-Direct Prototype Spray Tooling[1]. At first, the appropriate ceramic materials mixed with metal powder are confirmed for the robotic milling and the following plasma spraying process. Then the 6 - DOF robotic milling paths are extracted from the NC code and transformed into the robotic JBI type file, the NC code generated through the general CAD/CAM software such as UG -NX.Finally, the robotic milling characteristics such as moving path accuracy and milling force are tested to find the best milling parameters and to ensure the executable, accurate and efficient ceramic prototype milling technology.The development of this method not only broadens the robotic milling material range but also extends the rapid prototyping fields. It can also be used for producing ceramic parts that are difficult to machine.

  5. Yang-Mills theory in terms of gauge invariant dual variables

    CERN Document Server

    Diakonov, D

    2002-01-01

    Quantum Yang-Mills theory and the Wilson loop can be rewritten identically in terms of local gauge-invariant variables being directly related to the metric of the dual space. In this formulation, one reveals a hidden high local symmetry of the Yang-Mills theory, which mixes up fields with spins up to J=N for the SU(N) gauge group. In the simplest case of the SU(2) group the dual space seems to tend to the de Sitter space in the infrared region. This observation suggests a new mechanism of gauge-invariant mass generation in the Yang-Mills theory.

  6. Neutrino Oscillation, Finite Self-Mass and General Yang-Mills Symmetry

    CERN Document Server

    Hsu, Jong-Ping

    2016-01-01

    The conservation of lepton number is assumed to be associated with a general Yang-Mills symmetry. New transformations involve (Lorentz) vector gauge functions and characteristic phase functions, and they form a group. General Yang-Mills fields are associated with new fourth-order equations and linear potentials. Lepton self-masses turn out to be finite and proportional to the inverse of lepton masses, which implies that neutrinos should have non-zero masses. Thus, general Yang-Mills symmetry could provide an understanding of neutrino oscillations and suggests that neutrinos with masses and very weak leptonic force may play a role in dark matter.

  7. A New Freeze Concentration Process for Minimum Effluent Process in Bleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Ru-Ying; Botsaris, Gregory D.

    2001-03-06

    This project researches freeze concentration as a primary volume reduction technology for bleaching plant effluents from paper-pulp mills before they are treated by expensive technologies, such as incineration, for the destruction of the adsorbable organic halogens. Previous laboratory studies show that freeze concentration has a greater than 99.5% purification efficiency for volatile, semivolatile, and nonprocess elements, or any other solute, thus producing pure ice that can be reused in the mill as water. The first section evaluates the anticipated regulatory and public pressures associated with implementing the technology; the remaining sections deal with the experimental results from a scaled-up freeze concentration process in a 100-liter pilot-plant at Tufts University. The results of laboratory scale experiments confirmed that the freeze concentration technology could be an efficient volume reduction technology for the above elements and for removing adsorbable organic hologens and or nonprocess elements from recycled water. They also provide the necessary data for designing and operating a larger pilot plant, and identify the technical problems encountered in the scale-up and the way they could be addressed in the larger scale plants. This project was originally planned to include the operation of a large pilot plant in the facilities of Swenson Process Equipment Inc., and a field test at a pulp mill, but the paper company withdrew its financial support for the field test. In place of a final economic evaluation after the field test, a preliminary evaluation based on the small pilot plant data predicts an economically reasonable freeze concentration process in the case of reduction of the bleaching-effluent flow to less than 5 m3/kkg pulp, a target anticipated in the near future.

  8. A New Freeze Concentration Process for Minimum Effluent Process in Bleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Ru-Ying; Botsaris, Gregory D.

    2001-03-06

    This project researches freeze concentration as a primary volume reduction technology for bleaching plant effluents from paper-pulp mills before they are treated by expensive technologies, such as incineration, for the destruction of the adsorbable organic halogens. Previous laboratory studies show that freeze concentration has a greater than 99.5% purification efficiency for volatile, semivolatile, and nonprocess elements, or any other solute, thus producing pure ice that can be reused in the mill as water. The first section evaluates the anticipated regulatory and public pressures associated with implementing the technology; the remaining sections deal with the experimental results from a scaled-up freeze concentration process in a 100-liter pilot-plant at Tufts University. The results of laboratory scale experiments confirmed that the freeze concentration technology could be an efficient volume reduction technology for the above elements and for removing adsorbable organic hologens and or nonprocess elements from recycled water. They also provide the necessary data for designing and operating a larger pilot plant, and identify the technical problems encountered in the scale-up and the way they could be addressed in the larger scale plants. This project was originally planned to include the operation of a large pilot plant in the facilities of Swenson Process Equipment Inc., and a field test at a pulp mill, but the paper company withdrew its financial support for the field test. In place of a final economic evaluation after the field test, a preliminary evaluation based on the small pilot plant data predicts an economically reasonable freeze concentration process in the case of reduction of the bleaching-effluent flow to less than 5 m3/kkg pulp, a target anticipated in the near future.

  9. Benthos of Cochin backwaters receiving industrial effluents

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Venugopal, P.

    Faunal composition of benthos and its spatial and temporal distribution at 9 stations in the northern limb of the Cochin backwaters are studied. An industrial belt is located about 18 km upstream of barmouth, and the effluents are discharged...

  10. Microbial degradation of textile industrial effluents | Palamthodi ...

    African Journals Online (AJOL)

    Microbial degradation of textile industrial effluents. ... African Journal of Biotechnology ... Textile waste water is a highly variable mixture of many polluting substance ranging from inorganic compounds and elements to polymers and organic ...

  11. A WET TALE: TOXICITY OF COMPLEX EFFLUENTS

    Science.gov (United States)

    This course covers standards, regulations, policy, guidance and technical aspects of implementing the whole effluent toxicity program. The curriculum incorporates rationale and information on WET test requirements from USEPA documents, such as the Technical Support Document for W...

  12. Nonperturbative aspects of Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Schleifenbaum, Wolfgang

    2008-07-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  13. 40 CFR 440.13 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed: Effluent...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440... chemical methods to beneficiate iron ore shall not exceed: Effluent characteristic Effluent limitations...

  14. Anaerobic digestion of cassava starch factory effluent.

    Science.gov (United States)

    Manilal, V B; Narayanan, C S; Balagopalan, C

    1990-06-01

    Biomethanation of cassava starch factory effluent in a batch digester produced 130 l biogas/kg dry matter with an average melthane content of 59%. About 63% COD was removed during 60 days. In semicontinuous digesters, gas production was 3251/kg dry matter with a retention time of 33,3 days giving a COD reduction of 50%. Size of starter inoculum was important for good biogasification of the effluent.

  15. Study of the inhibitory phenomena during the anaerobic digestion of sugar cane mill mud waste; Estudio del fenomeno de inhibicion durante la digestion anaerobia de cachaza

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M.; Sanchez, E.; Montalvo, S.; Escobedo, R. [Centro Nacional de Investigaciones Cientificas . Ciudad de la Habana. Cuba (Cuba); Garcia-Morales, J. L. [Universidad de Cadiz (Spain)

    2001-07-01

    Sugar cane mill mud waste is one of the effluents obtained during the process of sugar production, specifically, in the stage of clarification and filtration of the cane's juice. This effluent can be treated anaerobically in order to reduce its contamination and use the biogas like a resource. This work shows the study of the inhibition originated along the anaerobic digestion of sugar mill mud waste and evaluates the influence of waste pre-treatment on this process. Th inhibitory effect was verified and quantified. The quantification was carried out applying the Levenspiel model, using the evolution of the constant kinetic of the apparent rate (K{sub {omicron}}). Author 5 refs.

  16. The fate of EDTA and DTPA in aquatic environments receiving waste water from two pulp and paper mills

    Energy Technology Data Exchange (ETDEWEB)

    Remberger, M.; Svenson, Anders

    1997-10-01

    To evaluate the fate of the complexing agents in receiving waters, two basic questions have been addressed: (i) are EDTA and DTPA found in the aquatic environment after discharge into receiving waters and (ii) are they photolytically converted. Two mills, one pulp mill localized at a fresh water lake and one pulp and paper mill at a brackish water were investigated, both mills using bleaching technologies with EDTA and DTPA as complexing agents. Samples were collected at the discharge point and along a gradient in the receiving waters at two occasions: summer at solstice and winter with low light intensity. Samples were taken from surface water, an intermediate depth, and bottom water. A new analytical method was applied, which made it possible to quantify the analytes at sub-{mu}g/l level. The complexing agents EDTA and DTPA and their primary degradation products were detected in the effluent and the receiving waters in the vicinity of the mills. DTPA and the degradation products could be detected a few kilometers from the effluent point while EDTA could be detected in more remote locations at fairly constant concentrations. The absorption of light in the sun spectrum in the water columns of the receiving waters was studied at different localities and during summer and winter conditions. The theoretical photochemical half-life of the ferric complex of EDTA in the surface layer of a central Swedish lake was confirmed. Analysis of EDTA in samples of receiving waters after photolytic treatment showed however, that a large portion of the complexing agent was unaffected by the treatment, indicating that most of the EDTA was complexed with other metals. EDTA in brackish water samples was unaffected by the photolytic treatment upon addition of excess ferric ions, except in winter close to the discharge point. The ease by which the ferric complexes are photochemically converted in ideal conditions seems to be hampered in receiving waters. 42 refs, 16 figs, 2 tabs

  17. Effluent Tenascin-C Levels Reflect Peritoneal Deterioration in Peritoneal Dialysis: MAJOR IN PD Study

    Directory of Open Access Journals (Sweden)

    Ichiro Hirahara

    2015-01-01

    Full Text Available Peritoneal deterioration causing structural changes and functional decline is a major complication of peritoneal dialysis (PD. The aim of this study was to explore effluent biomarkers reflecting peritoneal deterioration. In an animal study, rats were intraperitoneally administered with PD fluids adding 20 mM methylglyoxal (MGO or 20 mM formaldehyde (FA every day for 21 days. In the MGO-treated rats, tenascin-C (TN-C levels in the peritoneal effluents were remarkably high and a cluster of TN-C-positive mesothelial cells with epithelial-to-mesenchymal transition- (EMT- like change excessively proliferated at the peritoneal surface, but not in the FA-treated rats. Effluent matrix metalloproteinase-2 (MMP-2 levels increased in both the MGO- and FA-treated rats. In a clinical study at 18 centers between 2006 and 2013, effluent TN-C and MMP-2 levels were quantified in 182 PD patients with end-stage renal disease. Peritoneal function was estimated using the peritoneal equilibration test (PET. From the PET results, the D/P Cr ratio was correlated with effluent levels of TN-C (ρ = 0.57, p<0.001 and MMP-2 (ρ = 0.73, p<0.001. We suggest that TN-C in the effluents may be a diagnostic marker for peritoneal deterioration with EMT-like change in mesothelial cells in PD.

  18. Effects of Montreal municipal sewage effluents on immune responses of juvenile female rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Harri M. [INRS-institut Armand-Frappier, 245 Hymus Boul., Pointe-Claire, Que. H9R 1G6 (Canada)], E-mail: harri.salo@ktl.fi; Hebert, Nancy; Dautremepuits, Claire [INRS-institut Armand-Frappier, 245 Hymus Boul., Pointe-Claire, Que. H9R 1G6 (Canada); Cejka, Patrick [Montreal Wastewater Treatment Plant, 12 001 Maurice-Duplessis, Montreal, Que. H1C 1V3 (Canada); Cyr, Daniel G.; Fournier, Michel [INRS-institut Armand-Frappier, 245 Hymus Boul., Pointe-Claire, Que. H9R 1G6 (Canada)

    2007-10-30

    The objective of this study was to examine the immunotoxicity of treated Montreal sewage effluents on juvenile female rainbow trout (Oncorhynchus mykiss). A comprehensive panel of immunological assays was used to evaluate the effects of exposure for 1 and 4 weeks to 1, 3, 10 and 20% sewage effluent. Phagocytic ingestion of fluorescent latex beads by head kidney macrophages and granulocytes was suppressed following 1-week of exposure, with the highest exposure concentration being the most suppressive. Phagocytic activity returned to control levels after 4 weeks of exposure. The cytotoxic activity of head kidney derived non-specific cytotoxic cells was enhanced after a 1-week exposure, especially at the lowest exposure concentration, and returned to control levels after 4 weeks of exposure. In vitro lymphocyte proliferation in response to LPS and ConA activation was not affected following sewage effluent exposure, but nonactivated, spontaneous proliferation of lymphocytes was suppressed in a dose-dependent manner after 4 weeks of exposure. Plasma lysozyme activity was elevated at lowest exposure concentration after 4 weeks. No changes were noted in either the blood leukocyte/erythrocyte ratio or in the proportion of circulating lymphocytes and thrombocytes. The proportion of circulating granulocytes increased following exposure for 4 weeks to the low effluent concentration. Plasma cortisol levels were not affected by effluent exposure suggesting that mechanisms other than stress influenced the observed immunomodulation. In summary, this study demonstrates that sewage effluent can alter the immune functions of rainbow trout.

  19. Passive secondary biological treatment systems reduce estrogens in dairy shed effluent.

    Science.gov (United States)

    Gadd, Jennifer B; Northcott, Grant L; Tremblay, Louis A

    2010-10-01

    Steroid estrogens are found at high concentrations in untreated dairy shed effluents. Reduction of estrogenic activity and steroid estrogen concentrations was assessed in two systems used to treat dairy shed effluents: the two-pond system and the advanced pond system. Both include anaerobic and aerobic treatment stages. Samples of effluent were collected from the systems and analyzed for free estrogens, conjugated estrogens and total estrogenic activity using E-Screen assay. Both systems showed increases of up to 8000% in aqueous free estrogens and estrogenic activity after anaerobic treatment, followed by decreases after aerobic treatment (36-83%). The complete systems decreased total steroid estrogen concentrations by 50-100% and estrogen activity by 62-100%, with little difference between systems. Removal rates were lower in winter for both systems. Final effluents from the advanced pond system contained total estrogens at <15-1400 ng/L and estrogenic activity at 3.2-43 ng/L. Final effluent from the two-pond system contained total estrogens at <15-300 ng/L and estrogenic activity at 3.3-25 ng/L. At times the final effluent EEQs exceeded guideline values for protection of freshwater fish and suggest further treatment may be required.

  20. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge.

    Science.gov (United States)

    Wang, Wenhao; Wang, Wen-Xiong

    2016-07-01

    Severe trace metal pollution due to industrial effluents releases was found in Jiulong River Estuary, Southern China. In this study, water samples were collected during effluent release events to study the dynamic changes of environmental conditions and metal partitioning among dissolved, particulate and colloidal phases controlled by estuarine mixing. Intermittent effluent discharges during low tide caused decreasing pH and dissolved oxygen, and induced numerous suspended particulate materials and dissolved organic carbon to the estuary. Different behaviors of Cu, Zn, Ni, Cr and Pb in the dissolved fraction against the conservative index salinity indicated different sources, e.g., dissolved Ni from the intermittent effluent. Although total metal concentrations increased markedly following effluent discharges, Cu, Zn, Cr, Pb were predominated by the particulate fraction. Enhanced adsorption onto particulates in the mixing process resulted in elevated partitioning coefficient (Kd) values for Cu and Zn, and the particle concentration effect was not obvious under such anthropogenic impacts. Colloidal proportion of these metals (especially Cu and Zn) showed positive correlations with dissolved or colloidal organic carbon, suggesting the metal-organic complexation. However, the calculated colloidal partitioning coefficients were relatively constant, indicating the excess binding capacity. Overall, the intermittent effluent discharge altered the particulate/dissolved and colloidal/soluble phase partitioning process and may further influence the bioavailability and potential toxicity to aquatic organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Status of Cadmium Concentration in Soil and Vegetable Irrigated with City Effluent

    Institute of Scientific and Technical Information of China (English)

    FARID Sajid; BALOCH Musa Kaleem; AKHTAR Kanwar Saleem

    2006-01-01

    Cadmium (Cd) is a toxic and carcinogenic element, and it causes different diseases for people like sever nausea, salivation vomiting, diarrhoea, abdominal pain and neuralgia when it comes into food chain at excessive concentration. It is also not included in the micronutrients for plant growth. Due to arid and semi arid conditions of Pakistan, rainfall is small, causing shortage of irrigation water. Because of this shortage, farmers largely use city effluents for raising vegetables in the areas around big cities, which are contaminated with industrial wastewater. The effluents from Pakistan third largest city (Faisalabad) are used as supplementary irrigation water to produce vegetables for human consumption. This paper reports a study on assessment of risks and opportunities associated with this practice, with emphasis on Cd, which can enter the food chain as an impurity in vegetables. Cd and other elements were measured in some typical effluents, four types of soils and many vegetables with no fertilizer application. It was found that the municipal effluents increased soil salinity, sodicity and Cd concentration. The Cd concentration in the vegetables was high above those normally associated with suitability for human consumption. There were suggestions that soluble Cd concentration in the effluents could be lessened by adding lime, concurrently lowering the sodium adsorption ratio and residual sodium carbonate of the effluents, thus making them safe for utilization on agricultural soils. Fig 1, Tab 7, Ref 23

  2. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    absorbance at 254 nm divided by sample absorbance at 365 nm), suggesting that organic matter optical properties may hold promise to predict indirect compound photodegradation rates for various effluent mixing ratios.

  3. Effect of textile industrial effluent on tree plantation and soil chemistry.

    Science.gov (United States)

    Singh, G; Bala, N; Rathod, T R; Singh, B

    2001-01-01

    A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.

  4. Does wastewater from olive mills induce toxicity and water repellency in soil?

    Science.gov (United States)

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  5. Universal Bundle, Generalized Russian Formula and Non-Abelian Anomaly in Topological Yang-Mills Theory

    CERN Document Server

    Park, J S

    1992-01-01

    We re-examine the geometry and algebraic structure of BRST's of Topological Yang-Mills theory based on the universal bundle formalism of Atiyah and Singer. This enables us to find a natural generalization of the {\\it Russian formula and descent equations\\/}, which can be used as algebraic method to find the non-Abelian anomalies counterparts in Topological Yang-Mills theory. We suggest that the presence of the non-Abelian anomaly obstructs the proper definition of Donaldson's invariants.

  6. Uranium mill ore dust characterization

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  7. A Classical Solution of Massive Yang-Mills Fields

    CERN Document Server

    Mogami, Tsuguo

    2016-01-01

    Recent researches on the solution of Schwinger-Dyson equations, as well as lattice simulations of pure QCD, suggest that the gluon propagator is massive. In this letter, we assume that the classical counterpart of this massive gluon field may be represented with the equation of motion for Yang-Mills theory with a mass term added. A new classical solution is given for this equation. It is discussed that this solution may have some role in confinement.

  8. A Curious Relation Between Gravity and Yang-Mills Theories

    CERN Document Server

    Baulieu, L

    2000-01-01

    We find that Euclidian or Minkowski gravity in d dimensions can be formally expressed as the restriction to a slice of a supersymmetric Yang-Mills theory in d+1 dimensions with SO(d+1), SO(d,1) or SO(d-1,2) internal symmetry. We suggest that renormalization effects in the bulk imply a contraction of the latter symmetry into the Poincare group ISO(d) or ISO(d-1,1).

  9. Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton's reagent.

    Science.gov (United States)

    Pirkanniemi, Kari; Metsärinne, Sirpa; Sillanpää, Mika

    2007-08-17

    Fenton's process was used in oxidative degradation of ethylediaminetetraacetic acid (EDTA) and novel complexing agents, namely BCA5 and BCA6, in distilled water and spiked samples of integrated pulp and paper mill waste water and ECF-pulp bleaching effluent. In waste water, over 90% of EDTA was degraded within 3 min when temperature was 60 degrees C, pH 4, and molecular ratio of H2O2:Fe2+:EDTA was 70:2:1 (0.26 mM EDTA) or higher. In spiked ECF bleaching effluent up to 42% of EDTA was degraded in similar reaction conditions, still higher than published results indicate biological waste water treatment of pulp and paper mill waste water being capable of. In pH 3, EDTA proved readily degradable by Fenton's process in otherwise similar conditions. According to these results, Fenton's process could be used as a pre-treatment method for EDTA-containing bleaching effluents prior to the biological waste water treatment. In addition, BCA5 and BCA6 proved their superiority in terms of degradability also by Fenton's process in both pH 3 and 4.

  10. Skin disease in paper mill workers

    NARCIS (Netherlands)

    Jungbauer, F.H.W.; Lensen, G.J.; Groothoff, J.W.; Coenraads, P.J.

    Background Paper mill workers have frequent and prolonged exposure to skin irritants and allergens and may have a higher risk of developing occupational dermatitis. Aims The aim of this study was to determine the extent of skin problems in a paper mill and how much was attributable to contact with

  11. Vertical mill simulation applied to iron ores

    Directory of Open Access Journals (Sweden)

    Douglas Batista Mazzinghy

    2015-04-01

    Full Text Available The application of vertical mills in regrind circuits is consolidated. This type of mill is now attracting interest in primary grinding applications, due to its higher efficiency when compared to ball mills, which are usually used at this stage. In this study, a coarse sample of iron ore was tested in a pilot scale grinding circuit with a vertical mill. Other three samples of pellet feed had already been tested with the methodology used in this study. The sample of coarse iron ore was characterized in laboratory tests carried out in a small batch ball mill. Selection and breakage function parameters were determined from the laboratory tests. The parameters were then used for simulating the pilot scale tests using Modsim™ software. The model previously implemented in Modsim™ has been successfully applied to represent the vertical mill operated with different ores. The simulations produced particle size distributions that were very close to the actual size distributions, and the predictions were accomplished only by imputing the calibrated parameters from the batch tests, the power draw and the feed size distribution of the pilot tests. The methodology is therefore useful for scale-up and simulation of vertical mills, only requiring laboratory tests that can be carried out in standard laboratory batch ball mills with small amounts of samples.

  12. Radiological health aspects of uranium milling

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  13. Jiangsu Mills Attempt to Adjust Production

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The profit squeeze on China’s textile mills continues. In Jiangsu Province, a very important market, mills are reacting in a variety of ways to this situation. Spinners and weavers of man-made fiber appear to be the most adversely affected,

  14. Improvement of the stone elimination roller mill

    Institute of Scientific and Technical Information of China (English)

    SunGuofeng

    2005-01-01

    Elimination roller mill as raw materials preparing equipments is universally used in brick making industry. Stone Elimination Roller Mill should have following characteristics: high machine strength and good wearresistant of roller shell, safety reliability, high machinery intensity (impact strength) and rigidity, reliable hermetically sealed construction.

  15. The effects of lifter configurations and mill speeds on the mill power draw and performance

    Science.gov (United States)

    Usman, Husni; Taylor, Patrick; Spiller, D. Erik

    2017-01-01

    Grinding mills used in the mining industries are the most energy-intensive operation and require a large number of wear resistant materials as well. The 1-m mill was used to investigate the effects of three lifter configurations, namely Hi (High), Rail and Hi-Lo (High-Low), and mill speeds on the mill performance. The MillTraj software was also utilized to simulate the outermost charge trajectories of the mill. At the given operating conditions, the power draw of Hi lifter was slightly lower than that of the Rail and the Hi-Lo and thus, the Hi lifter showed improvement in the mill efficiency. The product size distributions of the different lifters are very close and the size distribution of Hi-Lo lifter is slightly finer than those of the other lifters. At 74% critical speed, the size distributions of the Rail and Hi-Lo lifters were finer than at 70% critical speed, while that of Hi lifter otherwise occurs. At 80% critical speed, the size distributions of the lifters were coarser than at 74% critical speed. In this case, the outer charge trajectories of each lifter could go down on the mill shell rather than on the toe of the mill charge, resulting in ineffective grinding. Increasing face angles and/or mill charge would allow the mill to be operated at higher speeds.

  16. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    Science.gov (United States)

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment.

  17. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, pplants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, pplants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent.

  18. A study conducted on the impact of effluent waste from machining process on the environment by water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kovoor, Punnose P.; Idris, Mohd Razif [Kuala Lumpur Univ. (Malaysia). Inst. of Product Design and Manufacturing, IPROM; Hassan, Masjuki Haji [Univ. of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering; Tengku Yahya, Tengku Fazli [Kuala Lumpur Univ., Melaka (Malaysia). Malaysian Inst. of Chemical and Bio Engineering Technology, MICET

    2012-11-01

    Ferrous block metals are used frequently in large quantities in various sectors of industry for making automotive, furniture, electrical and mechanical items, body parts for consumables, and so forth. During the manufacturing stage, the block metals are subjected to some form of material removal process either through turning, grinding, milling, or drilling operations to obtain the final product. Wastes are generated from the machining process in the form of effluent waste, solid waste, atmospheric emission, and energy emission. These wastes, if not recycled or treated properly before disposal, will have a detrimental impact on the environment through air, water, and soil pollution. The purpose of this paper is to determine the impact of the effluent waste from the machining process on the environment through water analysis. A twofold study is carried out to determine the impact of the effluent waste on the water stream. The preliminary study consists of a scenario analysis where five scenarios are drawn out using substances such as spent coolant, tramp oil, solvent, powdered chips, and sludge, which are commonly found in the effluent waste. The wastes are prepared according to the scenarios and are disposed through the Institute of Product Design and Manufacturing (IPROM) storm water drain. Samples of effluent waste are collected at specific locations according to the APHA method and are tested for parameters such as pH, ammoniacal nitrogen, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, and total suspended solids. A subsequent study is done by collecting 30 samples of the effluent waste from the machining operations from two small- and medium-scale enterprise locations and the IPROM workshop to test the quality of water. The results obtained from the tests showed high values of chemical oxygen demand, ammoniacal nitrogen, and total suspended solids when compared with the Standard B specification for inland water bodies as specified by the

  19. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    Science.gov (United States)

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  20. 40 CFR 434.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations guidelines... economically achievable (BAT). 434.53 Section 434.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS...

  1. 40 CFR 471.52 - Effluent limitations representating the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations representating... economically achievable (BAT). 471.52 Section 471.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT...

  2. Global hepatic gene expression in rainbow trout exposed to sewage effluents: A comparison of different sewage treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Cuklev, Filip, E-mail: filip.cuklev@neuro.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Gunnarsson, Lina, E-mail: lina.gunnarsson@fysiologi.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Cvijovic, Marija, E-mail: marija.cvijovic@chalmers.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Goeteborg (Sweden); Kristiansson, Erik, E-mail: erik.kristiansson@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Goeteborg (Sweden); Rutgersson, Carolin [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Bjoerlenius, Berndt, E-mail: berndtb@kth.se [Stockholm Water Company, Vaermdoevaegen 23, SE-131 55 Stockholm (Sweden); Larsson, D.G. Joakim, E-mail: joakim.larsson@fysiologi.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden)

    2012-06-15

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. - Highlights: Black-Right-Pointing-Pointer Livers of trout exposed to different sewage effluents were analysed by microarray. Black

  3. Laboratory measurements of contaminant attenuation of uranium mill tailings leachates by sediments and clay liners

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Peterson, S.R.; Gee, G.W.

    1983-04-01

    We discuss FY82 progress on the development of laboratory tools to aid in the prediction of migration potential of contaminants present in acidic uranium mill tailings leachate. Further, empirical data on trace metal and radionuclide migration through a clay liner are presented. Acidic uranium mill tailings solution from a Wyoming mill was percolated through a composite sediment called Morton Ranch Clay liner. These laboratory columns and subsequent sediment extraction data show: (1) As, Cr, Pb, Ag, Th and V migrate very slowly; (2) U, Cd, Ni, Zn, Fe, Mn and similar transition metals are initially immobilized during acid neutralization but later are remobilized as the tailings solution exhausts the clay liner's acid buffering capacity. Such metals remain immobilized as long as the effluent pH remains above a pH value of 4 to 4.5, but they become mobile once the effluent pH drops below this range; and (3) fractions of the Se and Mo present in the influent tailings solution are very mobile. Possible controlling mechanisms for the pH-dependent immobilization-mobilization of the trace metals are discussed. More study is required to understand the controlling mechanisms for Se and Mo and Ra for which data were not successfully collected. Using several column lengths (from 4.5 to 65 cm) and pore volume residence times (from 0.8 to 40 days) we found no significant differences in contaminant migration rates or types and extent of controlling processes. Thus, we conclude that the laboratory results may be capable of extrapolation to actual disposal site conditions.

  4. Einstein--Yang--Mills strings

    CERN Document Server

    Galtsov, D V; Volkov, M S; Davydov, Evgeny A.; Gal'tsov, Dmitri V.; Volkov, Mikhail S.

    2006-01-01

    We present globally regular vortex-type solutions for a pure SU(2) Yang-Mills field coupled to gravity in 3+1 dimensions. These gravitating vortices are static, cylindrically symmetric and purely magnetic, and they support a non-zero chromo-magnetic flux through their cross section. In addition, they carry a constant non-Abelian current, and so in some sense they are analogs of the superconducting cosmic strings. They have a compact central core dominated by a longitudinal magnetic field and endowed with an approximately Melvin geometry. This magnetic field component gets color screened in the exterior part of the core, outside of which the fields approach exponentially fast those of the electrovacuum Bonnor solutions with a circular magnetic field. In the far field zone the solutions are not asymptotically flat but tend to vacuum Kasner metrics.

  5. Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia stratiotes).

    Science.gov (United States)

    Mukherjee, Bidisha; Majumdar, Madhurina; Gangopadhyay, Amitava; Chakraborty, Sankar; Chaterjee, Debashish

    2015-01-01

    Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.

  6. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  7. Halonitromethanes formation in wastewater treatment plant effluents.

    Science.gov (United States)

    Song, Hocheol; Addison, Jesse W; Hu, Jia; Karanfil, Tanju

    2010-03-01

    Halonitromethanes (HNMs) constitute one class of emerging disinfection by-products with high potential health risks. This study investigated the formation and occurrence of HNMs under different disinfection scenarios and the presence of their precursors in municipal wastewater treatment plant (WWTPs) effluents. Formation potential tests performed on WWTP effluents revealed that HNM formation occurred in the order of ozonation-chlorination > ozonation-chloramination > chlorination > chloramination. Ozonation alone did not produce any HNM. Municipal WWTP effluents contained some reactive HNM precursors, possibly the by-products of biological treatment processes and/or some moiety of industry or household origin. No effects of nitrate on the formation of HNMs were observed in this study, and nitrification in WWTPs appears to remove appreciable portion of HNM precursors, especially those reactive to chlorine. UV disinfection using low pressure lamps in municipal WWTPs had negligible impact on HNM formation potential. HNM concentrations in the effluents of selected WWTPs were either non-detectable or less than minimum reporting level, except for one WWTP that gave trichloronitromethane concentrations in the range of 0.9-1.5 microg L(-1). No HNMs were observed in the effluents disinfected with UV radiation. Therefore, it appears the typical wastewater disinfection processes involving chlorination or UV treatment in WWTPs do not produce significant amounts of HNMs.

  8. Scaling up nano-milling of poorly water soluble compounds using a rotation/revolution pulverizer.

    Science.gov (United States)

    Yuminoki, K; Tachibana, S; Nishimura, Y; Mori, H; Takatsuka, T; Hashimoto, N

    2016-02-01

    We previously reported that a rotation/revolution pulverizer (NP-100) could mill a small amount of a drug (0.1 g) into nanoparticles in several minutes. In this investigation, scale up from the milligram to the kilogram scale of the nano-milling process by the rotation/revolution pulverizer was studied. Phenytoin was used as a model drug with low solubility in water. After confirming the improvement of the phenytoin bioavailability by milling to nanoparticles using NP-100, scaling parameters were evaluated using NP-100 and the middle scale model of NP-100 (ARV-3000T). A theoretical equation for the specific collisional energy was adapted for wet milling; this suggested that the relative centrifugal acceleration of revolution (revolution G) and the drug concentration in the suspension were the two most important parameters. The results obtained using NP-100 and ARV-3000T correlated well when these two parameters were identical. These results were applied to the large scale model of NP-100 (ARV-10KT), where 2 kg (1 kg x 2) of phenytoin nanoparticles were obtained in 60 min. The results from PXRD and DSC indicated that the milled phenytoin by ARV-3000T and ARV-10KT maintained its crystallinity. These results suggest nano-milling using a rotation/revolution pulverizer will be widely applicable to the development of nano-medicine.

  9. Einstein-Yang-Mills solitons towards new degrees of freedom

    CERN Document Server

    Galtsov, D V

    1998-01-01

    A recent progress in obtaining non-spherical and non-static solitons in the four-dimensional Einstein--Yang--Mills (EYM) theory is discussed, and a non-perturbative formulation of the stationary axisymmetric problem is attempted. First a 2D dilaton gravity model is derived for the spherically symmetric time-dependent configurations. Then a similar Euclidean representation is constructed for the stationary axisymmetric non-circular SU(2) EYM system using the (2+1)+1 reduction scheme suggested by Maeda, Sasaki, Nakamura and Miyama. The crucial role in this reduction is played by the extra terms entering the reduced Yang--Mills and Kaluza--Klein two-forms similarly to Chern--Simons terms in the theories with higher rank antisymmetric tensor fields. We also derive a simple 2D action describing static axisymmetric magnetic EYM configurations and discuss a possibility of existence of cylindrical EYM sphalerons.

  10. Intelligent Control System of Textile Mill's Air-conditioning

    Institute of Scientific and Technical Information of China (English)

    WU Fu-zhuan; ZHAO Fang

    2009-01-01

    This paper briefly analyzes the present situation of textile mill's air-conditioning system. Since it is difficult to establish detailed math model to control a textile mill's air-conditioning system because of the influence of various factors such as the differences in seasons, regions, etc., most air-conditioning equipment can not he controlled automatically. This paper suggests utilizing multi-function data acquisition card to collect the data about the temperature and humidity of a workshop, processing the data on a PC, comparing them with the expert database, and then using the 485 serial port expanding module to output the parameters, which are used to control the inverter, so that the purpose of adjusting the temperature and humidity of the workshop is achieved.

  11. Mathematically Modeling Parameters Influencing Surface Roughness in CNC Milling

    Directory of Open Access Journals (Sweden)

    Engin Nas

    2012-01-01

    Full Text Available In this study, steel AISI 1050 is subjected to process of face milling in CNC milling machine and such parameters as cutting speed, feed rate, cutting tip, depth of cut influencing the surface roughness are investigated experimentally. Four different experiments are conducted by creating different combinations for parameters. In conducted experiments, cutting tools, which are coated by PVD method used in forcing steel and spheroidal graphite cast iron are used. Surface roughness values, which are obtained by using specified parameters with cutting tools, are measured and correlation between measured surface roughness values and parameters is modeled mathematically by using curve fitting algorithm. Mathematical models are evaluated according to coefficients of determination (R2 and the most ideal one is suggested for theoretical works. Mathematical models, which are proposed for each experiment, are estipulated.

  12. Wilson Loops in Noncommutative Yang Mills

    CERN Document Server

    Ishibashi, N; Kawai, H; Kitazawa, Y; Ishibashi, Nobuyuki; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa

    2000-01-01

    We study the correlation functions of the Wilson loops in noncommutative Yang-Mills theory based upon its equivalence to twisted reduced models. We point out that there is a crossover at the noncommutativity scale. At large momentum scale, the Wilson loops in noncommmutative Yang-Mills represent extended objects. They coincide with those in ordinary Yang-Mills theory in low energy limit. The correlation functions on D-branes in IIB matrix model exhibit the identical crossover behavior. It is observed to be consistent with the supergravity description with running string coupling. We also explain that the results of Seiberg and Witten can be simply understood in our formalism.

  13. Palladium nanoparticles obtained by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Sampedro, B.; Hernando, A. [Instituto de Magnetismo Aplicado (RENFE-UCM-CSIC), P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Dpto. Fisica de Materiales, UCM, 28040 Madrid (Spain); Rojas, T.C.; Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-UNIV, 41092 Sevilla (Spain)

    2006-05-15

    Opposed to the existing chemical methods, we have used a physical one in order to obtain palladium nanoparticles. In this work we present the HRTEM observation of Pd nanoparticles obtained by mechanical milling. These particles are around 6 nm in size. The Pd milled samples have exhaustively been structurally characterized. We have also studied its magnetic properties as a function of the milling time and magnetic measurements are according to those previously carried out by us in palladium nanoparticles obtained by chemical methods. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Active chatter control in a milling machine

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P. [and others

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  15. Yang-Mills origin of gravitational symmetries

    CERN Document Server

    Anastasiou, A; Duff, M J; Hughes, L J; Nagy, S

    2014-01-01

    By regarding gravity as the convolution of left and right Yang-Mills theories, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincar\\'e. As a concrete example we focus on the new-minimal (12+12) off-shell version of simple four-dimensional supergravity obtained by tensoring the off-shell Yang-Mills multiplets (4 + 4, N_L = 1) and (3 + 0, N_R = 0).

  16. Coal Moisture Estimation in Power Plant Mills

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Pedersen, Tom S.;

    2009-01-01

    Knowledge of moisture content in raw coal feed to a power plant coal mill is of importance for efficient operation of the mill. The moisture is commonly measured approximately once a day using offline chemical analysis methods; however, it would be advantageous for the dynamic operation...... of the plant if an on-line estimate were available. In this paper we such propose an on-line estimator (an extended Kalman filter) that uses only existing measurements. The scheme is tested on actual coal mill data collected during a one-month operating period, and it is found that the daily measured moisture...

  17. Recycling liquid effluents in a ceramic industry

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Almeida, B.; Almeida, M.; Martins, S.; Alexandra Macarico, V.; Tomas da Fonseca, A.

    2016-08-01

    In this work is presented a study on the recycling of liquid effluents in a ceramic installation for sanitary industry. The effluents were characterized by X-ray diffraction and inductively coupled plasma to evaluate their compositions. It was also assessed the daily production rate. Several glaze-slurry mixtures were prepared and characterized according to procedures and equipment of the company's quality laboratory. The results show that for most of the properties, the tested mixtures exhibited acceptable performance. However, the pyro plasticity parameter is highly influenced by the glaze content and imposes the separation of glaze and slurry liquid effluents. In addition, it is necessary to invest on a storage plant, including tanks with constant stirring and a new pipeline structure to implement the reincorporation method on the slurry processing. (Author)

  18. Optimization of FIB milling for rapid NEMS prototyping

    DEFF Research Database (Denmark)

    Malm, Bjarke; Petersen, Dirch Hjorth; Lei, Anders

    2011-01-01

    We demonstrate an optimized milling technique to focused ion beam (FIB) milling in template silicon membranes for fast prototyping of nanoelectromechanical systems (NEMS). Using a single-pass milling strategy the highly topology dependent sputtering rate is boosted and shorter milling time is ach...... in NEMS development can accomplish....

  19. An X-Ray Absorption Spectroscopy Study of Ball-Milled Lithium Tantalate and Lithium Titanate Nanocrystals

    Science.gov (United States)

    Chadwick, A. V.; Pickup, D. M.; Ramos, S.; Cibin, G.; Tapia-Ruiz, N.; Breuer, S.; Wohlmuth, D.; Wilkening, M.

    2017-02-01

    Previous work has shown that nanocrystalline samples of lithium tantalate and titanate prepared by high-energy milling show unusually high lithium ion conductivity. Here, we report an X-ray absorption spectroscopy (XAS) study at the Ti K-edge and the Ta L3 edge of samples that have been milled for various lengths of time. For both systems the results show that milling creates amorphous material whose quantity increases with the milling time. The more extensive data for the tantalate shows that milling for only 30 minutes generates ∼25% amorphous content in the sample. The content rises to ∼60% after 16 hours. It is suggested that it is the motion of the lithium ions through the amorphous content that provides the mechanism for the high ionic conductivity.

  20. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method.

    Science.gov (United States)

    Paixão, S M; Anselmo, A M

    2002-01-01

    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems.

  1. The MillSOT-A Spiral Orbit Tribometer on a Milling Machine

    Science.gov (United States)

    Pepper, Stephen V.

    2014-01-01

    A spiral orbit tribometer (SOT) intended to characterize friction and wear phenomena has been constructed on a milling machine. The instrument, essentially a retainerless thrust bearing with one ball and flat races, is exceedingly simple and inexpensive to construct. The capabilities of the tribometer to measure both the coefficient of friction and contact electrical resistance are demonstrated with clean specimens as well as with well known lubricants such as molybdenum disulphide and Krytox oil. Operation in a purged environment of inert gas is also demonstrated. The results with these lubricants are quite close to what is obtained by other methods. Suggestions for extending the capabilities of the tribometer are given. This arrangement may find use in university mechanical engineering laboratories to introduce and study rolling contact motion as well as for research in contact mechanics and tribology.

  2. In vitro fermentation of olive oil mill wastewaters using sheep rumen liquor as inoculum: Olive mill wastewaters an alternative for ruminant's nutrition

    Directory of Open Access Journals (Sweden)

    Moufida Aggoun

    2014-12-01

    Full Text Available Olive oil mill wastewaters (OMWW are the main liquid effluents generated by the olive oil production industry. This liquid, considered pollutant and toxic, is characterised by its high content of organic matter including mainly sugars and fats, and phenols compounds, which can be used in ruminants feeding. The purpose of this study is to valorise this agricultural by-product in ruminant feeding by estimation its in vitro degradability in presence of ovine ruminale microbiota comparatively to vetch-oat hay, using in vitro gas production technique coupled with NH3-N and protozoa measurements. Cumulative gas production was recorded at 3, 6, 9, 24, 48, 72 and 96 hours of incubation. The determination of gazes produced (carbon dioxide and methane was recorded at 6, 9, 24, 48 and 96 hours. However, Ammonia and protozoa number were recorded after 24 hours of incubation. Fermentation profile was fitted to the exponential model y = a + b (1 – e-kt. The OMWW are characterized by their high sugars content (39.91% and their low content in ash (1.99% and crude protein (2.70%. This by-product is also characterized by its high concentration in total phenols (7.2% and tannins (4.5%. However, they contain a very small amount of condensed tannins (0.89%. Comparatively to vetch-oat hay, OMWW produced low amount of gas (-23.6 units. Furthermore, its in vitro fermentation generates low volume of methane (9.83%, V/V, suggesting that the OMWW nature enhanced the efficiency of ruminale microbiota towards microbial biomass production and inhibition of ruminale methanogenesis pathway. This result is reinforced by the reduction of ammonia production (-0.35 units and protozoa proliferation (-1 unit comparatively to vetch-oat hay. The anaerobic biodegradation of OMWW reveal their significant use by the rumen microbiota, allowing us to strongly recommend its use as a supplement in feed ruminant. In addition, it allows considering using this residue as a feed additive in

  3. Fenton treatment of olive oil mill wastewater--applicability of the method and parameters effects on the degradation process

    Institute of Scientific and Technical Information of China (English)

    Bensalah Nasr; Bedoui Ahmed; Gadri Abdellatif

    2004-01-01

    The low biodegradability of polyphenolic compounds typically found in olive processing indicated that biological treatment is not always successful in the treatment of olive oil mill wastewater in term of COD removal. In this study the results of investigations on the applicability of Fenton's reagent in the treatment of this effluent were discussed. The efficiency of this method was determined. 86 % of removal COD was obtained using 5 mol H2O2 and 0.4 mol Fe2+ per liter of crude OMW. The main parameters that govern the complex reactive system, i.e., time, pH, [H2O2] and [Fe(II)] have been studied.

  4. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  5. The Key Role of Ball Milling Time in the Microstructure and Mechanical Property of Ni-TiCNP Composites

    Science.gov (United States)

    Zhou, Xiaoling; Huang, Hefei; Xie, Ruobing; Yang, Chao; Li, Zhijun; Jiang, Li; Ye, Xiangxi; Xu, Hongjie

    2016-12-01

    Titanium carbide nanoparticle-reinforced nickel-based alloys (Ni-TiCNP composites) with ball milling time ranging from 8 to 72 h were prepared by ball milling and spark plasma sintering. Transmission electron microscopy (TEM) and scanning electron microscopy equipped with electron backscatter diffraction were used to characterize the microstructures. Their hardness and tensile properties were measured using the Vickers pyramid method and tensile tests. TEM results showed that a slight coarsening of TiCNP occurred during the ball milling process. The grain sizes of the Ni-TiCNP composites with various ball milling times were different, but they were all much smaller than those of the pure Ni. In all cases, the Ni-TiCNP composites showed higher strengths and hardness values than the unreinforced pure nickel. Furthermore, the strength of the Ni-TiCNP composites increased initially and then decreased as a function of ball milling time. The maximum strengths occurred in the 24-h ball milling sample, which presented the lowest average grain size. The Hall-Petch strengthening was suggested to be the main reason responsible for such variations in mechanical properties. Additionally, the elongation percentage of the Ni-TiCNP composites decreased gradually with ball milling time. This may be caused by the change of microvoids in the composite as the ball milling time varies, which is also related to their fracture behavior.

  6. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    Science.gov (United States)

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  7. Removal of nutrient and heavy metal loads from sewage effluent ...

    African Journals Online (AJOL)

    2015-07-04

    Jul 4, 2015 ... The primary objective of wastewater treatment is to allow human and industrial effluents to be disposed of without danger to human health or .... primary sedimentation and before biological nutrient removal. The effluent was ...

  8. Impact of effluent from Bodija abattoir on the physico- chemical ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... African Journal of Biotechnology Vol. ... effluent and stream water (before and after mixing with effluent) were studied using the ..... from abattoir compared with WHO and European Community (EC). .... Industrial waste control.

  9. Removal of pharmaceuticals in WWTP effluents by ozone and ...

    African Journals Online (AJOL)

    2013-02-12

    Feb 12, 2013 ... Keywords: ozone; pharmaceuticals; hydrogen peroxide; wastewater effluents ... discharge of effluents by wastewater treatment plants (WWTPs) that are ...... assessment and modeling of an ozonation step for full-scale munic-.

  10. GENERALIZED SIMULATION MODEL FOR MILLED SURFACE TOPOGRAPHY-APPLICATION TO PERIPHERAL MILLING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three-dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.

  11. Continuous grinding mill simulation using Austin's model

    Directory of Open Access Journals (Sweden)

    André Carlos Silva

    2012-01-01

    Full Text Available Comminution is a frequently-required step in mineral processing and is responsible for almost 90% of all energy consumption in a mineral processing plant. Tumbling mill design has been studied since the middle of the XIX century. There are many comminution models in the literature, with preponderance, however, of Austin’s model (2002 for mineral impact breakage. In this paper, Austin’s model was applied to tubular tumbling mills. Once Austin's model was proposed for batch processing of narrowly-distributed fraction sizes, an artifice has allowed it to be used in continuous grinding mill processes with widely-distributed fraction sizes. Interesting results were obtained with errors less than 0.005 for mills with sharp residence time distributions.

  12. Uranium Mill and ISL Facility Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — An Excel database on NRC and Agreement State licensed mills providing status, locational/operational/restoration data, maps, and environmental reports including...

  13. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Science.gov (United States)

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  14. Mills' ratio: Reciprocal concavity and functional inequalities

    CERN Document Server

    Baricz, Árpád

    2010-01-01

    This note contains suficient conditions for the probability density function of an arbitrary continuous univariate distribution such that the corresponding Mills ratio to be reciprocally convex (concave). To illustrate the applications of the main results, the Mills ratio of some common continuous univariate distributions, like gamma, log-normal and Student's t distributions, are discussed in details. The application to monopoly theory is also summarized.

  15. Dynamic study of milling low depth channels

    Directory of Open Access Journals (Sweden)

    Rosca Dorin Mircea

    2017-01-01

    Full Text Available This paper presents a study of dynamic aspects of the milling cutters used in particular case of low depth channels. A new calculation method was developed, taking into account the high variations of cutting forces during milling small depth channels with peripheral cutting tools. A new formula was established for the minimal value of channel depth that allows cutting process to be performed in conditions of dynamic stability.

  16. Magnetic Yang-Mills Theory of the Gluon Plasma

    CERN Document Server

    Baker, M

    2009-01-01

    We propose magnetic SU(N) pure gauge theory as an effective field theory describing the long distance nonperturbative magnetic response of the deconfined phase of Yang-Mills theory. The magnetic non-Abelian Lagrangian, unlike that of electrodynamics where there is exact electromagnetic duality, is not known explicitly, but here we regard the magnetic SU(N) Yang-Mills Lagrangian as the leading term in the long distance effective gauge theory of the plasma phase. In this treatment, which is applicable for a range of temperatures in the interval T_c < T < 3 T_c accessible in heavy ion experiments, formation of the magnetic energy profile around a spatial Wilson loop in the deconfined phase parallels the formation of an electric flux tube in the confined phase. We use the effective theory to calculate spatial Wilson loops and the magnetic charge density induced in the plasma by the corresponding color electric current loops. These calculations suggest that the deconfined phase of Yang-Mills theory has the p...

  17. Research on the thermal load of CNC milling machine

    Science.gov (United States)

    Nie, Xue-Jun; Wu, Ping-Dong

    2011-05-01

    Machine tool accuracy is the assurance of top-quality products in machining processes. In the all kinds of errors related to machine tools, thermal errors of machine tools' parts play an important role in machining accuracy and directly influence both the surface finish and the geometric shape of the finished workpiece. Therefore the objective of this work was to analyze the temperature field and thermal deformation in some parts of CNC machine tools. In this paper, the thermal boundary condition of main spindle and driving ball screw in CNC milling machine are discussed, some parameters in heat transfer process are calculated. Based on steady heat transfer process, the thermal analysis about spindle and ball screw is carried out under ANSYS environment, and their temperature fields are obtained when milling machine is working. Then the deformations of main spindle and ball screw are acquired by applying the thermal structure coupling element. Furthermore, in order to decrease main parts' deformations and improve the accuracy of CNC milling machine, some suggests are proposed.

  18. Hydrolysis behavior of zirconium diboride during attrition milling

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jie; Zhang Hui; Yan Yongjie [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Huang Zhengren, E-mail: zrhuang@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Liu Xuejian [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Yang Yong, E-mail: yangyong@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Jiang Dongliang [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The surface was mainly covered of Zr-O, B-O and B-OH bonds after hydrolysis. Black-Right-Pointing-Pointer ZrB{sub 2} powder tended to behave like a B{sub 2}O{sub 3}-modified surface by milling treatment. Black-Right-Pointing-Pointer The surface B/Zr atomic ratio decreased from water to ethanol medium. Black-Right-Pointing-Pointer The nano-sized oxide layer ({approx}5 nm) was observed and helped to improve the dispersion of ZrB{sub 2} particles in dilute aqueous media. - Abstract: The hydrolysis behavior of ZrB{sub 2} powder during attrition milling was studied in de-ionized water and ethanol. Surface characterization, thermal analysis, chemical analysis and electron microscopy were utilized to analyze the surface properties of as-milled powders. The results proved that the surface of ZrB{sub 2} powder was mainly composed of Zr-O, B-O and B-OH bonds as hydrolysis proceeded, and the amount of surface B-O bond was found to increase rapidly in water, suggesting a more B{sub 2}O{sub 3}-like surface behavior were developed. Results also showed when milled at 300 rpm for 4 h in water, 64.45 at% of B was in the form of B{sub 2}O{sub 3} at a thickness of {approx}3 nm from the surface. The nano-sized surface Zr-B-O oxide layer ({approx}5 nm in thickness) could help to improve the dispersion of powder in aqueous media.

  19. Effects of Dry-Milling and Wet-Milling on Chemical, Physical and Gelatinization Properties of Rice Flour

    Directory of Open Access Journals (Sweden)

    Jitranut Leewatchararongjaroen

    2016-09-01

    Full Text Available Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90 °C of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.

  20. Plant and soil modifications by continuous surface effluent application

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Levien, R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. of Solos; Mohrdieck, F.G.; Rodrigues, N.R. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao; Flores, A.I.P.

    1993-12-31

    In order to study the effects on soil and plants of the liquid effluent generated by a the Integrated Liquid Effluent Treatment System of a large Brazilian petrochemical complex, a field study was conducted in four areas which received the effluent and compared to control sites. This work presents some results of this study. 12 refs., 1 fig., 3 tabs.

  1. Sulphate removal from industrial effluents through barium sulphate precipitation

    CSIR Research Space (South Africa)

    Swanepoel, H

    2011-11-01

    Full Text Available The pollution of South Africa’s water resources puts a strain on an already stressed natural resource. One of the main pollution sources is industrial effluents such as acid mine drainage (AMD) and other mining effluents. These effluents usually...

  2. 40 CFR 420.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Acid... degree of effluent reduction attainable by the application of the best practicable control technology... by the application of the best practicable control technology currently available (BPT). Except...

  3. 40 CFR 420.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Vacuum... degree of effluent reduction attainable by the application of the best practicable control technology... by the application of the best practicable control technology currently available (BPT). Except...

  4. 40 CFR 420.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Continuous... degree of effluent reduction attainable by the application of the best practicable control technology... by the application of the best practicable control technology currently available (BPT). Except...

  5. 40 CFR 420.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming... degree of effluent reduction attainable by the application of the best available technology economically... application of the best available technology economically achievable (BAT). The Agency has determined...

  6. Vermicomposting of olive oil mill wastewaters.

    Science.gov (United States)

    Macci, Cristina; Masciandaro, Grazia; Ceccanti, Brunello

    2010-08-01

    The disposal of olive oil mill wastewaters (OMW) represents a substantial environmental problem in Italy. A vermicompost process could be an alternative and valid method for the management of OMW. In a laboratory experiment, the OMW were absorbed onto a ligno-cellulosic solid matrix and 30 adult earthworms of Eisenia fetida specie were added. The experiment was carried out for 13 weeks. The number of earthworms increased throughout the experimental period and after 2 weeks about 90% of the earthworms had become sexually mature. The decrease in total organic carbon (about 35%), C : N ratio (from 31.2 to 12.3) and biochemical parameters (hydrolytic enzymes averagely 40% and dehydrogenase 23%), and the increase in humification rate (pyrophosphate extractable carbon (PEC) from 17.6 to 33.3 mg g(-1), and PEC : water-soluble carbon from 1.76 to 2.97) indicated the mineralization and the stabilization of organic matter at the end of the vermicomposting process. At the end of the experiment, the extracellular beta-glucosidase, phosphatase, urease and protease activities, measured in the pyrophosphate extract of the vermicompost, were found to be always higher or equal to that measured at the beginning of the vermicomposting process, suggesting that the enzymes bound to humic matter resisted biological attack and environmental stress. Moreover, the results obtained from the phyto-test showed that the OMW lose their toxicity and stimulate plant germination and growth.

  7. Generalisation of the Yang-Mills Theory

    CERN Document Server

    Savvidy, George

    2015-01-01

    We suggest an extension of the gauge principle which includes tensor gauge fields. In this extension of the Yang-Mills theory the vector gauge boson becomes a member of a bigger family of gauge bosons of arbitrary large integer spins. The proposed extension is essentially based on the extension of the Poincar\\'e algebra and the existence of an appropriate transversal representations. The invariant Lagrangian is expressed in terms of new higher-rank field strength tensors. It does not contain higher derivatives of tensor gauge fields and all interactions take place through three- and four-particle exchanges with a dimensionless coupling constant. We calculated the scattering amplitudes of non-Abelian tensor gauge bosons at tree level, as well as their one-loop contribution into the Callan-Symanzik beta function. This contribution is negative and corresponds to the asymptotically free theory. Considering the contribution of tensorgluons of all spins into the beta function we found that it is leading to the theo...

  8. Cytogenotoxicity of Abattoir Effluent in Clarias gariepinus (Burchell, 1822 Using Micronucleus Test

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-01-01

    Full Text Available The cytogenotoxic potential of abattoir effluent from Bodija, Nigeria, was investigated using micronucleus test in Clarias gariepinus. Fish was exposed to five different concentrations: 0.2, 0.4, 0.8, 1.6, and 3.1% of the effluent for 7, 14, and 28 days. Tap water and 0.02 mL/L of benzene were used as negative and positive controls, respectively. Physicochemical parameters and heavy metals were analyzed in the effluent in accordance with standard methods. After exposure, blood was collected from the treated and control fish and slides were prepared for micronuclei (MN and nuclear abnormality evaluation in the peripheral erythrocytes. The effluent induced significant (p<0.05 increase in the frequency of MN in a time dependent manner. Similarly, the frequency of total nuclear abnormalities (blebbing, notch, bud, binucleation, and vacuolation was higher in the exposed fish than the negative control. Electrical conductivity, nitrate, biochemical oxygen demand, chemical oxygen demand, arsenic, and copper analyzed in the effluent may have provoked the observed cytogenetic damage. The findings herein suggest the presence of clastogens and cytotoxins in Bodija abattoir wastewater which are capable of increasing genomic instability in aquatic biota.

  9. Response of Eucalyptus camaldulensis to irrigation with the Hudiara drain effluent.

    Science.gov (United States)

    Shah, Fazal Ur Rehman; Ahmad, Nasir; Masood, Khan Ross; Peralta-Videa, Jose R; Zahid, Din Muhammad; Zubair, Muhammad

    2010-01-01

    A pot experiment was conducted to evaluate the effects of the industrial effluent of the Hudiara drain on the growth and element accumulation by Eucalyptus camaldulensis at early growth stage. Plants were irrigated for 18 months with effluent diluted with tap water at 0% (T0), 25% (T1), 50% (T2), 75% (T3), and 100% effluent (T4). Results showed that the maximum growth in terms of stem height (260 cm), number of branches (29), stem fresh weight (436.67 g), stem dry weight (203.33 g), total seedling length (344 cm), number of leaves (825), leaf fresh weight (195 g), and leaf dry weight (100 g) were recorded in plants treated with T2. However, maximum seedling collar diameter (2.25 cm), root fresh weight (230 g), and root dry weight (103.33 g) were observed in T3 treated plants. On the other hand, seedlings attained maximum root length (100.67 cm) at T1 treatment. Chlorophyll a, chlorophyll b and total chlorophyll increased up to T2, declining beyond that treatment. The accumulation of Na, Cd, and Cr in tissues increased with increasing concentrations of the effluent. However, the increase in effluent concentration decreased K and P in roots, and increased Fe in roots and stems, while T1 and T2 increased Mg in stems. The results suggest that mixing the wastewater of the Hudiara drain with tap water (50:50v/v) benefits the growth of E. camaldulensis.

  10. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    Science.gov (United States)

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  11. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Science.gov (United States)

    2010-07-01

    ... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines... Maximum for any 1 day Average of daily values for 30 consecutive days Concentration in mg/l Iron, total 7...

  12. Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents.

    Science.gov (United States)

    Araújo, Cleide S T; Alves, Vanessa N; Rezende, Hélen C; Almeida, Ione L S; de Assunção, Rosana M N; Tarley, César R T; Segatelli, Mariana G; Coelho, Nivia M Melo

    2010-01-01

    Moringa oleifera seeds were investigated as a biosorbent for removing metal ions from aqueous effluents. The morphological characteristics as well as the chemical composition of M. oleifera seeds were evaluated using Fourier Transform Infrared (FT-IR) Spectroscopy, Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The FT-IR spectra showed the presence of lipids and protein components. Scanning electron micrographs showed that Moringa seeds have an adequate morphological profile for the retention of metal ions. The results suggest that M. oleifera seeds have potential application in Cd(II), Pb(II), Co(II), Cu(II) and Ag(I) decontamination from aqueous effluents.

  13. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  14. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  15. POLLUTION EFFECT OF FOOD AND BEVERAGES EFFLUENTS ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Water quality, River Alaro, Pollution, Industrial effluent ... bodies without proper treatment may results to exposure of humans to such ... Jerusalem was traced back to the consumption of salad vegetables irrigated with raw wastewater ..... aSource = [45]; bSource = [46]; cSource = Issued by the European Union ...

  16. BIOEQUIVALENCE APPROACH FOR WHOLE EFFLUENT TOXICITY TESTING

    Science.gov (United States)

    Increased use of whole effluent toxicity (WET) tests in the regulatory arena has brought increased concern over the statistical analysis of WET test data and the determination of toxicity. One concern is the issue of statistical power. A number of WET tests may pass the current...

  17. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke

    2014-03-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  18. Phosphorus leaching in soils amended with piggery effluent or lime residues from effluent treatment.

    Science.gov (United States)

    Weaver, D M; Ritchie, G S

    1994-01-01

    Phosphorus (P) in wastes from piggeries may contribute to the eutrophication of waterways if not disposed of appropriately. Phosphorus leaching, from three soils with different P sorption characteristics (two with low P retention and one with moderate P retention) when treated with piggery effluent (with or without struvite), was investigated using batch and leaching experiments. The leaching of P retained in soil from the application of struvite effluent was determined. In addition, P leaching from lime residues (resulting from the treatment of piggery effluent with lime to remove P) was determined in comparison to superphosphate when applied to the same three soils. Most P was leached from sandy soils with low P retention when effluent with or without struvite was applied. More than 100% of the filterable P applied in struvite effluent was leached in sandy soils with low P retention. Solid, inorganic forms of P (struvite) became soluble and potentially leachable at pHdissolution if there were sufficient sorption sites. In sandy soils with low P retention, more than 39% of the total filterable P applied in recycled effluent (without struvite) was leached. Soil P increased mainly in surface layers after treatment with effluent. Sandy soils pre-treated with struvite effluent leached 40% of the P retained in the previous application. Phosphorus decreased in surface layers and increased at depth in the soil with moderate P retention after leaching the struvite effluent pre-treated soil with water. The soils capacity to adsorb P and the soil pH were the major soil properties that affected the rate and amount of P leaching, whereas the important characteristics of the effluent were pH, P concentration and the forms of P in the effluent. Phosphorus losses from soils amended with hydrated lime and lime kiln dust residues were much lower than losses from soils amended with superphosphate. Up to 92% of the P applied as superphosphate was leached from sandy soils with low P

  19. Nitrogen and phosphorus effluent loads from a paddy-field district adopting collective crop rotation.

    Science.gov (United States)

    Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D

    2012-01-01

    Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.

  20. 40 CFR 440.12 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... concentration of pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore... iron ore shall not exceed: Effluent characteristic Effluent limitations Maximum for any 1 day Average...