WorldWideScience

Sample records for microchannel cooling system

  1. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to

  2. Integrated microchannel cooling in a three dimensional integrated circuit: A thermal management

    Directory of Open Access Journals (Sweden)

    Wang Kang-Jia

    2016-01-01

    Full Text Available Microchannel cooling is a promising technology for solving the three-dimensional integrated circuit thermal problems. However, the relationship between the microchannel cooling parameters and thermal behavior of the three dimensional integrated circuit is complex and difficult to understand. In this paper, we perform a detailed evaluation of the influence of the microchannel structure and the parameters of the cooling liquid on steady-state temperature profiles. The results presented in this paper are expected to aid in the development of thermal design guidelines for three dimensional integrated circuit with microchannel cooling.

  3. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel [Centro Nacional de Microelectronica, Barcelona (Spain)

    2017-01-15

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  4. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    International Nuclear Information System (INIS)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin; Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel

    2017-01-01

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  5. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  6. Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study

    International Nuclear Information System (INIS)

    Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh

    2013-01-01

    Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells

  7. Evaporative CO$_2$ microchannel cooling for the LHCb VELO pixel upgrade

    CERN Document Server

    de Aguiar Francisco, Oscar A; Collins, Paula; Dumps, Raphael; John, Malcolm; Mapelli, Alessandro; Romagnoli, Giulia

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO$_2$ circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO$_2$, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO$_2$ cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use o...

  8. Cooling high heat flux micro-electronic systems using refrigerants in high aspect ratio multi-microchannel evaporators

    International Nuclear Information System (INIS)

    Costa-Patry, E.

    2011-11-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating conditions, such that their thermal response to the high non-uniform power map typically generated by microelectronics has not been studied. This research project aims at clarifying these gray areas by investigating the behavior of the two-phase flow of different refrigerants in silicon and copper multi-microchannel evaporators under uniform, non-uniform and transient heat fluxes operating conditions. The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU. It is formed by 35 independent sub-heaters, each having its own temperature sensor, such that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful measurements of each pressure drop component (inlet, microchannels and outlet) found in the micro-evaporators showed the importance of the inlet and outlet restriction pressure losses. The overall pressure drop levels found in the copper test section were low enough to possibly be driven by a thermosyphon system. The heat transfer coefficients measured for uniform heat flux conditions were very high and typically followed a V-shape curve. The first branch was associated to the slug flow regime and the second to the annular flow regime. By tracking the minimum level of heat transfer, a transition criteria between the regimes was established, which included the effect of heat flux on the transition. Then for each branch, a different prediction method was used to form the first flow pattern-based prediction method for two-phase heat transfer in microchannels. A

  9. Flow and Heat Transfer in Cooling Microchannels with Phase-Change

    Energy Technology Data Exchange (ETDEWEB)

    Peles, Y P; Yarin, L P; Hetsroni, G [Technion, Israel Institute of Technology, Haifa (Israel) Faculty of Engineering

    1998-05-19

    The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed.

  10. Flow and Heat Transfer in Cooling Microchannels with Phase-Change

    International Nuclear Information System (INIS)

    Peles, Y.P.; Yarin, L.P.; Hetsroni, G.

    1998-01-01

    The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed

  11. Custom ceramic microchannel-cooled array for high-power fiber-coupled application

    Science.gov (United States)

    Junghans, Jeremy; Feeler, Ryan; Stephens, Ed

    2018-03-01

    A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.

  12. Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation

    Science.gov (United States)

    Uday Kumar, A.; Javed, Arshad; Dubey, Satish K.

    2018-04-01

    Heat dissipation during the operation of electronic devices causes rise in temperature, which demands an effective thermal management for their performance, life and reliability. Single phase liquid cooling in microchannels is an effective and proven technology for electronics cooling. However, due to the ongoing trends of miniaturization and developments in the microelectronics technology, the future needs of heat flux dissipation rate are expected to rise to 1 kW/cm2. Air cooled systems are unable to meet this demand. Hence, liquid cooled heatsinks are preferred. This paper presents conjugate heat transfer simulation of single phase flow in microchannels with application to electronic cooling. The numerical model is simulated for different materials: copper, aluminium and silicon as solid and water as liquid coolant. The performances of microchannel heatsink are analysed for mass flow rate range of 20-40 ml/min. The investigation has been carried out on same size of electronic chip and heat flux in order to have comparative study of different materials. This paper is divided into two sections: fabrication techniques and numerical simulation for different materials. In the first part, a brief discussion of fabrication techniques of microchannel heatsink have been presented. The second section presents conjugate heat transfer simulation and parametric investigation for different material microchannel heatsink. The presented study and findings are useful for selection of materials for microchannel heatsink.

  13. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  14. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  15. Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling

    International Nuclear Information System (INIS)

    Cheng, Yongpan; Xu, Jinliang; Sui, Yi

    2015-01-01

    Microchannels with superhydrophobic surfaces are a promising candidate for electric cooling with mild frictional penalty. Frictional and thermal performance of laminar liquid-water flow in such microchannels is numerically investigated for various shear-free fractions and Reynolds numbers. The structures on superhydrophobic surfaces include square posts and holes, transverse and longitudinal grooves. Combined frictional and thermal performance of microchannels is evaluated by a goodness factor, and is compared with that of smooth plain channels. It is found that with increasing shear-free fractions, both friction factor and average Nusselt number deteriorate for four surface patterns; however, goodness factor is improved significantly over smooth plain channels. In general, superhydrophobic surfaces containing longitudinal and transverse grooves exhibit the lowest and highest frictional and thermal performance, respectively; however, combined performance of these two are on opposite. Among four surface patterns, longitudinal grooves have the highest goodness factors, except at high shear-free fractions or high Reynolds numbers where overall performance is surpassed by square posts. At very low or high shear-free fractions, frictional and thermal performance of two-dimensional square posts and holes approaches that of one-dimensional longitudinal or transverse grooves. Our study suggests microchannels with superhydrophobic surfaces as promising candidates for efficient cooling devices.

  16. Micro-channel cooling for silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flaschel, Nils

    2017-12-15

    Silicon tracking detectors employed in high-energy physics are located very close to the interaction points of the colliding particle beams. The high energetic radiation emerging from the interaction induces defects into the silicon, downgrading the efficiency to collect the charges created by passing particles and increasing the noise while data taking. Cooling the sensors to low temperatures can help to prevent defects and maintain a high efficiency and lower noise level. In order to maximize the LHC's discovery potential, the collider and its detectors will be upgraded to a higher luminosity around 2024. The conditions inside the detector will become harsher demanding that the technology must adapt to the new situation. Radiation damage is already an issue in the current ATLAS detector and therefore a huge number of parameters are constantly monitored and evaluated to ensure optimal operation. To provide the best possible settings the behavior of the sensors inside the ATLAS Inner Detector is predicted using simulations. In this work several parameters in the simulation including the depletion voltage and the crosstalk between sensor strips of the SCT detector are analyzed and compared with data. The main part of this work concerns the investigation of a novel cooling system based on microchannels etched into silicon in a generic research and development project at DESY and IMB-CNM. A channel layout is designed providing a homogeneous flow distribution across a large surface area and tested in a computational fluid simulation before its production. Two different fabrication techniques, anodic and eutectic bonding, are used to test prototypes with differing mechanical and thermal properties. Hydromechanical and thermal measurements are performed to fully characterize the flow inside the device and the thermal properties of the prototype in air and in a vacuum. The thermal behavior is analyzed by means of local measurements with thermal resistors and infrared

  17. Micro-channel cooling for silicon detectors

    International Nuclear Information System (INIS)

    Flaschel, Nils

    2017-12-01

    Silicon tracking detectors employed in high-energy physics are located very close to the interaction points of the colliding particle beams. The high energetic radiation emerging from the interaction induces defects into the silicon, downgrading the efficiency to collect the charges created by passing particles and increasing the noise while data taking. Cooling the sensors to low temperatures can help to prevent defects and maintain a high efficiency and lower noise level. In order to maximize the LHC's discovery potential, the collider and its detectors will be upgraded to a higher luminosity around 2024. The conditions inside the detector will become harsher demanding that the technology must adapt to the new situation. Radiation damage is already an issue in the current ATLAS detector and therefore a huge number of parameters are constantly monitored and evaluated to ensure optimal operation. To provide the best possible settings the behavior of the sensors inside the ATLAS Inner Detector is predicted using simulations. In this work several parameters in the simulation including the depletion voltage and the crosstalk between sensor strips of the SCT detector are analyzed and compared with data. The main part of this work concerns the investigation of a novel cooling system based on microchannels etched into silicon in a generic research and development project at DESY and IMB-CNM. A channel layout is designed providing a homogeneous flow distribution across a large surface area and tested in a computational fluid simulation before its production. Two different fabrication techniques, anodic and eutectic bonding, are used to test prototypes with differing mechanical and thermal properties. Hydromechanical and thermal measurements are performed to fully characterize the flow inside the device and the thermal properties of the prototype in air and in a vacuum. The thermal behavior is analyzed by means of local measurements with thermal resistors and infrared

  18. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  19. Transition from annular flow to plug/slug flow in condensation of steam in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiaojun; Cheng, Ping; Wu, Huiying [School of Mechanical and Power Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-02-15

    A visualization study has been conducted to investigate the transition from annular flow to plug/slug flow in the condensation of steam in two different sets of parallel microchannels, having hydraulic diameters of 90 {mu}m and 136 {mu}m, respectively. The steam in the parallel microchannels was cooled on the bottom by forced convection of water and by natural convection of air from the top. It is found that the location, where the transition from annular flow to plug/slug flow takes place, depends on mass flux and cooling rate of steam. The effects of mass flux and cooling rate on the occurrence frequency of the injection flow in a single microchannel, having a hydraulic diameter of 120 {mu}m and 128 {mu}m, respectively, are investigated. It is found that two different shapes of injection flow occur in the smooth annular flow in microchannels: injection flow with unsteady vapor ligament occurring at low mass flux (or high cooling rate) and injection flow with steady vapor ligament occurring at high mass flux (or low cooling rate). It is also found that increase of steam mass flux, decrease of cooling rate, or decrease of the microchannel diameter tends to enhance instability of the condensate film on the wall, resulting in occurrence of the injection flow further toward the outlet with an increase in occurrence frequency. (author)

  20. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  1. Experimental investigation of heat transfer performance for a novel microchannel heat sink

    International Nuclear Information System (INIS)

    Wang, Y; Ding, G-F

    2008-01-01

    We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices

  2. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  3. CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink

    Directory of Open Access Journals (Sweden)

    M. Mahbub

    2011-10-01

    Full Text Available Carbon nanotube (CNT is considered as an ideal material for thermal management in electronic packaging because of its extraordinary high thermal conductivity. Fabricated onto a silicon substrate to form micro-channels, the CNT based cooling fins show high heat dissipation efficiency. A series of 2D and 3D CFD simulations have been carried out for CNT based micro-channel cooling architectures based on one and two dimensional fin array in this paper using COMSOL 4.0a software. Micro-channels are generally regarded as an effective method for the heat transfer in electronic products. The influence of various fluids, micro-fin structures, fluid velocity and heating powers on cooling effects have been simulated and compared in this study. Steady-state thermal stress analyses for the forced convection heat transfer are also performed to determine maximum allowable stress and deflections for the different types of cooling assembly.

  4. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions

    International Nuclear Information System (INIS)

    Wang Xiaodong; Bin An; Xu Jinliang

    2013-01-01

    Highlights: ► An inverse geometry optimization method is used to optimize heat sink structure. ► Nanofluid is used as coolant of heat sink. ► Three parameters are simultaneously optimized at various constraint conditions. ► The optimal designs of nanofluid-cooled heat sink are obtained. - Abstract: A numerical model is developed to analyze the flow and heat transfer in nanofluid-cooled microchannel heat sink (MCHS). In the MCHS model, temperature-dependent thermophysical properties are taken into account due to large temperature differences in the MCHS and strong temperature-dependent characteristics of nanofluids, the model is validated by experimental data with good agreement. The simplified conjugate-gradient method is coupled with MCHS model as optimization tool. Three geometric parameters, including channel number, channel aspect ratio, and width ratio of channel to pitch, are simultaneously optimized at fixed inlet volume flow rate, fixed pumping power, and fixed pressure drop as constraint condition, respectively. The optimal designs of MCHS are obtained for various constraint conditions and the effects of inlet volume flow rate, pumping power, and pressure drop on the optimal geometric parameters are discussed.

  5. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    Science.gov (United States)

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  6. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution...... in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...... on the hot surface of the TEG. By considering the maximum temperature limitation for Bi_2 Te_3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies....

  7. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  8. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  9. Development of a Microchannel In Situ Propellant Production System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.

    2005-09-01

    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The

  10. Numerical study of a hybrid jet impingement/micro-channel cooling scheme

    International Nuclear Information System (INIS)

    Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes

    2012-01-01

    A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.

  11. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  12. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  13. Thermal performance of nanofluid flow in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Li Jie [Department of Mechanical and Aerospace Engineering, University of North Carolina, Campus Box 7910, Broungton Hall 4160, Raleigh, NC 27695-7910 (United States); Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering, University of North Carolina, Campus Box 7910, Broungton Hall 4160, Raleigh, NC 27695-7910 (United States)], E-mail: ck@eos.ncsu.edu

    2008-08-15

    Two effective thermal conductivity models for nanofluids were compared in detail, where the new KKL (Koo-Kleinstreuer-Li) model, based on Brownian motion induced micro-mixing, achieved good agreements with the currently available experimental data sets. Employing the commercial Navier-Stokes solver CFX-10 (Ansys Inc., Canonsburg, PA) and user-supplied pre- and post-processing software, the thermal performance of nanofluid flow in a trapezoidal microchannel was analyzed using pure water as well as a nanofluid, i.e., CuO-water, with volume fractions of 1% and 4% CuO-particles with d{sub p} = 28.6 nm. The results show that nanofluids do measurably enhance the thermal performance of microchannel mixture flow with a small increase in pumping power. Specifically, the thermal performance increases with volume fraction; but, the extra pressure drop, or pumping power, will somewhat decrease the beneficial effects. Microchannel heat sinks with nanofluids are expected to be good candidates for the next generation of cooling devices.

  14. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    Science.gov (United States)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  15. COOLING MICROELECTRONIC DEVICES USING OPTIMAL MICROCHANNEL HEAT SINKS: UNA COMPARACIÓN DE DOS ALGORITMOS DE OPTIMIZACIÓN GLOBAL

    Directory of Open Access Journals (Sweden)

    Jorge Mario Cruz Duarte

    Full Text Available This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisation (UPSO and Harmony Search (HS. These heat sinks are used for the thermal management of electronic devices, and we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the microchannel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In addition, HS revealed a greater chance (about three times of finding a better solution than UPSO, but with a higher dispersion rate (about five times. Nonetheless, both algorithms successfully optimised the design for different scenarios, even when varying the material of the heat sink, and for different heat transfer rates.

  16. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator

    International Nuclear Information System (INIS)

    Qu Xiaohua; Shi Junye; Qi Zhaogang; Chen Jiangping

    2011-01-01

    In this paper, a newly developed frost control system is proposed. System bench tests and vehicle test in wind tunnel have been carried out to explore the anti-frosting performance of automotive air conditioning system with microchannel evaporator. The experimental results are compared with the baseline conventional laminated evaporator system. The test results show that the installation position of temperature sensor can dramatically affect the anti-frosting performance. The clutch switching on/off temperature range of the microchannel evaporator is also experimentally studied. The test results show that, with a proper installation position and on/off temperature range, the system COP can be improved, and meanwhile the panel vents' air off temperature can be reduced, and temperature swing can be reduced. - Highlights: → The frost control systems were tested with microchannel and laminated evaporators separately. → The installation position of temperature sensor affects the anti-frosting performance. → Temperature control range affects the anti-frosting performance. → The panel vents' air off temperature and swing can be reduced by proper control parameters. → The system COP can be improved by proper control parameters.

  17. Systems and methods of manufacturing microchannel arrays

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian K.; Brannon, Samuel T.

    2018-03-20

    The present application relates to apparatus and methods of reducing the cost of microchannel array production and operation. In a representative embodiment, a microchannel array can comprise a first lamina having one or more flanges and a plurality of elongated bosses. The one or more flanges can extend along a perimeter of the first lamina, the plurality of elongated bosses can at least partially define a plurality of first flow paths, and the first lamina can define at least one opening. The microchannel array can also comprise a second lamina having a plurality of second flow paths, and can define at least one opening. The second lamina can be disposed above the first lamina such that the second lamina encloses the first flow paths of the first lamina and the at least one opening of the first lamina is coaxial with the at least one opening of the second lamina.

  18. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels

    Science.gov (United States)

    Huang, Houxue; Wu, Huiying; Zhang, Chi

    2018-05-01

    Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α  =  0 to π) and different relative wavy amplitudes (β  =  A/l  =  0.05 to 0.4), but the same average hydraulic diameters (D h  =  160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β  =  0.05), the Nusselt number increased noticeably with the phase difference for Re  >  250, but the effect was insignificant for Re  reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re  >  300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.

  19. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  20. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    .... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...

  1. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami

    2008-04-01

    Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability

  2. Two-phase flow instabilities in a silicon microchannels heat sink

    International Nuclear Information System (INIS)

    Bogojevic, D.; Sefiane, K.; Walton, A.J.; Lin, H.; Cummins, G.

    2009-01-01

    Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.

  3. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  4. Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using microchannels is an attractive alternative to bulky aluminum heat sinks. The channels can be integrated directly into a chip, and cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer improvement of a rectangular channel nanofluid heat sink with developing laminar flow, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated into heat transfer and friction factor correlations in literature for single-phase flows. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to predict the thermal resistance and pumping power as a function of four design variables that include the channel width, the wall width, the flow velocity and the particle volume fraction. The parameters are optimized using a Genetic Algorithm (GA) with minimum thermal resistance as the objective function, and fixed specified value of pumping power as the constraint. For a given value of pumping power, the benefit of nanoparticle addition is evaluated by independently optimizing the heat sink, first with nanofluid, and then with base fluid. Comparing the minimized thermal resistances revealed only a small benefit since the nanoparticles increase the pumping power which can alternately be diverted toward an increased velocity in a pure fluid heat sink. The benefit further diminishes with increase in available pumping power. -- Highlights: ► Validated model used to predict heat transfer and pumping power (p.p.) in nanofluids. ► Genetic algorithm used to minimize thermal resistance with p.p. constraint. ► Heat sink design independently optimized with nanofluid and base fluid coolant. ► No significant benefit through particle

  5. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  6. Microfabrication of Microchannels for Fuel Cell Plates

    Directory of Open Access Journals (Sweden)

    Ho Su Jang

    2009-12-01

    Full Text Available Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  7. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.

    2012-02-01

    A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.

  8. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 1: Micro-Channel Heat Sink for Direct Refrigeration Cooling

    Science.gov (United States)

    2008-09-01

    the two-phase mixture exiting the condenser. Throttling from high to low pressure was achieved by a manual metering valve situated upstream of the micro...channel et al. htp N4hsP) correlation (2002) kh sp = Nu kf dh’ Nuta, = const (Refer to Eqs. (1.4.6) and (1.4.7)), = 0.023Re" Prf4 f f E=1.0+6Bol6 +f(Bo)x...12.26% (318 data points) 0Id" +30%OND A ~’AAK - -30%",A- / A’ A* 10 " , , , htp ,&xp [W/M 2 K] Figure 1.4.8 Comparison of heat transfer coefficient

  9. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies

    International Nuclear Information System (INIS)

    Lima, Rui; Oliveira, Monica S N; Ishikawa, Takuji; Kaji, Hirokazu; Nishizawa, Matsuhiko; Tanaka, Shuji; Yamaguchi, Takami

    2009-01-01

    The current microdevices used for biomedical research are often manufactured using microelectromechanical systems (MEMS) technology. Although it is possible to fabricate precise and reproducible rectangular microchannels using soft lithography techniques, this kind of geometry may not reflect the actual physiology of the microcirculation. Here, we present a simple method to fabricate circular polydimethysiloxane (PDMS) microchannels aiming to mimic an in vivo microvascular environment and suitable for state-of-the-art microscale flow visualization techniques, such as confocal μPIV/PTV. By using a confocal μPTV system individual red blood cells (RBCs) were successfully tracked trough a 75 μm circular PDMS microchannel. The results show that RBC lateral dispersion increases with the volume fraction of RBCs in the solution, i.e. with the hematocrit.

  10. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    Science.gov (United States)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  11. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    Science.gov (United States)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  12. Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

    Science.gov (United States)

    Lackowski, Marcin; Kwidzinski, Roman

    2018-04-01

    The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.

  13. Microchannel electron multiplier

    International Nuclear Information System (INIS)

    Beranek, I.; Janousek, L.; Vitovsky, O.

    1981-01-01

    A microchannel electron multiplier is described for detecting low levels of alpha, beta, soft X-ray and UV radiations. It consists of a glass tube or a system of tubes of various shapes made of common technological glass. The inner tube surface is provided with an active coat with photoemitter and secondary emitter properties. (B.S.)

  14. Study of a high gain microchannel plate photomultiplier having low statistical gain fluctuations

    International Nuclear Information System (INIS)

    Audier, M.

    1980-12-01

    A new photomultiplier configuration which synthesizes the performances of several models is proposed. The principles of microchannel plate photomultipliers are reviewed. The physical phenomena which limit the electron multiplication process in a microchannel and the detection efficiency of the microchannel plates are investigated. The operation of a herring-bone pattern device and of a system of two microchannel plate photomultipliers are described and characterized [fr

  15. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  16. Optimization of Dimples in Microchannel Heat Sink with Impinging Jets — Part A: Mathematical Model and the Influence of Dimple Radius

    Science.gov (United States)

    Ming, Tingzhen; Cai, Cunjin; Yang, Wei; Shen, Wenqing; Gan, Ting

    2018-06-01

    With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modern advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm2. A mathematical model was advanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples (MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MHSIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/ΔP of MHSIJD are higher than those of MHSIJ.

  17. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells

    International Nuclear Information System (INIS)

    Ramos-Alvarado, Bladimir; Li Peiwen; Liu Hong; Hernandez-Guerrero, Abel

    2011-01-01

    A study of the heat transfer performance of liquid-cooled heat sinks with conventional and novel micro-channel flow field configurations for application in electronic devices, fuel cells, and concentrated solar cells is presented in this paper. The analyses were based on computations using the CFD software ANSYS FLUENT. The flow regime in heat sinks is constrained to laminar flow in the study. Details of the heat transfer performance, particularly, the uniformity of temperature distribution on the heating surface, as well as the pressure losses and pumping power in the operation of the studied heat sinks were obtained. Comparisons of the flow distribution uniformity in multiple flow channels, temperature uniformity on heating surfaces, and pumping power consumption of heat sinks with novel flow field configurations and conventional flow field configurations were conducted. It was concluded that the novel flow field configurations studied in this work exhibit appreciable benefits for application in heat sinks. - Highlights: → We present novel designs of flow channel configurations in liquid cooled heat sinks. → The flow and heat transfer in heat sinks were simulated using CFD tool. → The temperature and pressure loss in novel and conventional heat sinks were studied. → Figure of merit of heat sinks in different flow channel configurations was presented. → The heat sinks having our novel design of flow channel configurations are excellent.

  18. Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor

    International Nuclear Information System (INIS)

    Na, Jonggeol; Jung, Ikhwan; Kshetrimayum, Krishnadash S.; Park, Seongho; Park, Chansaem; Han, Chonghun

    2014-01-01

    Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been preferred over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent

  19. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.; Wong, Kokcheong; Siddique, Mansoor M.

    2012-01-01

    computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro

  20. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  1. Transient response of nonideal ion-selective microchannel-nanochannel devices

    Science.gov (United States)

    Leibowitz, Neta; Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2018-04-01

    We report evidence of variation in ion selectivity of a fabricated microchannel-nanochannel device resulting in the appearance of a distinct local maximum in the overlimiting chronopotentiometric response. In this system consisting of shallow microchannels joined by a nanochannel, viscous shear at the microchannel walls suppresses the electro-osmotic instability and prevents any associated contribution to the nonmonotonic response. Thus, this response is primarily electrodiffusive. Numerical simulations indicate that concentration polarization develops not only within the microchannel but also within the nanochannel itself, with a local voltage maximum in the chronopotentiometric response correlated with interfacial depletion and having the classic i-2 Sands time dependence. Furthermore, the occurrence of the local maxima is correlated with the change in selectivity due to internal concentration polarization. Understanding the transient nonideal permselective response is essential for obtaining fundamental insight and for optimizing efficient operation of practical fabricated nanofluidic and membrane devices.

  2. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  3. Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system.

    Science.gov (United States)

    Yamaguchi, Nobuyasu; Tokunaga, Yusuke; Goto, Satoko; Fujii, Yudai; Banno, Fumiya; Edagawa, Akiko

    2017-06-08

    Legionnaires' disease, predominantly caused by the bacterium Legionella pneumophila, has increased in prevalence worldwide. The most common mode of transmission of Legionella is inhalation of contaminated aerosols, such as those generated by cooling towers. Simple, rapid and accurate methods to enumerate L. pneumophila are required to prevent the spread of this organism. Here, we applied a microfluidic device for on-chip fluorescent staining and semi-automated counting of L. pneumophila in cooling tower water. We also constructed a portable system for rapid on-site monitoring and used it to enumerate target bacterial cells rapidly flowing in the microchannel. A fluorescently-labelled polyclonal antibody was used for the selective detection of L. pneumophila serogroup 1 in the samples. The counts of L. pneumophila in cooling tower water obtained using the system and fluorescence microscopy were similar. The detection limit of the system was 10 4  cells/ml, but lower numbers of L. pneumophila cells (10 1 to 10 3  cells/ml) could be detected following concentration of 0.5-3 L of the water sample by filtration. Our technique is rapid to perform (1.5 h), semi-automated (on-chip staining and counting), and portable for on-site measurement, and it may therefore be effective in the initial screening of Legionella contamination in freshwater.

  4. Field-effect Flow Control in Polymer Microchannel Networks

    Science.gov (United States)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  5. Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink

    International Nuclear Information System (INIS)

    Megahed, Ayman; Hassan, Ibrahim

    2009-01-01

    The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m 2 s and heat fluxes from 60.4 to 130.6 kW/m 2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.

  6. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  7. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  8. A review of entropy generation in microchannels

    Directory of Open Access Journals (Sweden)

    Mohamed M Awad

    2015-12-01

    Full Text Available In this study, a critical review of thermodynamic optimum of microchannels based on entropy generation analysis is presented. Using entropy generation analysis as evaluation parameter of microchannels has been reported by many studies in the literature. In these studies, different working fluids such as nanofluids, air, water, engine oil, aniline, ethylene glycol, and non-Newtonian fluids have been used. For the case of nanofluids, “nanoparticles” has been used in various kinds such as Al2O3 and Cu, and “base fluid” has been used in various kinds such as water and ethylene glycol. Furthermore, studies on thermodynamic optimum of microchannels based on entropy generation analysis are summarized in a table. At the end, recommendations of future work for thermodynamic optimum of microchannels based on entropy generation analysis are given. As a result, this article can not only be used as the starting point for the researcher interested in entropy generation in microchannels, but it also includes recommendations for future studies on entropy generation in microchannels.

  9. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Science.gov (United States)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  10. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  11. A highly stable microchannel heat sink for convective boiling

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan Chin

    2009-01-01

    To develop a highly stable two-phase microchannel heat sink, we experimented with convective boiling in diverging, parallel microchannels with different distributions of laser-etched artificial nucleation sites. Each microchannel had a mean hydraulic diameter of 120 µm. The two-phase flow visualization and the magnitudes of pressure drop and inlet temperature oscillations under boiling conditions demonstrated clearly the merits of using artificial nucleation sites to further stabilize the flow boiling in diverging, parallel microchannels. The stability map showed the plane of subcooling number versus phase change number. It illustrated that diverging, parallel microchannels with artificial nucleation cavities have a much wider stable region than parallel microchannels with uniform cross-sections or diverging, parallel microchannels without artificial nucleation cavities. In addition, the results revealed that the design with cavities distributed uniformly along the downstream half of the channel presented the best stability performance among the three distributions of nucleation sites. This particular design can be regarded as a highly stable microchannel heat sink for convective boiling

  12. Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions

    International Nuclear Information System (INIS)

    Shao, Liang-Liang; Yang, Liang; Zhang, Chun-Lu

    2010-01-01

    Vapor compression heat pumps are drawing more attention in energy saving applications. Microchannel heat exchangers can provide higher performance via less core volume and reduce system refrigerant charge, but little is known about their performance in heat pump systems under frosting conditions. In this study, the system performance of a commercial heat pump using microchannel heat exchangers as evaporator is compared with that using conventional finned-tube heat exchangers numerically and experimentally. The microchannel and finned-tube heat pump system models used for comparison of the microchannel and finned-tube evaporator performance under frosting conditions were developed, considering the effect of maldistribution on both refrigerant and air sides. The quasi-steady-state modeling results are in reasonable agreement with the test data under frost conditions. The refrigerant-side maldistribution is found remarkable impact on the microchannel heat pump system performance under the frost conditions. Parametric study on the fan speed and the fin density under frost conditions are conducted as well to figure out the best trade-off in the design of frost tolerant evaporators. (author)

  13. Gain stabilized microchannel plates and a treatment method for microchannel plates

    International Nuclear Information System (INIS)

    1979-01-01

    Microchannel plates having increased gain and significantly improved aging characteristics are provided by forming a thin film of a cesium compound on the channel walls. In an exemplary embodiment, a suface film of cesium hydroxide is applied to the interior wall surfaces of an MCP by saturating the plate with a solution of the compound, then allowing the solvent to evaporate. The cesium hydroxide residue on the walls subsequently is converted to cesium oxide by a high temperature bake. Microchannel plates are used in image amplifiers, radiation detectors and such like equipment. (Auth.)

  14. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  15. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    Science.gov (United States)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  16. Optimization of triangular microchannel heat sinks using constructible theory

    International Nuclear Information System (INIS)

    Mardani, Moloud; Salimpour, Mohammad Reza

    2016-01-01

    The present paper examines the optimization of triangular microchannel heat sinks. The impact of volume fraction of solid material and pressure drop on the maximum temperature of the microchannel heat sinks are investigated and their optimum operating conditions are compared. From the results, it is seen that increasing the side angle of the triangular microchannel, improves its performance. Furthermore, there is an appropriate agreement between the analytical and numerical results. Finally, the effect of degrees of freedom on the performance of microchannels is investigated. To accomplish this end, the triangular microchannels with the side angle of 60 degree have been chosen as it has the best performance compared to other microchannels. It is observed that the minimized maximum temperatures of optimized microchannel heat sinks with three degrees of freedom are 10% lower than the ones with two degrees of freedom

  17. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  18. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  19. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  20. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  1. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  2. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  3. Investigation of Size Effects to the Mixing Performance on the X-shaped Micro-Channels

    Directory of Open Access Journals (Sweden)

    S Tu

    2016-09-01

    Full Text Available Due to the developing of micro-electro-mechanical-system, MEMS, the fabrication of the microminiaturization devices becomes obviously important. The advances in the basic understanding of fluid physics have opened an era of application of fluid dynamics systems using microchannels. The purpose of this study is to research the flow transport phenomenon by employing different kinds of micro-channel sizing in X-shaped micro-channels. As the working fluid, water is injected to microchannel at different mass flow rate. Over a wide range of flow condition, 1.06 < Re < 514, in X-shaped micro-channels, the mixture performances of numerical simulation, flow visualization, and temperature distribution remain the same. At the same mass flow rate as the Reynolds number below 112.53, the biggest channel size had the slowest flow velocity and got the best mixing performance; as the Reynolds number above 112.53, the smaller the channel sizing, the lower the pressure drops and the faster velocity becomes. The transition form early from laminar flow, the unsteady flow is an advantage for mixing in the limited mixing area, therefore 0.7 mm got the best mixing performance. It is clear that the size of the channel plays an important role in the X-shaped micro-channels.

  4. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Michael [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  5. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs

    Science.gov (United States)

    Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin

    2017-09-01

    In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).

  6. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  7. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  8. Micro-channel convective boiling heat transfer with flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch

    2009-07-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  9. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  10. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  11. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  12. The parameterization of microchannel-plate-based detection systems

    Science.gov (United States)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.

    2016-10-01

    The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation.

  13. Micro-channel plates and vacuum detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gys, T., E-mail: Thierry.Gys@cern.ch

    2015-07-01

    A micro-channel plate is an array of miniature electron multipliers that are each acting as a continuous dynode chain. The compact channel structure results in high spatial and time resolutions and robustness to magnetic fields. Micro-channel plates have been originally developed for night vision applications and integrated as an amplification element in image intensifiers. These devices show single-photon sensitivity with very low noise and have been used as such for scintillating fiber tracker readout in high-energy physics experiments. Given their very short transit time spread, micro-channel plate photomultiplier tubes are also being used in time-of-flight and particle identification detectors. The present paper will cover the history of the micro-channel plate development, basic features, and some of their applications. Emphasis will be put on various new manufacturing processes that have been developed over the last few years, and that result in a significant improvement in terms of efficiency, noise, and lifetime performance.

  14. Energy efficient hotspot-targeted embedded liquid cooling of electronics

    International Nuclear Information System (INIS)

    Sharma, Chander Shekhar; Tiwari, Manish K.; Zimmermann, Severin; Brunschwiler, Thomas; Schlottig, Gerd; Michel, Bruno; Poulikakos, Dimos

    2015-01-01

    Highlights: • We present a novel concept for hotspot-targeted, energy efficient ELC for electronic chips. • Microchannel throttling zones distribute flow optimally without any external control. • Design is optimized for highly non-uniform multicore chip heat flux maps. • Optimized design minimizes chip temperature non-uniformity. • This is achieved with pumping power consumption less than 1% of total chip power. - Abstract: Large data centers today already account for nearly 1.31% of total electricity consumption with cooling responsible for roughly 33% of that energy consumption. This energy intensive cooling problem is exacerbated by the presence of hotspots in multicore microprocessors due to excess coolant flow requirement for thermal management. Here we present a novel liquid-cooling concept, for targeted, energy efficient cooling of hotspots through passively optimized microchannel structures etched into the backside of a chip (embedded liquid cooling or ELC architecture). We adopt an experimentally validated and computationally efficient modeling approach to predict the performance of our hotspot-targeted ELC design. The design is optimized for exemplar non-uniform chip power maps using Response Surface Methodology (RSM). For industrially acceptable limits of approximately 0.4 bar (40 kPa) on pressure drop and one percent of total chip power on pumping power, the optimized designs are computationally evaluated against a base, standard ELC design with uniform channel widths and uniform flow distribution. For an average steady-state heat flux of 150 W/cm 2 in core areas (hotspots) and 20 W/cm 2 over remaining chip area (background), the optimized design reduces the maximum chip temperature non-uniformity by 61% to 3.7 °C. For a higher average, steady-state hotspot heat flux of 300 W/cm 2 , the maximum temperature non-uniformity is reduced by 54% to 8.7 °C. It is shown that the base design requires a prohibitively high level of pumping power (about

  15. Integration of microplasma and microfluidic technologies for localised microchannel surface modification

    Science.gov (United States)

    Szili, Endre J.; Al-Bataineh, Sameer A.; Priest, Craig; Gruner, Philipp J.; Ruschitzka, Paul; Bradley, James W.; Ralston, John; Steele, David A.; Short, Robert D.

    2011-12-01

    In this paper we describe the spatial surface chemical modification of bonded microchannels through the integration of microplasmas into a microfluidic chip (MMC). The composite MMC comprises an array of precisely aligned electrodes surrounding the gas/fluid microchannel. Pairs of electrodes are used to locally ignite microplasmas inside the microchannel. Microplasmas, comprising geometrically confined microscopic electrically-driven gas discharges, are used to spatially functionalise the walls of the microchannels with proteins and enzymes down to scale lengths of 300 μm inside 50 μm-wide microchannels. Microchannels in poly(dimethylsiloxane) (PDMS) or glass were used in this study. Protein specifically adsorbed on to the regions inside the PDMS microchannel that were directly exposed to the microplasma. Glass microchannels required pre-functionalisation to enable the spatial patterning of protein. Firstly, the microchannel wall was functionalised with a protein adhesion layer, 3-aminopropyl-triethoxysilane (APTES), and secondly, a protein blocking agent (bovine serum albumin, BSA) was adsorbed onto APTES. The functionalised microchannel wall was then treated with an array of spatially localised microplasmas that reduced the blocking capability of the BSA in the region that had been exposed to the plasma. This enabled the functionalisation of the microchannel with an array of spatially separated protein. As an alternative we demonstrated the feasibility of depositing functional thin films inside the MMC by spatially plasma depositing acrylic acid and 1,7-octadiene within the microchannel. This new MMC technology enables the surface chemistry of microchannels to be engineered with precision, which is expected to broaden the scope of lab-on-a-chip type applications.

  16. Boiling in microchannels: a review of experiment and theory

    International Nuclear Information System (INIS)

    Thome, John R.

    2004-01-01

    A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist up to vapor qualities as high as 60-70% in microchannels, followed by annular flow. Flow boiling heat transfer coefficients have been shown experimentally to be dependent on heat flux and saturation pressure while only slightly dependent on mass velocity and vapor quality. Hence, these studies have concluded that nucleate boiling controls evaporation in microchannels. Instead, a recent analytical study has shown that transient evaporation of the thin liquid films surrounding elongated bubbles is the dominant heat transfer mechanism as opposed to nucleate boiling and is able to predict these trends in the experimental data. Newer experimental studies have further shown that there is in fact a significant effect of mass velocity and vapor quality on heat transfer when covering a broader range of conditions, including a sharp peak at low vapor qualities at high heat fluxes. Furthermore, it is concluded that macroscale models are not realistic for predicting flowing boiling coefficients in microchannels as the controlling mechanism is not nucleate boiling nor turbulent convection but is transient thin film evaporation (also, microchannel flows are typically laminar and not turbulent as assumed by macroscopic models). A more advanced three-zone flow boiling model for evaporation of elongated bubbles in microchannels is currently under development that so far qualitatively describes all these trends. Numerous fundamental aspects of two-phase flow and evaporation remain to be better understood and some of these aspects are also discussed

  17. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    Science.gov (United States)

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  18. Optimization of porous microchannel heat exchanger

    Science.gov (United States)

    Kozhukhov, N. N.; Konovalov, D. A.

    2017-11-01

    The technical progress in information and communication sphere leads to a sharp increase in the use of radio electronic devices. Functioning of radio electronics is accompanied by release of thermal energy, which must be diverted from the heat-stressed element. Moreover, using of electronics at negative temperatures, on the contrary, requires supply of a certain amount of heat to start the system. There arises the task of creating a system that allows both to supply and to divert the necessary amount of thermal energy. The development of complex thermostabilization systems for radio electronic equipment is due to increasing the efficiency of each of its elements separately. For more efficient operation of a heat exchanger, which directly affects the temperature of the heat-stressed element, it is necessary to calculate the mode characteristics and to take into account the effect of its design parameters. The results of optimizing the microchannel heat exchanger are presented in the article. The target optimization functions are the mass, pressure drop and temperature. The parameters of optimization are the layout of porous fins, their geometric dimensions and coolant flow. For the given conditions, the optimum variant of porous microchannel heat exchanger is selected.

  19. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  20. Laser beam micro-milling of micro-channels in aerospace alloys

    CERN Document Server

    Ahmed, Naveed; Al-Ahmari, Abdulrahman

    2017-01-01

    This volume is greatly helpful to micro-machining and laser engineers as it offers obliging guidelines about the micro-channel fabrications through Nd:YAG laser beam micro-milling. The book also demonstrates how the laser beam micro-milling behaves when operating under wet conditions (under water), and explores what are the pros and cons of this hybrid technique. From the predictive mathematical models, the readers can easily estimate the resulting micro-channel size against the desired laser parametric combinations. The book considers micro-channels in three highly important research materials commonly used in aerospace industry: titanium alloy Ti-6Al-4V, nickel alloy Inconel 718 and aluminum alloy AA 2024. Therefore, the book is highly practicable in the fields of micro-channel heat exchangers, micro-channel aerospace turbine blades, micro-channel heat pipes, micro-coolers and micro-channel pulsating heat plates. These are frequently used in various industries such as aerospace, automotive, biomedical and m...

  1. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  2. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  3. Heat transfer and fluid flow in minichannels and microchannels

    CERN Document Server

    Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R

    2014-01-01

    Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan

  4. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  5. Microchannel boiling mechanisms leading to burnout

    International Nuclear Information System (INIS)

    Landram, C.S.; Riddle, R.A.

    1994-01-01

    The authors are analyzing the thermal performance of microchannel heat sinks to extend their applied heat loads beyond coolant single-phase limits. This is the first investigation of boiling in the narrow (50-μm) microchannels having typically high-aspect-ratio (of order 10/1) flow cross-sections. The prescription of local, wall-coolant, interfacial, two-phase correlations first required development of a validated, approximate, thermal-model accounting for conjugate heat transfer. The strongest mechanism for heat transfer in two-phase microchannel flow was found to be saturated boiling in a channel region near the heated base. When this region dried out, burnout occurred, both in the computations and in the experiment

  6. Development of time-of-flight RBS system using multi microchannel plates

    International Nuclear Information System (INIS)

    Nguyen, N.V.; Abo, S.; Lohner, T.; Sawaragi, H.; Wakaya, F.; Takai, M.

    2007-01-01

    A new time-of-flight Rutherford backscattering spectroscopy (TOF-RBS) system with two circular microchannel plates (MCPs) installed at a distance of 140 mm from a sample holder and a scattering angle of 125 o and a 100 kV focused ion beam column having a liquid metal ion source (LMIS) of AuSiBe alloy has been assembled to obtain high counting rate and enhanced mass resolution. The possible influence of the two MCPs by logical summation of the output signals on the time resolution was investigated by measuring dedicated thin deposited metallic samples. And, the time resolution was found in the range of 1.5-2 ns

  7. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  8. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    Science.gov (United States)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  9. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  10. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  11. Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink

    International Nuclear Information System (INIS)

    Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo

    2017-01-01

    Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and

  12. Study of different cross-shaped microchannels affecting thermal-bubble-actuated microparticle manipulation

    Science.gov (United States)

    Li, Weichen; Tsou, Chingfu

    2015-10-01

    This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.

  13. Effect of microchannel structure on the reaction performance of methanol steam reforming

    International Nuclear Information System (INIS)

    Pan, Minqiang; Wu, Qiuyu; Jiang, Lianbo; Zeng, Dehuai

    2015-01-01

    Highlights: • Effect of microchannel cross-section and distribution on MSR are investigated. • Microchannel distribution shows much more influence on reaction performance. • SLDR and ELR with rectangular cross-section present better reaction performance. • DLSR and EUU with tooth cross-section have better reaction performance. • Equal-distribution of microchannels present the best reaction performance. - Abstract: Methanol steam reforming inside microchannel reactors is regarded as one of effective methods for supplying hydrogen for fuel cells. Microchannel structure plays an important role on the reaction performance of methanol steam reforming. Parallel and uniform-distributed microchannels with rectangular cross-section are generally adopted. In this work, two kinds of microchannel cross-sections and four kinds of microchannel distributions are selected to investigate the effect of microchannel structure on the reaction performance of methanol steam reforming. The result indicates that microchannel distribution shows much more influences on the reaction performance of methanol steam reforming than the microchannel cross-section. Sparse-distribution in the Left direction and Dense-distribution in the Right direction (SLDR) as well as Equal-distribution in the Left–Right direction (ELR) with rectangular cross-section present relatively good reaction performances, whereas Dense-distribution in the Left direction and Sparse-distribution in the Right direction (DLSR) as well as Equal-distribution in the Upside–Underside direction (EUU) with tooth cross-section have relatively good performances. ELR presents the best reaction performances of methanol steam reforming among all the investigated microchannel structures, whether rectangular or tooth cross-section

  14. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  15. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  16. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  17. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  18. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  19. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  20. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  1. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  2. Investigating performance of microchannel evaporators with different manifold structures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junye; Qu, Xiaohua; Qi, Zhaogang; Chen, Jiangping [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240 (China)

    2011-01-15

    In this paper, the performances of microchannel evaporators with different manifold structures are experimentally investigated. Eight evaporator samples with 7 different designs of the I/O manifold and 5 different designs of the return manifold are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant 134A at a real automotive AC condition. The results on the variations of the cooling capacity and air temperature distribution of the evaporator due to the deflector designs in the I/O manifold and flow hole arrangements in the return manifold are presented and analyzed. By studying the KPI's for the performance of an evaporator, the design trade-off for an evaporator designer is summarized and discussed. (author)

  3. Thermoelectric cooler application in electronic cooling

    International Nuclear Information System (INIS)

    Chein Reiyu; Huang Guanming

    2004-01-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T c ) and temperature difference between TEC cold and hot sides (ΔT=T h -T c , T h =temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T c increased and ΔT was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88 deg. C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054 deg. C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes (ΔT c values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions

  4. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  5. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  6. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  7. Static response of deformable microchannels: a comparative modelling study

    Science.gov (United States)

    Shidhore, Tanmay C.; Christov, Ivan C.

    2018-02-01

    We present a comparative modelling study of fluid-structure interactions in microchannels. Through a mathematical analysis based on plate theory and the lubrication approximation for low-Reynolds-number flow, we derive models for the flow rate-pressure drop relation for long shallow microchannels with both thin and thick deformable top walls. These relations are tested against full three-dimensional two-way-coupled fluid-structure interaction simulations. Three types of microchannels, representing different elasticity regimes and having been experimentally characterized previously, are chosen as benchmarks for our theory and simulations. Good agreement is found in most cases for the predicted, simulated and measured flow rate-pressure drop relationships. The numerical simulations performed allow us to also carefully examine the deformation profile of the top wall of the microchannel in any cross section, showing good agreement with the theory. Specifically, the prediction that span-wise displacement in a long shallow microchannel decouples from the flow-wise deformation is confirmed, and the predicted scaling of the maximum displacement with the hydrodynamic pressure and the various material and geometric parameters is validated.

  8. Microchannel plate assembly parameters with micron gaps

    International Nuclear Information System (INIS)

    Demchenkova, A.A.

    1987-01-01

    Performance of chevron microchannel plate assembly with 5 and 15 μm gaps between them has been investigated. The assembly is placed into a vacuum chamber under pressure -6 Torr and irradiated by neutral He and Ar atom beams with 1.5 and 3 keV energies as well as by ultraviolet photons with 147 nm wave length. Dependence of the gain and amplitude resolution on power voltage in plates are measured. The results obtained have shown that microchannel plates permit to obtain the gain up to 3x10 7 and amplitude resolution up to 30% when detecting both atomic particles and ultraviolet photons. The assembly can be effectively used in those cases when it is necessary to use microchannel plates with curved channels

  9. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  10. Microchannel plate photodetectors

    International Nuclear Information System (INIS)

    Majka, R.

    1977-01-01

    A review is given the status of development work on photodetectors using microchannel plates (MCP) as the electron gain element. Projections are made and opinions are presented on what might be available in the next few years. Several uses for these devices at ISABELLE are mentioned

  11. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  12. Measuring the local pressure amplitude in microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2010-01-01

    /glass microchannels. The system is actuated by a PZT piezo transducer attached beneath the chip and driven by an applied ac voltage near its eigenfrequency of 2 MHz. For a given frequency a number of particle tracks are recorded by a CCD camera and fitted to a theoretical expression for the acoustophoretic motion...

  13. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  14. CW-laser induced microchannels in dye-polymethacrylic acid films

    OpenAIRE

    M.A. Camacho-López

    2007-01-01

    In this work we report on the formation of microchannels on dye-polymethacrylic acid films using a cw-laser. A focalized beam of a He-Ne laser (632.8 nm emission line) was used to form microchannels on the films. It was found that there exists a laser power density threshold for a pit formation that depends on the dye concentration. The dimensions of the laser-induced channels are dependent on the laser power density. Microchannel formation in the transparent polymethacrylic acid films was no...

  15. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  16. Study on Boiling Heat Transfer Phenomenon in Micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of)

    2017-09-15

    Recently, efficient heat dissipation has become necessary because of the miniaturization of devices, and research on boiling on micro-channels has attracted attention. However, in the case of micro-channels, the friction coefficient and heat transfer characteristics are different from those in macro-channels. This leads to large errors in the micro scale results, when compared to correlations derived from the macro scale. In addition, due to the complexity of the mechanism, the boiling phenomenon in micro-channels cannot be approached only by experimental and theoretical methods. Therefore, numerical methods should be utilized as well, to supplement these methods. However, most numerical studies have been conducted on macro-channels. In this study, we applied the lattice Boltzmann method, proposed as an alternative numerical tool to simulate the boiling phenomenon in the micro-channel, and predicted the bubble growth process in the channel.

  17. Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18

    Science.gov (United States)

    Yang, Hao; Chen, Lei; Lei, Chong; Zhang, Ju; Li, Ding; Zhou, Zhi-Min; Bao, Chen-Chen; Hu, Heng-Yao; Chen, Xiang; Cui, Feng; Zhang, Shuang-Xi; Zhou, Yong; Cui, Da-Xiang

    2010-07-01

    Quick and parallel genotyping of human papilloma virus (HPV) type 16/18 is carried out by a specially designed giant magnetoimpedance (GMI) based microchannel system. Micropatterned soft magnetic ribbon exhibiting large GMI ratio serves as the biosensor element. HPV genotyping can be determined by the changes in GMI ratio in corresponding detection region after hybridization. The result shows that this system has great potential in future clinical diagnostics and can be easily extended to other biomedical applications based on molecular recognition.

  18. A review on the analysis and experiment of fluid flow and mixing in micro-channels

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon

    2007-01-01

    The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail

  19. EXPERIMENTAL PERFORMANCE OF R134a AND R152a USING MICROCHANNEL CONDENSER

    OpenAIRE

    Bhatkar, V. W.

    2018-01-01

    An experimental performance study on vapour compression refrigeration system with R134a and drop in substitute R152a with aluminium microchannel condenser was carried out for condensation temperature of 48°C while evaporation temperature varied from -10 to 15°C. Refrigerant charge of R152a was reduced by 40% over R134a with the microchannel condenser. Performance parameters like work input to the compressor, coefficient of performance, refrigerating capacity, condenser capacity and the produc...

  20. A Self-Contained Cold Plate Utilizing Force-fed Evaporation for Cooling of High flux Electronics

    Science.gov (United States)

    2007-01-01

    additional improvement. The second advanced heat sink to be covered was developed and studied by Sung and Mudawar [27]. They created a hybrid jet...cooling by using manifold microchannel heat sinks.” Advanced Electronic Packaging. 2 (1997) 1837-1842. [27] Sung, M. K. & Mudawar , I

  1. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  2. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  3. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Karoly [ORNL

    2018-01-01

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similar regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.

  4. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  5. Periodic flow patterns of the magnetic fluid in microchannel

    International Nuclear Information System (INIS)

    Chang, C.-W.; Cheng, Y.-T.; Tsai, C.-Y.; Chien, J.-H.; Wang, P.-Y.; Chen, P.-H.

    2007-01-01

    In this study, of interests are the periodic flow patterns of the oil-based magnetic fluid in microchannels. A microfluidic chip is made of poly-dimethylsiloxane (PDMS) and contains cross-shape microchannels. The microchannels are 1000 μm in width and 200 μm in depth. A syringe pump was used to drive the fluids. Periodic flow patterns were seen and the slugs of magnetic fluid and DI water were generated. The operating factors discussed in the present work are the flow rates and the magnetic field. The frequency of generation of the slugs increases with increase in the flow rates. Besides, by settling the permanent magnet around the microchannel, the periods of the slug generation are changed. Different positions of the magnet lead to different periods for generating the slugs. By adjusting operating conditions, to control the frequency and the volume of the slugs is practical

  6. Flow and heat transfer behaviour of nanofluids in microchannels

    Directory of Open Access Journals (Sweden)

    James Bowers

    2018-04-01

    Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity

  7. Surface roughness influences on the behaviour of flow inside microchannels

    Science.gov (United States)

    Farias, M. H.; Castro, C. S.; Garcia, D. A.; Henrique, J. S.

    2018-03-01

    This work discusses influence of the surface roughness on the behavior of liquids flowing inside microchannels. By measuring the flow profile using the micro-PIV technique, the flow of water inside two rectangular microchannels of different wall roughness and in a circular smooth microchannel was studied. Comparisons were made among the experimental results, showing that a metrological approach concerning surface characteristics of microdevices is required to ensure reliability of the measurements for flow analyses in microfluidic processes.

  8. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  9. Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel

    Directory of Open Access Journals (Sweden)

    Hongtruong Pham

    2012-01-01

    Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.

  10. Cooling of a microchannel with thin evaporating liquid film sheared by dry gas flow

    Science.gov (United States)

    Kabova, Yu O.; Kuznetsov, V. V.

    2017-11-01

    A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase, taking into account the evaporation process. Major factors affecting the temperature distribution in the liquid and the gas phases are as follows: transfer of heat by liquid and gas flows, heat loses due to evaporation, diffusion heat exchange. Comparisons of the numerical results for the case of the dry gas and for the case of equilibrium concentration of vapor in the gas have been carried out. It is shown that use of dry gas enhances the heat dissipation from the heater. It is found out that not only intense evaporation occurs near the heating areas, but also in both cases vapor condensation takes place below the heater in streamwise direction.

  11. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  12. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  13. NASA's Platform for Cross-Disciplinary Microchannel Research

    Science.gov (United States)

    Son, Sang Young; Spearing, Scott; Allen, Jeffrey; Monaco, Lisa A.

    2003-01-01

    A team from the Structural Biology group located at the NASA Marshall Space Flight Center in Huntsville, Alabama is developing a platform suitable for cross-disciplinary microchannel research. The original objective of this engineering development effort was to deliver a multi-user flight-certified facility for iterative investigations of protein crystal growth; that is, Iterative Biological Crystallization (IBC). However, the unique capabilities of this facility are not limited to the low-gravity structural biology research community. Microchannel-based research in a number of other areas may be greatly accelerated through use of this facility. In particular, the potential for gas-liquid flow investigations and cellular biological research utilizing the exceptional pressure control and simplified coupling to macroscale diagnostics inherent in the IBC facility will be discussed. In conclusion, the opportunities for research-specific modifications to the microchannel configuration, control, and diagnostics will be discussed.

  14. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  15. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  16. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  17. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  18. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  19. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Yen, R.H.; Wang, J.H.; Hsu, H.Y.; Hsia, C.J.; Yen, C.W.; Chang, J.M.

    2011-01-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling

  20. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  1. Experimental and numerical investigations on spray structure under the effect of cavitation phenomenon in a microchannel

    International Nuclear Information System (INIS)

    Ghorbani, Morteza; Sadaghiani, Abdolali Khalili; Yidiz, Mehmet; Kosar, Ali

    2017-01-01

    In this study, the effect of upstream pressure on cavitation flows inside a microchannel with an inner diameter of 152 μm and resulting spray structure were experimentally and numerically investigated. The effects of bubble number density on two-phase flow hydrodynamics were studied using the numerical approach, where transient model was utilized to obtain the changes in vapor quality inside the microchannel and velocity field near the inlet and outlet of the nozzle. Spray visualization was carried out at a distance of 4.5 mm from the tip of the microchannel using the high speed visualization system. The experimental results showed that the spray cone angle increased with upstream pressure, and beyond the upstream pressure of 50 bar, the liquid jet flow changed to the cloudy spray flow. The bubble collapse was recorded at upstream pressures of 100 and 120 bar, where the cavitation bubbles extended to the outlet of the microchannel, and their collapse took place around the spray

  2. Thermal Analysis of Hybrid Thermal Control System and Experimental Investigation of Flow Boiling in Micro-channel Heat Exchangers

    Science.gov (United States)

    Lee, Seunghyun

    Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as

  3. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  4. Slip flow through a converging microchannel: experiments and 3D simulations

    International Nuclear Information System (INIS)

    Varade, Vijay; Agrawal, Amit; Pradeep, A M

    2015-01-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier–Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow. (paper)

  5. Cooling system for the IFMIF-EVEDA radiofrequency system

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2012-01-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  6. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  7. Fundamental research on the cooling characteristic of passive containment cooling system

    International Nuclear Information System (INIS)

    Kawakubo, M.; Kikura, H.; Aritomi, M.; Inaba, N.; Yamauchi, T.

    2004-01-01

    The objective of this experimental study is to clarify the heat transfer characteristics of the Passive Containment Cooling System (PCCS) with vertical heat transfer tubes for investigating the influence of non-condensable gas on condensation. Furthermore, hence we obtained new experimental correlation formula to calculate the transients in system temperature and pressure using the simulation program of the PCCS. The research was carried out using a forced circulation experimental loop, which simulates atmosphere inside PCCS with vertical heat transfer tubes if a loss of coolant accident (LOCA) occurs. The experimental facility consists of cooling water supply systems, an orifice flowmeter, and a tank equipped with the heat transfer pipe inside. Cooling water at a constant temperature is injected to the test part of heat transfer pipe vertically installed in the tank by forced circulation. At that time, the temperature of the cooling water between inlet and outlet of the pipe was measured to calculate the overall heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer coefficient between heat transfer surface and the atmosphere in the tank considering the influence of the non-condensable gas was clarified. An important finding of this study is that the amount of condensation in the steamy atmosphere including non-condensable gas depends on the cooling water Reynolds number, especially the concentration of non-condensable gas that has great influence on the amount of condensation. (authors)

  8. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  9. Micro-fabricated silicon devices for advanced thermal management and integration of particle tracking detectors

    CERN Document Server

    Romagnoli, Giulia; Gambaro, Carla

    Since their first studies targeting the cooling of high-power computing chips, micro-channel devices are proven to provide a very efficient cooling system. In the last years micro-channel cooling has been successfully applied to the cooling of particle detectors at CERN. Thanks to their high thermal efficiency, they can guarantee a good heat sink for the cooling of silicon trackers, fundamental for the reduction of the radiation damage caused by the beam interactions. The radiation damage on the silicon detector is increasing with temperature and furthermore the detectors are producing heat that should be dissipated in the supporting structure. Micro-channels guarantee a distributed and uniform thermal exchange, thanks to the high flexibility of the micro-fabrication process that allows a large variety of channel designs. The thin nature of the micro-channels etched inside silicon wafers, is fulfilling the physics requirement of minimization of the material crossed by the particle beam. Furthermore micro-chan...

  10. Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1978-10-01

    Electrical, mechanical, thermal, and neutron response data indicate that microchannel plate photomultiplier tubes are viable candidates as miniature, ruggedized neutron detectors for flight test applications in future weapon systems

  11. Influence of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink

    International Nuclear Information System (INIS)

    Om, N I; Gunnasegaran, P; Rajasegaran, S

    2013-01-01

    In this paper, the effect of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink (MCHS) is numerically investigated. This investigation covers Reynolds number in the range of 100 ≤ Re ≤ 1000 and pure water is used as a working fluid. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method (FVM). The water flow field and heat transfer performance inside the sinusoidal microchannels is simulated and the results are compared with the straight microchannels. The effect of using sinusoidal microchannels on temperature distribution, Nusselt number, friction factor and thermal resistance is presented in this paper. It is found that with same rectangular cross-section, sinusoidal microchannels have a better heat transfer performance compared to the straight microchannels.

  12. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  13. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  14. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  15. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena

    Science.gov (United States)

    Yang, Jun; Lu, Fuzhi; Kostiuk, Larry W.; Kwok, Daniel Y.

    2003-11-01

    Pressure-driven flow in a microchannel induces a streaming current due to the presence of an electrical double layer in the interface between the electrolyte solution and channel wall. As the streaming current is of the order of a nano-amphere and is additive, we propose here a method to develop an electrokinetic battery consisting of an array of microchannels that converts the hydrostatic pressure of a liquid into electrical work. We have given oscillating analytical solutions by means of an electrical circuit analysis to model the multi-microchannel battery. Using superposition of the appropriate Fourier series, the derived analytical solutions are useful to predict the current when there is more general time-dependent flow through a microchannel array. To illustrate the idea, we have studied steady-state pressure-driven flow in micropore porous glass filter and compared the results with those predicted from our model. From a 30 cm hydrostatic pressure drop, an external current of 1-2 µA was obtained by means of water passing through the micropore porous glass filter. A larger current can be obtained by simply using a solution with higher salt concentration. This results in a new and potentially useful method of energy conversion by means of an array of microchannels.

  16. The stochastic-cooling system for COSY-Juelich

    International Nuclear Information System (INIS)

    Brittner, P.; Danzglock, R.; Hacker, H.U.; Maier, R.; Pfister, U.; Prasuhn, D.; Singer, H.; Spiess, W.; Stockhorst, H.

    1991-01-01

    The cooling in the Cooler Synchrotron COSY will work in the ranges: Band 1: 1 to 1.8 GHz, Band 2: 1.8 to 3 GHz. The system allows cooling in the energy range of 0.8 to 2.5 GeV. The stochastic-cooling system is under development. Cooling characteristics have been calculated. The tanks are similar to those of the CERN-AC. But the COSY parameters have required changes of the tank design. Active RF components have been developed for COSY. Measured results are presented

  17. Conceptual design study on simplified and safer cooling systems for sodium cooled FBRs

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Shimakawa, Yoshio; Ishikawa, Hiroyasu; Kubota, Kenichi; Kobayashi, Jun; Kasai, Shigeo

    2000-06-01

    The objective of this study is to create the FBR plant concepts increasing economy and safety for the Phase-I 'Feasibility Studies on Commercialized Fast Reactor System'. In this study, various concepts of simplified 2ry cooling system for sodium cooled FBRs are considered and evaluated from the view points of technological feasibility, economy, and safety. The concepts in the study are considered on the basis of the following points of view. 1. To simplify 2ry cooling system by moderating and localizing the sodium-water reaction in the steam generator of the FBRs. 2. To simplify 2ry cooling system by eliminating the sodium-water reaction using integrated IHX-SG unit. 3. To simplify 2ry cooling system by eliminating the sodium-water reaction using a power generating system other than the steam generator. As the result of the study, 12 concepts and 3 innovative concepts are proposed. The evaluation study for those concepts shows the following technical prospects. 1. 2 concepts of integrated IHX-SG unit can eliminate the sodium-water reaction. Separated IHX and SG tubes unit using Lead-Bismuth as the heat transfer medium. Integrated IHX-SG unit using copper as the heat transfer medium. 2. Cost reduction effect by simplified 2ry cooling system using integrated IHX-SG unit is estimated 0 to 5%. 3. All of the integrated IHX-SG unit concepts have more weight and larger size than conventional steam generator unit. The weight of the unit during transporting and lifting would limit capacity of heat transfer system. These evaluation results will be compared with the results in JFY 2000 and used for the Phase-II study. (author)

  18. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump

    Science.gov (United States)

    Karimipour, Arash; D'Orazio, Annunziata; Shadloo, Mostafa Safdari

    2017-02-01

    The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.

  19. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Ge, T.S.; Ziegler, F.; Wang, R.Z.; Wang, H.

    2010-01-01

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  20. Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

    Science.gov (United States)

    Kim, M.-H.; Cho, J. H.; Park, S.-J.; Eden, J. G.

    2017-08-01

    Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24-48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4-6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

  1. Detection of Aeromonas hydrophila Using Fiber Optic Microchannel Sensor

    Directory of Open Access Journals (Sweden)

    Samla Gauri

    2017-01-01

    Full Text Available This research focuses on the detection of Aeromonas hydrophila using fiber optic microchannel biosensor. Microchannel was fabricated by photolithography method. The fiber optic was chosen as signal transmitting medium and light absorption characteristic of different microorganisms was investigated for possible detection. Experimental results showed that Aeromonas hydrophila can be detected at the region of UV-Vis spectra between 352 nm and 354 nm which was comparable to measurement provided by UV spectrophotometer and also theoretical calculation by Beer-Lambert Absorption Law. The entire detection can be done in less than 10 minutes using a total volume of 3 μL only. This result promises good potential of this fiber optic microchannel sensor as a reliable, portable, and disposable sensor.

  2. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  3. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  4. COMPUTER PROGRAM FOR CALCULATION MICROCHANNEL HEAT EXCHANGERS FOR AIR CONDITIONING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Olga V. Olshevska

    2016-08-01

    Full Text Available Creating a computer program to calculate microchannel air condensers to reduce design time and carrying out variant calculations. Software packages for thermophysical properties of the working substance and the coolant, the correlation equation for calculating heat transfer, aerodynamics and hydrodynamics, the thermodynamic equations for the irreversible losses and their minimization in the heat exchanger were used in the process of creating. Borland Delphi 7 is used for creating software package.

  5. Stabilization of two-phase octanol/water flows inside poly(dimethylsiloxane) microchannels using polymer coatings

    NARCIS (Netherlands)

    van der Linden, H. J.; Jellema, L. C.; Holwerda, M.; Verpoorte, E.

    In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus

  6. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  7. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  8. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  9. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  10. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    Science.gov (United States)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  11. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  12. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  13. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  14. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  15. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  16. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  17. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  18. Augmented cooling vest system subassembly: Design and analysis

    International Nuclear Information System (INIS)

    D’Angelo, Maurissa; D’Angelo, Joseph; Almajali, Mohammad; Lafdi, Khalid; Delort, Antoine; Elmansori, Mohamed

    2014-01-01

    Highlights: • Thermoelectric cooler (TEC) was employed to provide cooling air to cooling vest. • Aluminum cooling fins were used to exchange heat for hot and cold sides of TEC. • Performance of the system was determined and the experimental technique was described. • Heat sink is capable to remove additional heat and heat exchanger provides cooling air. • Future work is proposed to optimize the efficiency of the system. - Abstract: A prototype cooling engine consisting of thermoelectric coolers (TECs) was developed and designed. In this prototype, aluminum cooling fins were employed as the heat exchange method for both the hot and cold sides of the TEC. Aluminum fins were used to cool the ambient air through a heat exchanger and dissipate heat build up from the heat sink. This system was modeled and performance capabilities were determined. The experimental technique used to monitor parameters affecting the efficiency of the designed system was described. These parameters include the temperatures of the inlets and outlets of both heat exchanger and heat sink and the flow rate of the cooled air. The experiment was run under three input DC powers; 15 V, 18 V, and 21 V. As the power increased, both the flow rate and the temperature difference between the hot and cold side of thermoelectric cooler increased, demonstrating the heat sink capability to remove the additional heat. However, the temperature difference between the inlet and outlet of the heat exchanger decreases as the power increase. The findings demonstrated the effectiveness of this cooling system and future work is proposed to optimize the heat

  19. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  20. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  1. Developing a method of fabricating microchannels using plant root structure

    Science.gov (United States)

    Nakashima, Shota; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Complicated three-dimensional (3D) microchannels are expected to be applied to a lab-on-a-chip, especially an organ-on-a-chip. There are fine microchannel networks such as blood vessels in a living organ. However, it is difficult to recreate the complicated 3D microchannels of real living structures. Plant roots have a similar structure to blood vessels. They spread radially and three-dimensionally, and become thinner as they branch. In this research, we propose a method of fabricating microchannels using a live plant root as a template to mimic a blood vessel structure. We grew a plant in ceramic slurry instead of soil. The slurry consists of ceramic powder, binder and water, so it plays a similar role to soil consisting of fine particles in water. After growing the plant, the roots inside the slurry were burned and a sintered ceramic body with channel structures was obtained by heating. We used two types of slurry with different composition ratios, and compared the internal channel structures before and after sintering.

  2. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  3. Convective boiling in a parallel microchannel heat sink with a diverging cross-section design and artificial nucleation sites

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan, Chin

    2009-01-01

    To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)

  4. Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Guillermo [Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas 29000 (Mexico); Cuevas, Sergio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico A.P. 34, Temixco, Mor. 62580 (Mexico)

    2010-10-15

    The dissipative processes that arise in a microchannel flow subjected to electromagnetic interactions, as occurs in a MHD (magnetohydrodynamic) micropump, are analyzed. The entropy generation rate is used as a tool for the assessment of the intrinsic irreversibilities present in the microchannel owing to viscous friction, heat flow and electric conduction. The flow in a parallel plate microchannel produced by a Lorentz force created by a transverse magnetic field and an injected electric current is considered assuming a thermally fully developed flow and conducting walls of finite thickness. The conjugate heat transfer problem in the fluid and solid walls is solved analytically using thermal boundary conditions of the third kind at the outer surfaces of the walls and continuity of temperature and heat flux across the fluid-wall interfaces. Velocity, temperature and current density fields in the fluid and walls are used to calculate the global entropy generation rate. Conditions under which this quantity is minimized are determined for specific values of the geometrical and physical parameters of the system. The Nusselt number is also calculated and explored for different conditions. Results can be used to determine optimized conditions that lead to a minimum dissipation consistent with the physical constraints demanded by the microdevice. (author)

  5. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  6. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  7. High Flux Microchannel Receiver Development with Adap-tive Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States)

    2015-08-15

    This project is focused on the demonstration of a microchannel-based solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost.

  8. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  9. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  10. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  11. CAREM 25: Suppression pool cooling and purification system

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Patrignani, Alberto; Vindrola, Carlos; Palmerio, Hector D.; Quiroz, Horacio; Ramilo, Lucia B.

    2000-01-01

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  12. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    Design of meso-scale energy systems, either for power production or heating/cooling, will require understanding of the thermodynamics of the proposed system as well as knowledge of the heat transfer...

  13. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  14. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  15. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  16. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  17. Operation method and operation control device for emergency core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shoichiro; Takahashi, Toshiyuki; Fujii, Tadashi [Hitachi Ltd., Tokyo (Japan); Mizutani, Akira

    1996-05-07

    The present invention provides a method of reducing continuous load capacity of an emergency cooling system of a BWR type reactor and a device reducing a rated capacity of an emergency power source facility. Namely, the emergency core cooling system comprises a first cooling system having a plurality of power source systems based on a plurality of emergency power sources and a second cooling system having a remaining heat removing function. In this case, when the first cooling system is operated the manual starting under a predetermined condition that an external power source loss event should occur, a power source division different from the first cooling system shares the operation to operate the secondary cooling system simultaneously. Further, the first cooling system is constituted as a high pressure reactor core water injection system and the second cooling system is constituted as a remaining heat removing system. With such a constitution, a high pressure reactor core water injection system for manual starting and a remaining heat removing system of different power source division can be operated simultaneously before automatic operation of the emergency core cooling system upon loss of external power source of a nuclear power plant. (I.S.)

  18. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  19. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  20. Thermal mixing of two miscible fluids in a T-shaped microchannel.

    Science.gov (United States)

    Xu, Bin; Wong, Teck Neng; Nguyen, Nam-Trung; Che, Zhizhao; Chai, John Chee Kiong

    2010-10-01

    In this paper, thermal mixing characteristics of two miscible fluids in a T-shaped microchannel are investigated theoretically, experimentally, and numerically. Thermal mixing processes in a T-shaped microchannel are divided into two zones, consisting of a T-junction and a mixing channel. An analytical two-dimensional model was first built to describe the heat transfer processes in the mixing channel. In the experiments, de-ionized water was employed as the working fluid. Laser induced fluorescence method was used to measure the fluid temperature field in the microchannel. Different combinations of flow rate ratios were studied to investigate the thermal mixing characteristics in the microchannel. At the T-junction, thermal diffusion is found to be dominant in this area due to the striation in the temperature contours. In the mixing channel, heat transfer processes are found to be controlled by thermal diffusion and convection. Measured temperature profiles at the T-junction and mixing channel are compared with analytical model and numerical simulation, respectively.

  1. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  2. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  3. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  4. Heater Chip with Different Microchannels Geometries for a Low Pressure Free Molecular Micro-Resistojet

    NARCIS (Netherlands)

    Cordeiro Guerrieri, D.; de Athayde Costa e Silva, M.; Zandbergen, B.T.C.; Cervone, A.

    2016-01-01

    This paper presents a dynamic system approach for the modeling of fluid flow in microchannels to be used in thrust control applications. A micro-resistojet fabricated using MEMS (Microelectromechanical Systems) technology has been selected for the analysis. The device operates by vaporizing a liquid

  5. 3D sensors and micro-fabricated detector systems

    International Nuclear Information System (INIS)

    Da Vià, Cinzia

    2014-01-01

    Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development

  6. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  7. CAREM-25. Suppression Pool Cooling and Purification System

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Palmerio, D.; Patrignani, A.; Quiroz, H.; Ramilo, L.; Vindrola, C.

    2000-01-01

    The Suppression Pool Cooling and Purification System has the following main functions: purify and cool water from the Suppression Pool, cool and send water to the Residual Heat Extraction System, and transfer water to the Fuel Element Transference Channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the Suppression Pool to the spray network, thus cooling and reducing pressure in the primary containment.The system has been designed in accordance with the requirements of the following standards ANSI/ANS 52.1 [1], ANSI/ANS 57.2 [2], ANSI/ANS 56.2 [3], ANSI/ANS 59.1 [4] ANSI/ANS 58.3 [5], ANSI/ANS 58.9 [6], and ANSI/ANS 56.5 [7]. The design of the system fulfils all the assigned functions

  8. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  9. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  10. A two-step sealing-and-reinforcement SU8 bonding paradigm for the fabrication of shallow microchannels

    Science.gov (United States)

    Mehboudi, Aryan; Yeom, Junghoon

    2018-03-01

    Adhesive bonding is a key technique to create microfluidic devices when two separate substrates are used to form microchannels. Among many adhesives explored in microchannel fabrication, SU8 has been widely used as an adhesive layer for sealing the microchannel sidewalls. The majority of the available SU8-based bonding methods, however, suffer from the difficulties associated with sealing of two important types of the microchannel architecture: (1) shallow microchannels with small patterns on a large area, and (2) microchannels with ultra-low aspect ratios (e.g. 6 mm in width and 2~μ m in height). In this paper, a new bonding paradigm based upon the low-temperature and low-pressure SU8 bonding, consisting of two steps of sealing using a thin-SU8-coated PET film and bonding reinforcement using a SU8-coated glass slide, is proposed to resolve the aforementioned difficulties. Since it does not need complicated instruments such as a wafer bonding machine and a lamination device, the developed bonding paradigm is convenient and economical. We successfully demonstrate the compatibility of the proposed bonding paradigm with the two microchannel fabrication approaches based on the glass wet etching and the SU8 photo-lithography, where small microchannels with the innermost surfaces fully made of SU8 are obtained. A theoretical model is employed to better investigate the flow characteristics and the structural behavior of the microchannel including the PET film deformation, strain and von Mises stress distributions, bonding strength, etc. Moreover, we demonstrate the fabrication of the multi-height deep-shallow microchannel sidewalls and their sealing using the SU8-coated PET film. Finally, as a proof-of-concept device, a microfluidic filter consisting of the double-height deep-shallow microchannel is fabricated for separation of 3 µm and 10 µm particles.

  11. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  12. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  13. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  14. Study of the electric field inside microchannel plate multipliers

    International Nuclear Information System (INIS)

    Gatti, E.; Oba, K.; Rehak, P.

    1982-01-01

    Electric field inside high gain microchannel plate multipliers was studied. The calculations were based directly on the solution of the Maxwell equations applied to the microchannel plate (MCP) rather than on the conventional lumped RC model. The results are important to explain the performance of MCP's, (1) under a pulsed bias tension and, (2) at high rate conditions. The results were tested experimentally and a new method of MCP operation free from the positive ion feedback was demonstrated

  15. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  16. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  17. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  18. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  19. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  20. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  1. Cavitation in flow through a micro-orifice inside a silicon microchannel

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2005-01-01

    Hydrodynamic cavitation in flows through a micro-orifice entrenched in a microchannel has been detected and experimentally investigated. Microfabrication techniques have been employed to design and develop a microfluidic device containing an 11.5μm wide micro-orifice inside a 100.2μm wide and 101.3μm deep microchannel. The flow of de-ionized water through the micro-orifice reveals the presence of multifarious cavitating flow regimes. This investigation divulges both similarities and differences between cavitation in micro-orifices and cavitation in their macroscale counterparts. The low incipient cavitation number obtained from the current experiments suggests a dominant size scale effect. Choking cavitation is observed to be independent of any pressure or velocity scale effects. However, choking is significantly influenced by the small stream nuclei residence time at such scales. Flow rate choking leads to the establishment of a stationary cavity. Large flow and cavitation hysteresis have been detected at the microscale leading to very high desinent cavitation numbers. The rapid transition from incipient bubbles to choking cavitation and subsequent supercavitation suggests the presence of radically different flow patterns at the microscale. Supercavitation results in a thick cavity, which extends throughout the microchannel, and is encompassed by the liquid. Cavitation at the microscale is expected to considerably influence the design of innovative high-speed microfluidic systems.

  2. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.

    Science.gov (United States)

    Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran

    2005-06-01

    This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.

  3. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  4. Misting-cooling systems for microclimatic control in public space

    OpenAIRE

    Nunes, Joao; Zoilo, Inaki; Jacinto, Nuno; Nunes, Ana; Torres-Campos, Tiago; Pacheco, Manuel; Fonseca, David

    2011-01-01

    Misting-cooling systems have been used in outdoor spaces mainly for aesthetic purposes, and punctual cooling achievement. However, they can be highly effective in outdoor spaces’ bioclimatic comfort, in terms of microclimatic control, as an evaporative cooling system. Recent concerns in increasing bioclimatic standards in public outdoor spaces, along with more sustainable practices, gave origin to reasoning where plastic principles are combined with the study of cooling efficacy, in order to ...

  5. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  6. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    International Nuclear Information System (INIS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-01-01

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  7. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  8. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  9. Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.

    Science.gov (United States)

    Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid

    2017-06-01

    A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the

  10. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  11. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  12. Percutaneous radiofrequency ablation of osteoid osteoma using cool-tip electrodes without the cooling system

    International Nuclear Information System (INIS)

    Miyazaki, Masaya; Miyazaki, Akiko; Nakajima, Takahito; Koyama, Yoshinori; Shinozaki, Tetsuya; Endo, Keigo; Aoki, Jun

    2011-01-01

    The aim of this study was to evaluate the efficacy of percutaneous radiofrequency ablation (RFA) for osteoid osteoma (OO) using cool-tip electrodes without the cooling system. A total of 17 patients (13 males, 4 females; mean age 19.1 years; range 7-49 years) with OO (tibia, n=7; femur, n=5; acetabulum, n=2; radius, n=1; talus, n=1; lumbar spine, n=1) underwent RFA. Using a cool-tip electrode without the cooling system, the lesion was heated to 90degC for 4 or 5 min. Procedures were considered technically successful if the electrode was placed into the nidus and the target temperature was reached and maintained for at least 4 min. Clinical success of the treatment was defined as complete or partial pain relief after RFA. All procedures were considered technically successful, although two patients encountered complications (pes equinus contracture, skin burn). Altogether, 16 of the 17 patients (94.1%) achieved complete or partial pain relief after primary RFA. Two patients had pain recurrence, with one of them treated successfully with a second RFA. The overall clinical success rate was 88.2%. Histological findings confirmed the presence of OO in 13 patients (76.5%). Percutaneous RFA of OO using cool-tip electrodes without the cooling system is a safe, effective procedure. (author)

  13. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    Directory of Open Access Journals (Sweden)

    Claudio Giardini

    2013-04-01

    Full Text Available Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS. Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap, channel depth (d, feed per tooth (fz and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness. The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications.

  14. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  15. Optimal Design of Silicon-based Chips for Piezo-induced Ultrasound Resonances in Embedded Microchannels

    DEFF Research Database (Denmark)

    Garofalo, F.; Laurell, T.; Bruus, Henrik

    2015-01-01

    constituting the device (the piezo transducer, the silicon walls, the fluid-filled microchannel, and the glass lid) allows for the introduction of the weak formulation used in the finite element discretization of the equations describing the system in its oscillatory regime. Additionally, the knowledge...... of the Lagrangian density leads to the derivation of the correct structure of the Hamiltonian density, i.e. the energy density, which is important for the quantification of the energy content of the whole system and its individual parts. Specifically, the energy content of the embedded microchannel is quantified...... by means of the acoustofluidic yield η defined as the ratio between the energy in the channel and the total energy. From the standpoint of acoustophoretic application, the introduction of the acoustophoretic mean orientation allows us to identify the frequencies for which an acoustophoretic effect, i...

  16. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  17. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  18. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Zagalei, Abdullatif Salin

    2006-01-01

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  19. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  20. A geothermal recycling system for cooling and heating in deep mines

    International Nuclear Information System (INIS)

    Guo, Pingye; He, Manchao; Zheng, Liange; Zhang, Na

    2017-01-01

    Highlights: • A geothermal recycling system for cooling and heating was presented in coal mines. • The COP of this cooling subsystem is 30% higher than that of others. • The COP is 20% higher with the parallel running of cooling and heating systems. - Abstract: In the operation of deep coal mines, cooling systems must be built (in most cases) because of the high-temperature working environment within such mines. Once the coal is mined, it is often used to supply heat for buildings and domestic hot water. In either instance, the energy consumed can create environmental pollution. As a potential solution to this problem, we present a geothermal recycling system for mines (GRSM) for parallel mine cooling and surface heating. The performance of this system is investigated based on the observed data. Compared with traditional cooling systems, the most obvious feature of this system is the removal of a cooling tower, which contributes to a 30% increase in performance. Moreover, the parallel running of cooling and heating systems can effectively recover waste heat, improving energy efficiency by 20%.

  1. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  2. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  3. Dry-type cooling systems in electric power production

    International Nuclear Information System (INIS)

    Li, K.W.

    1973-01-01

    This study indicates that the dry-type cooling tower could be adopted in this country as an alternative method for removing waste heat from power plants. The use of dry cooling towers would not only lead to a change of cooling system design, but also to a change of overall thermal design in a power generating system. The principal drawbacks to using dry cooling towers in a large steam-turbine plant are the generating capacity loss, increased fuel consumption and the high capital cost of the dry cooling towers. These economic penalties must be evaluated in each specific case against the benefits that may result from the use of dry cooling towers. The benefits are principally these: (1) Fewer constraints in the selection of power plant sites, (2) No thermal discharge to the natural water bodies, (3) Elimination of vapor plumes and water evaporation loss, and (4) Freedom of adding new units to an existing facility where inadequate water supply may otherwise rule out this possibility

  4. 3D printed microchannel networks to direct vascularisation during endochondral bone repair.

    Science.gov (United States)

    Daly, Andrew C; Pitacco, Pierluca; Nulty, Jessica; Cunniffe, Gráinne M; Kelly, Daniel J

    2018-04-01

    Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  6. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    Energy Technology Data Exchange (ETDEWEB)

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  7. Experimental investigation of two-phase gas-liquid flow in microchannel with T-junction

    Science.gov (United States)

    Bartkus, German; Kozulin, Igor; Kuznetsov, Vladimir

    2017-10-01

    Using high-speed video recording and the method of dual laser scanning the gas-liquid flow was investigated in rectangular microchannels with an aspect ratio of 2.35 and 1.26. Experiments were earned out for the vertical flow of ethanol-nitrogen mixture in a microchannel with a cross section of 553×235 µm and for the horizontal flow of water-nitrogen mixture in a microchannel with a cross section of 315×250 µm. The T-mixer was used at the channel's inlet for gas-liquid flow formation. It was observed that elongated bubble, transition, and annular flows are the main regimes for a microchannel with a hydraulic diameter substantially less than the capillary constant. Using laser scanning, the maps of flow regimes for ethanol-nitrogen and water-nitrogen mixtures were obtained and discussed.

  8. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  9. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  10. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  11. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  12. Overpower transient in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-09-01

    The overpower transient from a plasma power excursion. The overpower transient considered in this report results from a postulated linear increase of the plasma power from the nominal generated power to four times this nominal power in 30 s. The Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design will be cooled by a number of separate cooling systems. The most important cooling systems are: The first wall cooling system, the blanket cooling system, the divertor cooling system, and the shield cooling system. In this report, the thermal-hydraulic analysis of the above-mentioned overpower transient will be presented for the first wall cooling system of NET/ITER. During overpower transients, the fusion power will increase to less than four times the nominal power. For this reason, the overpower transient considered in this report is the worst case scenario. The analysis of the thermal-hydraulic system behaviour during the considered overpower transient has been performed for a coolant temperature of 333 K (60 C) in the first wall inlet manifolds and 433 K (160 C) in the first wall outlet manifolds. The analysis has been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analysis, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. (orig.)

  13. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    International Nuclear Information System (INIS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-01-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel

  14. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  15. 3D simulation of Heat transfer in MEMS-based microchannel

    International Nuclear Information System (INIS)

    Choi, Chi Woong; Huh, Cheol; Kim, Dong Eok; Kim, Moo Hwan

    2007-01-01

    The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 kg/m 2 s. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux

  16. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  17. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  18. Flow analysis for efficient design of wavy structured microchannel mixing devices

    Science.gov (United States)

    Kanchan, Mithun; Maniyeri, Ranjith

    2018-04-01

    Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.

  19. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  20. Application of fuzzy control in cooling systems save energy design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.L.; Liang, H.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A fuzzy logic programmable logic controller (PLC) was used to control the cooling systems of frigorific equipment. Frigorific equipment is used to move unwanted heat outside of building in order to control indoor temperatures. The aim of the fuzzy logic PLC was to improve the energy efficiency of the cooling system. Control of the cooling pump and cooling tower in the system was based on the water temperature of the condenser during frigorific system operation. A human computer design for the cooling system control was used to set speeds and to automate and adjust the motor according to the fuzzy logic controller. It was concluded that if fuzzy logic controllers are used with all components of frigorific equipment, energy efficiency will be significantly increased. 5 refs., 3 tabs., 9 figs.

  1. Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Delfani, Shahram; Esmaeelian, Jafar; Karami, Maryam [Department of Installation, Building and Housing Research Center (BHRC), PO Box 13145-1696, Tehran (Iran, Islamic Republic of); Pasdarshahri, Hadi [Department of Mechanical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-11-15

    The performance of indirect evaporative cooling system (IEC) to pre-cool air for a conventional mechanical cooling system has been investigated for four cities of Iran. For this purpose, a combined experimental setup consisting of an IEC unit followed by a packaged unit air conditioner (PUA) was designed, constructed and tested. Two air simulators were designed and used to simulate indoor heating load and outdoor design conditions. Using of experimental data and an appropriate analytical method, the performance and energy reduction capability of combined system has been evaluated through the cooling season. The results indicate IEC can reduce cooling load up to 75% during cooling seasons. Also, 55% reduction in electrical energy consumption of PUA can be obtained. (author)

  2. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  3. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  4. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  5. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  6. Modern cooling systems in thermal power plants relieve environmental pollution. Pt. 2

    International Nuclear Information System (INIS)

    Brosche, D.

    1983-01-01

    Direct and indirect dry recirculation cooling, wet cooling tower, natural-draught wet cooling tower, combined cooling processes, hybrid cooling systems, cell cooling systems, auxiliary water preparation, cooling process design, afterheat removal in nuclear power plants, environmental effects, visible plumes as a function of weather conditions, environmental protection and energy supply assurance. (orig.) [de

  7. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  8. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  9. Cooling system with automated seasonal freeze protection

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  10. Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Yeom, Han Kil; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2007-01-01

    SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution

  11. System and method for pre-cooling of buildings

    Science.gov (United States)

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  12. Microchannel plates as detectors and amplifiers of x-ray images

    International Nuclear Information System (INIS)

    Wiedwald, J.D.

    1992-08-01

    Two decades of development driven largely by military night vision applications has led to the availability of a wide selection of microchannel plates for use by the scientific community. Microchannel plates (MCPs) are electron multipliers which retain a high degree of spatial resolution making it possible to amplify electron images by factors of 1,000 or more. Plates having 40 mm diameter and intrinsic spatial resolution of 8 μm are readily available. By coating the front surface of a microchannel plate with an x-ray sensitive photocathode material, x-ray images can be detected and amplified. While the detective quantum efficiency is relatively low, the low noise of the MCP (including the ability to construct images by single photon detection) and its high dynamic range make it suitable for some x-ray microscopy applications. The principles of MCP operation and typical performance are discussed. Examples of related applications and commercial capabilities are also presented

  13. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  14. Development of microchannel plates in advanced wind-tunnel instrumentation

    Science.gov (United States)

    Feller, W. Bruce

    1990-01-01

    Microchannel plate (MCP) electron multiplier dynamic range has been increased 3 to 4 orders of magnitude at ambient temperatures, through enhanced input count rate capability and reduced background or 'dark' noise. The previous upper limit of roughly 10(exp 7) - 10(exp 8) cm(exp -2)s(exp -1) at ambient has been extended to levels approach 10(exp 10) cm(exp -2)s(exp -1) under continuous dc operation. The lower limit, previously set by an irreducible background component (approximately 0.6 cm(exp -2)s(exp -1)), has been lowered to the cosmic ray limit of .01 cm(exp -2)s(exp -1). The high end improvement was achieved by conductively cooling a very low resistance MCP by bonding it to a heat sink, while maintaining pulse-counting operation with multianode readouts. The low-end improvement was achieved by removing all radioisotopes from the MCP matrix glass. The detectors will benefit optical and mass spectrometry, flow visualization, plasma diagnostics, magnetometry, and other high signal flux applications. Very low MCP background noise will benefit X-ray and UV astronomy, medical imaging, trace isotope mass spectrometry, and other applications where the signal flux is often extremely low.

  15. Performance of a polymeric heat sink with circular microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Barba, Alessandro; Musi, Barbara; Spiga, Marco [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze 181, 43100 Parma (Italy)

    2006-06-15

    The object of this work is the thermal investigation of a polymeric microchannel heat sink designed for the active cooling of small flat surfaces. Its performance, pressure drop, temperature distribution, and thermal resistance are evaluated. A three-dimensional procedure is developed and applied to a geometrical configuration consisting of a circular microduct (with a gas running through it), embedded in a solid substrate with rectangular cross-section. The conjugate heat transfer problem is solved assuming fully developed laminar flow in forced convection. The bottom side of the heat sink receives a uniform heat flux, while the top side is adiabatic. Considering a gas flow with low Prandtl and Reynolds numbers, the temperature distribution is given by the sum of a linear function (in the stream direction) and a numerical solution obtained in 2-D coordinates resorting to a finite element software, based on the Rayleigh-Ritz-Galerkin method, with user-defined error tolerance. Rarefaction, compressibility and viscous dissipation are neglected, i.e., the Knudsen, Mach and Brinkman numbers are low. The theoretical results are shown in some graphs and compared with experimental data concerning helium and nitrogen flows in Nylon circular microducts. The agreement is quite satisfactory. [Author].

  16. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  17. Implementation of 40-ps high-speed gated-microchannel-plate based x-ray framing cameras on reentrant SIM's for Nova

    International Nuclear Information System (INIS)

    Bell, P.M.; Kilkenny, J.D.; Landen, O.; Bradley, D.K.

    1994-01-01

    Gated framing cameras used in diagnosing laser produced plasmas have been used on the Nova laser system since 1987. There have been many variations of these systems implemented. All of these cameras have been ultimately limited in response time for two reasons. One being the electrical gating amplitude verses the gate width, this has always limited the detectable gain in the system. The second being the length to diameter (l/d) ratio of standard off the shelf microchannel plates (MCP). This sets the minimum electrical gate pulse that will give detectable gain from a given microchannel plate. The authors have implemented two different types of 40 ps framing camera configurations on the Nova laser system. They will describe the configurations of both systems as well as discuss the advantages of each

  18. Microchannel Methanation Reactors Using Nanofabricated Catalysts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  19. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  20. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  1. Performance test of solar-assisted ejector cooling system

    KAUST Repository

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  2. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  3. Deactivation of Legionella Pneumophila in municipal wastewater by ozone generated in arrays of microchannel plasmas

    Science.gov (United States)

    Dong, Shengkun; Li, Jun; Kim, Min-Hwan; Cho, Jinhoon; Park, Sung-Jin; Nguyen, Thanh H.; Eden, J. Gary

    2018-06-01

    A greater than four log10 reduction in the concentration of Legionella pneumophila in municipal wastewater has been achieved in 1 min with ozone produced by a microchannel plasma reactor. Requiring less than 22 W of electrical power, and ambient air as the feedstock gas, the microplasma ozone generator is robust and a promising alternative to conventional corona and dielectric barrier discharge (DBD) technologies. Contrary to previous studies, the Ct model for pathogen deactivation (i.e. rate proportional to the product of the available disinfectant concentration and the exposure duration) is found to be valid for L. pneumophila. Accordingly, wastewater-specific Ct equations have been developed to predict the deactivation of L. pneumophila in the secondary wastewater environment. Inactivation of this pathogen was found to be dependent on temperature only in the absence of wastewater organic matter (WOM). In the presence of WOM, pathogen deactivation is controlled by the disinfection contact time, initial ozone concentration (varied between 15 and 281 µg l‑1), and initial WOM loading. The data reported here will assist in the implementation of plasma ozone generators for L. pneumophila deactivation in cooling towers, point-of-use systems, and wastewater reclamation facilities.

  4. Coordinate sensitive detectors based on microchannel plates

    International Nuclear Information System (INIS)

    Gruntman, M.A.

    1984-01-01

    Coordinate-sensitive detectors (CSD) on the basis of microchannel plates permit to determine in a digital form the coordinates of every recorded particle and they are used in different fields of physical experiment. The sensitive surface diameter of such detectors can reach 10 cm, and spatial resolution - 10 μm. In the review provided CSD with microchannel plates are classified according to the ways of coordinate determination, different types of the detectors, pecUliarities of their design and electron flowsheet are described. It is pointed out that there are reasons for introduction of CSD into practice of laboratory physical investigations in various fields, where the particle recorded is electron or is able to form a secondary electron. It is attributed to nuclear physics, physics of electron and atom collisions, optics, mass-spectrometry, electron microscopy, X-ray analysis, investigation of surfaces

  5. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  6. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  7. Distillation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  8. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  9. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  10. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  11. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  12. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  13. Liquid Cooling System for CPU by Electroconjugate Fluid

    Directory of Open Access Journals (Sweden)

    Yasuo Sakurai

    2014-06-01

    Full Text Available The dissipated power of CPU for personal computer has been increased because the performance of personal computer becomes higher. Therefore, a liquid cooling system has been employed in some personal computers in order to improve their cooling performance. Electroconjugate fluid (ECF is one of the functional fluids. ECF has a remarkable property that a strong jet flow is generated between electrodes when a high voltage is applied to ECF through the electrodes. By using this strong jet flow, an ECF-pump with simple structure, no sliding portion, no noise, and no vibration seems to be able to be developed. And then, by the use of the ECF-pump, a new liquid cooling system by ECF seems to be realized. In this study, to realize this system, an ECF-pump is proposed and fabricated to investigate the basic characteristics of the ECF-pump experimentally. Next, by utilizing the ECF-pump, a model of a liquid cooling system by ECF is manufactured and some experiments are carried out to investigate the performance of this system. As a result, by using this system, the temperature of heat source of 50 W is kept at 60°C or less. In general, CPU is usually used at this temperature or less.

  14. Description and cost analysis of a deluge dry/wet cooling system.

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

  15. Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

    OpenAIRE

    M.C. Zaghdoudi; S. Maalej; J. Mansouri; M.B.H. Sassi

    2011-01-01

    An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer im...

  16. Cooling the intact loop of primary heat transport system using shut down cooling system after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.

    2015-01-01

    The purpose of this paper is to model the Shutdown Cooling System operation for CANDU 6 NPP in case of LOCA accident, using Flowmaster calculation code by delimiting models and setting calculation assumptions and input data for hydraulic analysis, and and assumptions for the calculation and input data for calculating thermal performance check heat exchangers that are part of this system. The Flowmaster V7.8 code provides system engineers with a powerful tool to investigate pressure surge, pressure drop, flow rate, temperature and system response times - removing the uncertainty from fluid flow systems. Flowmaster is a one-dimensional thermal-hydraulic calculation code for dimensioning, analyzing and verifying the pipeline systems operation. Each component of Flowmaster is a mathematical model for an equipment that is included in a facility. Selected components are connected via nodes in order to form a network, which constitutes a computerized model of the system. Analyzing the parameters of the cooling system for all cooling processes considered it was found that the values obtained for thermal-hydraulic parameters, as well as the duration up to reaching specified limits fall within the design values of the system. This document is made up of an abstract and the slides of the presentation

  17. The optimal operation of cooling tower systems with variable-frequency control

    Science.gov (United States)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  18. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  19. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  20. Use of the μPIV technique for an indirect determination of the microchannel cross-section passage geometry

    International Nuclear Information System (INIS)

    Puccetti, G; Pulvirenti, B; Morini, G L

    2014-01-01

    In this work the possible use of the μPIV technique for the experimental determination of the microchannel cross-section geometry has been investigated by means of a blind test in which a series of experimental measurements obtained using glass microchannels having a declared rectangular cross-section with a depth of 100 μm and width of 300 μm and a square microchannel with a 300 μm side have been compared with the direct SEM visualisation of the real cross section of the microchannels. For the (oPIV measurements water is used as working fluid. The laminar fully developed 2D velocity profile has been reconstructed by moving the focal plane of the microscope objective from the bottom to the top of the microchannel. The results shown in this paper demonstrate that the real cross section geometry of the microchannel can be predicted by minimizing the difference between the theoretical and the experimental 2D velocity profiles. When the right passage geometry is determined, the average difference between the theoretical and the experimental velocity is within 4-6%.

  1. Imaging microchannel plate detectors for XUV sky survey experiments

    International Nuclear Information System (INIS)

    Barstow, M.A.; Fraser, G.W.; Milward, S.R.

    1986-01-01

    Attention is given to the development of microchannel plate detectors for the Wide Field Camera (WFC) XUV (50-300 A) sky survey experiment on Rosat. A novel feature of the detector design is that the microchannel plates and their resistive anode readout are curved to the same radius as the WFC telescope focal surface. It is shown that curving the channel plates is not detrimental to gain uniformity. The paper describes the design of a curved resistive anode readout element and contrasts the present measurements of spatial resolution, global and local uniformity and temperature coefficient of resistance with the poor performance recently ascribed to resistive anodes in the literature. 18 references

  2. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phase change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results

  3. The Effect of the Rolling Direction, Temperature, and Etching Time on the Photochemical Machining of Monel 400 Microchannels

    Directory of Open Access Journals (Sweden)

    Deepakkumar H. Patil

    2016-01-01

    Full Text Available The present paper describes the effect of the rolling direction on the quality of microchannels manufactured using photochemical machining (PCM of Monel 400. Experiments were carried out to fabricate microchannels along and across the rolling direction to investigate the effect of the grain orientation on microchannel etching. The input parameters considered were channel width and rolling direction, whereas the depth of etch was the response parameters. Different channels of widths of 60, 100, 150, 200, and 250 μm were etched. The effects of the etching time and temperature of the etchant solution on the undercut and depth of the microchannels were studied. For good quality microchannels, the effects of spinning time, spinning speed, exposure time, and photoresist film strength were also taken into consideration. Optimized values of the above were used for the experimentation. The results show that the depth of etch of the microchannel increases more along the rolling direction than across the rolling direction. The channel width and depth are significantly affected by the etching time and temperature. The proposed study reports an improvement in the quality of microchannels produced using PCM.

  4. Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city

    International Nuclear Information System (INIS)

    Li, Zeyu; Ye, Xiangyang; Liu, Jinping

    2014-01-01

    Highlights: • The meteorological data during the working period of air conditioning was measured. • The suitable working range of collector temperature of system was gotten. • The characteristic of hourly and monthly total efficiency of system were obtained. • The yearly performance of system was calculated. - Abstract: Due to the absence of cooling tower and independent on water, the air cooled solar double effect LiBr/H 2 O absorption cooling system is more convenient to be used in commercial building and household use. The performance with collector temperature is an important field for such system. The paper mainly deals with the performance with collector temperature for the solar air cooled double effect LiBr/H 2 O absorption cooling system in subtropical city. The parameters of system are: aperture area of collector array is 27 m 2 , tilted angle of collector with respect to the horizontal plane is 20 toward to south evaporator temperature is 5 °C and the cooling capacity is 20 kW. The simulation is based on the meteorological data of monthly typical day which was summarized from a year round measured data. A corresponding parametric model was developed. The hourly and average performance with the collector temperature for monthly typical day was obtained and discussed. It was found that the suitable working range of inlet temperature of collector is 110–130 °C to improve performance and lower the risk of crystallization. The difference of hourly total efficiency in 9:00–16:00 is less, and the monthly total efficiency from May to October is approximate. The yearly performance of system including total efficiency, cooling capacity per area of collector and solar fraction was given. Furthermore, the effect of effectiveness of heat exchanger and pressure drop on total efficiency and solar fraction was studied and compared. The paper can serve as a preliminary investigation of solar air cooled double effect LiBr/H 2 O absorption cooling system in

  5. A systemic approach for optimal cooling tower operation

    International Nuclear Information System (INIS)

    Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.

    2009-01-01

    The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.

  6. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    Science.gov (United States)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Akatsuka, Wataru; Tsujimura, Seiya; Nishioka, Yasushiro

    2013-12-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm2 was realized by introducing a 200 mM concentrated glucose solution at room temperature.

  7. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    International Nuclear Information System (INIS)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Nishioka, Yasushiro; Akatsuka, Wataru; Tsujimura, Seiya

    2013-01-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm 2 was realized by introducing a 200 mM concentrated glucose solution at room temperature

  8. Thermodynamic analysis of cooling systems for nuclear power stations condenser

    International Nuclear Information System (INIS)

    Beck, A.

    1985-06-01

    This work is an attempt to concentrate on the thermodynamic theory, the engineering solution and the quantities of water needed for the operation of a wet as well as a wet/dry cooling towers coupled to a nuclear turbine condenser,. About two hundred variables are needed for the design of a condenser - cooling tower system. In order to make the solution fast and handy, a computer model was developed. The amount of water evaporation from cooling towers is a function of the climate conditions prevailing around the site. To achieve an authentic analysis, the meteorological data of the northern Negev was used. The total amount of water necessary to add to the system in a year time of operation is large and is a function of both the blow-down rate and the evaporation. First estimations show that the use of a combined system, wet/dry cooling tower, is beneficial in the northern Negev area. Such a system can reduce significantly the amount of wasted fresh water. Lack of international experience is the major problem in the acceptability of wet/dry cooling towers. The technology of a wet cooling tower using sea water is also discussed where no technical or engineering limitations were found. This work is an attempt to give some handy tools for making the choice of cooling systems for nuclear power plants easier

  9. Flow friction and heat transfer of ethanol–water solutions through silicon microchannels

    International Nuclear Information System (INIS)

    Wu Huiying; Wu Xinyu; Wei Zhen

    2009-01-01

    An experimental investigation was performed on the flow friction and convective heat transfer characteristics of the ethanol–water solutions flowing through five sets of trapezoidal silicon microchannels having hydraulic diameters ranging from 141.7 µm to 268.6 µm. Four kinds of ethanol–water solutions with the ethanol volume concentrations ranging from 0 to 0.8 were tested under different flow and heating conditions. It was found that the cross-sectional geometric parameters had great effect on the flow friction and heat transfer, and the microchannels with a larger W b /W t (bottom width-to-top width ratio) and a smaller H/W t (depth-to-top width ratio) usually had a larger friction constant and a higher Nusselt number. Entrance effects were significant for the flow friction and heat transfer in silicon microchannels, and decreased with the increase of dimensionless hydrodynamic length L and dimensionless thermal length L + h . When L > 1.0, the hydrodynamic entrance effect on the flow friction was ignorable. For the developed laminar flow in silicon microchannels, the Navier–Stokes equation was applicable. It was also found that the volume concentrations had different effects on the flow friction and heat transfer. Within the experimental range, the effect of volume concentrations on the flow friction was ignorable, and the friction constants of the ethanol–water solutions having different concentrations were the same as those of the pure water. However, volume concentrations had great effect on the convection heat transfer in silicon microchannels. With the increase of the volume concentrations, the Nusselt number of the ethanol–water solutions increased obviously, which was attributed to the combination effect of the increase in the Prantdtl number as well as the volatilization effect of the ethanol. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of the ethanol–water solutions in the silicon

  10. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    Vocale, P; Spiga, M; Geri, M; Morini, G L

    2014-01-01

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  11. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  12. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  13. Study on performance prediction and energy saving of indirect evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Kim, Tae Ho; Kim, Myung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-15

    The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

  14. Structural optimization of a microjet based cooling system for high power LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Liu; Zhiyin Gan [Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan (China); Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); Jianghui Yang [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China); Xiaobing Luo [Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2008-08-15

    Based on the previous experiments and simulations reported by the present authors, it was found the cooling system could be optimized to obtain better performance. In this paper, the microjet cooling systems with three different microjet structures were numerically investigated. The numerical model was proven by the experiments. The optimization results demonstrate that the microjet structure with one single inlet but two outlets can achieve better cooling performance. The simulation results show that the maximum temperature of the LED substrate cooled by the optimized microjet cooling device was 23 K lower than that of the LED substrate cooled by the present experimental cooling system. (author)

  15. Experimental and numerical investigations of ionic liquid-aqueous flow in microchannel

    Science.gov (United States)

    Li, Qi; Tsaoulidis, Dimitrios; Angeli, Panagiota

    2015-11-01

    The hydrodynamic characteristics of plug flow of an ionic liquid-aqueous two-phase system in a microchannel were studied experimentally and numerically. A mixture of 0.2M N-octyl(plenyl)-N,N-diisobutylcarbamoylmethyphosphine oxide (CMOP)- 1.2 M Tri-n-butylphosphate (TBP) in room temperature ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide ([C4min][NTf2]), and a nitric acid solution of 1M were chosen. These fluids are relevant Eu(III) separation by extraction from nitric acid solutions. The two liquid phases were introduced into microchannels of 0.2 and 0.5mm internal diameter through a T-junction inlet. The flow pattern was visualized during plug formation at the inlet section and further downstream by means by bright field planar micro-Particle Image Velocimetry. Key features of plug flow, such as plug velocity, film thickness, plug length and recirculation intensity were measured under various experimental conditions. To gain further understanding of the 3-D flow field, Computation Fluid Dynamics (CFD) simulations approach were also conducted.

  16. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  17. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  18. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  19. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  20. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  1. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  2. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  3. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  4. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  5. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    Science.gov (United States)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  6. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  7. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  8. High ca-hardness treatment program of secondary cooling system in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. K.; Jeon, B. J.

    2002-01-01

    The secondary cooling water in HANARO had been treated with a low ca-hardness treatment program. The program has now been altered to a high ca-hardness treatment program to reduce the consumption of service water and the maintenance cost. After the alteration of the water treatment method, the water quality of the secondary cooling system is maintained below the limit of water quality control as same as before the alteration. This means indirectly that the secondary cooling system is not much affected by the water quality. To confirm this fact, it is necessary to analyze the effects of corrosion, scale, sludgy and slime that the water qualities are directly interfered with the secondary cooling system. We analyzed the deteriorating effects with a water monitoring equipment connected to the secondary cooling system to measure the monitoring parameters every 6 months. As a result, it is confirmed through this examination that the effects are maintained below the control limits and the high ca-hardness treatment program is applicable to treatment of the water quality of the secondary cooling system in HANARO

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  10. Performance of cold compressors in a cooling system of an R and D superconducting coil cooled with subcooled helium

    International Nuclear Information System (INIS)

    Hamaguchi, S.; Imagawa, S.; Yanagi, N.; Takahata, K.; Maekawa, R.; Mito, T.

    2006-01-01

    The helical coils of large helical device (LHD) have been operated in saturated helium at 4.4 K and plasma experiments have been carried out at magnetic fields lower than 3 T for 8 years. Now, it is considered that the cooling system of helical coils will be improved to enhance magnetic fields in 2006. In the improvement, the helical coils will be cooled with subcooled helium and the operating temperature of helical coils will be lowered to achieve the designed field of 3 T and enhance cryogenic stabilities. Two cold compressors will be used in the cooling system of helical coils to generate subcooled helium. In the present study, the performance of cold compressors has been investigated, using a cooling system of R and D coil, to apply cold compressors to the cooling system of helical coils. Actual surge lines of cold compressors were observed and the stable operation area was obtained. Automatic operations were also performed within the area. In the automatic operations, the suitable pressure of a saturated helium bath, calculated from the rotation speed of the 1st cold compressor, was regulated by bypass valve. From these results, stable operations will be expected in the cooling system of helical coils

  11. Replacement of the cooling system of the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Menke, H.

    1988-01-01

    The inspection of the reactor facility resulted in a recommendation to install a new heat exchanger and at the same time to separate the primary cooling circuit and the water purification system. Due to possible the deposition of lime and organic matter on the tubes, the heat transfer rate has decreased. In the meantime a rule has been introduced, according to which the pressure in the secondary cooling circuit must be permanently higher than in the primary cooling circuit which prompted the design of a new cooling system. The detail planning was completed in December 1987. In response to the regulatory requirements a motion for a replacement of the cooling system was submitted to the authorities. The start of the procedure is possible a year after the obtaining of the licenses. In the planning of the changes an upgrading of the steady state power to 300 kW is envisioned

  12. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.

    Science.gov (United States)

    Ishikawa, Takuji; Fujiwara, Hiroki; Matsuki, Noriaki; Yoshimoto, Takefumi; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami

    2011-02-01

    Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences. The behaviour of RBCs and cancer cells was strongly asymmetric at bifurcations and confluences whilst the trajectories of tracer particles in pure water were almost symmetric. The cell-free layer disappeared on the inner wall of the bifurcation but increased in size on the inner wall of the confluence. Cancer cells frequently adhered to the inner wall of the bifurcation but rarely to other locations. Because the wall surface coating and the wall shear stress were almost symmetric for the bifurcation and the confluence, the result indicates that not only chemical mediation and wall shear stress but also microscale haemodynamics play important roles in the adhesion of cancer cells to the microchannel walls. These results provide the fundamental basis for a better understanding of blood flow and cell adhesion in biomedical microdevices.

  13. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study

    International Nuclear Information System (INIS)

    Sabbah, Rami; Farid, Mohammad M.; Al-Hallaj, Said

    2009-01-01

    This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm 2 and 500 W/cm 2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid

  14. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  15. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  16. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  17. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  18. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  19. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    . Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept......Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  20. A Flexible Ascorbic Acid Fuel Cell with a Microchannel Fabricated using MEMS Techniques

    Science.gov (United States)

    Mogi, Hiroshi; Fukushi, Yudai; Koide, Syohei; Sano, Ryohei; Sasaki, Tsubasa; Nishioka, Yasushiro

    2013-12-01

    We fabricated a miniature ascorbic acid fuel cells equipped with a microchannel for the circulation of ascorbic acid (AA) solution using micro electronic mechanical system techniques. The fuel cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminium (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen-printing techniques. The porous carbon was deposited by screen-printing of carbon-black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the cathode surface. The microchannel with a depth of 200 μm was fabricated using a hot-embossing technique. A maximum power of 0.60 μW at 0.58 V that corresponds to a power density of 1.83 μW/cm2 was realized by introducing a 200 mM concentrated AA solution at room temperature.

  1. Modeling the cool down of the primary heat transport system using shut down cooling system in normal operation and after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.; Prisecaru, I.

    2015-01-01

    This paper aims at modeling the cooling of the primary heat transport system using shutdown cooling system (SDCS), for a CANDU 6 NPP in all operating modes, normal and abnormal (particularly in case of LOCA accident), using the Flowmaster calculation code. The modelling of heavy water flow through the shutdown cooling system and primary heat transport system was performed to determine the distribution of flows, pressure in various areas of the hydraulic circuit and the pressure loss corresponding to the components but also for the heat calculation of the heat exchangers related to the system. The results of the thermo-hydraulic analysis show that in all cases analyzed, normal operation and for LOCA accident regime, the performance requirements are confirmed by analysis

  2. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  3. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  4. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    Science.gov (United States)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  5. Novel dense CO2 technique for beta-galactosidase immobilization in polystyrene microchannels.

    Science.gov (United States)

    Leclair Ellis, Jeffrey; Tomasko, David L; Dehghani, Fariba

    2008-03-01

    In this study we design new fabrication techniques and demonstrate the potential of using dense CO2 for facilitating crucial steps in the fabrication of polymeric lab-on-a-chip microdevices by embedding biomolecules at temperatures well below the polymer's glass transition temperature (T(g)). These new techniques are environmentally friendly and done without the use of a clean room. Carbon dioxide at 40 degrees C and between 4.48 and 6.89 MPa was used to immobilize the biologically active molecule, beta-galactosidase (beta-gal), on the surface of polystyrene microchannels. To our knowledge, this is the first time dense CO2 has been used to directly immobilize an enzyme in a microchannel. beta-gal activity was maintained and shown via a fluorescent reaction product, after enzyme immobilization and microchannel capping by the designed fabrication steps at 40 degrees C and pressures up to 6.89 MPa.

  6. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow. - Highlights: ► Validated model is used to investigate heat transfer and pumping power in nanofluids. ► Particles improve heat transfer

  7. Analisis Pindah Panas pada Pipa Pendingin untuk Root Zone Cooling System

    Directory of Open Access Journals (Sweden)

    Nurbaiti Araswati

    2017-12-01

    Full Text Available Root zone cooling system is needed to alleviate high-temperature injury for high-yield greenhouse vegetables production. Analysis of heat transfer along the cooling pipe is very important in designing the root zone cooling system. The objectives of this research were (1 to analyze heat transfer in cooling pipe for zone cooling in a hydroponic system, (2 to validate the heat transfer dynamics model to predict the water temperature at the outlet of the cooling pipe, and (3 to perform model simulations for various types of pipe materials and lengths in several thermal conditions in the greenhouse. Root zone cooling system was performed by flowing water (10oC through a steel pipe along 25 m to the root zone. The analysis showed a decrease up to 2.8oC in the planting medium temperature 28.6oC from control 31.4oC. The validation of heat transfer model was conducted by comparing the predicted water temperature to that of measured on linear regression plot. The result showed a straight line Y=1.0026X and the coefficient of determination (R2 0.9867. Based on data analysis, the temperature of water reaches 1oC in steel and copper cooling pipes along 40 m and significantly different from the PVC that is 0.8oC.

  8. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  9. Optimizing cooling systems in Egyptian arid urbans

    International Nuclear Information System (INIS)

    Medhat, Ahmed A.; Khalil, Essam E.

    2006-01-01

    Present study is devoted to climatic and site oriented investigations that were carried out in a new rural development in the Upper-Egypt. Bioclimatic classifications considered Upper Egypt region, near Sudan border, as a Hot and Dry climatic region. [1]. that is affected by solar heat intensities that can reach 900 W/m2 for a period ranged from 5-to-7 hours per day with the presence of study storms. Cooling season extends up to eight months per year having Upper-day-bulb temperature ranged from 400 degree centigrade - to - 470 degree centigrade while Lower-dry-bulb-temperature ranged from 280 degree centigrade - to - 320 degree centigrade with the relative humidity ranged from 10%-to-37% RH. [2]. Site surveys and field experimental and analyses of the commonly used cooling systems were investigated, evaluated and optimized for optimum indoor comfort conditions at efficient energy efficiency. [3]. Extensive analyses were performed based on Psychrometric formulae to evaluate the impact of energy consumptions related to different cooling systems such as direct expansion, chilled water, and evaporative systems. the present study enables the critical investigations of the influence of arid outdoor conditions and the required indoor thermal parameters on the energy efficiencies of HVAC-system. This work; focuses on the suggestion of suitable system that should be implemented by local energy codes in these arid urban.(Author)

  10. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  11. Rust Inhibitor And Fungicide For Cooling Systems

    Science.gov (United States)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  12. Air-cooled recirculation cooling systems. Technical and economic comparison; Luftgekuehlte Rueckkuehlsysteme. Technisch wirtschaftlicher Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, G. [Fa. Jaeggi/Guentner (Schweiz) AG, Trimbach (Switzerland)

    2000-03-01

    There are several air-cooled forced-circulation cooling systems for heat removal from refrigeration systems. Optimum solutions should not be selected on the basis of the cost factor alone; an integrative approach should be used instead. An exemplary investigation is presented. [German] Fuer die Waermeabfuhr aus kaeltetechnischen Anlagen stehen verschiedene luftgekuehlte, zwangsbelueftete Rueckkuehlsysteme zur Verfuegung. Die Auswahl des Systems ist oft von kurzfristigem Kostendenken gepraegt, was in technischer und wirtschaftlicher Hinsicht aber nicht immer der optimalen Loesung entspricht. Erst die genauere Kenntnis der verschiedenen Systeme und eine ganzheitliche Betrachtungsweise ermoeglichen die optimale Wahl fuer den einzelnen Fall. Die hier praesentierte Untersuchung wird anhand eines konkreten Falls dargestellt, wobei Preise und technische Produktdaten auf realen Anfragen beruhen. Der Autor ist um objetive Bewertung bemueht, der Leser moege aber selbst urteilen. (orig./AKF)

  13. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming

    2012-07-26

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field gradient required for the dielectrophoretic effect. When particles move electrokinetically through the channel, the experienced negative dielectrophoretic forces alternate directions within two adjacent semicircular microchannels, leading to a focused continuous-flow stream along the channel centerline. Both the experimentally observed and numerically simulated results of the focusing performance are reported, which coincide acceptably in proportion to the specified dimensions (i.e. inlet and outlet of the waved channel). How the applied electric field, particle size and medium concentration affect the performance was studied by focusing polystyrene microparticles of varying sizes. As an application in the field of biology, the focusing of yeast cells in the waved mcirochannel was tested. This waved microchannel shows a great potential for microflow cytometry applications and is expected to be widely used before different processing steps in lab-on-A-chip devices with integrated functions. © 2012 IOP Publishing Ltd.

  14. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    Science.gov (United States)

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Power plant cooling systems: trends and challenges

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1979-01-01

    A novel design for an intake and discharge system at the Belle River plant is described followed by a general discussion of water intake screens and porous dikes for screening fish and zooplankton. The intake system for the San Onofre PWR plant is described and the state regulations controlling the use of water for power plants is discussed. The use of sewage effluent as a source of cooling water is mentioned with reference to the Palo Verde plant. Progress in dry cooling and a new wet/dry tower due to be installed at the San Juan plant towards the end of this year, complete the survey

  16. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  17. Environmental effects of cooling system alternatives at inland and coastal sites

    International Nuclear Information System (INIS)

    Miner, R.M.; Warrick, J.W.

    1975-01-01

    The environmental effects of alternative cooling systems for power plants in California were analyzed. At inland sites evaporative cooling systems must be used, with fresh water or waste water used as makeup. Because fresh water is scarce, most new plants would need to use agricultural or municipal waste waters. For agricultural waste water systems, disposing of the blowdown and dispersion of drift containing total dissolved solids are two significant problems requiring resolution. At coastal sites, once-through cooling systems or recirculating systems could be used. Once--through cooling causes fewer effects on the marine environment than do recirculating systems on the air and marine environment when oceans water makeup is used. In general, for a recirculating system, dispersing high-salinity blowdown in marine waters and the effects of salt water drift on the terrestrial ecology outweigh the effects of once-through warm water on marine life. (U.S.)

  18. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  19. Selected Issues on CO2 in Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aarlien, R.

    2004-05-15

    Carbon Dioxide (CO2) has shown promising results as an alternative working fluid compared to the CFCs, HFCs and HCFCs. CO2 provides an environmental friendly alternative in a number of heat pump applications, in automobile air conditioning, and as a secondary fluid in refrigeration systems. The physical and the thermodynamic properties of CO2 differ considerably from the more conventional working fluids and offer new possibilities as well as design challenges for systems and components. On this background IEA Heat Pump Programme's Annex 27 was established. The main objective of the Annex has been to bring the CO2 heat pump technology closer to commercialization, by addressing critical issues of both basic and applied character. The scope of the work under this Annex includes compression heat pump, refrigeration and air-conditioning systems and components, with the main emphasis on heat pumps, using CO2 as working fluid. The term 'compression heat pump' covers vapor compression circuits with phase change. The term 'system' includes all the components used in a heating/cooling system from the heat pump to the inside unit, controls included. Results from 12 different research projects together with an extensive literature survey are presented. The projects are carried out as independent research projects, and the findings and the results are the sole responsibility of the authors. The following projects are presented: 1) Feasibility of transcritical CO2 systems for mobile space conditioning applications. 2) Use of CO2- and propane thermosyphons in combination with compact cooler in domestic freeze. 3) Heat transfer of carbon dioxide in an evaporator. 4) Correlating the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2. 5) Heat transfer and pressure drop characteristics of super-critical CO2 in microchannel tubes under cooling. 6) Flow vaporization of CO2 in microchannel tubes. 7) Two-phase flow patterns during

  20. The Design of Cooling System Model on The AP1000 Containment

    International Nuclear Information System (INIS)

    Daddy Setyawan; Yerri Noer Kartiko; Aryadi Suwono; Ari Darmawan Pasek; Nathanael P Tandian; Efrizon Umar

    2009-01-01

    The policy of national energy leads to the utilization of new energy as nuclear energy, and also contains some efforts to increase reactor safety and optimizing in the design of safety system component such as passive cooling system on reactor containment tank. Because of this, the assessment of safety level to passive safety system needs to be made. To increase the understanding it, the design of cooling system model on containment tank should be done to get safety level on cooling system in the AP1000 containment. To reach the similar model with reality and inexpensive cost, we should make assessment about similarity and dimensionless number. While the heat transfer of air natural circulation and water spray cooling system are a result of gravity approach, we can calculate Grashof modification number and Reynolds number respectively. By this approach, we have a factor of forty for laboratory model. From this model, we hope that we get characteristic correlation to heat transfer on the containment of AP1000 for both air natural circulation and water spray result from gravity. Finally, we can assess the safety level of passive cooling system on the AP1000 containment. (author)

  1. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  2. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...

  3. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  4. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  5. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  6. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  7. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  8. Non-Photolithographic Manufacturing Processes for Micro-Channels Functioned by Micro-Contact-Printed SAMs

    Science.gov (United States)

    Saigusa, Hiroki; Suga, Yasuo; Miki, Norihisa

    In this paper we propose non-photolithographic fabrication processes of micro-fluid channels with patterned SAMs (Self-Assembled-Monolayers). SAMs with a thiol group are micro-contact printed on a patterned Au/Ti layer, which is vapor-deposited through a shadow mask. Ti is an adhesion layer. Subsequently, the micro-channels are formed by bonding surface-activated PDMS onto the silicon substrate via a silanol group, producing a SAMs-functioned bottom wall of the micro-channel. No photolithographic processes are necessary and thus, the proposed processes are very simple, quick and low cost. The micro-reactors can have various functions associated with the micro-contact-printed SAMs. We demonstrate successful manufacturing of micro-reactors with two types of SAMs. The micro-reactor with patterned AUT (11-amino-1-undecanethiol) successfully trapped nano-particles with a carboxylic acid group, indicating that micro-contact-printed SAMs remain active after the manufacturing processes of the micro-reactor. AUT -functioned micro-channels are applicable to bioassay and to immobilize proteins for DNA arrays. ODT (1-octadecanethiol) makes surfaces hydrophobic with the methyl terminal group. When water was introduced into the micro-reactor with ODT-patterned surfaces, water droplets remained only in the hydrophilic areas where ODT was not patterned. ODT -functioned micro-channels are applicable to fluid handling.

  9. Environmental aspects of the district cooling system application

    International Nuclear Information System (INIS)

    Bitrakovski, Dragan

    2006-01-01

    The use of air-conditioning equipment based on CFC and HCFC fluids has a direct influence on the occurrence of the greenhouse effect and damage of the ozone layer. Besides the obligatory shift og HCF cooling fluids, the reduction of such negative influences may also be achieved by the application of the district cooling system to the air-conditioning plants in the area. The paper includes example of the application of the district system, with positive effect regarding the ozone layer protection and greenhouse effect prevention. (Author)

  10. Design of the cooling systems for the multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Cunningham, R.

    1997-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed

  11. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  12. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  13. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  14. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  15. X-ray radiation channeling in micro-channel plates: Spectroscopy with a synchrotron radiation beam

    International Nuclear Information System (INIS)

    Mazuritskiy, M.I.; Dabagov, S.B.; Marcelli, A.; Dziedzic-Kocurek, K.; Lerer, A.M.

    2015-01-01

    We present here the angular distribution of the radiation propagated inside MultiChannel Plates with micro-channels of ∼3 μm diameter. The spectra collected at the exit of the channels present a complex distribution with contributions that can be assigned to the fluorescence radiation, originated from the excitation of the micro-channel walls. For radiation above the absorption edge, when the monochromatic energy in the region of the Si L-edge hits the micro-channel walls with a grazing angle θ ⩾ 5°, or at the O K-edge when θ ⩾ 2° a fluorescence radiation is detected. Additional information associated to the fine structures of the XANES spectra detected at the exit of MCPs are also presented and discussed

  16. Micro-channel plate photon detector studies for the TORCH detector

    Energy Technology Data Exchange (ETDEWEB)

    Castillo García, L., E-mail: lucia.castillo.garcia@cern.ch [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Brook, N.; Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Forty, R.; Frei, C. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Gao, R. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Gys, T. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Harnew, N. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Piedigrossi, D. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Van Dijk, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  17. Experimental investigation of Cu-based, double-layered, microchannel heat exchangers

    International Nuclear Information System (INIS)

    Lu, Bin; Meng, W J; Mei, Fanghua

    2013-01-01

    Cu-based, single- and double-layered, microchannel heat exchangers (MHEs) were fabricated and assembled. Comparative measurements on liquid flow characteristics and heat transfer performance were conducted on these devices. Results were compared at the individual microchannel level as well as at the device level. The present results demonstrate that double-layered MHEs exhibit similar heat transfer performance while suffering a much lower pressure drop penalty compared to single-layered MHEs. Another Cu-based, double-layered, liquid–liquid counter-flow MHE was fabricated, assembled and tested. Results show that a low-volume, multilayered, high-performance, liquid-to-liquid MHE is achievable following the manufacturing protocols of the present double-layered, liquid–liquid counter-flow MHE. (paper)

  18. Use of Large Surface MicroChannel Plates for the Tagging of Intermediate Energy Exotic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, I., E-mail: ilombardo@lns.infn.it [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Amorini, F. [INFN Laboratori Nazionali del Sud, Catania (Italy); Cardella, G. [INFN, Sezione di Catania, Catania (Italy); Cavallaro, S. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); De Filippo, E. [INFN, Sezione di Catania, Catania (Italy); Geraci, E.; Grassi, L. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN, Sezione di Catania, Catania (Italy); La Guidara, E. [INFN, Sezione di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Libera Universita Kore, Enna (Italy); Pagano, A.; Papa, M.; Pirrone, S. [INFN, Sezione di Catania, Catania (Italy); Politi, G. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN, Sezione di Catania, Catania (Italy); Porto, F.; Rizzo, F.; Russotto, P. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Verde, G. [INFN, Sezione di Catania, Catania (Italy); Vigilante, M. [INFN, Sezione di Napoli and Dipartimento di Fisica, Universita Federico II di Napoli (Italy)

    2011-06-15

    We show the properties of the tagging system for exotic beams coupled to the CHIMERA detector. In particular, the characteristics of a newly developed large surface MicroChannel Plate will be discussed. Timing and efficiency of this instrument have been investigated. Preliminary results of tests performed with radioactive beams and alpha sources are presented.

  19. System for cooling the containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Costes, Didier.

    1982-01-01

    The invention concerns a post-accidental cooling system for a nuclear reactor containment vessel. This system includes in series a turbine fed by the moist air contained in the vessel, a condenser in which the air is dried and cooled, a compressor actuated by the turbine and a cooling exchanger. The cold water flowing through the condenser and in the exchanger is taken from a tank outside the vessel and injected by a pump actuated by the turbine. The application is for nuclear reactors under pressure [fr

  20. System and method for regulating EGR cooling using a rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  1. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  2. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system

    International Nuclear Information System (INIS)

    Liu, Di; Zhao, Fu-Yun; Yang, Hong-Xing; Tang, Guang-Fa

    2015-01-01

    In the present study, a thermoelectric mini cooler coupling with a micro thermosiphon cooling system has been proposed for the purpose of CPU cooling. A mathematical model of heat transfer, depending on one-dimensional treatment of thermal and electric power, is firstly established for the thermoelectric module. Analytical results demonstrate the relationship between the maximal COP (Coefficient of Performance) and Q c with the figure of merit. Full-scale experiments have been conducted to investigate the effect of thermoelectric operating voltage, power input of heat source, and thermoelectric module number on the performance of the cooling system. Experimental results indicated that the cooling production increases with promotion of thermoelectric operating voltage. Surface temperature of CPU heat source linearly increases with increasing of power input, and its maximum value reached 70 °C as the prototype CPU power input was equivalent to 84 W. Insulation between air and heat source surface can prevent the condensate water due to low surface temperature. In addition, thermal performance of this cooling system could be enhanced when the total dimension of thermoelectric module matched well with the dimension of CPU. This research could benefit the design of thermal dissipation of electronic chips and CPU units. - Highlights: • A cooling system coupled with thermoelectric module and loop thermosiphon is developed. • Thermoelectric module coupled with loop thermosiphon can achieve high heat-transfer efficiency. • A mathematical model of thermoelectric cooling is built. • An analysis of modeling results for design and experimental data are presented. • Influence of power input and operating voltage on the cooling system are researched

  3. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  4. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  5. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  6. Experimental study on solar desiccant cooling system. 2nd Report; Taiyonetsu kudo desiccant cooling system no jikkenteki kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Funato, H [Fukuoka Institute of Technology, Fukuoka (Japan); Kuma, T [Seibu Giken Co. Ltd., Fukuoka (Japan)

    1996-10-27

    Study has been made about a desiccant cleaning system using solar heated water for regenerating the dehumidifier. A dehumidifier and evaporation coolers are combined to attain a synergistic effect in dehumidifying and cooling the air in the house. The simultaneous control of humidity and temperature, however, is quite difficult. Under the circumstances, an evaporation cooler was removed from the outdoor air intake side, to leave a humidifier alone for the control of humidity only. In addition, the length of the dehumidifier was reduced into half for saving fan driving power and for downscaling the model. With only one evaporation cooler in operation that is installed at the exhaust side, the cooling effect is diminished by half. For dealing with the situation, ultrasonic atomization is performed at the exhaust side evaporation cooler for the improvement of the air cooling effect for the next sensible heat exchanger (intake side). The return air is heated by the solar heater water (approximately 60{degree}C hot), regenerates the dehumidifier, and then exhausted. The atomization process elevates the cooling effect, and the resultant cooling effect was as high as that expected from a 2-cooler setup. The dehumidification effect, however, lowers a little. Exclusion of the atomization process will enhance the dehumidification effect, but will reduce the cooling effect as well. 3 refs., 8 figs., 3 tabs.

  7. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    Directory of Open Access Journals (Sweden)

    Tisovský Tomáš

    2017-01-01

    Full Text Available Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  8. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  9. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  10. Microchannel Reactors for ISRU Applications Using Nanofabricated Catalysts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and USRA propose to develop microchannel reactors for In-Situ Resources Utilization (ISRU) using nanofabricated catalysts. The proposed...

  11. Investigation on integrity of JMTR concrete structures, cooling system and utility facilities

    International Nuclear Information System (INIS)

    Ebisawa, Hiroyuki; Tobita, Kenji; Fukasaku, Akitomi; Kaminaga, Masanori

    2010-02-01

    The condition of facilities and components to be used for re-operation of the Japan Materials Testing Reactor (JMTR) from FY2011, was investigated before the refurbishment work. An investigation of aged components (aged-investigation) was carried out for concrete structures of the JMTR reactor building, exhaust stack, trench, canal, filter banks and for aged components of tanks in the primary cooling system, heat exchangers, pipes in the secondary cooling system, cooling tower, emergency generators and so on, in order to identify their integrity. The aged-investigation was carried out from the beginning of FY2007. As a result, cracks of concrete structures such as the exhaust stack, a foundation of the UCL (Utility Cooling Line) elevated water tank were repaired and pipe linings of secondary cooling system were replaced. Motors of primary cooling pumps, pumps in the secondary cooling system and in other systems were decided to replace from viewpoints of future maintenance and improvement of reliability. Other components and the reactor building were decided to use continuously for a long-term by appropriate maintenance activities based on the long-term maintenance plan. In this paper, the aged-investigation for the JMTR reactor building, heat exchangers and emergency generators is presented. (author)

  12. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mazleha Maskin; Mohd Fazli Zakaria; Mohmammad Suhaimi Kassim; Ahmad Nabil Abdul Rahim; Phongsakorn Prak Tom; Mohd Fairus Abdul Farid; Mohd Huzair Hussain

    2012-01-01

    After undergo about 30 years of safe operation, Reactor TRIGA PUSPATI (RTP) was planned to be upgraded to ensure continuous operation at optimum safety condition. In the meantime, upgrading is essential to get higher flux to diversify the reactor utilization. Spent fuel pool is needed for temporary storage of the irradiated fuel before sending it back to original country for reprocessing, reuse after the upgrading accomplished or final disposal. The irradiated fuel elements need to be secure physically with continuous cooling to ensure the safety of the fuels itself. The decay heat probably still exist even though the fuel elements not in the reactor core. Therefore, appropriate cooling is required to remove the heat produced by decay of the fission product in the irradiated fuel element. The design of spent fuel pool cooling system (SFPCS) was come to mind in order to provide the sufficient cooling to the irradiated fuel elements and also as a shielding. The spent fuel pool cooling system generally equipped with pumps, heat exchanger, water storage tank, valve and piping. The design of the system is based on criteria of the primary cooling system. This paper provides the conceptual design of the spent fuel cooling system. (author)

  13. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  14. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  15. Field evaluation of performance of radiant heating/cooling ceiling panel system

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo

    2015-01-01

    heating/coolingceiling panel system is used. However, no standard exists for the in situ performance evaluation of radiantheating/cooling ceiling systems; furthermore, no published database is available for comparison. Thus,this study aims to not only clarify the system performance but also to share our...... experience and our resultsfor them to serve as a reference for other similar projects. Here, the system performance in relation toits heating/cooling capacity and thermal comfort has been evaluated. The heat transfer coefficient fromwater to room was 3.7 W/(m2K) and 4.8 W/(m2K) for heating and cooling cases...

  16. Analytical and experimental investigation of closed-cycle sorption cooling systems

    Science.gov (United States)

    Liu, Lianquan

    1992-01-01

    The first part of the present thesis concerns the Coefficient of Performance (COP) of two types of closed-cycle sorption cooling systems: the Single Effect Liquid (SEL) absorption system and the Regenerative Solid (RS) adsorption system. When specific cycle configurations are considered, the COP is always less than that allowed by the second law. The potential of the two systems to approach the second law limit is considered in this work. The analysis shows that COP of a SEL system using LiBr-H2O is not limited by one, as believed before, and that the COP of a RS cooling system using zeolite-water is considerably larger than that of the SEL system. This is due to recovery of the heat of adsorption which is made possible by capturing the thermal wave in the solid adsorbent. In the second part, a one dimensional model has been developed for a real RS cooling system featured by finite heat transfer coefficients. The problem is solved numerically to yield the temperature and uptake profiles, COP, and cooling capacity and cooling rates. The effects of various design and operating parameters on system performance have been investigated by using the model. The convective heat transfer coefficient at the inner wall of the fluid channel passing through the zeolite columns, the flow rate of the heat transfer fluid, the condenser and evaporator temperature are identified as the most significant factors. A new correlation of adsorption equilibrium has been derived in this thesis. The derivation is based on established thermodynamic relationships and is shown to be able to well represent the data of three adsorption pairs widely used in sorption cooling applications: zeolite-water, silica gel-water and activated carbon-methanol. Finally, in the experimental part of the present work a test set-up of a zeolite-water heat and mass regenerator was designed, instrumented and built. Temperature profiles at various operating conditions were measured. The data of a 'single blow' mode

  17. A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation

    Science.gov (United States)

    Qiu, X.; Cherief, W.; Colombet, D.; Ayela, F.

    2017-04-01

    We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops.

  18. A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation

    International Nuclear Information System (INIS)

    Qiu, X; Cherief, W; Colombet, D; Ayela, F

    2017-01-01

    We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops. (technical note)

  19. Hot gas path component having near wall cooling features

    Science.gov (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2017-11-28

    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.

  20. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  1. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  2. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  3. A passive cooling system proposal for multifunction and high-power displays

    Science.gov (United States)

    Tari, Ilker

    2013-03-01

    Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.

  4. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  5. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  6. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  7. Design change of tower cooling water system for proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G.

    2012-01-01

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted

  8. Design change of tower cooling water system for proton accelerator research center

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted.

  9. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  10. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  11. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  12. Photon counting with small pore microchannel plates

    International Nuclear Information System (INIS)

    Martindale, A.; Lapington, J.S.; Fraser, G.W.

    2007-01-01

    We describe the operation of microchannel plates (MCPs) with 3.2μm diameter channels as photon counting detectors of soft X-rays. Gain and temporal resolution measurements are compared with theoretical scaling laws for channel diameter. A minimum pulse width of 264ps is observed for a two stage multiplier at a total bias voltage of ∼1930V

  13. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  14. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  15. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  16. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  17. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  18. Evaluation of two cooling systems under a firefighter coverall

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  19. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  1. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    Science.gov (United States)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  2. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    International Nuclear Information System (INIS)

    Llamas-Guillén, S.U.; Cuevas, R.; Best, R.; Gómez, V.H.

    2014-01-01

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  3. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Directory of Open Access Journals (Sweden)

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  4. Two-fluid mixing in a microchannel

    International Nuclear Information System (INIS)

    Liu Yingzheng; Kim, Byoung Jae; Sung, Hyung Jin

    2004-01-01

    A numerical study of the mixing of two fluids (pure water and a solution of glycerol in water) in a microchannel was carried out. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference in the properties of the two fluids (e.g., viscosity, density and diffusivity) was investigated. The mixing phenomena were tested for three micromixers: a squarewave mixer, a three-dimensional serpentine mixer and a staggered herringbone mixer. The governing equations of continuity, momentum and solute mass fraction were solved numerically. To evaluate mixing performance, a criterion index of mixing uniformity was proposed. In the systems considered, the Reynolds number based on averaged properties was Re=1 and 10. For low Reynolds number (Re=1), the mixing performance varied inversely with mass fraction of glycerol due to the dominance of molecular diffusion. The mixing performance deteriorated due to a significant reduction in the residence time of the fluid inside the mixers

  5. 'Zero-time' detectors using microchannel plates for charged particle detection

    International Nuclear Information System (INIS)

    Girard, J.

    1977-01-01

    The mass identification of the reaction products detected in heavy ion nuclear reactions is generally obtained by the time-of-flight method. This method requires a device giving first the 'start' signal (zero time at the passage of the particle) and then the stop 'signal'. The interest lying in 'zero-time' detectors using a secondary electron emission has been considerably increased with using microchannel electron multipliers. Nevertheless such a device was shown to induce either fluctuations in the distance of flight or the use of detectors of different type in the 'start' and 'stop' channels respectively. In both cases, it remains an ambiguity as the access to time resolution, in the channel including the electron multiplier, is not direct and the effect of the different parameters on this resolution are masked. To palliate this drawback and study the qualities of microchannel plate multipliers in time measurement field, some devices mechanically and electronically symmetric have been developed. The resolution measurement in time of flight is obtained for electrons generated by the same particle and emitted from either side of a thin film. The distances of flight of the electrons on each side of the film are same, and so are the accelerating potentials. The microchannel electron multipliers and the processing electronic units are the same in each channel [fr

  6. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  7. Improvements in or relating to cooling systems for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Ljubivy, A.G.; Batjukov, V.I.; Shkhian, T.G.; Fadeev, A.I.

    1980-01-01

    A cooling system is proposed which can be used to cool a set of nuclear fuel assemblies arranged in a reactor core or placed in a container for spent fuel assemblies. The object of the invention is to provide a system which would prevent leakage of coolant from the vessel in the event of a rupture of the coolant supply pipeline externally of the vessel. In the case of the reactor cooling system the level of the coolant is stopped from dropping below the level of the active portion of the fuel assemblies and thus prevents a breakdown of the reactor. (UK)

  8. Evaluation of conceptual Heat Exchanger Design for passive containment cooling system of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Ki; Hong, Soon Joon [FNC Tech., Yongin (Korea, Republic of); Kim, Young In; Kim, Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    PCCS(Passive containment cooling system) is the passive safety system which ultimately removes the reactor decay heat. Cooling performance of the air-cooled type and water-circulation cooling type of PCCS were analyzed using CAP version 2.21. The analysis results show the water-circulation cooling PCCS is more effective in lowering the peak pressure and temperature in the containment building. However, the air-cooled PCCS is more effective to the long-term cooling. From this study, the efficiency evaluation results for the two PCCS designs are obtained. These results may be applied in the PCCS design improvement. Moreover, these results will be used as a reference for the later PCCS design and analysis.

  9. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  10. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  11. France uses the sun to cool its wine: the Banyuls winery solar cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The engineering consultancy Tecsol was asked to design a cooling system for a winery that would limit the variations in temperature during the year. Tecsol proposed a solar system. The total investment cost amounted to nearly two million French Francs (300,000 euros), almost double the cost of a conventional air-conditioning system. However, because the solar system reduced the conventional energy needs of the warehouse by about 40%, the French Agency for Environment and Energy Management (ADEME) provided a 37% subsidy for its rational use of energy. The 'Solarclim' solar installation has three functions: it produces hot water via 693 vacuum tube collectors with a useful surface of 130 m{sup 2}. The collectors are fixed to the roof of the wine cellar, which has an angle of 15 deg. Heat from the collectors is transferred to a 1000-litre hot water storage tank; it produces chilled water using a lithium bromide absorption plant with a nominal cooling capacity of 52 kW. This is housed in the technical premises on the lowest level and is used in conjunction with a 180 kW open-circuit cooling tower on the north facade; and the third function combines air-conditioning and, when necessary, space heating. The installation has been operating for 12 years with no particular problems. The equipment is environmentally friendly. The solar heat source avoids CO{sub 2} emissions, the absorption machine does not use CFCs or HCFCs, and the system is totally silent. (UK)

  12. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime

    Directory of Open Access Journals (Sweden)

    Niya Ma

    2018-02-01

    Full Text Available Developing a three-dimensional laminar flow in the entrance region of rectangular microchannels has been investigated in this paper. When the hydrodynamic development length is the same magnitude as the microchannel length, entrance effects have to be taken into account, especially in relatively short ducts. Simultaneously, there are a variety of non-continuum or rarefaction effects, such as velocity slip and temperature jump. The available data in the literature appearing on this issue is quite limited, the available study is the semi-theoretical approximate model to predict pressure drop of developing slip flow in rectangular microchannels with different aspect ratios. In this paper, we apply the lattice Boltzmann equation method (LBE to investigate the developing slip flow through a rectangular microchannel. The effects of the Reynolds number (1 < Re < 1000, channel aspect ratio (0 < ε < 1, and Knudsen number (0.001 < Kn < 0.1 on the dimensionless hydrodynamic entrance length, and the apparent friction factor, and Reynolds number product, are examined in detail. The numerical solution of LBM can recover excellent agreement with the available data in the literature, which proves its accuracy in capturing fundamental fluid characteristics in the slip-flow regime.

  13. Numerical study on fabricating rectangle microchannel in microfluidic chips by glass molding process

    Science.gov (United States)

    Wang, Tao; Chen, Jing; Zhou, Tianfeng

    2017-09-01

    This paper studied the glass molding process (GMP) for fabricating a typical microstructure of glass microfluidic chips, i. e., rectangle microchannel, on soda-lime glass by finite element method. More than 100 models were established on the platform of Abaqus/Standard. The influence of parameters, i. e., temperature, aspect ratio, side wall angle and friction coefficient on deformation were studied, and the predicted morphology of the molded microchannel were presented as well. The research could provide fundamental experience for optimizing GMP process in the future.

  14. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  15. Cost comparison of dry-type and conventional cooling systems for representative nuclear generating plans

    International Nuclear Information System (INIS)

    Rossie, J.P.; Cecil, E.A.; Young, R.O.

    1974-01-01

    Results are presented of studies comparing the use of dry-type cooling towers with conventional cooling methods for representative pressurized-water-reactor nuclear power plants. The studies were based on the hypothetical use of dry-type cooling towers for three nuclear power plants now under construction which were designed and are being built to use conventional cooling methods. One of the plants is located in the northeastern United States, one in the Southeast and one in the West. The report also presents the results of comparisons based on a hypothetical plant at a typical eastern United States site. The three electric utilities which participated in these studies have furnished actual construction cost information for the conventional cooling systems being constructed, and the authors have made construction estimates for economically optimum dry cooling systems which might have been built in place of the conventional cooling systems being constructed. The report compares the physical and operating characteristics of dry-type and conventional cooling systems as well as the relative economics of the different cooling methods. The effect of dry cooling on the bus-bar cost of power has been computed for the three selected plants and for the typical eastern plant

  16. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.

  17. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Chang, J.F.C.; Chien, T.H.; Ding, J.; Sun, J.G.; Sha, W.T.

    1992-01-01

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  18. Energic, Exergic, Exergo‐economic investigation and optimization of auxiliary cooling system (ACS equipped with compression refrigerating system (CRS

    Directory of Open Access Journals (Sweden)

    Omid Karimi Sadaghiyani

    2017-09-01

    Full Text Available Heller main cooling tower as air-cooled heat exchanger is used in the combined cycle power plants (CCPP to reduce the temperature of condenser. In extreme summer heat, the efficiency of the cooling tower is reduced and it lessens performance of Steam Turbine Generation (STG unit of Combined Cycle Power Plant (CCPP. Thus, the auxiliary cooling system (ACS is equipped with compression refrigerating system (CRS. This auxiliary system is linked with the Heller main cooling tower and improves the performance of power plant. In other words, this auxiliary system increases the generated power of STG unit of CCPP by decreasing the temperature of returning water from cooling tower Therefore, in the first step, the mentioned auxiliary cooling system (ACS as a heat exchanger and compression refrigerating system (CRS have been designed via ASPEN HTFS and EES code respectively. In order to validate their results, these two systems have been built and theirs experimentally obtained data have been compared with ASPEN and EES results. There are good agreements between results. After that, exergic and exergo-economic analysis of designed systems have been carried out. Finally, the compression refrigerating system (CRS has been optimized via Genetic Algorithm (GA. Increasing in exergy efficiency (ε from 14.23% up to 36.12% and decreasing the total cost rate (ĊSystem from 378.2 ($/h to 308.2 ($/h are as results of multi-objective optimization.

  19. Performance analysis on utilization of sky radiation cooling energy for space cooling. Part 2; Hosha reikyaku riyo reibo system ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marushima, S; Saito, T [Tohoku University, Sendai (Japan)

    1996-10-27

    Studies have been made about a heat accumulation tank type cooling system making use of radiation cooling that is a kind of natural energy. The daily operating cycle of the cooling system is described below. A heat pump air conditioner performs cooling during the daytime and the exhaust heat is stored in a latent heat accumulation tank; the heat is then used for the bath and tapwater in the evening; at night radiation cooling is utilized to remove the heat remnant in the tank for the solidification of the phase change material (PCM); the solidified PCM serves as the cold heat source for the heat pump air conditioner to perform cooling. The new system decelerates urban area warming because it emits the cooler-generated waste heat not into the atmosphere but into space taking advantage of radiation cooling. Again, the cooler-generated waste heat may be utilized for energy saving and power levelling. For the examination of nighttime radiation cooling characteristics, CaCl2-5H2O and Na2HPO4-12H2O were tested as the PCM. Water was used as the heating medium. In the case of a PCM high in latent heat capacity, some work has to be done for insuring sufficient heat exchange for it by, for instance, rendering the flow rate low. The coefficient of performance of the system discussed here is three times higher than that of the air-cooled type heat pump system. 8 refs., 5 figs., 4 tabs.

  20. Equilibrium positions due to different cooling processes in superconducting levitation systems

    International Nuclear Information System (INIS)

    Navau, C; Sanchez, A; Pardo, E; Chen, D-X

    2004-01-01

    The equilibrium position of a superconducting levitation device is determined not only by the geometry and electromagnetic properties of its components, but also by the cooling process of the superconductor. In this work we study the dependence of the equilibrium positions upon the cooling process by introducing diagrams of a new kind which display the different possibilities for a given levitation system. Using the critical state model and the principle of magnetic energy, we calculate different diagrams of this type for the case of a cylindrically symmetric permanent magnet-superconductor system. The results allow us to find out, for a given levitation system, which cooling process improves the capabilities of the system

  1. Thermal dimensioning of wet natural draft cooling systems

    International Nuclear Information System (INIS)

    Bourillot, Claudine.

    1975-01-01

    The conventional models of calculating wet natural draft cooling systems include two different parts. First, the thermal calculation of the dispersion is made either with an ''exact'' method of separating convection and evaporation phenomena and taking account for the steam in exces in the saturated air, or with a ''simplified'' method considering the heat transfer in the whole as resulting of a difference in enthalpies. (The latter is the Merkel theory). Secondly, the draft equation is solved for calculating air flow rate. Values of the mass transfer coefficients and pressure drops of the dispersion being needed for the computation, test bench measurements are made by the designers. As for counter-current cooling systems the models of the dispersion calculation are one-dimensional models not allowing the radial flow and air temperature distributions to be simulated; exchanges inside the rain zone are also neglected. As for crossed-current cooling systems the flow geometry entails a more complicated two-dimensional model to be used for the dispersion. In both cases, the dependence on meteorological factors such as wind, height gradients of temperature, or sunny features are disregarded [fr

  2. A water-cooled 13-kG magnet system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Goncalves, J.A.N.; Barroso, J.J.; Patire Junior, H.; Spassovsky, I.P.; Castro, P.J.

    1993-01-01

    The construction, performance, and reliability of a high field magnet system are reported. The magnet is designed to generate a flat top 13 kG magnetic induction required for the operation of a 35 GHz, 100 k W gyrotron under development at INPE. The system comprises three solenoids, located in the gun, cavity, and collector regions, consisting of split pair magnets with the field direction vertical. The magnets are wound from insulated copper tube whose rectangular cross section has 5.0 mm-diameter hole leading the cooling water. On account of the high power (∼ 100 k W) supplied to the cavity coils, it turned out necessary to employ a cooling system which includes hydraulic pump a heat exchanger. The collector and gun magnets operate at lower DC current (∼ 150 A), and, in this case, flowing water provided by wall pipes is far enough to cool down the coils. In addition, a 250 k V A high power AC/DC Nutek converser is used to supply power to the cavity magnet. For the collector and gun magnets, 30 V/600 A DC power supplies are used. (author)

  3. Photochemical immobilization of protein on the inner wall of a microchannel and Its application in a glucose sensor

    International Nuclear Information System (INIS)

    Nakajima, Hizuru; Ishino, Satomi; Masuda, Hironori; Nakagama, Tatsuro; Shimosaka, Takuya; Uchiyama, Katsumi

    2006-01-01

    A new protein immobilization technique has been developed for patterning enzymes in a specific position inside a microchannel. First, bovine serum albumin (BSA) was adsorbed onto the internal surface of a polydimethylsiloxane microchannel. The microchannel was then filled with the conjugate solution of a photoreactive cross-linker, 4-azido-2,3,5,6-tetrafluorobenzoic acid succinimidyl ester (ATFB-SE), and an enzyme, horseradish peroxidase (HRP). An irradiation by a He-Cd laser activated the azido group of the conjugates and these conjugates became covalently attached to the adsorbed BSA on the microchannel. The enzyme turnover was observed from only the HRP zone. This technique was successfully applied to the enzymatic glucose sensor. Glucose oxidase (GOD) and HRP were sequentially patterned in a single microchannel, i.e., the HRP zone was located downstream from the GOD zone. The calibration curve of a glucose standard solution was linear over the range of 0-128 μM with a correlation coefficient of 0.993. Compared to the traditional method using a 96-well microtiter plate, the present technique on the microchip shortened the reaction time from 30 min to 4.8 s, i.e., to 1/375

  4. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  5. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  6. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  7. Experimental Investigation of Air Conditioner using the Desiccant Cooling System in Equatorial Climates

    Directory of Open Access Journals (Sweden)

    Abdullah Kamaruddin

    2018-01-01

    Full Text Available Indonesia lies in the tropical climate which requires air conditioning to increase working productivity of the people. Up to now people are still using the compressive cooling system which uses Freon as the refrigerant, which have been known to have a negative environmental impact. Therefore, new cooling system which is environmentally friendly is now needed. Desiccant cooling system manipulates the humidity condition of outside air in such a way so that the final temperature should become at 25 °C and RH of 65 %. Since it does not require refrigerant, a desiccant cooling has the potential to be developed in a tropical country like Indonesia. In this study an experimental desiccant cooling system has been designed and constructed and tested under laboratory condition. Experimental results have shown that the resulting air temperature was 26.1 °C with RH of 55.6 %, and average cooling capacity was 0.425 kW. The COP was found to be 0.44.

  8. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  9. An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel

    International Nuclear Information System (INIS)

    Chen, Pin-Chuan; Liu, Yu-Min; Chou, Huang-Chieh

    2016-01-01

    Thermoplastics are widely used in the fabrication of microfluidic chips, due to their low cost, flexibility in manufacturing, and applicability in large-scale production. This paper presents a novel bonding method for the assembly of thermoplastic microfluidic chips, with the aim of preventing the flow of UV adhesive into microchannels during the bonding process. The proposed bonding methodology depends primarily on controlling the thickness of the UV adhesive, which is achieved by using spin-coating for the uniform UV adhesive in conjunction with the microfabrication of short pillars for keeping a uniform gap between the two bonded surfaces. In this study, two devices with serpentine microchannels (cross-sectional area of 500 μm  ×  500 μm and 200 μm  ×  200 μm) were fabricated on PMMA substrates using a micromilling machine, whereupon a hydrophobic coating was applied to the walls of 200 μm  ×  200 μm microchannels in order to prevent clogging, which might otherwise be caused by the seepage of UV adhesive into the channels. A variety of experiments were used to characterize the quality of bonding, the results of which reveal the following: (1) no leakage was observed in either of the microfluidic chips; (2) the hydrophobic coating proved highly effective in preventing the flow of UV adhesive into the smaller microchannels; (3) the average amount of clogging inside 500 μm  ×  500 μm microchannels was 1.13% with standard deviation of 0.55%, while the average amount of clogging inside 200 μm  ×  200 μm microchannels was 1.65% with standard deviation of 0.92%; (4) the average thickness of the UV adhesive in a 500 μm  ×  500 μm microfluidic chip was 32 μm with standard deviation of 2 μm, whereas the average thickness of the UV adhesive in a 200 μm  ×  200 μm microfluidic chip was 31 μm with standard deviation of 1.2 μm; (5) the two chips possess sufficient bonding strength to withstand

  10. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  11. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  12. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  13. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  14. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    International Nuclear Information System (INIS)

    Edwin, M.; Joseph Sekhar, S.

    2014-01-01

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  15. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  16. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  17. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  18. Method of fabricating a cooled electronic system

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  19. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  20. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  1. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  2. Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Muammer [NSF I/UCR Center for Precision Forming (CPF), Department of Mechanical Engineering, Virginia Commonwealth University (VCU), Richmond, VA (United States); Mahabunphachai, Sasawat [NSF I/UCR Center for Precision Forming (CPF), Department of Mechanical Engineering, Virginia Commonwealth University (VCU), Richmond, VA (United States); Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2007-10-25

    In this paper, we present the results of our studies on conceptual design and feasibility experiments towards development of a novel hybrid manufacturing process to fabricate fuel cell bipolar plates that consists of multi-array micro-channels on a large surface area. The premises of this hybrid micro-manufacturing process stem from the use of an internal pressure-assisted embossing process (cold or warm) combined with mechanical bonding of double bipolar plates in a single-die and single-step operation. Such combined use of hydraulic and mechanical forming forces and in-process bonding will (a) enable integrated forming of micro-channels on both surfaces (as anode and cathode flow fields) and at the middle (as cooling channels), (b) reduce the process steps, (c) reduce variation in dimensional tolerances and surface finish, (d) increase the product quality, (e) increase the performance of fuel cell by optimizing flow-field designs and ensuring consistent contact resistance, and (f) reduce the overall stack cost. This paper explains two experimental investigations that were performed to characterize and evaluate the feasibility of the conceptualized manufacturing process. The first investigation involved hydroforming of micro-channels using thin sheet metals of SS304 with a thickness of 51 {mu}m. The width of the channels ranged from 0.46 to 1.33 mm and the height range was between 0.15 and 0.98 mm. Our feasibility experiments resulted in that different aspect ratios of micro-channels could be fabricated using internal pressure in a controllable manner although there is a limit to very sharp channel shapes (i.e., high aspect ratios with narrow channels). The second investigation was on the feasibility of mechanical bonding of thin sheet metal blanks. The effects of different process and material variables on the bond quality were studied. Successful bonding of various metal blanks (Ni201, Al3003, and SS304) was obtained. The experimental results from both

  3. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system

    International Nuclear Information System (INIS)

    Zou, Zheng; He, Suoying

    2015-01-01

    Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity

  4. Economical Efficiency of Combined Cooling Heating and Power Systems Based on an Enthalpy Method

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-11-01

    Full Text Available As the living standards of Chinese people have been improving, the energy demand for cooling and heating, mainly in the form of electricity, has also expanded. Since an integrated cooling, heating and power supply system (CCHP will serve this demand better, the government is now attaching more importance to the application of CCHP energy systems. Based on the characteristics of the combined cooling heating and power supply system, and the method of levelized cost of energy, two calculation methods for the evaluation of the economical efficiency of the system are employed when the energy production in the system is dealt with from the perspective of exergy. According to the first method, fuel costs account for about 75% of the total cost. In the second method, the profits from heating and cooling are converted to fuel costs, resulting in a significant reduction of fuel costs, accounting for 60% of the total cost. Then the heating and cooling parameters of gas turbine exhaust, heat recovery boiler, lithium-bromide heat-cooler and commercial tariff of provincial capitals were set as benchmark based on geographic differences among provinces, and the economical efficiency of combined cooling heating and power systems in each province were evaluated. The results shows that the combined cooling heating and power system is economical in the developed areas of central and eastern China, especially in Hubei and Zhejiang provinces, while in other regions it is not. The sensitivity analysis was also made on related influencing factors of fuel cost, demand intensity in heating and cooling energy, and bank loans ratio. The analysis shows that the levelized cost of energy of combined cooling heating and power systems is very sensitive to exergy consumption and fuel costs. When the consumption of heating and cooling energy increases, the unit cost decreases by 0.1 yuan/kWh, and when the on-grid power ratio decreases by 20%, the cost may increase by 0.1 yuan

  5. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  6. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  7. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  8. Effect of junction configurations on microdroplet formation in a T-junction microchannel

    Science.gov (United States)

    Lih, F. L.; Miao, J. M.

    2015-03-01

    This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10-3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

  9. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  10. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  11. The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique

    Science.gov (United States)

    Wang, H. L.; Han, W.; Xu, M.

    2011-12-01

    Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.

  12. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers

  13. Entropy generation of nanofluid flow in a microchannel heat sink

    Science.gov (United States)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  14. What can go wrong in stochastic cooling systems

    CERN Document Server

    AUTHOR|(CDS)2108502

    2016-01-01

    This paper discusses very practical aspects of stochastic cooling systems both during construction, running-in, operation and trouble shooting. Due to the high electronic gain, high sensitivity and large bandwidth of such systems, precautions have to be taken to avoid all sorts of EMI/EMC related problems as well as crosstalk and self-oscillations. Since un-intended beam heating is always much more efficient than the desired cooling the overall performance depends critically on avoiding this heating which often takes places outside the nominal frequency band of operation. Another important aspect is “cross heating”, i.e., unavoidable crosstalk from longitudinal to transverse systems and vice versa. Obviously adequate measurement procedures with beam for gain phase and optimum delay are mandatory and certain caveats and hints are given. The paper concludes with a listing of unusual and unexpected problems found during many years of operation of such systems at CERN.

  15. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  16. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    -space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on the system energy performance were investigated while achieving the same thermal indoor conditions. The results show that the water-based floor cooling system performed better than the air-based cooling system in terms of energy...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...... air an improvement of 37% was achieved. The cooling demand should be minimized in the design phase as a priority and then the resulting cooling load should be addressed with the most energy efficient cooling strategy. The floor cooling coupled with a ground heat exchanger was shown to be an effective...

  17. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  18. The flow field around a micropillar confined in a microchannel

    International Nuclear Information System (INIS)

    Jung, Junkyu; Kuo, C.-J.; Peles, Yoav; Amitay, Michael

    2012-01-01

    The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100 ⩽ Re D ⩽ 700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.

  19. Development of a higher power cooling system for lithium targets.

    Science.gov (United States)

    Phoenix, B; Green, S; Scott, M C; Bennett, J R J; Edgecock, T R

    2015-12-01

    The accelerator based Boron Neutron Capture Therapy beam at the University of Birmingham is based around a solid thick lithium target cooled by heavy water. Significant upgrades to Birmingham's Dynamitron accelerator are planned prior to commencing a clinical trial. These upgrades will result in an increase in maximum achievable beam current to at least 3 mA. Various upgrades to the target cooling system to cope with this increased power have been investigated. Tests of a phase change coolant known as "binary ice" have been carried out using an induction heater to provide a comparable power input to the Dynamitron beam. The experimental data shows no improvement over chilled water in the submerged jet system, with both systems exhibiting the same heat input to target temperature relation for a given flow rate. The relationship between the cooling circuit pumping rate and the target temperature in the submerged jet system has also been tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    CERN Document Server

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...