WorldWideScience

Sample records for microcanonical unimolecular rate

  1. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

    Science.gov (United States)

    Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I

    2017-11-21

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.

  2. Microcanonical rates, gap times, and phase space dividing surfaces

    NARCIS (Netherlands)

    Ezra, Gregory S.; Waalkens, Holger; Wiggins, Stephen

    2009-01-01

    The general approach to classical unimolecular reaction rates due to Thiele is revisited in light of recent advances in the phase space formulation of transition state theory for multidimensional systems. Key concepts, such as the phase space dividing surface separating reactants from products, the

  3. Direct observation of unimolecular decay of CH{sub 3}CH{sub 2}CHOO Criegee intermediates to OH radical products

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yi; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Klippenstein, Stephen J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH{sub 3}CH{sub 2}CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice–Ramsperger–Kassel–Marcus calculations of the microcanonical unimolecular decay rate for CH{sub 3}CH{sub 2}CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantly to the decay rate. Infrared transitions of CH{sub 3}CH{sub 2}CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH{sub 3}CH{sub 2}CHOO of ca. 10{sup 7} s{sup −1}, which are slower than those obtained for syn-CH{sub 3}CHOO or (CH{sub 3}){sub 2}COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH{sub 3}CH{sub 2}CHOO under atmospheric conditions, giving a rate of 279 s{sup −1} at 298 K.

  4. The rate coefficients of unimolecular reactions in the systems with power-law distributions

    Science.gov (United States)

    Yin, Cangtao; Guo, Ran; Du, Jiulin

    2014-08-01

    The rate coefficient formulae of unimolecular reactions are generalized to the systems with the power-law distributions based on nonextensive statistics, and the power-law rate coefficients are derived in the high and low pressure limits, respectively. The numerical analyses are made of the rate coefficients as functions of the ν-parameter, the threshold energy, the temperature and the number of degrees of freedom. We show that the new rate coefficients depend strongly on the ν-parameter different from one (thus from a Boltzmann-Gibbs distribution). Two unimolecular reactions, CH3CO→CH3+CO and CH3NC→CH3CN, are taken as application examples to calculate their power-law rate coefficients, which obtained with the ν-parameters slightly different from one can be exactly in agreement with all the experimental studies on these two reactions in the given temperature ranges.

  5. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  6. Microcanonical simulation of Ising systems

    International Nuclear Information System (INIS)

    Bhanot, G.; Neuberger, H.

    1984-01-01

    Numerical simulations of the microcanonical ensemble for Ising systems are described. We explain how to write very fast algorithms for such simulations, relate correlations measured in the microcanonical ensemble to those in the canonical ensemble and discuss criteria for convergence and ergodicity. (orig.)

  7. Quantum theory of enhanced unimolecular reaction rates below the ergodicity threshold

    International Nuclear Information System (INIS)

    Leitner, David M.; Wolynes, Peter G.

    2006-01-01

    A variety of unimolecular reactions exhibit measured rates that exceed Rice-Ramsperger-Kassel-Marcus (RRKM) predictions. We show using the local random matrix theory (LRMT) of vibrational energy flow how the quantum localization of the vibrational states of a molecule, by violating the ergodicity assumption, can give rise to such an enhancement of the apparent reaction rate. We present an illustrative calculation using LRMT for a model 12-vibrational mode organic molecule to show that below the ergodicity threshold the reaction rate may exceed many times the RRKM prediction due to quantum localization of vibrational states

  8. Microcanonical formulation of quantum field theories

    International Nuclear Information System (INIS)

    Iwazaki, A.

    1984-03-01

    A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)

  9. Lattice gauge theory in the microcanonical ensemble

    International Nuclear Information System (INIS)

    Callaway, D.J.E.; Rahman, A.

    1983-01-01

    The microcanonical-ensemble formulation of lattice gauge theory proposed recently is examined in detail. Expectation values in this new ensemble are determined by solving a large set of coupled ordinary differential equations, after the fashion of a molecular dynamics simulation. Following a brief review of the microcanonical ensemble, calculations are performed for the gauge groups U(1), SU(2), and SU(3). The results are compared and contrasted with standard methods of computation. Several advantages of the new formalism are noted. For example, no random numbers are required to update the system. Also, this update is performed in a simultaneous fashion. Thus the microcanonical method presumably adapts well to parallel processing techniques, especially when the p action is highly nonlocal (such as when fermions are included)

  10. Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods

    Science.gov (United States)

    Adams, G. F.

    1980-01-01

    The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.

  11. Microcanonical ensemble formulation of lattice gauge theory

    International Nuclear Information System (INIS)

    Callaway, D.J.E.; Rahman, A.

    1982-01-01

    A new formulation of lattice gauge theory without explicit path integrals or sums is obtained by using the microcanonical ensemble of statistical mechanics. Expectation values in the new formalism are calculated by solving a large set of coupled, nonlinear, ordinary differential equations. The average plaquette for compact electrodynamics calculated in this fashion agrees with standard Monte Carlo results. Possible advantages of the microcanonical method in applications to fermionic systems are discussed

  12. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod; Alabbad, Mohammed; Farooq, Aamir

    2016-01-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored

  13. Microcanonical Monte Carlo approach for computing melting curves by atomistic simulations

    OpenAIRE

    Davis, Sergio; Gutiérrez, Gonzalo

    2017-01-01

    We report microcanonical Monte Carlo simulations of melting and superheating of a generic, Lennard-Jones system starting from the crystalline phase. The isochoric curve, the melting temperature $T_m$ and the critical superheating temperature $T_{LS}$ obtained are in close agreement (well within the microcanonical temperature fluctuations) with standard molecular dynamics one-phase and two-phase methods. These results validate the use of microcanonical Monte Carlo to compute melting points, a ...

  14. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  15. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  16. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed; Giri, Binod; Szőri, Milá n; Farooq, Aamir

    2016-01-01

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  17. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed

    2016-09-20

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  18. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    Alabbad, Mohammed

    2017-07-08

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  19. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    Alabbad, Mohammed; Giri, Binod; Szőri, Milan; Viskolcz, Bé la; Farooq, Aamir

    2017-01-01

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  20. Microcanonical simulation of nuclear multifragmentation

    International Nuclear Information System (INIS)

    Randrup, J.; Koonin, S.E.

    1987-01-01

    We discuss the formal basis for the theoretical treatment of nuclear multifragmentation within a microcanonical framework. The important role played by highly excited nuclear states and the interfragment forces is illustrated. The requirement of detailed balance is especially discussed and illustrated for the fission-fusion Metropolis moves in configuration space. 13 refs., 2 figs

  1. Microcanonical simulations in classical and quantum field theory

    International Nuclear Information System (INIS)

    Olson, D.P.

    1988-01-01

    In the first part of this thesis, a stochastic adaptation of the microcanonical simulation method is applied to the numerical simulation of the Su-Schrieffer-Heeger Hamiltonian for polyacetylene, a one-dimensional polymer were fermion-boson interactions play a dominant role in the dynamics of the system. The pure microcanonical simulation method fails in the marginally ergodic case and a stochastic adaptation, the hybrid microcanonical method, is employed to resolve problems with ergodicity. The hybrid method is shown to be an efficient method for higher dimensional fermionic quantum systems. In the second part of this thesis, a numerical simulation of the evolution of a network of global cosmic strings is an expanding Robertson-Walker universe is carried out. The system is quenched through an order-disorder phase transition and the nature of the string distribution is examined. While the string distribution observed at the phase transition is in good agreement with earlier estimates, the simulation reveals that the dynamics of the strings are suppressed by interactions with the Goldstone field. The network decays by topological annihilation and no spatial correlations are observed at any point in the simulation

  2. Classification of Phase Transitions by Microcanonical Inflection-Point Analysis

    Science.gov (United States)

    Qi, Kai; Bachmann, Michael

    2018-05-01

    By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identifying and locating independent and dependent phase transitions of any order is proposed. The power of the generalized method is demonstrated in applications to the ferromagnetic Ising model and a coarse-grained model for polymer adsorption onto a substrate. The results shed new light on the intrinsic phase structure of systems with cooperative behavior.

  3. Solvable model of quantum microcanonical states

    International Nuclear Information System (INIS)

    Bender, Carl M; Brody, Dorje C; Hook, Daniel W

    2005-01-01

    This letter examines the consequences of a recently proposed modification of the postulate of equal a priori probability in quantum statistical mechanics. This modification, called the quantum microcanonical postulate (QMP), asserts that for a system in microcanonical equilibrium all pure quantum states having the same energy expectation value are realized with equal probability. A simple model of a quantum system that obeys the QMP and that has a nondegenerate spectrum with equally spaced energy eigenvalues is studied. This model admits a closed-form expression for the density of states in terms of the energy eigenvalues. It is shown that in the limit as the number of energy levels approaches infinity, the expression for the density of states converges to a δ function centred at the intermediate value (E max + E min )/2 of the energy. Determining this limit requires an elaborate asymptotic study of an infinite sum whose terms alternate in sign. (letter to the editor)

  4. Evaporation-condensation transition of the two-dimensional Potts model in the microcanonical ensemble

    KAUST Repository

    Nogawa, Tomoaki

    2011-12-05

    The evaporation-condensation transition of the Potts model on a square lattice is numerically investigated by the Wang-Landau sampling method. An intrinsically system-size-dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite-size scaling of them to indicate the clear tendency of numerical data to converge to the infinite-size limit predicted by phenomenological theory for the isotherm lattice gas model. © 2011 American Physical Society.

  5. Microcanonical ensemble and algebra of conserved generators for generalized quantum dynamics

    International Nuclear Information System (INIS)

    Adler, S.L.; Horwitz, L.P.

    1996-01-01

    It has recently been shown, by application of statistical mechanical methods to determine the canonical ensemble governing the equilibrium distribution of operator initial values, that complex quantum field theory can emerge as a statistical approximation to an underlying generalized quantum dynamics. This result was obtained by an argument based on a Ward identity analogous to the equipartition theorem of classical statistical mechanics. We construct here a microcanonical ensemble which forms the basis of this canonical ensemble. This construction enables us to define the microcanonical entropy and free energy of the field configuration of the equilibrium distribution and to study the stability of the canonical ensemble. We also study the algebraic structure of the conserved generators from which the microcanonical and canonical ensembles are constructed, and the flows they induce on the phase space. copyright 1996 American Institute of Physics

  6. Decontamination by Water-Soluble Unimolecular Metallopolymers

    National Research Council Canada - National Science Library

    Newkcome, George

    1998-01-01

    ...., diaminopyridine, bipyridine, or piperazine); the development of branched monomers and branched quaternary ammonium capping reagents, which offered a novel entree to supramolecular chemistry within unimolecular systems...

  7. The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2007-01-01

    We derive the microcanonical partition function of the ideal relativistic quantum gas with fixed intrinsic angular momentum as an expansion over fixed multiplicities. We developed a group theoretical approach by generalizing known projection techniques to the Poincare group. Our calculation is carried out in a quantum field framework and applies to particles with any spin. It extends known results in the literature in that it does not introduce any large volume approximation, and it takes particle spin fully into account. We provide expressions of the microcanonical partition function at fixed multiplicities in the limiting classical case of large volumes and large angular momenta and in the grand-canonical ensemble. We also derive the microcanonical partition function of the ideal relativistic quantum gas with fixed parity. (orig.)

  8. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    Science.gov (United States)

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  9. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  10. Passage from a pure state description to the microcanonical ...

    Indian Academy of Sciences (India)

    ensemble distribution (microcanonical distribution) has no memory of the initial state. In .... state is not erased as the subspace is still state-dependent and no statistical mechanics ... using in the present context, even for pure states, the entropy.

  11. Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space

    Science.gov (United States)

    Gross, D. H. E.

    1997-01-01

    This review is addressed to colleagues working in different fields of physics who are interested in the concepts of microcanonical thermodynamics, its relation and contrast to ordinary, canonical or grandcanonical thermodynamics, and to get a first taste of the wide area of new applications of thermodynamical concepts like hot nuclei, hot atomic clusters and gravitating systems. Microcanonical thermodynamics describes how the volume of the N-body phase space depends on the globally conserved quantities like energy, angular momentum, mass, charge, etc. Due to these constraints the microcanonical ensemble can behave quite differently from the conventional, canonical or grandcanonical ensemble in many important physical systems. Microcanonical systems become inhomogeneous at first-order phase transitions, or with rising energy, or with external or internal long-range forces like Coulomb, centrifugal or gravitational forces. Thus, fragmentation of the system into a spatially inhomogeneous distribution of various regions of different densities and/or of different phases is a genuine characteristic of the microcanonical ensemble. In these cases which are realized by the majority of realistic systems in nature, the microcanonical approach is the natural statistical description. We investigate this most fundamental form of thermodynamics in four different nontrivial physical cases: (I) Microcanonical phase transitions of first and second order are studied within the Potts model. The total energy per particle is a nonfluctuating order parameter which controls the phase which the system is in. In contrast to the canonical form the microcanonical ensemble allows to tune the system continuously from one phase to the other through the region of coexisting phases by changing the energy smoothly. The configurations of coexisting phases carry important informations about the nature of the phase transition. This is more remarkable as the canonical ensemble is blind against these

  12. Microcanon : wat je beslist moet weten over microbiologie

    NARCIS (Netherlands)

    Smit, H.; Doorn, van J.; Oost, van der J.; Reijnders, W.; Willemsen, P.T.J.

    2011-01-01

    Micro-organismen zijn onmisbaar voor het leven op aarde. De organismen zijn zo klein dat we ze niet zien, maar ze zijn des te belangrijk. Deze kleine organismen kunnen een positieve of negatieve invloed hebben. Soms klein, soms groot. De Microcanon geeft daarvan een goed beeld in zo'n zestig

  13. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    International Nuclear Information System (INIS)

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs

  14. Unimolecular and collisionally induced ion reactions

    International Nuclear Information System (INIS)

    Beynon, J.H.; Boyd, R.K.

    1978-01-01

    The subject is reviewed under the following headings: introduction (mass spectroscopy and the study of fragmentation reactions of gaseous positive ions); techniques and methods (ion sources, detection systems, analysis of ions, data reduction); collision-induced reactions of ions and unimolecular fragmentations of metastable ions; applications (ion structure, energetic measurements, analytical applications, other applications). 305 references. (U.K.)

  15. Statistical hadronization and hadronic micro-canonical ensemble II

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics. The micro-canonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient and fast computation of averages, which can be further improved in the limit of very large clusters. We have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of the multi-Poisson distribution as proposal matrix dramatically improves the computation performance. However, due to the correlation of subsequent samples, this method proves to be generally less robust and effective than the importance sampling method. (orig.)

  16. Critical behavior in a microcanonical multifragmentation model

    International Nuclear Information System (INIS)

    Raduta, A.H.; Raduta, A.R.; Chomaz, Ph.; Raduta, A.H.; Raduta, A.R.; Gulminelli, F.

    2001-01-01

    Scaling properties of the fragment size distributions are studied in a microcanonical multifragmentation model. A new method based on the global quality of the scaling function is presented. Scaling is not washed out by the long range Coulomb interaction nor by secondary decays for a wide range of source masses, densities and deposited energies. However, the influence of these factors on precise value of the critical exponents as well as the finite size corrections to scaling are shown to be important and to affect the possible determination of a specific universality class. (authors)

  17. Dressing effect in multiphoton unimolecular dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, P.F.; Garcia-Fernandez, P.

    1986-03-01

    On the basis of a quantum-statistical model recently discussed, we deal in this paper with the perturbations induced by the intense field of a CO/sub 2/ laser on the levels of the vibrational pattern of a molecule undergoing multiphoton unimolecular dissociation. This perturbational correction is investigated by using a displacement operator technique and the results are interpreted according to the statistical model.

  18. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    Science.gov (United States)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode

  19. Microcanonical Szilárd engines beyond the quasistatic regime

    Science.gov (United States)

    Acconcia, Thiago V.; Bonança, Marcus V. S.

    2017-12-01

    We discuss the possibility of extracting energy from a single thermal bath using microcanonical Szilárd engines operating in finite time. This extends previous works on the topic which are restricted to the quasistatic regime. The feedback protocol is implemented based on linear response predictions of the excess work. It is claimed that the underlying mechanism leading to energy extraction does not violate Liouville's theorem and preserves ergodicity throughout the cycle. We illustrate our results with several examples including an exactly solvable model.

  20. An ab initio/Rice-Ramsperger-Kassel-Marcus prediction of rate constant and product branching ratios for unimolecular decomposition of propen-2-ol and related H+CH2COHCH2 reaction

    Science.gov (United States)

    Zhou, Chong-Wen; Li, Ze-Rong; Liu, Cun-Xi; Li, Xiang-Yuan

    2008-12-01

    Enols have been found to be important intermediates in the combustion flames of hydrocarbon [C. A. Taatjes et al., Science 308, 1887 (2005)]. The removal mechanism of enols in combustion flame has not been established yet. In this work, the potential energy surface for the unimolecular decomposition of syn-propen-2-ol and H+CH2COHCH2 recombination reactions have been first investigated by CCSD(T) method. The barrier heights, reaction energies, and geometrical parameters of the reactants, products, intermediates, and transition states have been investigated theoretically. The results show that the formation of CH3CO+CH3 via the CH3COCH3 intermediate is dominant for the unimolecular decomposition of syn-propen-2-ol and its branching ratio is over 99% in the whole temperature range from 700 to 3000 K, and its rate constant can be expressed as an analytical form in the range of T =700-3000 K at atmospheric pressure. This can be attributed to the lower energy barrier of this channel compared to the other channels. The association reaction of H with CH2COHCH2 is shown to be a little more complicated than the unimolecular decomposition of syn-propen-2-ol. The channel leading to CH3CO+CH3 takes a key role in the whole temperature range at atmospheric pressure. However at the higher pressure of 100 atm, the recombination by direct formation of syn-propen-2-ol through H addition is important at T 1400 K, the recombination channel leading to CH3CO+CH3 turns out to be significant.

  1. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  2. Microcanonical entropy of a black hole

    International Nuclear Information System (INIS)

    Bhaduri, Rajat K.; Tran, Muoi N.; Das, Saurya

    2004-01-01

    It has been suggested recently that the microcanonical entropy of a system may be accurately reproduced by including a logarithmic correction to the canonical entropy. In this paper we test this claim both analytically and numerically by considering three simple thermodynamic models whose energy spectrum may be defined in terms of one quantum number only, as in a non-rotating black hole. The first two pertain to collections of noninteracting bosons, with logarithmic and power-law spectra. The last is an area ensemble for a black hole with equi-spaced area spectrum. In this case, the many-body degeneracy factor can be obtained analytically in a closed form. We also show that in this model, the leading term in the entropy is proportional to the horizon area A, and the next term is ln A with a negative coefficient

  3. On the microcanonical description D-brane thermodynamics

    International Nuclear Information System (INIS)

    Meana, Marco Laucelli; Penalba, Jesus Puente

    1999-01-01

    We study the microcanonical description of string gases in the presence of D-branes. We obtain exact expressions for the single string density of states and draw the regions in phase space where asymptotic approximations are valid. We are able to describe the whole range of energies including the SYM phase of the D-branes and we remark the importance of the infrared cut-off used in the high energy approximations. With the complete expression we can obtain the density of states of the multiple string gas and study its thermal properties, showing that the Hagedorn temperature is maximum for every system and there is never a phase transition whenever there is thermal contact among the strings attached to different D-branes

  4. Iso-scaling in a microcanonical multifragmentation model

    International Nuclear Information System (INIS)

    Raduta, R.; Raduta, H.

    2003-01-01

    A microcanonical multifragmentation model is used to investigate iso-scaling over a broad range of excitation energies, for several values of freeze-out volume and equilibrated sources with masses between 40 and 200 in both primary and asymptotic stages of the decay. It was found that the values of the slope parameters α and β depend on the size and excitation energy of the source and are affected by the secondary decay of primary fragments. It was evidenced that iso-scaling is affected by finite size effects. The evolution of the differences of neutron and proton chemical potentials corresponding to two equilibrated nuclear sources having the same size and different isospin values with temperature and freeze-out volume is presented. (authors)

  5. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG

    Science.gov (United States)

    Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.

    2015-01-01

    We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573

  6. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  7. Unimolecular reaction dynamics of free radicals

    International Nuclear Information System (INIS)

    Terry A. Miller

    2006-01-01

    Free radical reactions are of crucial importance in combustion and in atmospheric chemistry. Reliable theoretical models for predicting the rates and products of these reactions are required for modeling combustion and atmospheric chemistry systems. Unimolecular reactions frequently play a crucial role in determining final products. The dissociations of vinyl, CH2= CH, and methoxy, CH3O, have low barriers, about 13,000 cm-1 and 8,000 cm-1, respectively. Since barriers of this magnitude are typical of free radicals these molecules should serve as benchmarks for this important class of reactions. To achieve this goal, a detailed understanding of the vinyl and methoxy radicals is required. Results for dissociation dynamics of vinyl and selectively deuterated vinyl radical are reported. Significantly, H-atom scrambling is shown not to occur in this reaction. A large number of spectroscopic experiments for CH3O and CHD2O have been performed. Spectra recorded include laser induced fluorescence (LIF), laser excited dispersed fluorescence (LEDF), fluorescence dip infrared (FDIR) and stimulated emission pumping (SEP). Such results are critical for implementing dynamics experiments involving the dissociation of methoxy

  8. Thermal unimolecular decomposition of bicyclopropyl and deuterated analogues: infrared photoactivation as a diagnostic tool in mechanistic organic chemistry

    International Nuclear Information System (INIS)

    Farneth, W.E.; Thomsen, M.W.

    1982-01-01

    The infrared photochemistry of bicyclopropyl yields product mixtures that are not easily rationalized on the basis of the mechanistic scheme suggested by previous pyrolysis work. As a result of this inconsistency the thermal chemistry of bicyclopropyl and analogues deuterated specifically on one ring has been reexamined. A significant new reaction channel involving the chemically activated decomposition of cyclohexene to ethylene and butadiene has been demonstrated. Evidence for the involvement of chemically activated cyclohexene is as follows: (1) isotopic labeling studies implying a symmetric intermediate, (2) a pressure-dependent ratio of cyclohexene to butadiene and ethylene, (3) good agreement between experimental and calculated values for the unimolecular rate constant for retro-Diels-Alder decay of ''hot'' cyclohexene. A comprehensive mechanism for the unimolecular decay of bicyclopropyl is proposed. The important elements of this mechanism are a single first-formed 1,3 biradical common to all products and the intervention of chemical activation in the generation of several of the secondary products

  9. Sampling microcanonical measures of the 2D Euler equations through Creutz’s algorithm: a phase transition from disorder to order when energy is increased

    International Nuclear Information System (INIS)

    Potters, Max; Vaillant, Timothee; Bouchet, Freddy

    2013-01-01

    The 2D Euler equations are basic examples of fluid models for which a microcanonical measure can be constructed from first principles. This measure is defined through finite-dimensional approximations and a limiting procedure. Creutz’s algorithm is a microcanonical generalization of the Metropolis–Hastings algorithm (to sample Gibbs measures, in the canonical ensemble). We prove that Creutz’s algorithm can sample finite-dimensional approximations of the 2D Euler microcanonical measures (incorporating fixed energy and other invariants). This is essential as microcanonical and canonical measures are known to be inequivalent at some values of energy and vorticity distribution. Creutz’s algorithm is used to check predictions from the mean-field statistical mechanics theory of the 2D Euler equations (the Robert–Sommeria–Miller theory). We find full agreement with theory. Three different ways to compute the temperature give consistent results. Using Creutz’s algorithm, a first-order phase transition never observed previously and a situation of statistical ensemble inequivalence are found and studied. Strikingly, and in contrast to the usual statistical mechanics interpretations, this phase transition appears from a disordered phase to an ordered phase (with fewer symmetries) when the energy is increased. We explain this paradox. (paper)

  10. Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions

    International Nuclear Information System (INIS)

    Sinclair, D.K.

    1986-10-01

    Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass

  11. Microcanonical simulation of nuclear disassembly

    International Nuclear Information System (INIS)

    Koonin, S.E.; Randrup, J.

    1986-01-01

    There is considerable interest in the disassembly of the hot nuclear matter produced in high-energy nuclear collisions. A particular stimulus has been the prospect of observing a nuclear liquid-gas phase transition. On rather general grounds, such a transition is expected to occur in nuclear matter at subsaturation densities with temperatures of 10-20 MeV. However, virtually all previous discussions of this phenomenon have been based on thermodynamical considerations valid for infinite, non-interacting systems and the qualitative validity of the results has not been ascertained for the relatively small, finite, interacting systems of practical relevance. Nor is it clear how the occurrence of the phase transition will manifest itself in the asymptotically observed fragment distribution. To progress in these matters, the authors have formulated a microcanonical simulation of the disassembly process, including interfragment interactions. It is a natural refinement of the grand canonical model first presented in [1] and further developed in [2] and is also a exact version of the model developed in [3] for the generation of complete multifragment events in medium-energy collisions. In this contribution, the authors give a brief description of the key ingredients in the model and its numerical implementation

  12. Maximum entropy reconstruction of the configurational density of states from microcanonical simulations

    International Nuclear Information System (INIS)

    Davis, Sergio

    2013-01-01

    In this work we develop a method for inferring the underlying configurational density of states of a molecular system by combining information from several microcanonical molecular dynamics or Monte Carlo simulations at different energies. This method is based on Jaynes' Maximum Entropy formalism (MaxEnt) for Bayesian statistical inference under known expectation values. We present results of its application to measure thermodynamic entropy and free energy differences in embedded-atom models of metals.

  13. Mixed quantum-classical studies of energy partitioning in unimolecular chemical reactions

    Science.gov (United States)

    Bladow, Landon Lowell

    A mixed quantum-classical reaction path Hamiltonian method is utilized to study the dynamics of unimolecular reactions. The method treats motion along the reaction path classically and treats the transverse vibrations quantum mechanically. The theory leads to equations that predict the disposai of the exit-channel potential energy to product translation and vibration. In addition, vibrational state distributions are obtained for the product normal modes. Vibrational excitation results from the curvature of the minimum energy reaction path. The method is applied to six unimolecular reactions: HF elimination from fluoroethane, 1,1-difluoroethane, 1,1-difluoroethene, and trifluoromethane; and HCl elimination from chloroethane and acetyl chloride. The minimum energy paths were calculated at either the MP2 or B3LYP level of theory. In all cases, the majority of the vibrational excitation of the products occurs in the HX fragment. The results are compared to experimental data and other theoretical results, where available. The best agreement between the experimental and calculated HX vibrational distributions is found for the halogenated ethanes, and the experimental deduction that the majority of the HX vibrational excitation arises from the potential energy release is supported. It is believed that the excess energy provided in experiments contributes to the poorer agreement between experiment and theory observed for HF elimination from 1,1-difluoroethene and trifluoromethane. An attempt is described to incorporate a treatment of the excess energy into the present method. However, the sign of the curvature coupling elements is then found to affect the dynamics. Overall, the method appears to be an efficient dynamical tool for modeling the disposal of the exit-channel potential energy in unimolecular reactions.

  14. Microcanonical algorithm of carged roteting dilatonic black holes from the viewpoint of the Kaluza-Klein theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Microcanonical ensemble paradigm is described in proper reference to the thermal aspect of the extremal state for a dilute gas of charged rotating black holes coupled to a dilaton field on the basis of the boosted Kerr solution of the Kaluza-Klein theory.

  15. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  16. Beyond quantum microcanonical statistics

    International Nuclear Information System (INIS)

    Fresch, Barbara; Moro, Giorgio J.

    2011-01-01

    Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schroedinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.

  17. Predicted thermochemistry and unimolecular kinetics of nitrous sulfide

    DEFF Research Database (Denmark)

    Marshall, Paul; Gao, Yide; Glarborg, Peter

    2011-01-01

    The geometry of N2S was obtained at the CCSD(T)/aug-cc-pV(T + d)Z level of theory and energies with coupled-cluster single double triple (CCSD(T)) and basis sets up to aug-cc-pV(6 + d)Z. After correction for anharmonic zero-point energy, core-valence correlation, correlation up to CCSDT...... crossing point between singlet and triplet potential energy curves is found at r(N-N) approximate to 1.105 angstrom and r(N-S) approximate to 2.232 angstrom, with an energy 72 kJ mol (1) above N-2 + S(P-3). Application of Troe's unimolecular formalism yields the low-pressure-limiting rate constant......(Q) and relativistic effects, D-0 for the N-S bond is estimated as 71.9 kJ mol (1), and the corresponding thermochemistry for N2S is Delta H-f(0)degrees = 205.4 kJ mol(-1) and Delta H-f(298)degrees = 202.6 kJ mol(-1) with an uncertainty of +/- 2.5 kJ mol(-1). Using CCSD(T)/aug-cc-pV(T + d) theory the minimum energy...

  18. Microcanonical functional integral for the gravitational field

    International Nuclear Information System (INIS)

    Brown, J.D.; York, J.W. Jr.

    1993-01-01

    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function

  19. Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing Javier

    2018-05-01

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with their favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular and H-assisted tautomerism of propen-2-ol to acetone, which are included in butanol combustion kinetic models, are assigned rate parameters based on the analogous unimolecular tautomerism vinyl alcohol ↔ acetaldehyde and H addition to the double bound of iso-butene, respectively. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the unimolecular and H-assisted tautomerism, i-C3H5OH⟺CH3COCH3 and i-C3H5OH+Ḣ⟺CH3COCH3+Ḣ, was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) and CCSD(T)/aug-cc-pVTZ//M062X/cc-pVTZ ab initio calculations, respectively. For H-assisted tautomerism, the reaction takes place in two consecutive steps: i-C3H5OH+Ḣ⟺CH3ĊOHCH3 and CH3ĊOHCH3⟺CH3COCH3+Ḣ. Multistructural torsional anharmonicity and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both isomerizations. Results for unimolecular tautomerism differ from vinyl alcohol ↔ acetaldehyde analogue reactions, which shows lower rate constant values. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed unimolecular rate constants showed important differences in comparison with previous results, such as larger acetone yield and

  20. Tunneling and reflection in unimolecular reaction kinetic energy release distributions

    Science.gov (United States)

    Hansen, K.

    2018-02-01

    The kinetic energy release distributions in unimolecular reactions is calculated with detailed balance theory, taking into account the tunneling and the reflection coefficient in three different types of transition states; (i) a saddle point corresponding to a standard RRKM-type theory, (ii) an attachment Langevin cross section, and (iii) an absorbing sphere potential at short range, without long range interactions. Corrections are significant in the one dimensional saddle point states. Very light and lightly bound absorbing systems will show measurable effects in decays from the absorbing sphere, whereas the Langevin cross section is essentially unchanged.

  1. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers

    International Nuclear Information System (INIS)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 μm laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 μm excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 μm excitation than for 10 μm excitation, reflecting bottlenecking in the discrete region of 10 μm excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF 6 caused by vibrational self-quenching. Between 1000-3000 cm -1 of energy is removed from SF 6 excited to approx. > 60 kcal/mole by collision with a cold SF 6 molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF 4 as absorbing gas for the CO 2 laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail

  2. Unraveling the role of entropy in tuning unimolecular vs . bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals

    KAUST Repository

    Falivene, Laura

    2018-04-24

    Olefin polymerization catalyzed by Group 4 transition metals is studied here as test case to reveal the entropy effects when bimolecular and unimolecular reactions are computed for processes occurring in solution. Catalytic systems characterized by different ligand frameworks, metal, and growing polymeric chain for which experimental data are available have been selected in order to validate the main approaches to entropy calculation. Applying the “standard” protocol results in a strong disagreement with the experimental results and the methods introducing a direct correction of the translational entropy term based on a single experimental parameter emerge as the most reliable. The general and powerful computational tool achieved in this study can represent a further step towards the “catalyst design” to control and predict the molecular mass of the resulting polymers.

  3. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    Science.gov (United States)

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Thermal unimolecular decomposition of methanol. Zum thermischen unimolekularen Zerfall von Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, K

    1979-01-01

    The thermal unimolecular decomposition of methanol and that of acetone (1B) were investigated experimentally after reflected shockwaves, by following up the OH and CH/sub 3/ absorption or the CH/sub 3/ and acetone absorption respectively. A computer simulation of the decomposition of methanol and the subsequent reactions was done. This gave velocity constants for some reactions, which are different from those that are found in the literature. The experimental investigation of the decomposition of acetone, from comparison of the results with the data in the literature, shows that the observations of CH/sub 3/ absorption are very suitable for obtaining velocity constants for decomposition reactions, where CH/sub 3/ radicals are formed in the first stage.

  5. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.

    Science.gov (United States)

    Paul, Amit K; Hase, William L

    2016-01-28

    A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.

  6. Competing reaction channels in IR-laser-induced unimolecular reactions

    International Nuclear Information System (INIS)

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO 2 laser was used as the excitation source in all experiments. The dissociation of D 2 CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D 2 CO. MPD yield shows a near cubic dependence in pure D 2 CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 μm ir fluorescence from D 2 CO is proportional to the square of the D 2 CO pressure in pure D 2 CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D 2 CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm 2 at 946.0 cm -1 . The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D 2 CO. In H 2 CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF 4 - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel

  7. Optimal control of bond selectivity in unimolecular reactions

    International Nuclear Information System (INIS)

    Shi Shenghua; Rabitz, H.

    1991-01-01

    The optimal control theory approach to designing optimal fields for bond-selective unimolecular reactions is presented. A set of equations for determining the optimal fields, which will lead to the achievement of the objective of bond-selective dissociation is developed. The numerical procedure given for solving these equations requires the repeated calculation of the time propagator for the system with the time-dependent Hamiltonian. The splitting approximation combined with the fast Fourier transform algorithm is used for computing the short time propagator. As an illustrative example, a model linear triatomic molecule is treated. The model system consists of two Morse oscillators coupled via kinetic coupling. The magnitude of the dipoles of the two Morse oscillators are the same, the fundamental frequencies are almost the same, but the dissociation energies are different. The rather demanding objective under these conditions is to break the stronger bond while leaving the weaker one intact. It is encouraging that the present computational method efficiently gives rise to the optimal field, which leads to the excellent achievement of the objective of bond selective dissociation. (orig.)

  8. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  9. Furfural: The Unimolecular Dissociative Photoionization Mechanism of the Simplest Furanic Aldehyde.

    Science.gov (United States)

    Winfough, Matthew; Voronova, Krisztina; Muller, Giel; Laguisma, Gabrielle; Sztáray, Bálint; Bodi, Andras; Meloni, Giovanni

    2017-05-11

    The unimolecular dissociation reactions of energy-selected furfural cations have been studied by imaging photoelectron photoion coincidence spectroscopy at the vacuum-ultraviolet (VUV) beamline of the Swiss Light Source. In the photon energy range of 10.9-14.5 eV, furfural ions decay by numerous fragmentation channels. Modeling the breakdown diagram yielded the 0 K appearance energies of 10.95 ± 0.10, 11.16, and 12.03 eV for the c-C 4 H 3 O-CO + (m/z = 95), c-C 4 H 4 O + (m/z = 68), and c-C 3 H 3 + (m/z = 39) fragment ions, respectively, formed by parallel dissociation channels. An internal conversion from the A″ to the A' electronic state via a conical intersection takes place along the reaction coordinate in the case of the H-loss channel (c-C 4 H 3 O-CO + formation). Quantum chemical calculations and experimental results confirmed a fast conversion to the A' state and that the rate-determining step is a tight transition state on the potential energy surface. Appearance energies were also derived for the sequential dissociation products from the furan cation, c-C 4 H 4 O + , for the formation of CH 2 CO + (m/z = 42), C 3 H 4 + (m/z = 40), and CHO + (m/z = 29) at 12.81, 12.80, and 13.34 eV, respectively. Statistical rate theory modeling of the breakdown diagram can also be used to predict the fractional ion abundances and thermal shifts in mass spectrometric pyrolysis studies to help assigning the m/z channels either to ionization of the neutrals or to dissociative ionization processes, with potential use for combustion diagnostics. The cationic geometry optimizations yielded functional-dependent spurious DFT minima and a deviating planar MP2 optimized geometry, which are briefly discussed.

  10. Unimolecular reactions of 1,1,1-trichloroethane, 1,1,1-trichloropropane, and 3,3,3-trifluoro-1,1,1-trichloropropane: determination of threshold energies by chemical activation.

    Science.gov (United States)

    Turpin, Martha A; Smith, Kylie C; Heard, George L; Setser, D W; Holmes, Bert E

    2014-10-09

    The recombination of CCl3 radicals with CH3, CH3CH2, and CF3CH2 radicals was used to generate CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3 molecules with approximately 87 kcal mol(-1) of vibrational energy in a bath gas at room temperature. The competition between collisional deactivation and unimolecular reaction by HCl elimination was used to obtain the experimental rate constants for each molecule. These experimental rate constants were matched to calculated statistical unimolecular rate constants to assign threshold energies to the three HCl elimination reactions. The models needed for the calculations of the rate constants were obtained from molecular structure calculations using density functional theory (DFT) with the hybrid density-functional MO6-2X recommended by Truhlar for transition states. The assigned threshold energies are 52 ± 2, 50 ± 2, and 52 ± 2 kcal mol(-1) for CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3, respectively, and the CH3 and CF3 groups have only a minor effect on the threshold energies for HCl elimination. The DFT calculated threshold energies are in agreement with the experimentally assigned values. The addition of Cl atoms to the same carbon atom lowers the threshold energy for HCl elimination in the CH3CH2Cl, CH3CHCl2, and CH3CCl3 series. This trend, which is the opposite of that for CH3CH2F, CH3CHF2, and CH3CF3, is discussed in terms of transition-state structure and correlated with the relative stabilities of CH3CH2(+), CH3CHCl(+), and CH3CCl2(+) ions; the relative stabilities are based on the hydride affinities obtained from calculations. Comparison of the reactions of CH3CCl3 and CH2ClCHCl2 shows that the threshold energy is much higher for the isomer with chlorine atoms on both carbon atoms.

  11. Picosecond real time study of the bimolecular reaction O(3P)+C2H4 and the unimolecular photodissociation of CH3CHO and H2CO

    Science.gov (United States)

    Abou-Zied, Osama K.; McDonald, J. Douglas

    1998-07-01

    The bimolecular reaction of O(3P) with ethylene and the unimolecular photodissociation of acetaldehyde and formaldehyde have been studied using a picosecond pump/probe technique. The bimolecular reaction was initiated in a van der Waals dimer precursor, C2H4ṡNO2, and the evolution of the vinoxy radical product monitored by laser-induced fluorescence. The NO2 constituent of the complex was photodissociated at 266 nm. The triplet oxygen atom then attacks a carbon atom of C2H4 to form a triplet diradical (CH2CH2O) which subsequently dissociates to vinoxy (CH2CHO) and H. The rise time of vinoxy radical production was measured to be 217 (+75-25) ps. RRKM theory was applied and a late high exit barrier was invoked in order to fit the measured rise time. The structure and binding energy of the van der Waals complex have been modeled using Lennard-Jones type potentials and the results were compared with other systems. The unimolecular side of the potential energy surfaces of this reaction has been investigated by photodissociating acetaldehyde at the same pump energy of 266 nm. The resulting photoproducts, acetyl radical (CH3CO) and formyl radical (HCO), have been monitored by resonance enhanced multiphoton ionization (REMPI) combined with a time-of-flight mass spectrometer. The similarity in the measured evolution times of both radicals indicates the same photodissociation pathway of the parent molecule. The photodissociation rate of acetaldehyde is estimated from RRKM theory to be very fast (3×1012s-1). The T1←S1 intersystem crossing (ISC) rate is found to be the rate determining step to photodissociation and increases with energy. The REMPI mechanism for the production of CH3CO+ is proposed to be the same as that of HCO+(2+1). The HCO product from the photodissociation of formaldehyde at 266 nm reveals a faster T1←S1 ISC rate than in acetaldehyde.

  12. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  13. The synthesis and characterization of water-reducible nanoscale Colloidal Unimolecular Polymer (CUP) particles

    Science.gov (United States)

    Riddles, Cynthia Jeannette

    The coatings industry has adapted to more stringent guidelines in paint formulations. Current VOC (volatile organic compound) limits placed by the federal government have pushed the industry toward the development of paint formulations which have very little to no VOC's. The development of Colloidal Unimolecular Polymer (CUP) particles is a step in the direction of providing a resin system which exists in zero VOC aqueous dispersion. The CUP particles are a part of the polymer field of Single Chain Nano Particles (SCNP) and ranged in diameters of 3-9 nm. The research presented in this dissertation describes the synthesis and design of these particles along with the various means of instrumentation used to gain insight into the structure and nature of these particles when suspended in aqueous medium.

  14. A Chemical Activation Study of the Unimolecular Reactions of CD3CD2CHCl2 and CHCl2CHCl2 with Analysis of the 1,1-HCl Elimination Pathway.

    Science.gov (United States)

    Larkin, Allie C; Nestler, Matthew J; Smith, Caleb A; Heard, George L; Setser, Donald W; Holmes, Bert E

    2016-10-03

    Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD=CHCl and CD3CD=CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD=CDCl under the conditions of the experiments. The experimental rate constants were 2.7 x107 and 0.47 x107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈ 66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 x 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. Based upon the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2Cl-CHCl2 molecules with 86 kcal mol-1 of energy in order to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.

  15. A High Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane

    KAUST Repository

    Alquaity, Awad B. S.; Giri, Binod Raj; Lo, John M.H.; Farooq, Aamir

    2015-01-01

    Unimolecular dissociation of 1,3,5-trioxane was investigated experimentally and theoretically over a wide range of conditions. Experiments were performed behind reflected shock waves over the temperature range of 775-1082 K and pressures near 900 Torr using a high-repetition rate time of flight mass spectrometer (TOF-MS) coupled to a shock tube (ST). Reaction products were identified directly, and it was found that formaldehyde is the sole product of 1,3,5-trioxane dissociation. Reaction rate coefficients were extracted by the best fit to the experimentally measured concentration-time histories. Additionally, high-level quantum chemical and RRKM calculations were employed to study the falloff behavior of 1,3,5-trioxane dissociation. Molecular geometries and frequencies of all species were obtained at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ levels of theory, whereas the single-point energies of the stationary points were calculated using coupled cluster with single and double excitations including the perturbative treatment of triple excitation (CCSD(T)) level of theory. It was found that the dissociation occurs via a concerted mechanism requiring an energy barrier of 48.3 kcal/mol to be overcome. The new experimental data and theoretical calculations serve as a validation and extension of kinetic data published earlier by other groups. Calculated values for the pressure limiting rate coefficient can be expressed as log10 k∞ (s-1) = [15.84 - (49.54 (kcal/mol)/2.3RT)] (500-1400 K). © 2015 American Chemical Society.

  16. A High Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane

    KAUST Repository

    Alquaity, Awad B. S.

    2015-05-15

    Unimolecular dissociation of 1,3,5-trioxane was investigated experimentally and theoretically over a wide range of conditions. Experiments were performed behind reflected shock waves over the temperature range of 775-1082 K and pressures near 900 Torr using a high-repetition rate time of flight mass spectrometer (TOF-MS) coupled to a shock tube (ST). Reaction products were identified directly, and it was found that formaldehyde is the sole product of 1,3,5-trioxane dissociation. Reaction rate coefficients were extracted by the best fit to the experimentally measured concentration-time histories. Additionally, high-level quantum chemical and RRKM calculations were employed to study the falloff behavior of 1,3,5-trioxane dissociation. Molecular geometries and frequencies of all species were obtained at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ levels of theory, whereas the single-point energies of the stationary points were calculated using coupled cluster with single and double excitations including the perturbative treatment of triple excitation (CCSD(T)) level of theory. It was found that the dissociation occurs via a concerted mechanism requiring an energy barrier of 48.3 kcal/mol to be overcome. The new experimental data and theoretical calculations serve as a validation and extension of kinetic data published earlier by other groups. Calculated values for the pressure limiting rate coefficient can be expressed as log10 k∞ (s-1) = [15.84 - (49.54 (kcal/mol)/2.3RT)] (500-1400 K). © 2015 American Chemical Society.

  17. Microcanonical-ensemble computer simulation of the high-temperature expansion coefficients of the Helmholtz free energy of a square-well fluid

    Science.gov (United States)

    Sastre, Francisco; Moreno-Hilario, Elizabeth; Sotelo-Serna, Maria Guadalupe; Gil-Villegas, Alejandro

    2018-02-01

    The microcanonical-ensemble computer simulation method (MCE) is used to evaluate the perturbation terms Ai of the Helmholtz free energy of a square-well (SW) fluid. The MCE method offers a very efficient and accurate procedure for the determination of perturbation terms of discrete-potential systems such as the SW fluid and surpass the standard NVT canonical ensemble Monte Carlo method, allowing the calculation of the first six expansion terms. Results are presented for the case of a SW potential with attractive ranges 1.1 ≤ λ ≤ 1.8. Using semi-empirical representation of the MCE values for Ai, we also discuss the accuracy in the determination of the phase diagram of this system.

  18. Application of Computational Methods Mm2 and Gussian for Studing Unimolecular Decomposition of Vinil Ethers based on the Mechanism of Hydrogen Bonding

    OpenAIRE

    Behnaz Shahrokh; Garnik N. Sargsyan; Arkadi B. Harutyunyan

    2012-01-01

    Investigations of the unimolecular decomposition of vinyl ethyl ether (VEE), vinyl propyl ether (VPE) and vinyl butyl ether (VBE) have shown that activation of the molecule of a ether results in formation of a cyclic construction - the transition state (TS), which may lead to the displacement of the thermodynamic equilibrium towards the reaction products. The TS is obtained by applying energy minimization relative to the ground state of an ether under the program MM2 when...

  19. Non-equilibrium reaction rates in chemical kinetic equations

    Science.gov (United States)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  20. Unimolecular H2 elimination during the liquid phase radiolysis and photolysis of alkane - alkane mixtures

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Foeldiak, G.

    1980-01-01

    Unimolecular H 2 elimination from alkanes was investigated in cyclopentane-cyclohexane, n-hexane-cyclohexane and cyclohexane-cyclooctane mixtures during fluradiolysis and 7.6 eV photolysis. During the radiolysis of all systems, and when the fluorescence shift law allowed it, during the photolysis as well, inhibited H 2 detachment was observed from the first component and sensitized hydrogen molecule elimination from the second. It has been concluded that the same excited state (the lowest singlet, S 1 ) is responsible for the H 2 elimination during radiolysis and photolysis and this is that one that gives rise to fluorescence in the experiments of other authors. The H 2 and H elimination from alkanes generally have different excited precursors. The direct population of S 1 by γ-irradiation is of limited importance and this intermediate is mainly produced in ''charge neutralization'' processes. (author)

  1. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, E., E-mail: svmstaya@gmail.com; Satyanarayana, S. V. M., E-mail: svmstaya@gmail.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  2. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    International Nuclear Information System (INIS)

    Praveen, E.; Satyanarayana, S. V. M.

    2014-01-01

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition

  3. Complexity, rate of energy exchanges and stochasticity

    International Nuclear Information System (INIS)

    Casartelli, M.; Sello, S.

    1987-01-01

    The complexity of trajectories in the phase of anharmonic crystal (mostly a Lennard-Jones chain) is analysed by the variance of microcanonical density and by new parameters P and chi defined, respectively, as the mean value of the time averages and the relative variance of the absolute exchange rate of energies among the normal modes. Evidence is given to the trapping action of residual invariant surfaces in low stochastic regime of motion. The parameter chi, moreover, proves efficient in exploring the border of stochasticity. A simple power law for P vs. the specific energy is obtained and proved to be independent of stochasticity and of the type of anharmonic potential

  4. Deuterium isotopic effects connected with unimolecular and concerted mechanisms. The case of 1-deutero-2-chloro alcohols

    International Nuclear Information System (INIS)

    Jambon, C.

    1962-01-01

    After a bibliographic analysis of the probable causes of isotopic effects and their comparison, with the simplifications provided by the athermal model, a discussion of the isotopic effect of deuterium in organic molecules in terms of structural influences is presented, showing the important role of the C-D bond length which is shorter than the C-H bond length, and of the D atom's Van der Waals radius, shorter than that of the H atom. Kinetic measurements were carried out on some reactions involving the mechanisms proposed: unimolecular ionizations and halogen concentrates. The structural models chosen are: 2-chloro-cyclo-hexanols cis and trans 1-H and 2-D; 2-chloro-cyclo-pentanols cis trans 1-H and 1-D; 1-phenyl-l-chloro-2-propanol threo 2-H and 2-D. (author) [fr

  5. Percolation versus microcanonical fragmentation - comparison of fragment size distribution: Where is the liquid-gas transition in nuclei?

    International Nuclear Information System (INIS)

    Jaqaman, H.R.; Birzeit Univ.; Papp, G.; Eoetvoes Lorand Tudomanyegyetem, Budapest; Gross, D.H.E.; Freie Univ. Berlin

    1990-01-01

    The distributions of fragments produced by microcanonical multifragmentation of hot nuclei are compared with the cluster distributions predicted by a bond percolation model on a finite lattice. The conditional moments of these distributions are used together with the correlations between the largest three fragments in each event. Whereas percolation and statistical nuclear fragmentation agree in many details as in the usual plots of the averaged moments of the fragment distributions which yield the critical exponents, they turn out to be essentially different when less averaged quantities or correlations are considered. The differences between the predictions of the two models are mainly due to the particularities of the nuclear problem, especially the effect of the long-range Coulomb force which favours the break-up of the highly excited nucleus into two large fragments (pseudo-fission) and, to a somewhat lesser extent, enhances the possibility for the cracking of the nucleus into more than two large fragments. The fission events are, however, clearly separated from a second branch of critical correlations which shows up clearly in both nuclear fragmentation and percolation. We think that this critical correlation branch is due to the liquid-gas phase transition in finite nuclei. (orig.)

  6. Temperature and Pressure Dependence of the Reaction S plus CS (+M) -> CS2 (+M)

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul; Troe, Juergen

    2015-01-01

    Experimental data for the unimolecular decomposition of CS2 from the literature are analyzed by unimolecular rate theory with the goal of obtaining rate constants for the reverse reaction S + CS (+M) -> CS2 (+M) over wide temperature and pressure ranges. The results constitute an important input...

  7. Formulation of state projected centroid molecular dynamics: Microcanonical ensemble and connection to the Wigner distribution.

    Science.gov (United States)

    Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas

    2017-06-07

    A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.

  8. Formulation of state projected centroid molecular dynamics: Microcanonical ensemble and connection to the Wigner distribution

    Science.gov (United States)

    Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas

    2017-06-01

    A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.

  9. Power spectra as a diagnostic tool in probing statistical/nonstatistical behavior in unimolecular reactions

    Science.gov (United States)

    Chang, Xiaoyen Y.; Sewell, Thomas D.; Raff, Lionel M.; Thompson, Donald L.

    1992-11-01

    The possibility of utilizing different types of power spectra obtained from classical trajectories as a diagnostic tool to identify the presence of nonstatistical dynamics is explored by using the unimolecular bond-fission reactions of 1,2-difluoroethane and the 2-chloroethyl radical as test cases. In previous studies, the reaction rates for these systems were calculated by using a variational transition-state theory and classical trajectory methods. A comparison of the results showed that 1,2-difluoroethane is a nonstatistical system, while the 2-chloroethyl radical behaves statistically. Power spectra for these two systems have been generated under various conditions. The characteristics of these spectra are as follows: (1) The spectra for the 2-chloroethyl radical are always broader and more coupled to other modes than is the case for 1,2-difluoroethane. This is true even at very low levels of excitation. (2) When an internal energy near or above the dissociation threshold is initially partitioned into a local C-H stretching mode, the power spectra for 1,2-difluoroethane broaden somewhat, but discrete and somewhat isolated bands are still clearly evident. In contrast, the analogous power spectra for the 2-chloroethyl radical exhibit a near complete absence of isolated bands. The general appearance of the spectrum suggests a very high level of mode-to-mode coupling, large intramolecular vibrational energy redistribution (IVR) rates, and global statistical behavior. (3) The appearance of the power spectrum for the 2-chloroethyl radical is unaltered regardless of whether the initial C-H excitation is in the CH2 or the CH2Cl group. This result also suggests statistical behavior. These results are interpreted to mean that power spectra may be used as a diagnostic tool to assess the statistical character of a system. The presence of a diffuse spectrum exhibiting a nearly complete loss of isolated structures indicates that the dissociation dynamics of the molecule will

  10. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF 4 is used as the sensitizer to absorb energy from a pulsed CO 2 laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF 6 is the reactant, CF 3 Cl is used as reagent to trap atomic fluorine reaction product, forming CF 4 as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF 6 unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF 6 as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs

  11. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  12. Theoretical Kinetic Study of the Unimolecular Keto–Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing

    2018-03-21

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-108 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.

  13. Theoretical Kinetic Study of the Unimolecular Keto–Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol

    KAUST Repository

    Grajales Gonzalez, Edwing Javier; Monge Palacios, Manuel; Sarathy, Mani

    2018-01-01

    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with its favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Enols are important intermediates in the combustion of C4 alcohols, as well as in atmospheric processes. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular tautomerism of propen-2-ol ↔ acetone, which is included in butanol combustion kinetic models, is assigned rate parameters based on the tautomerism vinyl alcohol ↔ acetaldehyde as an analogy. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the titled reaction was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) ab initio calculations, with multistructural torsional anharmonicity and variational transition state theory considerations in a wide temperature and pressure range (200-3000 K; 0.1-108 kPa). Results differ from vinyl alcohol ↔ acetaldehyde analogue reaction, which shows lower rate constant values. It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption.

  14. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    Science.gov (United States)

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-02

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.

  15. Proton transfer and unimolecular decay in the low-energy-reaction dynamics of H3O+ with acetone

    International Nuclear Information System (INIS)

    Creasy, W.R.; Farrar, J.M.

    1983-01-01

    The title reaction has been studied at collision energies of 0.83 and 2.41 eV. Direct reaction dynamics have been observed at both energies and an increasingly high fraction of the total energy appears in product translation as the collision energy increases. This result is consistent with the concept of induced repulsive energy release, which becomes more effective as trajectories sample the corner of the potential energy surface. At the higher collision energy, the protonated acetone cation undergoes two unimolecular decay channels: C-C bond cleavage to CH 3 CO + and CH 4 , and C-O bond cleavagto C 3 H 5 + (presumably to allyl cation) and H 2 O. The CH 3 CO + channel, endothermic relative to ground state protonated acetone cations by 0.74 eV, appears to liberate 0.4 eV in relative product translation while the C 3 H 5 + channel, endothermic by 2.17 eV, liberates only 0.07 eV in relative translation. These results are discussed in terms of the location on the reaction coordinate and magnitudes of potential energy barriers to 1,3-hydrogen atoms shifts which must precede the bond cleavage processes

  16. Unimolecular fragrmentations of the radical cation of the high-valent organometal oxide CH3ReO3 and its reactivity with ethylene in the gas phase

    Science.gov (United States)

    Schröder, Detlef; Herrmann, W. A.; Fischer, Richard W.; Schwarz, Helmut

    1992-12-01

    The unimolecular chemistry of CH3ReO[radical sign]+3 in the gas phase commences with a methyl migration to' generate CH3 OReO[radical sign]+2. This further undergoes multiple hydrogen migration to the metal centre to generate an intermediate which serves as a precursor for the elimination of both molecular hydrogen and of carbon monoxide. If CH3ReO[radical sign]+3 is reacted with ethylene, inter alia products are observed which point to a competition between an intramolecular metathesis reaction of the ethylene-inserted intermediate CH3CH2CH2ReO3[radical sign]+ and epoxidation of ethylene to generate c-C2H4O.

  17. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  18. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  19. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    Science.gov (United States)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also

  20. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  1. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    Science.gov (United States)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  2. TeV-scale black hole lifetimes in extra-dimensional Lovelock gravity

    International Nuclear Information System (INIS)

    Rizzo, Thomas G

    2006-01-01

    We examine the mass loss rates and lifetimes of TeV-scale extra-dimensional black holes (BH) in Arkani-Hamed, Dimopoulos and Dvali-like models with Lovelock higher-curvature terms present in the action. In particular, we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that result in the decay of these BH. In even numbers of extra dimensions, the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in the case of the Einstein-Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders

  3. Statistical mechanics of few-particle systems: exact results for two useful models

    Science.gov (United States)

    Miranda, Enrique N.

    2017-11-01

    The statistical mechanics of small clusters (n ˜ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B , as in the thermodynamic case, while within the microcanonical formalism the limit value is k B (1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.

  4. Momentum distribution functions in ensembles: the inequivalence of microcannonical and canonical ensembles in a finite ultracold system.

    Science.gov (United States)

    Wang, Pei; Xianlong, Gao; Li, Haibin

    2013-08-01

    It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.

  5. Ergodic theory, interpretations of probability and the foundations of statistical mechanics

    NARCIS (Netherlands)

    van Lith, J.H.

    2001-01-01

    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time

  6. Energy and Rate Determinations to Activate the C-C σ-BOND of Acetone by Gaseous NI^+

    Science.gov (United States)

    Castleberry, Vanessa A.; Dee, S. Jason; Villarroel, Otsmar J.; Laboren, Ivanna E.; Frey, Sarah E.; Bellert, Darrin J.

    2009-06-01

    A unique application of a custom fabricated photodissociation spectrometer permits the determination of thermodynamic properties (activation energies), reaction rates, and mechanistic details of bare metal cation mediated C-C σ-bond activation in the gas phase. Specifically, the products and rates resulting from the unimolecular decomposition of the Ni^+Acetone (Ni^+Ac) adduct are monitored after absorption of a known amount of energy. The three dissociative products which are observed in high yield are Ni^+, Ni^+CO, and CH3CO^+. The latter two fragment ions result from the activation of a C-C σ-bond. It was found that minimally 14 000 cm^{-1} of energy must be deposited into the adduct ion to induce C-C bond breakage. Preliminary results for the Ni^+ activation of the C-C σ-bond of acetone indicate that there are (at least) two low energy reaction coordinates leading to C-C bond breakage. The lower energy pathway emerges from the doublet ground state with an upper limit to the activation energy of 14 000 cm^{-1} and reaction rate ≈0.14 molecules/μs. The higher energy path is assumed to be along the quartet reaction coordinate with a minimum activation energy of 18 800 cm^{-1} (relative to the ground state) and a slightly slower reaction rate.

  7. Microcanonical Monte Carlo

    International Nuclear Information System (INIS)

    Creutz, M.

    1986-01-01

    The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena

  8. Isomerization and dissociation in competition: the two-component dissociation rates of methyl acetate ions

    Science.gov (United States)

    Mazyar, Oleg A.; Mayer, Paul M.; Baer, Tomas

    1997-11-01

    Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of metastable methyl acetate ions, CH3COOCH3.+. The rate of molecular ion fragmentation with the loss of CH3O. and CH2OH radicals as a function of ion internal energy was obtained from the coincidence data and used in conjunction with Rice-Ramsperger-Kassel-Markus and ab initio molecular orbital calculations to model the dissociation/isomerization mechanism of the methyl acetate ion (A). The data were found to be consistent with the mechanism involving a hydrogen-bridged complex CH3CO[middle dot][middle dot][middle dot]H[middle dot][middle dot][middle dot]OCH2.+(E) as the direct precursor of the observed fragments CH3CO+ and CH2OH.. The two-component decay rates were modeled with a three-well-two-product potential energy surface including the distonic ion CH3C(OH)OCH2.+(B) and enol isomer CH2C(OH)OCH3.+(C), which are formed from the methyl acetate ion by two consecutive [1,4]-hydrogen shifts. The 0 K heats of formation of isomers B and C as well as transition states TSAB, TSBC, and TSBE (relative to isomer A) were calculated from Rice-Ramsperger-Kassel-Markus (RRKM) theory.

  9. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El

    2015-01-01

    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  10. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    International Nuclear Information System (INIS)

    Kelley, D.

    1990-01-01

    The kinetics of the reactions of C 2 H 5 radical with Co(NH 3 ) 5 X 2+ , Ru(NH 3 ) 5 X 2+ , and Co(dmgH) 2 (X) (Y) (X = Br, Cl, N 3 , SCN; Y = H 2 O, CH 3 CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with β-Ni(cyclam) 2+ were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ were studied. Activation parameters were obtained for the unimolecular homolysis of C 2 H 5 Ni(cyclam)H 2 O 2+ . Kinetic and thermodynamic data obtained from these reactions were compared with those for the σ-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ complexes were studied by monitoring the formation of the oxygen insertion product RO 2 Ni(cyclam)H 2 O 2+ . The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs

  11. Universal canonical entropy for gravitating systems

    Indian Academy of Sciences (India)

    Similar to this is the case of ref. [12] which also uses the saddle point approximation to express the microcanonical entropy in terms of the canonical entropy [12a]. Recalling that there is at least 'circumstantial' evidence that the microcanonical entropy has a 'universal' form [13–15], identical to that obtained in ref. [6] quoted.

  12. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M+ and (ProLeu)M+ (M = Alkali Metal).

    Science.gov (United States)

    Jami-Alahmadi, Yasaman; Linford, Bryan D; Fridgen, Travis D

    2016-12-29

    The unimolecular chemistries and structures of gas-phase (ProLeu)M + and (LeuPro)M + complexes when M = Li, Na, Rb, and Cs have been explored using a combination of SORI-CID, IRMPD spectroscopy, and computational methods. CID of both (LeuPro)M + and (ProLeu)M + showed identical fragmentation pathways and could not be differentiated. Two of the fragmentation routes of both peptides produced ions at the same nominal mass as (Pro)M + and (Leu)M + , respectively. For the litiated peptides, experiments revealed identical IRMPD spectra for each of the m/z 122 and 138 ions coming from both peptides. Comparison with computed IR spectra identified them as the (Pro)Li + and (Leu)Li + , and it is concluded that both zwitterionic and canonical forms of (Pro)Li + exist in the ion population from CID of both (ProLeu)Li + and (LeuPro)Li + . The two isomeric peptide complexes could be distinguished using IRMPD spectroscopy in both the fingerprint and the CH/NH/OH regions. The computed IR spectra for the lowest energy structures of each charge solvated complexes are consistent with the IRMPD spectra in both regions for all metal cation complexes. Through comparison between the experimental spectra, it was determined that in lithiated and sodiated ProLeu, metal cation is bound to both carbonyl oxygens and the amine nitrogen. In contrast, the larger metal cations are bound to the two carbonyls, while the amine nitrogen is hydrogen bonded to the amide hydrogen. In the lithiated and sodiated LeuPro complexes, the metal cation is bound to the amide carbonyl and the amine nitrogen while the amine nitrogen is hydrogen bonded to the carboxylic acid carbonyl. However, there is no hydrogen bond in the rubidiated and cesiated complexes; the metal cation is bound to both carbonyl oxygens and the amine nitrogen. Details of the position of the carboxylic acid C═O stretch were especially informative in the spectroscopic confirmation of the lowest energy computed structures.

  13. Radiation-chemical discussion on inverse dose-rate effect observed in radiation-induced strand breaks of plasmid DNA

    International Nuclear Information System (INIS)

    Masuda, Takahiro

    1994-01-01

    Experimental results of inverse dose-rate effect, so-called Kada Effects, which was published by Takakura and her coworkers on radiation-induced strand breaks of plasmid DNA in aerated aqueous solution, have been kinetically analyzed and discussed on the basis of radiation chemistry. the kinetic analysis indicates that there are two possible mechanisms; 1) equilibrium mixture of O 2 - and HO 2 is responsible for strand breaks of DNA, and 2) peroxyl radical produced from citrate is effective for the strand breaks. However, the detailed kinetic analysis revealed that the latter is improbable because unimolecular decay of the peroxyl radical must be assumed to be negligible for its participation despite fast decay of analogous organic peroxyl radicals. The analysis has also given 9.93±0.10 dm 3 mol -1 s -1 per nucleotide unit, which corresponds to 7.62 x 10 4 dm 3 mol -1 s -1 per DNA molecule, as the rate constant for the reaction of the equilibrium mixture with plasmid pBR 322 DNA. Furthermore the probability that the reaction of the mixture with a nucleotide unit of DNA leads to strand breaks was obtained to be 3.36 x 10 -3 for gamma-irradiated system and 1.98 x 10 -3 for beta-irradiated system, respectively. (author)

  14. Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study.

    Science.gov (United States)

    Barbosa, Thaís da Silva; Peirone, Silvina; Barrera, Javier A; Abrate, Juan P A; Lane, Silvia I; Arbilla, Graciela; Bauerfeldt, Glauco Favilla

    2015-04-14

    The kinetics of the cis-3-hexene + OH reaction were investigated by an experimental relative rate method and at the density functional theory level. The experimental set-up consisted of a 200 L Teflon bag, operated at atmospheric pressure and 298 K. OH radicals were produced by the photolysis of H2O2 at 254 nm. Relative rate coefficients were determined by comparing the decays of the cis-3-hexene and reference compounds (cyclohexene, 2-buten-1-ol and allyl ether). The mean second-order rate coefficient value found was (6.27 ± 0.66) × 10(-11) cm(3) molecule(-1) s(-1), the uncertainty being estimated by propagation of errors. Theoretical calculations for the addition reaction of OH to cis-3-hexene have also been performed, at the BHandHLYP/aug-cc-pVDZ level, in order to investigate the reaction mechanism, to clarify the experimental observations and to model the reaction kinetics. Different conformations of the reactants, pre-barrier complexes and saddle points were considered in our calculations. The individual rate coefficients, calculated for each conformer of the reactant, at 298 K, using a microcanonical variational transition state method, are 4.19 × 10(-11) and 1.23 × 10(-10) cm(3) molecule(-1) s(-1). The global rate coefficient was estimated from the Boltzmann distribution of the conformers to be 8.10 × 10(-11) cm(3) molecule(-1) s(-1), which is in agreement with the experimental value. Rate coefficients calculated over the temperature range from 200-500 K are also given. Our results suggest that the complex mechanism, explicitly considering different conformations for the stationary points, must be taken into account for a proper description of the reaction kinetics.

  15. Reanalysis of Rate Data for the Reaction CH3 + CH3 → C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation.

    Science.gov (United States)

    Blitz, M A; Green, N J B; Shannon, R J; Pilling, M J; Seakins, P W; Western, C M; Robertson, S H

    2015-07-16

    Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.

  16. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  17. Level densities and γ-strength functions in 148,149Sm

    International Nuclear Information System (INIS)

    Siem, S.; Guttormsen, M.; Ingeberg, K.; Melby, E.; Rekstad, J.; Schiller, A.; Voinov, A.

    2002-01-01

    The level densities and γ-strength functions of the weakly deformed 148 Sm and 149 Sm nuclei have been extracted. The temperature versus excitation energy curve, derived within the framework of the microcanonical ensemble, shows structures, which we associate with the breakup of Cooper pairs. The nuclear heat capacity is deduced within the framework of both the microcanonical and canonical ensembles. We observe negative heat capacity in the microcanonical ensemble whereas the canonical heat capacity exhibits an S shape as a function of temperature, both signals of a phase transition. The structures in the γ-strength functions are discussed in terms of the pygmy resonance and the scissors mode built on excited states. The samarium results are compared with data for the well-deformed 161,162 Dy, 166,167 Er, and 171,172 Yb isotopes and with data from (n,γ) experiments and giant dipole resonance studies

  18. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  19. Dissociation of metastable CH3CO radicals studied by time-resolved photofragment imaging

    Science.gov (United States)

    Suzuki, Toshinori; Shibata, Takeshi; Li, Haiyang

    1998-05-01

    A novel experimental technique to measure the energy- dependent unimolecular dissociation rate k(E) of radical species is presented. Internally excited CH3CO radicals were formed by ultraviolet photodissociation of CH3COCl, and the subsequent decay of these radicals was detected by subpicosecond time-clocked photofragment imaging. The CH3CO radicals with different internal energies were dispersed in space by their recoil velocities, and their decay rates were measured for each internal energy.

  20. The canonical ensemble redefined - 1: Formalism

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    For studying the thermodynamic properties of systems we propose an ensemble that lies in between the familiar canonical and microcanonical ensembles. We point out the transition from the canonical to microcanonical ensemble and prove from a comparative study that all these ensembles do not yield the same results even in the thermodynamic limit. An investigation of the coupling between two or more systems with these ensembles suggests that the state of thermodynamical equilibrium is a special case of statistical equilibrium. (author)

  1. Long-range intramolecular electron transfer in azurins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1989-01-01

    . aeruginosa) and (6.0 +/- 1.0) x 10(8) M-1.s-1 (Alcaligenes); (ii) a slow unimolecular phase with specific rates of 44 +/- 7 s-1 in the former and 8.5 +/- 1.5 s-1 for the latter (all at 298 K, 0.1 M ionic strength). Concomitant with the fast reduction of Cu(II), the single disulfide bridge linking cysteine-3...

  2. Why there is something rather than nothing: cosmological constant from summing over everything in lorentzian quantum gravity.

    Science.gov (United States)

    Barvinsky, A O

    2007-08-17

    The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.

  3. Quantum phase space for an ideal relativistic gas in d spatial dimensions

    International Nuclear Information System (INIS)

    Hayashi, M.; Vera Mendoza, H.

    1992-01-01

    We present the closed formula for the d-dimensional invariant phase-space integral for an ideal relativistic gas in an exact integral form. In the particular cases of the nonrelativistic and the extreme relativistic limits the phase-space integrals are calculated analytically. Then we consider the d-dimensional invariant phase space with quantum statistic and derive the cluster decomposition for the grand canonical and canonical partition functions as well as for the microcanonical and grand microcanonical densities of states. As a showcase, we consider the black-body radiation in d dimensions (Author)

  4. Photochemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B.C. [Lawrence Berkeley Laboratory, Livermore, CA (United States)

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  5. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  6. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    Science.gov (United States)

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  7. Thermodynamic laws in isolated systems.

    Science.gov (United States)

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  8. Time arrow is influenced by the dark energy.

    Science.gov (United States)

    Allahverdyan, A E; Gurzadyan, V G

    2016-05-01

    The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant.

  9. Evaporation of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Roman, C.E.; Garzon, I.L.

    1991-01-01

    Extensive molecular dynamics simulations have been done to study the evaporation of a 13-atom Lennard-Jones cluster. The survival probability and the evaporative lifetime are calculated as a function of the cluster total energy from a classical trajectory analysis. The results are interpreted in terms of the RRK theory of unimolecular dissociation. The calculation of the binding energy of the evaporated species from the evaporation rate and the average kinetic energy release is discussed. (orig.)

  10. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  11. On the zero temperature limit of the Kubo-transformed quantum time correlation function

    Science.gov (United States)

    Hernández de la Peña, Lisandro

    2014-04-01

    The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.

  12. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2018-05-01

    Full Text Available The gas-phase reaction of alkenes with ozone is known to produce stabilised Criegee intermediates (SCIs. These biradical/zwitterionic species have the potential to act as atmospheric oxidants for trace pollutants such as SO2, enhancing the formation of sulfate aerosol with impacts on air quality and health, radiative transfer and climate. However, the importance of this chemistry is uncertain as a consequence of limited understanding of the abundance and atmospheric fate of SCIs. In this work we apply experimental, theoretical and numerical modelling methods to quantify the atmospheric impacts, abundance and fate of the structurally diverse SCIs derived from the ozonolysis of monoterpenes, the second most abundant group of unsaturated hydrocarbons in the atmosphere. We have investigated the removal of SO2 by SCIs formed from the ozonolysis of three atmospherically important monoterpenes (α-pinene, β-pinene and limonene in the presence of varying amounts of water vapour in large-scale simulation chamber experiments that are representative of boundary layer conditions. The SO2 removal displays a clear dependence on water vapour concentration, but this dependence is not linear across the range of [H2O] explored. At low [H2O] a strong dependence of SO2 removal on [H2O] is observed, while at higher [H2O] this dependence becomes much weaker. This is interpreted as being caused by the production of a variety of structurally (and hence chemically different SCIs in each of the systems studied, which displayed different rates of reaction with water and of unimolecular rearrangement or decomposition. The determined rate constants, k(SCI+H2O, for those SCIs that react primarily with H2O range from 4 to 310  ×  10−15 cm3 s−1. For those SCIs that predominantly react unimolecularly, determined rates range from 130 to 240 s−1. These values are in line with previous results for the (analogous stereo-specific SCI system of syn-/anti-CH3

  13. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    Science.gov (United States)

    Newland, Mike J.; Rickard, Andrew R.; Sherwen, Tomás; Evans, Mathew J.; Vereecken, Luc; Muñoz, Amalia; Ródenas, Milagros; Bloss, William J.

    2018-05-01

    The gas-phase reaction of alkenes with ozone is known to produce stabilised Criegee intermediates (SCIs). These biradical/zwitterionic species have the potential to act as atmospheric oxidants for trace pollutants such as SO2, enhancing the formation of sulfate aerosol with impacts on air quality and health, radiative transfer and climate. However, the importance of this chemistry is uncertain as a consequence of limited understanding of the abundance and atmospheric fate of SCIs. In this work we apply experimental, theoretical and numerical modelling methods to quantify the atmospheric impacts, abundance and fate of the structurally diverse SCIs derived from the ozonolysis of monoterpenes, the second most abundant group of unsaturated hydrocarbons in the atmosphere. We have investigated the removal of SO2 by SCIs formed from the ozonolysis of three atmospherically important monoterpenes (α-pinene, β-pinene and limonene) in the presence of varying amounts of water vapour in large-scale simulation chamber experiments that are representative of boundary layer conditions. The SO2 removal displays a clear dependence on water vapour concentration, but this dependence is not linear across the range of [H2O] explored. At low [H2O] a strong dependence of SO2 removal on [H2O] is observed, while at higher [H2O] this dependence becomes much weaker. This is interpreted as being caused by the production of a variety of structurally (and hence chemically) different SCIs in each of the systems studied, which displayed different rates of reaction with water and of unimolecular rearrangement or decomposition. The determined rate constants, k(SCI+H2O), for those SCIs that react primarily with H2O range from 4 to 310 × 10-15 cm3 s-1. For those SCIs that predominantly react unimolecularly, determined rates range from 130 to 240 s-1. These values are in line with previous results for the (analogous) stereo-specific SCI system of syn-/anti-CH3CHOO. The experimental results are

  14. The effects of moisture on LiD single crystals studied by temperature-programmed decomposition

    International Nuclear Information System (INIS)

    Dinh, L.N.; Cecala, C.M.; Leckey, J.H.; Balooch, M.

    2001-01-01

    Temperature-programmed decomposition (TPD) technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process is rate-limited by an inward moving reaction front mechanism with an activation energy barrier of ∼122-149 kJ/mol. The LiOH structure is stable even if kept at 320 K. However, LiOH structures formed on the surface of LiD single crystals during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 122 kJ/mol. The rate-limiting mechanism for the decomposition of LiOH structures with reduced activation energy barriers is consistent with a unimolecular nucleation model. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of sub-stoichiometric Li(OH) x with x 2 O formation is observed. The release of H 2 O molecules from LiOH · H 2 O structure has small activation energy barriers in the range of 48-69 kJ/mol and follows a unimolecular nucleation process. The loosely bonded H 2 O molecules in the LiOH · H 2 O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth rate of LiOH and LiOH · H 2 O significantly

  15. Renyi statistics in equilibrium statistical mechanics

    International Nuclear Information System (INIS)

    Parvan, A.S.; Biro, T.S.

    2010-01-01

    The Renyi statistics in the canonical and microcanonical ensembles is examined both in general and in particular for the ideal gas. In the microcanonical ensemble the Renyi statistics is equivalent to the Boltzmann-Gibbs statistics. By the exact analytical results for the ideal gas, it is shown that in the canonical ensemble, taking the thermodynamic limit, the Renyi statistics is also equivalent to the Boltzmann-Gibbs statistics. Furthermore it satisfies the requirements of the equilibrium thermodynamics, i.e. the thermodynamical potential of the statistical ensemble is a homogeneous function of first degree of its extensive variables of state. We conclude that the Renyi statistics arrives at the same thermodynamical relations, as those stemming from the Boltzmann-Gibbs statistics in this limit.

  16. Bimolecular reactions of carbenes: Proton transfer mechanism

    Science.gov (United States)

    Abu-Saleh, Abd Al-Aziz A.; Almatarneh, Mansour H.; Poirier, Raymond A.

    2018-04-01

    Here we report the bimolecular reaction of trifluoromethylhydroxycarbene conformers and the water-mediated mechanism of the 1,2-proton shift for the unimolecular trans-conformer by using quantum chemical calculations. The CCSD(T)/cc-pVTZ//MP2/cc-pVDZ potential-energy profile of the bimolecular reaction of cis- and trans-trifluoromethylhydroxycarbene, shows the lowest gas-phase barrier height of 13 kJ mol-1 compared to the recently reported value of 128 kJ mol-1 for the unimolecular reaction. We expect bimolecular reactions of carbene's stereoisomers will open a valuable field for new and useful synthetic strategies.

  17. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  18. A molecular dynamics algorithm for simulation of field theories in the canonical ensemble

    International Nuclear Information System (INIS)

    Kogut, J.B.; Sinclair, D.K.

    1986-01-01

    We add a single scalar degree of freedom (''demon'') to the microcanonical ensemble which converts its molecular dynamics into a simulation method for the canonical ensemble (euclidean path integral) of the underlying field theory. This generalization of the microcanonical molecular dynamics algorithm simulates the field theory at fixed coupling with a completely deterministic procedure. We discuss the finite size effects of the method, the equipartition theorem and ergodicity. The method is applied to the planar model in two dimensions and SU(3) lattice gauge theory with four species of light, dynamical quarks in four dimensions. The method is much less sensitive to its discrete time step than conventional Langevin equation simulations of the canonical ensemble. The method is a straightforward generalization of a procedure introduced by S. Nose for molecular physics. (orig.)

  19. Deuterium isotopic effects connected with unimolecular and concerted mechanisms. The case of 1-deutero-2-chloro alcohols; Effets isotopiques du deuterium attaches a des mecanismes unimoleculaires et concertes. Cas des deutero-1-chloro-2 alcools

    Energy Technology Data Exchange (ETDEWEB)

    Jambon, C

    1962-07-01

    After a bibliographic analysis of the probable causes of isotopic effects and their comparison, with the simplifications provided by the athermal model, a discussion of the isotopic effect of deuterium in organic molecules in terms of structural influences is presented, showing the important role of the C-D bond length which is shorter than the C-H bond length, and of the D atom's Van der Waals radius, shorter than that of the H atom. Kinetic measurements were carried out on some reactions involving the mechanisms proposed: unimolecular ionizations and halogen concentrates. The structural models chosen are: 2-chloro-cyclo-hexanols cis and trans 1-H and 2-D; 2-chloro-cyclo-pentanols cis trans 1-H and 1-D; 1-phenyl-l-chloro-2-propanol threo 2-H and 2-D. (author) [French] Apres une analyse bibliographique des causes probables d'effets isotopiques et leur comparaison, avec les simplifications qu'apporte le modele athermique, on a entrepris l'etude de la discussion isotopique du deuterium dans des molecules organiques en termes d'influences structurelles, cherchant a degager le role important de la longueur de la liaison C-D plus courte que C-H, et du rayon de Van der Waals de l'atome de D plus petit que celui de H. On a effectue des mesures cinetiques sur quelques reactions invoquant les mecanismes envisages: ionisations unimoleculaires et concentrees d'halogenes. Les modeles structuraux choisis sont: chloro 2 - cyclohexanols cis et trans H 1 et D 1; chloro 2 - cyclopentanols cis et trans H 1 et D 1; phenyl 1 - chloro 1 - propanol 2 threo H 2 et D 2. (auteur)

  20. Deuterium isotopic effects connected with unimolecular and concerted mechanisms. The case of 1-deutero-2-chloro alcohols; Effets isotopiques du deuterium attaches a des mecanismes unimoleculaires et concertes. Cas des deutero-1-chloro-2 alcools

    Energy Technology Data Exchange (ETDEWEB)

    Jambon, C

    1962-07-01

    After a bibliographic analysis of the probable causes of isotopic effects and their comparison, with the simplifications provided by the athermal model, a discussion of the isotopic effect of deuterium in organic molecules in terms of structural influences is presented, showing the important role of the C-D bond length which is shorter than the C-H bond length, and of the D atom's Van der Waals radius, shorter than that of the H atom. Kinetic measurements were carried out on some reactions involving the mechanisms proposed: unimolecular ionizations and halogen concentrates. The structural models chosen are: 2-chloro-cyclo-hexanols cis and trans 1-H and 2-D; 2-chloro-cyclo-pentanols cis trans 1-H and 1-D; 1-phenyl-l-chloro-2-propanol threo 2-H and 2-D. (author) [French] Apres une analyse bibliographique des causes probables d'effets isotopiques et leur comparaison, avec les simplifications qu'apporte le modele athermique, on a entrepris l'etude de la discussion isotopique du deuterium dans des molecules organiques en termes d'influences structurelles, cherchant a degager le role important de la longueur de la liaison C-D plus courte que C-H, et du rayon de Van der Waals de l'atome de D plus petit que celui de H. On a effectue des mesures cinetiques sur quelques reactions invoquant les mecanismes envisages: ionisations unimoleculaires et concentrees d'halogenes. Les modeles structuraux choisis sont: chloro 2 - cyclohexanols cis et trans H 1 et D 1; chloro 2 - cyclopentanols cis et trans H 1 et D 1; phenyl 1 - chloro 1 - propanol 2 threo H 2 et D 2. (auteur)

  1. Monte Carlo simulation of the microcanonical ensemble

    International Nuclear Information System (INIS)

    Creutz, M.

    1984-01-01

    We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references

  2. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  3. Nuclear multifragmentation within the framework of different statistical ensembles

    International Nuclear Information System (INIS)

    Aguiar, C.E.; Donangelo, R.; Souza, S.R.

    2006-01-01

    The sensitivity of the statistical multifragmentation model to the underlying statistical assumptions is investigated. We concentrate on its microcanonical, canonical, and isobaric formulations. As far as average values are concerned, our results reveal that all the ensembles make very similar predictions, as long as the relevant macroscopic variables (such as temperature, excitation energy, and breakup volume) are the same in all statistical ensembles. It also turns out that the multiplicity dependence of the breakup volume in the microcanonical version of the model mimics a system at (approximately) constant pressure, at least in the plateau region of the caloric curve. However, in contrast to average values, our results suggest that the distributions of physical observables are quite sensitive to the statistical assumptions. This finding may help in deciding which hypothesis corresponds to the best picture for the freeze-out stage

  4. Selected readings in chemical kinetics

    CERN Document Server

    Back, Margaret H

    2013-01-01

    Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reacti

  5. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    KAUST Repository

    Elwardany, A.; Nasir, E.F.; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  6. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    KAUST Repository

    Elwardany, A.

    2014-07-16

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  7. Multifragmentation and the phase transition: A systematic study of ...

    Indian Academy of Sciences (India)

    25 [2] generated theoretical interest in MF in terms of a continuous ... (SMM) [13] and Monte Carlo microcanonical model (MMMC) [14]. The theoretical in- .... Probability distribution of fragments from Ζ = 3–20 for Au, La and Kr from data and ...

  8. The canonical and grand canonical models for nuclear ...

    Indian Academy of Sciences (India)

    Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical ...

  9. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Schulze, T. P., E-mail: schulze@math.utk.edu [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300 (United States); Hendy, S. C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Department of Physics, University of Auckland, Auckland 1010 (New Zealand)

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  10. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    International Nuclear Information System (INIS)

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.

    2014-01-01

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level

  11. Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions

    Science.gov (United States)

    Shakirov, T.; Zablotskiy, S.; Böker, A.; Ivanov, V.; Paul, W.

    2017-03-01

    In the last 10 years, flat histogram Monte Carlo simulations have contributed strongly to our understanding of the phase behavior of simple generic models of polymers. These simulations result in an estimate for the density of states of a model system. To connect this result with thermodynamics, one has to relate the density of states to the microcanonical entropy. In a series of publications, Dunkel, Hilbert and Hänggi argued that it would lead to a more consistent thermodynamic description of small systems, when one uses the Gibbs definition of entropy instead of the Boltzmann one. The latter is the logarithm of the density of states at a certain energy, the former is the logarithm of the integral of the density of states over all energies smaller than or equal to this energy. We will compare the predictions using these two definitions for two polymer models, a coarse-grained model of a flexible-semiflexible multiblock copolymer and a coarse-grained model of the protein poly-alanine. Additionally, it is important to note that while Monte Carlo techniques are normally concerned with the configurational energy only, the microcanonical ensemble is defined for the complete energy. We will show how taking the kinetic energy into account alters the predictions from the analysis. Finally, the microcanonical ensemble is supposed to represent a closed mechanical N-particle system. But due to Galilei invariance such a system has two additional conservation laws, in general: momentum and angular momentum. We will also show, how taking these conservation laws into account alters the results.

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We formulate the statistical mechanics of chaotic system with few degrees of freedom and investigated the quartic oscillator system using microcanonical and canonical ensembles. Results of statistical mechanics are numerically verified by considering the dynamical evolution of quartic oscillator system with two degrees of ...

  13. Effect of hydration on the annealing of chemical radiation damage in gamma-irradiated strontium bromate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Sahish, T.S.

    1991-01-01

    Rehydration of γ-irradiated anhydrous strontium bromate induces direct recovery of damage. The recovery process is unimolecular and the rehydrated salt is susceptible to thermal annealing. (author) 11 refs.; 2 figs

  14. Unimolecular Reactions of Nitrites and Nitrates.

    Science.gov (United States)

    1983-04-01

    verified the mechanism as being the one originally proposed by Levy, RONO - RO + NO RO + NO- 1 2*RONO •I kRO + NO-- ROH HHO -Hi k5 :and not by direct...produced by ,’Levy’s mechanism. I1 Emission from CH30, C2H50, and l-C3H70 radicals were observed in the photolysis of these nitrites between...wavelengths of 2000 and 1100 A, by Ohbayashi, Akimoto and Tanaka [78]. Emission was assigned to the (A2A1IX2E) transition of CH30 . Bands of NO were also *i

  15. Evaporation and condensation at a liquid surface. II. Methanol

    Science.gov (United States)

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-11-01

    The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.

  16. Classical dynamics of triatomic system: energized harmonic molecules

    International Nuclear Information System (INIS)

    Parr, C.A.; Kuppermann, A.; Porter, R.N.

    1976-01-01

    The dynamical assumptions underlying the Slater and RRK classical-mechanical theories of unimolecular reaction rates are investigated. The predictions of these theories for several nonlinear, triatomic, harmonically-bonded molecular models are compared with the results obtained from the integration of the classical equations of motion. The accuracy of the small-vibration and weak-coupling assumptions are found to break down at energies above about one quarter of a bond dissociation energy. Nonetheless, the small-vibration approximation predicts reaction frequencies in good agreement with the exact results for the models. The effects of rotation on intramolecular energy exchange are examined and found to be significant

  17. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    Science.gov (United States)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  18. Thermodynamical aspect of black hole solutions in heteric string theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Thermodynamical properties of charged rotating dilatonic black holes are discussed on the basis of the general solution of Sen in the heterotic string theory compactified on a six dimensional torus. The most probable microcanonical configuration of black holes is then described in the single-massive-mode dominance scenario.

  19. Do phase transitions survive binomial reducibility and thermal scaling?

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Phair, L.; Wozniak, G.J.

    1996-05-01

    First order phase transitions are described in terms of the microcanonical and canonical ensemble, with special attention to finite size effects. Difficulties in interpreting a `caloric curve` are discussed. A robust parameter indicating phase coexistence (univariance) or single phase (bivariance) is extracted for charge distributions. 9 refs., 4 figs.

  20. Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney

    2015-10-03

    Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasification severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.

  1. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  2. Search for mode-selective chemistry: The unimolecular dissociation of t-butyl hydroperoxide induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Chandler, D.W.; Farneth, W.E.; Zare, R.N.

    1982-01-01

    The use of optoacoustic spectroscopy permits both the monitoring of the overtone excitation of t-butylhydroperoxide (t-BuOOH) and the in situ detection of the resulting reaction product t-butanol (t-BuOH). The sample is contained in a reaction cell, equipped with a microphone, in which all surfaces have been specially passivated. The cell is placed inside the cavity of a dye laser tuned to excite the 5--0 O--H stretch of the t-BuOOH at 619.0 nm. The dissociation process yields directly xOH and t-BuOx, and the latter readily abstracts a hydrogen atom from a parent molecule to form t-butanol (t-BuOH). The appearance rate of t-BuOH is obtained by ratioing the area under the 5--0 O--H stretch of t-BuOH to that of a combination band of t-BuOOH. At low pressures, below 40 Torr, a plot of the reciprocal of the t-BuOH appearance rate versus total pressure shows near linear behavior. This linearlity can be well described by a statistical model (RRKM) when careful averaging of the dissociation rate over the thermal energy distribution of the photoactivated molecules is included. At pressures above 40 Torr, a marked deviation from linearity appears. This deviation is fit to a kinetic model in which the dissociation rate of an energy nonrandomized molecule competes with the rate of intramolecular energy relaxation. This places a lower bound of > or =5.0 x 10 11 s -1 on the rate of energy randomization. A discussion of this model in the context of other possible kinetic schemes as well as other photoactivated and chemically activated systems is presented

  3. A Formal Derivation of the Gibbs Entropy for Classical Systems Following the Schrodinger Quantum Mechanical Approach

    Science.gov (United States)

    Santillan, M.; Zeron, E. S.; Del Rio-Correa, J. L.

    2008-01-01

    In the traditional statistical mechanics textbooks, the entropy concept is first introduced for the microcanonical ensemble and then extended to the canonical and grand-canonical cases. However, in the authors' experience, this procedure makes it difficult for the student to see the bigger picture and, although quite ingenuous, the subtleness of…

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Entropy; canonical; microcanonical; black hole. ... Assuming, for large area of the boundary, (a) an area spectrum as determined by non-perturbative canonical quantum general relativity (NCQGR), (b) an energy spectrum that bears a power law relation to the area spectrum, (c) an area law for the leading order ...

  5. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    Science.gov (United States)

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  6. The LEGO toolbox: Supramolecular building blocks by nitroxide-mediated controlled radical polymerization

    NARCIS (Netherlands)

    Lohmeijer, B.G.G.; Schubert, U.S.

    2005-01-01

    A terpyridine-functionalized alkoxyamine unimolecular initiator was used for the nitroxide-mediated controlled living radical polymerization of n-butylacrylate, N,N-dimethylacrylamide, 4-vinylpyridine, 2-vinylpyridine, and isoprene. For the former three monomers, the kinetics were studied. All

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We have addressed the foundational issue of how a macroscopic quantum system starting off as a pure state tends towards a mixed state described by the microcanonical ensemble. The earlier works of von Neumann and Van Kampen are also reviewed. A simple criterion is given as to when the above mentioned passage ...

  8. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice

    Directory of Open Access Journals (Sweden)

    Sigrid Jall

    2017-05-01

    Conclusions: We herein show that a recently developed unimolecular peptide triagonist is equally efficient in both sexes, suggesting that this polypharmaceutical strategy might be a relevant alternative to bariatric surgery for the treatment of obesity and related metabolic disorders.

  9. Variational transition state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1986-01-01

    This project is concerned with the development and applications of generalized transition state theory and multidimensional tunneling approximations to chemical reaction rates. They have developed and implemented several practical versions of variational transition state theory (VTST), namely canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (μVT). They have also developed and implemented several accurate multidimensional semiclassical tunneling approximations, the most accurate of which are the small-curvature semiclassical adiabatic (SCSA), large-curvature version-3 (LC3), and least-action (LA) approximations. They have applied the methods to thermal rate constants, using transmission coefficients based on ground-state tunneling, and they have also presented and applied adiabatic and diabatic extensions to calculated rate constants for vibrationally excited reactants. Their general goal is to develop accurate methods for calculating chemical reaction rate constants that remain practical even for reasonably complicated molecules. The approximations mentioned above yield rate constants for systems whose potential energy surface is known or assumed. Thus a second, equally important aspect of their work is the determination or modeling, semi-empirically and/or from electronic structure calculations, of potential energy surfaces

  10. Collective flow in central Ca + Ca and Nb + Nb collisions

    International Nuclear Information System (INIS)

    Fai, G.; Csernai, L.P.; Kapusta, J.I.

    1986-01-01

    Questions related to the entropy, equation of state and collective flow of nuclear matter are important to the authors understanding of high energy nuclear collisions. Completion of the analysis of exclusive measurements on central Ca + Ca and Nb + Nb collisions triggered renewed interest in these problems. In order to address the results of exclusive measurements, however, the complex multifragment final states of high energy nuclear collisions need to be incorporated in a theoretical description. The microcanonical event generator model provides statistically generated complete events that can be compared to the exclusive data on an event-by-event basis. To describe the disassembly of hot nuclear matter the model uses an approximate scheme in which the available final states are populated according to their microcanonical weight in phase space. This statistical description is front-ended with simple geometric ideas to divide the collision system into subsystems and with a prescription to share energy and momentum among the subsystems. Any physical quantity of interest is in principle calculable in the model if sufficient statistics is accumulated

  11. Lumpy AdS5× S5 black holes and black belts

    International Nuclear Information System (INIS)

    Dias, Óscar J.C.; Santos, Jorge E.; Way, Benson

    2015-01-01

    Sufficiently small Schwarzschild black holes in global AdS 5 ×S 5 are Gregory-Laflamme unstable. We construct new families of black hole solutions that bifurcate from the onset of this instability and break the full SO(6) symmetry group of the S 5 down to SO(5). These new “lumpy" solutions are labelled by the harmonics ℓ. We find evidence that the ℓ=1 branch never dominates the microcanonical/canonical ensembles and connects through a topology-changing merger to a localised black hole solution with S 8 topology. We argue that these S 8 black holes should become the dominant phase in the microcanonical ensemble for small enough energies, and that the transition to Schwarzschild black holes is first order. Furthermore, we find two branches of solutions with ℓ=2. We expect one of these branches to connect to a solution containing two localised black holes, while the other branch connects to a black hole solution with horizon topology S 4 ×S 4 which we call a “black belt”.

  12. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  13. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory

    Science.gov (United States)

    Bao, Junwei Lucas; Zhang, Xin

    2016-01-01

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice–Ramsperger–Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements. PMID:27834727

  14. A NIST Kinetic Data Base for PAH Reaction and Soot Particle Inception During Combusion

    Science.gov (United States)

    2007-12-01

    official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name...becomes richer. We have thus intergrated 51 unimolecular decomposition and 5 isomerization reactions and 24 species processes into a heptane

  15. 3-Mercaptopropanal

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Jørgensen, F. S.

    1984-01-01

    Gaseous 3-mercaptopropanal, generated by thermal decomposition of the corresponding oligomer, has been characterized by i.r. and photoelectron spectroscopy, and mass spectrometry. The possibility of a 3-mercaptopropanal–thietan-2-ol equilibrium is discussed, as is the mechanism of unimolecular th...

  16. Stable isotope studies. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Flynn, G.W.; Hsu, D.S.Y.; Preses, J.M.; Spindel, W.; Weston, R.E.

    1975-01-01

    Progress is reported in the following studies: selective two-step laser-induced photodissociation, unimolecular processes induced by multiple-photon absorption, and vibrational energy transfer processes involving isotopic species of sulfur dioxide. These laser-induced chemical reactions can possibly be applied to isotope separation

  17. An Exciting Aspect of Nanotechnology: Unimolecular Electronics

    Directory of Open Access Journals (Sweden)

    Metzger R. M.

    2013-08-01

    Full Text Available This is a brief update on our experimental work towards better one-molecule-thick monolayer rectifiers of electrical current, and on theoretical progress towards a one-molecule amplifier of electrical current. This program aims to provide electronic devices at the 2 to 3 nm level, as a dramatic advance towards practical integrated circuits of the future.

  18. Vibrational quasi-continuum in unimolecular multiphoton dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fernandez, P.; Gonzalez-Diaz, P.F.

    1987-04-01

    The vibrational quasi-continuum of the boron trifluoride molecule has been qualitatively studied and the formalism extended to treat N-normal-mode molecules. The anharmonic potential curves for the BF/sub 3/ normal modes have been calculated, and the computed anharmonicity constants have been tested against the fundamental frequencies. The potential curve of the wagging mode has been simulated by an internal rotation of one of the fluoride atoms. The vibrational-energy levels and wave functions have been calculated applying second-order perturbation theory. The quasi-continuum energy levels of BF/sub 3/ have been obtained by means of a method based in forming adequate linear combinations of wave functions belonging to the N-1 modes resulting from removing the i.r.-active mode;the associated energies have been minimized using a constrained minimization procedure. It has been found that the energy pattern of the N-1 vibrational modes possesses an energy density high enough for constituting a vibrational heat bath and, finally, it has been verified that the ''fictitious'' pattern of the active mode is included in the pattern of the N-1 modes.

  19. Formation and metastable decomposition of unprotonated ammonia cluster ions upon femtosecond ionization

    International Nuclear Information System (INIS)

    Buzza, S.A.; Wei, S.; Purnell, J.; Castleman, A.W. Jr.

    1995-01-01

    The formation and metastable dissociation mechanism of unprotonated ammonia cluster ions, (NH 3 ) + n , produced by multiphoton ionization (MPI) at 624 nm and a nominal pulse width of 350 fs, are investigated through a reflectron time-of-flight (TOF) mass spectrometric technique. Detection of the unprotonated ions after femtosecond and nanosecond multiphoton ionization under various intensity conditions is explained. The role of the energy of the ionizing photons, and the observation of these ions after femtosecond MPI is examined. The formation of the unprotonated series is found to be a function of intensity in the case of ionization on the nanosecond time scale, but not so for the femtosecond time domain. The results can be explained in terms of ionization mechanisms and ionizing pulse durations. The findings of the present study suggest that the unprotonated ions are trapped behind the barrier to intracluster proton transfer and/or concomitant NH 2 loss. The studies of metastable decomposition also reveal that the unprotonated ammonia cluster ions dissociate in the field-free region of the TOF by losing an NH 2 radical rather than via the evaporative loss of NH 3 as occurs for protonated clusters. Additionally, isotopic investigations of the unimolecular decay reveal a strong dependence on the conditions of cluster formation. The cluster formation condition dependence of the unimolecular decay is further investigated by altering formation temperatures and observing the consequences reflected by changes in the spontaneous metastable decay rate constant. This is a unique example of a cluster system whose metastable dissociation does not obey an evaporative ensemble model

  20. Designing bifunctional alkene isomerization catalysts using predictive modelling

    NARCIS (Netherlands)

    Landman, I.R.; Paulson, E.R.; Rheingold, A.L.; Grotjahn, D.B.; Rothenberg, G.

    2017-01-01

    Controlling the isomerization of alkenes is important for the manufacturing of fuel additives, fine-chemicals and pharmaceuticals. But even if isomerization seems to be a simple unimolecular process, the factors that govern catalyst performance are far from clear. Here we present a set of models

  1. Microcanonical simulation of a toy model with vacuum seizing

    International Nuclear Information System (INIS)

    Stone, M.

    1984-01-01

    Tested was a newly developed method for simulating field theories with fermionic degrees of freedom on a simple quantum mechanical model which still has enough structure to exhibit symmetry breaking and other effects due to anomalies

  2. Two-pulse laser control of nuclear and electronic motion

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1997-01-01

    We discuss an explicitly time-dependent two-pulse laser scheme for controlling where nuclei and electrons are going in unimolecular reactions. We focus on electronic motion and show, with HD+ as an example, that one can find non-stationary states where the electron (with some probability...

  3. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  4. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge

    1982-01-01

    The unimolecular gas-phase thermolyses of the four methyl and ethyl monothioacetates (5)–(8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range 883–1 404 K. The types of reactions verified were keten formation, thiono–thiolo rea...

  5. Transition state theory thermal rate constants and RRKM-based branching ratios for the N((2)D) + CH(4) reaction based on multi-state and multi-reference ab initio calculations of interest for the Titan's chemistry.

    Science.gov (United States)

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice

    2012-10-30

    Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH. Copyright © 2012 Wiley Periodicals, Inc.

  6. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    Science.gov (United States)

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  7. Surface Collisions of Small Cluster Ions at Incident Energies 10-102 eV

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2004-01-01

    Roč. 233, - (2004), s. 361-371 ISSN 1387-3806 R&D Projects: GA MŠk ME 561 Grant - others:XE(CZ) EURATOM-IPP.CR Institutional research plan: CEZ:AV0Z4040901 Keywords : surface collisions * cluster ions * unimolecular dissociation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  8. Response to a temperature modulation as a signature of chemical mechanisms.

    Science.gov (United States)

    Berthoumieux, H; Jullien, L; Lemarchand, A

    2007-11-01

    We consider n reactive species involved in unimolecular reactions and submitted to a temperature modulation of small amplitude. We determine the conditions on the rate constants for which the deviations from the equilibrium concentrations of each species can be optimized and find the analytical expression of the frequency associated with an extremum of concentration shift in the case n=3. We prove that the frequency dependence of the displacement of equilibrium gives access to the number n of species involved in the mechanism. We apply the results to the case of the transformation of a reactant into a product through a possible reactive intermediate and find the order relation obeyed by the activation energies of the different barriers. The results typically apply to enzymatic catalysis with kinetics of Michaelis-Menten type.

  9. Crossed molecular beam studies of unimolecular reaction dynamics

    International Nuclear Information System (INIS)

    Buss, R.J.

    1979-04-01

    The study of seven radical-molecule reactions using the crossed molecular beam technique with supersonic nozzle beams is reported. Product angular and velocity distributions were obtained and compared with statistical calculations in order to identify dynamical features of the reactions. In the reaction of chlorine and fluorine atoms with vinyl bromide, the product energy distributions are found to deviate from predictions of the statistical model. A similar effect is observed in the reaction of chlorine atoms with 1, 2 and 3-bromopropene. The reaction of oxygen atoms with ICl and CF 3 I has been used to obtain an improved value of the IO bond energy, 55.0 +- 2.0 kcal mol -1 . In all reactions studied, the product energy and angular distributions are found to be coupled, and this is attributed to a kinematic effect of the conservation of angular momentum

  10. Unimolecular Polypharmacy for Treatment of Diabetes and Obesity

    DEFF Research Database (Denmark)

    Tschöp, Matthias H; Finan, Brian; Clemmensen, Christoffer

    2016-01-01

    Many complex diseases have historically proven to be defiant to the best mono-therapeutic approaches. Several examples of combination therapies have largely overcome such challenges, notably for the treatment of severe hypertension and tuberculosis. Obesity and its consequences, such as type 2...... diabetes, have proven to be equally resistant to therapeutic approaches based on single medicines. Proper management of type 2 diabetes often requires adjunctive medications, and the recent registration of a few compound mixtures has set the precedent for combinatorial treatment of obesity. On the other...... to reverse obesity and type 2 diabetes. Here, we summarize the discovery, pre-clinical validation, and first clinical test of such peptide hormone poly-agonist drug candidates....

  11. Finite-size effects on current correlation functions

    Science.gov (United States)

    Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong

    2014-02-01

    We study why the calculation of current correlation functions (CCFs) still suffers from finite-size effects even when the periodic boundary condition is taken. Two important one-dimensional, momentum-conserving systems are investigated as examples. Intriguingly, it is found that the state of a system recurs in the sense of microcanonical ensemble average, and such recurrence may result in oscillations in CCFs. Meanwhile, we find that the sound mode collisions induce an extra time decay in a current so that its correlation function decays faster (slower) in a smaller (larger) system. Based on these two unveiled mechanisms, a procedure for correctly evaluating the decay rate of a CCF is proposed, with which our analysis suggests that the global energy CCF decays as ˜t-2/3 in the diatomic hard-core gas model and in a manner close to ˜t-1/2 in the Fermi-Pasta-Ulam-β model.

  12. The quantum limit for information transmission

    International Nuclear Information System (INIS)

    Schiffer, M.

    1990-01-01

    We give two independent and rigorous derivations for the quantum bound on the information transmission rate as proposed independently Bekenstein and Bremermann, preceded by a heuristic argument showing why such a sort of bound should hold. In both approaches, information carriers are quanta of some field. The first method resembles the microcanonical approach to Statistical Mechanics where the strategy of overestimating the real number of states by relaxing the indistinguishability of quanta was adopted. The second is entirely based upon max-entropy methods. Amazingly enough, the results obtained by these physically unrelated premises turn out to be identical, namely, that the single (noiseless) channel capacity is I sub(max) E/2πh bits s sup(-1). It is further shown that, in a finite time τ no information can ever be conveyed unless the energy threshold 2 πh/τ is reached. (author)

  13. Typical event horizons in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Steven G.; Lowe, David A. [Department of Physics, Brown University,Providence, RI 02912 (United States)

    2016-01-14

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  14. Typical event horizons in AdS/CFT

    Science.gov (United States)

    Avery, Steven G.; Lowe, David A.

    2016-01-01

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  15. Statistical model of hadrons multiple production in space of total angular momentum and isotopic spin

    International Nuclear Information System (INIS)

    Gridneva, S.A.; Rus'kin, V.I.

    1980-01-01

    Basic features of the statistical model of multiple hadron production based on microcanonical distribution and taking into account the laws of conservation of total angular momentum, isotopic spin, p-, G-, C-eveness and Bose-Einstein statistics requirements are given. The model predictions are compared with experimental data on anti NN annihilation at rest and e + e - annihilation in hadrons at annihilation total energy from 2 to 3 GeV [ru

  16. Solution of the statistical bootstrap with Bose statistics

    International Nuclear Information System (INIS)

    Engels, J.; Fabricius, K.; Schilling, K.

    1977-01-01

    A brief and transparent way to introduce Bose statistics into the statistical bootstrap of Hagedorn and Frautschi is presented. The resulting bootstrap equation is solved by a cluster expansion for the grand canonical partition function. The shift of the ultimate temperature due to Bose statistics is determined through an iteration process. We discuss two-particle spectra of the decaying fireball (with given mass) as obtained from its grand microcanonical level density

  17. Unraveling the role of entropy in tuning unimolecular vs . bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals

    KAUST Repository

    Falivene, Laura; Barone, Vincenzo; Talarico, Giovanni

    2018-01-01

    by different ligand frameworks, metal, and growing polymeric chain for which experimental data are available have been selected in order to validate the main approaches to entropy calculation. Applying the “standard” protocol results in a strong disagreement

  18. Dissociation of acetone radical cation (CH3COCH3(+*) --> CH3CO(+) + CH3(*)): an ab initio direct classical trajectory study of the energy dependence of the branching ratio.

    Science.gov (United States)

    Zhou, Jia; Schlegel, H Bernhard

    2008-12-18

    The nonstatistical dissociation of acetone radical cation has been studied by ab initio direct classical trajectory calculations at the MP2/6-31G(d) level of theory. A bond additivity correction has been used to improve the MP2 potential energy surface (BAC-MP2). The energy dependence of the branching ratio, dissociation kinetics, and translational energy distribution for the two types of methyl groups have been investigated using microcanonical ensembles and specific mode excitation. In each case, the dissociation favors the loss of the newly formed methyl group, in agreement with the experiments. For microcanonical ensembles, the branching ratios for methyl loss are calculated to be 1.43, 1.88, 1.70, and 1.50 for 1, 2, 10, and 18 kcal/mol of excess energy, respectively. The energy dependence of the branching ratio is seen more dramatically in the excitation of individual modes involving C-C-O bending. For modes 3 and 6, the branching ratio rises to 1.6 and 1.8-2.3 when 1 or 2 kcal/mol are added, respectively, but falls off when more energy is added. For mode 8, the branching ratio continues to rise monotonically from 1.5 to 2.76 when 1-8 kcal/mol of excess energy are added.

  19. Gas-Phase Thermolyses

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge

    1982-01-01

    The unimolecular gas-phase thermolyses of 1,2,3-oxadithiolan 2-oxide and thiiran 1-oxide have been studied by the flash vacuum thermolysis–field ionization mass spectrometry (f.v.t.–f.i.m.s.) technique in the temperature range from 1 043 to 1 404 K. The reactions are rationalized in terms of sulp...

  20. A computational study of pyrolysis reactions of lignin model compounds

    Science.gov (United States)

    Thomas Elder

    2010-01-01

    Enthalpies of reaction for the initial steps in the pyrolysis of lignin have been evaluated at the CBS-4m level of theory using fully substituted b-O-4 dilignols. Values for competing unimolecular decomposition reactions are consistent with results previously published for phenethyl phenyl ether models, but with lowered selectivity. Chain propagating reactions of free...

  1. Monte Carlo algorithms for lattice gauge theory

    International Nuclear Information System (INIS)

    Creutz, M.

    1987-05-01

    Various techniques are reviewed which have been used in numerical simulations of lattice gauge theories. After formulating the problem, the Metropolis et al. algorithm and some interesting variations are discussed. The numerous proposed schemes for including fermionic fields in the simulations are summarized. Langevin, microcanonical, and hybrid approaches to simulating field theories via differential evolution in a fictitious time coordinate are treated. Some speculations are made on new approaches to fermionic simulations

  2. Hot String Soup

    OpenAIRE

    Lowe, D. A.; Thorlacius, L.

    1994-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...

  3. Negative heat capacity at phase-separation in macroscopic systems

    OpenAIRE

    Gross, D. H. E.

    2005-01-01

    Systems with long-range as well with short-range interactions should necessarily have a convex entropy S(E) at proper phase transitions of first order, i.e. when a separation of phases occurs. Here the microcanonical heat capacity c(E)= -\\frac{(\\partial S/\\partial E)^2}{\\partial^2S/\\partial E^2} is negative. This should be observable even in macroscopic systems when energy fluctuations with the surrounding world can be sufficiently suppressed.

  4. Dynamical calculation of nuclear temperature

    International Nuclear Information System (INIS)

    Zheng Yuming

    1998-01-01

    A new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the microcanonical ensemble of thermodynamics is presented. It shows that under the hypothesis of ergodicity the temperature can be computed as a time average of a function on the energy surface. This method not only yields an efficient computational approach for determining the temperature, but also provides an intrinsic link between dynamical system theory and the statistical mechanics of Hamiltonian system

  5. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  6. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    an excellent alternative to atomic qubits in the realization of a practical ion trap based quantum computer due to favourable internal state decoherence rates. In chemistry, state prepared molecular targets are an ideal starting point for uni-molecular reactions, including coherent control...... of photofragmentation through the application of various laser sources [5,6]. In cold bi-molecular reactions, where the effect of even tiny potential barriers becomes significant, experiments with state prepared molecules can yield important information on the details of the potential curves of the molecular complexes...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...

  7. Weak interactions in hot nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2006-01-01

    The reaction rates for electron capture, neutrino absorption, and neutrino scattering in hot asymmetric nuclear matter are calculated with two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces by use of correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions, and the one-quasiparticle quasi-hole response functions are calculated with a large microcanonical sample and the Tamm-Dancoff approximation. Results for matter at a temperature of 10 MeV, proton fraction 0.4, and densities ρ=(1/2),1,(3/2)ρ 0 , where ρ 0 is the equilibrium density of symmetric nuclear matter, are presented to illustrate the method. In general, the strength of the response is shifted to higher-energy transfers when compared with that of a noninteracting Fermi gas. The shift in the response and the weakness of effective operators as compared with the bare operators significantly reduce the cross sections for electron capture and neutrino scattering by factors of ∼2.5-3.5. In contrast, the symmetry energy enhances the neutrino absorption reaction rate relative to the Fermi gas. However, this reaction rate is still quite small because of Pauli blocking

  8. Switching the selectivity of a polyglycerol dendrimer monomolecularly imprinted with D-(−)-fructose

    OpenAIRE

    Hashidzume, Akihito; Zimmerman, Steven C.

    2009-01-01

    A polyglycerol dendrimer unimolecularly imprinted with D-(−)-fructose (Fru) was synthesized. The dendrimer formed adducts with several monosaccharides, Fru, D-(+)-galactose, D-(+)-glucose, D-(+)-mannose, and methyl-α-D-mannopyranoside (MMan), by removal of four water molecules. The dendrimer preferred Fru in the absence of N,N,N′,N′-tetramethylmethylenediamine (TMDAM), whereas it preferred MMan in the presence of TMDAM.

  9. Factors contributing to the nuclear caloric curve aspect

    International Nuclear Information System (INIS)

    Raduta, Al.H.; Raduta, Ad.R.

    1999-01-01

    After the first experimental evaluation of the nuclear caloric curve a large amount of theoretical work was concentrated to reproduce the transition-like plateau of the caloric curve from 5 MeV temperature. Both dynamical and statistical models have been employed in order to deduce the excitation energy dependence of the temperature of the equilibrated nuclear systems formed in violent heavy ion collisions. For describing such kind of systems a microcanonical model fully obeying the involved physical constrains seems to be the most appropriate option. However, the currently used statistical multifragmentation models (SMM and MMMC ) are not fully satisfying the microcanonical rules. For these reasons the nuclear caloric curve is studied in the present work from the point of view of a sharp microcanonical model. In this respect a detailed analysis concerning the contribution of the various energetic degrees of freedom (binding, Coulomb repulsive and internal excitation) to the curve aspect is performed. The method adopted here consists in suppressing each of the above-mentioned degrees of freedom once at a time keeping the rest of the system parameters unchanged. The Coulomb repulsive (V) and excitation (ε) degrees of freedom are suppressed by fixing the respective energies to zero. The binding degree of freedom (B) is 'suppressed' by fixing it to the constant value of - 8.5 MeV/nucleon for all fragments. The effect of the correlation between the Coulomb repulsive and the excitation degrees of freedom on the caloric curve aspect is also studied. The resulting caloric curves are denoted T -V , T -ε , T -B , T -Vε . One may observe that the suppression of the excitation degree of freedom has the effect of lifting and diminishing the plateau and the suppression of the Coulomb degree of freedom is lowering the plateau and almost washes-out the plateau-like region. The spectacular effect concerns the complementary moves T -Vε and - B: While the Vε couple suppression

  10. The long string at the stretched horizon and the entropy of large non-extremal black holes

    International Nuclear Information System (INIS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2016-01-01

    We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.

  11. The long string at the stretched horizon and the entropy of large non-extremal black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Thomas G. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Verschelde, Henri [Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Zakharov, Valentin I. [ITEP,B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Moscow Institute Phys. & Technol.,Dolgoprudny, Moscow Region 141700 (Russian Federation); School of Biomedicine, Far Eastern Federal University,Sukhanova str 8, Vladivostok 690950 (Russian Federation)

    2016-02-04

    We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.

  12. Heavy ions acceleration in RF wells of 2-frequency electromagnetic field and in the inverted FEL

    International Nuclear Information System (INIS)

    Dzergach, A.I.; Kabanov, V.S.; Nikulin, M.G.; Vinogradov, S.V.

    1995-03-01

    Last results of the study of heavy ions acceleration by electrons trapped in moving 2-frequency 3-D RF wells are described. A linearized theoretical model of ions acceleration in a polarized spheroidal plasmoid is proposed. The equilibrium state of this plasmoid is described by the modified microcanonical distribution of the Courant-Snyder invariant (open-quotes quasienergyclose quotes of electrons). Some new results of computational simulation of the acceleration process are given. The method of computation takes into account the given cylindrical field E 011 (var-phi,r,z) and the self fields of electrons and ions. The results of the computation at relatively short time intervals confirm the idea and estimated parameters of acceleration. The heavy ion accelerator using this principle may be constructed with the use of compact cm band iris-loaded and biperiodical waveguides with double-sided 2-frequency RF feeding. It can accelerate heavy ions with a charge number Z i from small initial energies ∼ 50 keV/a.u. with the rate ∼ Z i · 10 MeV/m. Semirelativistic ions may be accelerated with similar rate also in the inverted FEL

  13. Asymptotic analysis of the structure of a steady planar detonation: Review and extension

    Directory of Open Access Journals (Sweden)

    Bush W. B.

    1999-01-01

    Full Text Available The structure of a steady planar Chapman–Jouguet detonation, which is supported by a direct first-order one-step irreversible exothermic unimolecular reaction, subject to Arrhenius kinetics, is examined. Solutions are studied, by means of a limit-process-expansion analysis, valid for Λ , proportional to the ratio of the reaction rate to the flow rate, going to zero, and for β , proportional to the ratio of the activation temperature to the maximum flow temperature, going to infinity, with the product Λ β 1 / 2 going to zero. The results, essentially in agreement with the Zeldovich–von Neumann–Doring model, show that the detonation consists of (1 a three-region upstream shock-like zone, wherein convection and diffusion dominate; (2 an exponentially thicker five-region downstream deflagration-like zone, wherein convection and reaction dominate; and (3 a transition zone, intermediate to the upstream and downstream zones, wherein convection, diffusion, and reaction are of the same order of magnitude. It is in this transition zone that the ideal Neumann state is most closely approached.

  14. On-Demand Final State Control of a Surface-Bound Bistable Single Molecule Switch.

    Science.gov (United States)

    Garrido Torres, José A; Simpson, Grant J; Adams, Christopher J; Früchtl, Herbert A; Schaub, Renald

    2018-04-12

    Modern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty. No practical data storage device would otherwise exist. This reliability criterion will necessarily need to hold true for future molecular electronics to have the opportunity to emerge as a viable miniaturization alternative to our current silicon-based technology. Molecular electronics target the use of single-molecules to perform the actions of individual electronic components. On-demand final state control over a bistable unimolecular component has therefore been one of the main challenges in the past decade (1-5) but has yet to be achieved. In this Letter, we demonstrate how control of the final state of a surface-supported bistable single molecule switch can be realized. On the basis of the observations and deductions presented here, we further suggest an alternative strategy to achieve final state control in unimolecular bistable switches.

  15. 2010 Atomic & Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  16. The influence of internal degrees of freedom on the unimolecular decay of the molecule-cluster compound Au8+CH3OH

    Science.gov (United States)

    Vogel, M.; Hansen, K.; Herlert, A.; Schweikhard, L.; Walther, C.

    2002-06-01

    Time-resolved photodissociation measurements of the sequential reaction Au8+CH3OH→Au8+→Au7+ and the direct reaction Au8+→Au7+ have been performed for several excitation energies. The production rates and yields of the final state Au7+ in the sequential process are strongly influenced by the excitation energy deposited into the evaporated methanol molecule during the initial fragmentation step. Both the rate constants and yields can be fitted with a single parameter, the cluster-methanol binding energy.

  17. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  18. Fragmentation of neutral carbon clusters formed by high velocity atomic collision

    International Nuclear Information System (INIS)

    Martinet, G.

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  19. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  20. The Rubber Band Revisited: Wang-Landau Simulation

    OpenAIRE

    Ferreira, Lucas S.; Caparica, Alvaro A.; Neto, Minos A.; Galiceanu, Mircea D.

    2012-01-01

    In this work we apply Wang-Landau simulations to a simple model which has exact solutions both in the microcanonical and canonical formalisms. The simulations were carried out by using an updated version of the Wang-Landau sampling. We consider a homopolymer chain consisting of $N$ monomers units which may assume any configuration on the two-dimensional lattice. By imposing constraints to the moves of the polymers we obtain three different models. Our results show that updating the density of...

  1. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    role in the observed pressure dependent photolytic fractionation of deuterium. The model shows that part of the fractionation is a result of competition between the isotopologue dependent rates of unimolecular dissociation and collisional relaxation. We suggest that the remaining fractionation is due......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our...

  2. Hydration-annealing of chemical radiation damage in calcium nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; James, C.

    1984-01-01

    The effect of hydration on the annealing of chemical radiation damage in anhydrous calcium nitrate has been investigated. Rehydration of the anhydrous irradiated nitrate induces direct recovery of the damage. The rehydrated salt is susceptible to thermal annealing but the extent of annealing is small compared to that in the anhydrous salt. The direct recovery of damage on rehydration is due to enhanced lattice mobility. The recovery process is unimolecular. (author)

  3. Laser isotope separation

    International Nuclear Information System (INIS)

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re and Tc

  4. C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.

    Science.gov (United States)

    Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu

    2013-04-17

    We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.

  5. Nonextensive entropies derived from Gauss' principle

    International Nuclear Information System (INIS)

    Wada, Tatsuaki

    2011-01-01

    Gauss' principle in statistical mechanics is generalized for a q-exponential distribution in nonextensive statistical mechanics. It determines the associated stochastic and statistical nonextensive entropies which satisfy Greene-Callen principle concerning on the equivalence between microcanonical and canonical ensembles. - Highlights: → Nonextensive entropies are derived from Gauss' principle and ensemble equivalence. → Gauss' principle is generalized for a q-exponential distribution. → I have found the condition for satisfying Greene-Callen principle. → The associated statistical q-entropy is found to be normalized Tsallis entropy.

  6. Invariant-Based Inverse Engineering of Crane Control Parameters

    Science.gov (United States)

    González-Resines, S.; Guéry-Odelin, D.; Tobalina, A.; Lizuain, I.; Torrontegui, E.; Muga, J. G.

    2017-11-01

    By applying invariant-based inverse engineering in the small-oscillation regime, we design the time dependence of the control parameters of an overhead crane (trolley displacement and rope length) to transport a load between two positions at different heights with minimal final-energy excitation for a microcanonical ensemble of initial conditions. The analogy between ion transport in multisegmented traps or neutral-atom transport in moving optical lattices and load manipulation by cranes opens a route for a useful transfer of techniques among very different fields.

  7. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    Science.gov (United States)

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  8. Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation

    Science.gov (United States)

    Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2018-03-01

    A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

  9. The kinetics of free radical metathetical and addition reactions in silane solutions

    International Nuclear Information System (INIS)

    Aloni, R.

    1976-12-01

    In this work radiolytic technique was employed for the initiation of free radical chainreactions in silane solution. The kinetic analysis of the chain mechanism in various solutions enabled the determination of the Arrhenius parameters for metathesis, addition and unimolecular decomposition reactions which make up the chainpropagation sequence in the systems studied. The following radical reactions were investigated: chlorine atom abstraction from chloromethanes by SiCl 3 and Et 3 Si radicals, and chlorine atom abstraction from chloroethanes by Et 3 Si radicals; unimolecular decomposition reactions and hydrogen atom abstraction, *from the solvent, of chloroethyl radicals in triethylsilane solutions; addition and abstraction reactions of Et 3 Si radicals with chloroolefins. Arrhenius parameters were determined for abstraction of chlorine atom from CH 3 Cl, CH 2 Cl 2 , CHCl 3 and CCl 4 , by SiCl 3 radicals and from CCl 4 , CHCl 3 , CH 2 Cl 2 , CCl 3 CN, C 2 Cl 5 H, sym-C 2 Cl 4 H 2 , asym-C 2 Cl 4 H 2 , 1.1.1-C 2 Cl 3 H 3 , 1.1.1-C 2 Dl 3 F 3 and 1.1-C 2 Cl 2 H 4 by Et 3 Si radicals. (author)

  10. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072 (Australia)

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space

  11. Statistical mechanics and dynamics of solvable models with long-range interactions

    International Nuclear Information System (INIS)

    Campa, Alessandro; Dauxois, Thierry; Ruffo, Stefano

    2009-01-01

    For systems with long-range interactions, the two-body potential decays at large distances as V(r)∼1/r α , with α≤d, where d is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive: the sum of the energies of macroscopic subsystems is not equal to the energy of the whole system. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties of the thermodynamics of short-range systems is at the origin of ensemble inequivalence. In turn, this inequivalence implies that specific heat can be negative in the microcanonical ensemble, and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity allows us to easily spot regions of parameter space where ergodicity may be broken. Historically, negative specific heat had been found for gravitational systems and was thought to be a specific property of a system for which the existence of standard equilibrium statistical mechanics itself was doubted. Realizing that such properties may be present for a wider class of systems has renewed the interest in long-range interactions. Here, we present a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of solvable systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Remarkably, the entropy of all these models can be obtained using the method of large deviations. Long-range interacting systems display an extremely slow relaxation towards thermodynamic equilibrium and, what is more striking, the convergence towards quasi-stationary states. The

  12. Radiation Treatment of Wastewater Containing Pharmaceutical Compounds

    International Nuclear Information System (INIS)

    Takács, E.; Wojnárovits, L.; Homlok, R.; Illés, E.; Csay, T.; Szabó, L.; Rácz, G.

    2012-01-01

    High-energy ionizing radiation induced degradation of maleic acid, fumaric acid and 20 aromatic molecules was investigated in air saturated aqueous solutions. Hydroxyl radicals were generated water radiolysis. The decomposition was followed by chemical oxygen demand (COD) and total organic carbon content (TOC) measurements. Up to ∼50% decrease of COD the dose dependence was linear. By the ratio of the decrease of COD and the amount of reactive radiolysis intermediates introduced into the solution the oxidation efficiencies were calculated. Efficiencies around 0.5-1 (O 2 molecule built in products/OH) found for most of the compounds show that the one-electron-oxidant OH induces 2-4 electron oxidations. The high oxidation rates were explained by OH addition to unsaturated bonds and subsequent reactions of the dissolved O 2 with organic radicals. In amino substituted molecules or in Acid Red 1 azo dye, O 2 cannot compete efficiently with the unimolecular transformation of organic radicals and the efficiency is lower (0.2-0.5). (author)

  13. Photophysics of internal twisting

    International Nuclear Information System (INIS)

    Heisel, F.; Miehe, J.A.; Lippert, E.; Rettig, W.; Bonacic-Koutecky, V.

    1987-01-01

    The formation and characteristics of the ''twisted intermolecular charge transfer'' is studied. Basic concepts on dual fluorescence, steady-state fluorescence, kinetic investigations and cage effects are discussed. The theoretical treatment on the electronic structure of the bonded π - donor - π acceptor pairs is outlined. The two-electron, two-orbital model, the ab initio CI models of simple double, charged and dative π - bonds as well as complex dative π - bonds and the origin of the dual fluorescence of 9.9'-Bianthryl are shown. Concerning the stochastic description of chemical reactions, Master equation, Markov, Birth-Death and Diffusion processes, Kramers-Moyal expansion, Langevin equation, Kramers' approach to steady-state rates of reaction and its extension to non-Markovian processes, and also unimolecular reactions in the absence of potential barrier are considered. Experimental results and interpretation on dynamics of DMABN in the excited state, kinetics of other dialkylanilines, extended donor-acceptor systems with anomalous fluorescence and donor-acceptor systems without anomalous fluorescence are given

  14. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events.

    Science.gov (United States)

    Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe

    2018-05-07

    In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

  15. Unimolecular HCl and HF elimination reactions of 1,2-dichloroethane, 1,2-difluoroethane, and 1,2-chlorofluoroethane: assignment of threshold energies.

    Science.gov (United States)

    Duncan, Juliana R; Solaka, Sarah A; Setser, D W; Holmes, Bert E

    2010-01-21

    The recombination of CH(2)Cl and CH(2)F radicals generates vibrationally excited CH(2)ClCH(2)Cl, CH(2)FCH(2)F, and CH(2)ClCH(2)F molecules with about 90 kcal mol(-1) of energy in a room temperature bath gas. New experimental data for CH(2)ClCH(2)F have been obtained that are combined with previously published studies for C(2)H(4)Cl(2) and C(2)H(4)F(2) to define reliable rate constants of 3.0 x 10(8) (C(2)H(4)F(2)), 2.4 x 10(8) (C(2)H(4)Cl(2)), and 1.9 x 10(8) (CH(2)ClCH(2)F) s(-1) for HCl and HF elimination. The product branching ratio for CH(2)ClCH(2)F is approximately 1. These experimental rate constants are compared to calculated statistical rate constants (RRKM) to assign threshold energies for HF and HCl elimination. The calculated rate constants are based on transition-state models obtained from calculations of electronic structures; the energy levels of the asymmetric, hindered, internal rotation were directly included in the state counting to obtain a more realistic measure for the density of internal states for the molecules. The assigned threshold energies for C(2)H(4)F(2) and C(2)H(4)Cl(2) are both 63 +/- 2 kcal mol(-1). The threshold energies for CH(2)ClCH(2)F are 65 +/- 2 (HCl) and 63 +/- 2 (HF) kcal mol(-1). These threshold energies are 5-7 kcal mol(-1) higher than the corresponding values for C(2)H(5)Cl or C(2)H(5)F, and beta-substitution of F or Cl atoms raises threshold energies for HF or HCl elimination reactions. The treatment presented here for obtaining the densities of states and the entropy of activation from models with asymmetric internal rotations with high barriers can be used to judge the validity of using a symmetric internal-rotor approximation for other cases. Finally, threshold energies for the 1,2-fluorochloroethanes are compared to those of the 1,1-fluorochloroethanes to illustrate substituent effects on the relative energies of the isomeric transition states.

  16. Thermodynamical stability of the Bardeen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  17. Nuclear thermodynamics below particle threshold

    International Nuclear Information System (INIS)

    Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.

    2005-01-01

    From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems

  18. Level density and thermal properties in rare earth nuclei

    International Nuclear Information System (INIS)

    Siem, S.; Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.

    2000-01-01

    The level density at low spin has been extracted for several nuclei in the rare earth region using the ( 3 He,α) reaction. Within the framework of the microcanonical ensemble, the entropy and the temperature of the nuclei are derived. The temperature curve shows bumps which are associated with the break up of Cooper pairs. The entropies of the even-even and even-odd nuclei have been compared. The nuclear heat capacity is deduced within the framework of the canonical ensemble and exhibits an S-formed shape as function of temperature. (author)

  19. Methods for calculating nonconcave entropies

    International Nuclear Information System (INIS)

    Touchette, Hugo

    2010-01-01

    Five different methods which can be used to analytically calculate entropies that are nonconcave as functions of the energy in the thermodynamic limit are discussed and compared. The five methods are based on the following ideas and techniques: (i) microcanonical contraction, (ii) metastable branches of the free energy, (iii) generalized canonical ensembles with specific illustrations involving the so-called Gaussian and Betrag ensembles, (iv) the restricted canonical ensemble, and (v) the inverse Laplace transform. A simple long-range spin model having a nonconcave entropy is used to illustrate each method

  20. Predicting Agency Rating Migrations with Spread Implied Ratings

    OpenAIRE

    Jianming Kou; Dr Simone Varotto

    2005-01-01

    Investors traditionally rely on credit ratings to price debt instruments. However, rating agencies are known to be prudent in their approach to rating revisions, which results in delayed ratings adjustments to mutating credit conditions. For a large set of eurobonds we derive credit spread implied ratings and compare them with the ratings issued by rating agencies. Our results indicate that spread implied ratings often anticipate future movement of agency ratings and hence could help track cr...

  1. Unimolecular Logic Gate with Classical Input by Single Gold Atoms.

    Science.gov (United States)

    Skidin, Dmitry; Faizy, Omid; Krüger, Justus; Eisenhut, Frank; Jancarik, Andrej; Nguyen, Khanh-Hung; Cuniberti, Gianaurelio; Gourdon, Andre; Moresco, Francesca; Joachim, Christian

    2018-02-27

    By a combination of solution and on-surface chemistry, we synthesized an asymmetric starphene molecule with two long anthracenyl input branches and a short naphthyl output branch on the Au(111) surface. Starting from this molecule, we could demonstrate the working principle of a single molecule NAND logic gate by selectively contacting single gold atoms by atomic manipulation to the longer branches of the molecule. The logical input "1" ("0") is defined by the interaction (noninteraction) of a gold atom with one of the input branches. The output is measured by scanning tunneling spectroscopy following the shift in energy of the electronic tunneling resonances at the end of the short branch of the molecule.

  2. Detection of meso-micro scale surface features based on microcanonical multifractal formalism

    Science.gov (United States)

    Yang, Yuanyuan; Chen, Wei; Xie, Tao; Perrie, William

    2018-01-01

    Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFC1401007), the Global Change Research Program of China (Grant No. 2015CB953901), the National Natural Science Foundation of China (Grant No. 41776181), the Canadian Program on Energy Research and Development (OERD), Canadian Space Agency’s SWOT Program, and the Canadian Marine Environmental Observation Prediction and Response Network (MEOPAR).

  3. Accuracy of energy measurement and reversible operation of a microcanonical Szilard engine.

    Science.gov (United States)

    Bergli, Joakim

    2014-04-01

    In a recent paper [Vaikuntanathan and Jarzynski, Phys. Rev. E 83, 061120 (2011)], a model was introduced whereby work could be extracted from a thermal bath by measuring the energy of a particle that was thermalized by the bath and manipulating the potential of the particle in the appropriate way, depending on the measurement outcome. If the extracted work is Wextracted and the work Werasure needed to be dissipated in order to erase the measured information in accordance with Landauer's principle, it was shown that Wextracted≤Werasure in accordance with the second law of thermodynamics. Here we extend this work in two directions: First, we discuss how accurately the energy should be measured. By increasing the accuracy one can extract more work, but at the same time one obtains more information that has to be deleted. We discuss what are the appropriate ways of optimizing the balance between the two and find optimal solutions. Second, whenever Wextracted is strictly less than Werasure it means that an irreversible step has been performed. We identify the irreversible step and propose a protocol that will achieve the same transition in a reversible way, increasing Wextracted so that Wextracted=Werasure.

  4. Laser isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re, and Tc. 9 claims, 1 drawing figure

  5. Rating Movies and Rating the Raters Who Rate Them.

    Science.gov (United States)

    Zhou, Hua; Lange, Kenneth

    2009-11-01

    The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data.

  6. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine

    2012-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  7. Thermodynamics of gravitational clustering phenomena: N-body self-gravitating gas on the sphere {{{S}}^{3}}\\subset {{{R}}^{4}}

    Science.gov (United States)

    Tello-Ortiz, F.; Velazquez, L.

    2016-10-01

    This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the N-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on the sphere {{{S}}3}\\subset {{{R}}4} by considering gravitational interaction that corresponds to this geometric space. The analysis is performed within microcanonical description of an isolated Hamiltonian system by combining continuum approximation and the steepest descend method. According to numerical solution of resulting equations, the gravitational clustering can be associated with two microcanonical phase transitions. A first phase transition with a continuous character is associated with breakdown of SO(4) symmetry of this model. The second one is the gravitational collapse, whose continuous or discontinuous character crucially depends on the regularization of short-range divergence of gravitation potential. We also derive the thermodynamic limit of this model system, the astrophysical counterpart of the Gibbs-Duhem relation, the order parameters that characterize its phase transitions and the equation of state. Other interesting behavior is the existence of states with negative heat capacities, which appear when the effects of gravitation turn dominant for energies sufficiently low. Finally, we comment on the relevance of some of these results in the study of astrophysical and cosmological situations. Special interest deserves the gravitational modification of the equation of state due to the local inhomogeneities of matter distribution. Although this feature is systematically neglected in studies about universe expansion, the same one is able to mimic an effect that is attributed to the dark energy: a negative pressure.

  8. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  9. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  10. Gas-Phase Thermolysis

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Schaumann, Ernst

    1980-01-01

    The unimolecular gas-phase thermolytic decomposition of three silylated thionocarboxylic acid derivatives (2b), (3), and (8) have been studied by the flash vacuum thermolysis–field ionization mass spectrometry technique in the temperature range from 783 to 1 404 K in order to elucidate its possible...... applicability as a route to thioketens. Only very minor amounts of the expected thioketens were found, whereas the corresponding ketens were obtained as the major products. A possible mechanism for keten formation is discussed....

  11. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  12. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  13. Exclusive observables from a statistical simulation of energetic nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1983-01-01

    Exclusive observables are calculated in the framework of a statistical model for medium-energy nuclear collisions. The collision system is divided into a few (participant/spectator) sources, that are assumed to disassemble independently. Sufficiently excited sources explode into pions, nucleons, and composite, possibly particle unstable, nuclei. The different final states compete according to their microcanonical weight. Less excited sources, and the unstable explosion products, deexcite via light-particle evaporation. The model has been implemented as a Monte Carlo computer code that is sufficiently efficient to permit generation of large event samples. Some illustrative applications are discussed. (author)

  14. Small black holes in global AdS spacetime

    Science.gov (United States)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  15. Black hole evaporation in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  16. A new simulation model for electrochemical metal deposition

    International Nuclear Information System (INIS)

    Schmickler, W.; Poetting, K.; Mariscal, M.

    2006-01-01

    A new atomistic simulation model for electrochemical systems is presented. It combines microcanonical molecular dynamics for the electrode with stochastic dynamics for the solution, and allows the simulation of electrochemical deposition and dissolution for specific electrode potentials. As first applications the deposition of silver and platinum on Au(1 1 1) have been studied; both flat surfaces and surfaces with islands have been considered. The two systems behave quite differently: Ag on Au(1 1 1) grows layer by layer, while Pt forms a surface alloy on Au(1 1 1), which is followed by three-dimensional growth

  17. Statistical view on nuclear multifragmentation: Primary decays

    International Nuclear Information System (INIS)

    Raduta, A.H.; Raduta, A.R.

    1997-01-01

    An overall view on the universe of primary decays appearing in the process of nuclear multifragmentation via a microcanonical Monte Carlo Metropolis type simulation is given. General characteristics like mass and charge distributions, relative probabilities of evaporation, fission, fragmentation and vaporization, average number of fragments and distributions of a number of intermediate mass fragments offer valuable information about the intimacy of the process. The capability of the model to describe unitary very different breakup regimes is pointed out. Predictions for charge distributions, isotopic yields, and fission mass distributions are compared with experimental data. copyright 1997 The American Physical Society

  18. Level density and thermal properties in rare earth

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.; Siem, S.

    2001-01-01

    A convergent method to extract the nuclear level density and the γ-ray strength function from primary γ-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parametrizations for the E1, M1, and pygmy resonance strength. However, a significant decrease of pygmy resonance strength at finite temperatures has been observed [ru

  19. Level density and thermal properties in rare earth nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.; Siem, S.

    2001-01-01

    A convergent method to extract the nuclear level density and the γ-ray strength function from primary γ-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parametrizations for the E1, M1, and pygmy resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures has been observed

  20. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts.

    Science.gov (United States)

    Meyer, Andreas L S; Wiens, John J

    2018-01-01

    Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro-evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method-of-moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. Content and ratings of mature-rated video games.

    Science.gov (United States)

    Thompson, Kimberly M; Tepichin, Karen; Haninger, Kevin

    2006-04-01

    To quantify the depiction of violence, blood, sexual themes, profanity, substances, and gambling in video games rated M (for "mature") and to measure agreement between the content observed and the rating information provided to consumers on the game box by the Entertainment Software Rating Board. We created a database of M-rated video game titles, selected a random sample, recorded at least 1 hour of game play, quantitatively assessed the content, performed statistical analyses to describe the content, and compared our observations with the Entertainment Software Rating Board content descriptors and results of our prior studies. Harvard University, Boston, Mass. Authors and 1 hired game player. M-rated video games. Percentages of game play depicting violence, blood, sexual themes, gambling, alcohol, tobacco, or other drugs; use of profanity in dialogue, song lyrics, or gestures. Although the Entertainment Software Rating Board content descriptors for violence and blood provide a good indication of such content in the game, we identified 45 observations of content that could warrant a content descriptor in 29 games (81%) that lacked these content descriptors. M-rated video games are significantly more likely to contain blood, profanity, and substances; depict more severe injuries to human and nonhuman characters; and have a higher rate of human deaths than video games rated T (for "teen"). Parents and physicians should recognize that popular M-rated video games contain a wide range of unlabeled content and may expose children and adolescents to messages that may negatively influence their perceptions, attitudes, and behaviors.

  2. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  3. Female literacy rate is a better predictor of birth rate and infant mortality rate in India

    Directory of Open Access Journals (Sweden)

    Suman Saurabh

    2013-01-01

    Full Text Available Background: Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs, respectively. Materials and Methods: Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs and IMRs of the states and union territories (UTs of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. Results: CBRs were inversely related to literacy rates (slope parameter = -0.402, P < 0.001. On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = -0.363, P < 0.001, while male literacy rate was not significantly related to CBR (P = 0.674. IMR of the states were also inversely related to their literacy rates (slope = -1.254, P < 0.001. Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = -0.816, P = 0.031, whereas male literacy rate was not significantly related (P = 0.630. Conclusion: Female literacy is relatively highly important for both population stabilization and better infant health.

  4. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  5. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    Science.gov (United States)

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-07

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism.

  6. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  7. 29 CFR 778.112 - Day rates and job rates.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Day rates and job rates. 778.112 Section 778.112 Labor... Requirements Principles for Computing Overtime Pay Based on the âregular Rateâ § 778.112 Day rates and job rates. If the employee is paid a flat sum for a day's work or for doing a particular job, without regard...

  8. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  9. Radiation Treatment of Wastewater Containing Pharmaceutical Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Takács, E.; Wojnárovits, L.; Homlok, R.; Illés, E.; Csay, T.; Szabó, L.; Rácz, G. [Centre for Energy Research, Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary)

    2012-07-01

    High-energy ionizing radiation induced degradation of maleic acid, fumaric acid and 20 aromatic molecules was investigated in air saturated aqueous solutions. Hydroxyl radicals were generated water radiolysis. The decomposition was followed by chemical oxygen demand (COD) and total organic carbon content (TOC) measurements. Up to ∼50% decrease of COD the dose dependence was linear. By the ratio of the decrease of COD and the amount of reactive radiolysis intermediates introduced into the solution the oxidation efficiencies were calculated. Efficiencies around 0.5-1 (O{sub 2} molecule built in products/OH) found for most of the compounds show that the one-electron-oxidant OH induces 2-4 electron oxidations. The high oxidation rates were explained by OH addition to unsaturated bonds and subsequent reactions of the dissolved O{sub 2} with organic radicals. In amino substituted molecules or in Acid Red 1 azo dye, O{sub 2} cannot compete efficiently with the unimolecular transformation of organic radicals and the efficiency is lower (0.2-0.5). (author)

  10. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    Science.gov (United States)

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  11. About one Newell's result and the quantum mechanical check of the microcanonical distribution

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1981-01-01

    G.F. Newell succeeded to prove for the eigenfunctions PSIsub(n)(x) of the k-dimensional Schroedinger equation (-Δsub(k)+q(xsub(1), xsub(2)..., xsub(k))-lambdasub(n))PSIsub(n)(x)=0, ∫/PSIsup(2)(x)/dsup(k)x=1, q(x)>=0, q(x)→+infinity at x→infinity the asymptotic relation (lambda→+infinity) Σsub(lambdasub(n) [ru

  12. Exploring unimolecular dissociation kinetics of ethyl dibromide through electronic structure calculations

    Science.gov (United States)

    Gulvi, Nitin R.; Patel, Priyanka; Badani, Purav M.

    2018-04-01

    Pathway for dissociation of multihalogenated alkyls is observed to be competitive between molecular and atomic elimination products. Factors such as molecular structure, temperature and pressure are known to influence the same. Hence present work is focussed to explore mechanism and kinetics of atomic (Br) and molecular (HBr and Br2) elimination upon pyrolysis of 1,1- and 1,2-ethyl dibromide (EDB). For this purpose, electronic structure calculations were performed at DFT and CCSD(T) level of theory. In addition to concerted mechanism, an alternate energetically efficient isomerisation pathway has been exploited for molecular elimination. Energy calculations are further complimented by detailed kinetic investigation, over wide range of temperature and pressure, using suitable models like Canonical Transition State Theory, Statistical Adiabatic Channel Model and Troe's formalism. Our calculations suggest high branching ratio for dehydrohalogentation reaction, from both isomers of EDB. Fall off curve depicts good agreement between theoretically estimated and experimentally reported values.

  13. Encapsulation and release by star-shaped block copolymers as unimolecular nanocontainers

    NARCIS (Netherlands)

    Kul, D.; Renterghem, van L.M.; Meier, M.A.R.; Strandman, S.; Tenhu, H.; Yilmaz, S.S.; Schubert, U.S.; Du Prez, F.E.

    2008-01-01

    Five-arm star-shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert-butyl acrylate (tBA), resulting in five-arm star-shaped poly(ethylene oxide)-block-poly(tert-butyl acrylate) block copolymers. The

  14. [Awareness rate, treatment rate and control rate of dyslipidemia in Chinese adults, 2010].

    Science.gov (United States)

    Li, Jian-hong; Wang, Li-min; Mi, Sheng-quan; Zhang, Mei; Li, Yi-chong; Jiang, Yong; Xu, Yu; Dai, Meng; Wang, Lin-hong

    2012-08-01

    To explore the awareness, treatment and control rates of dyslipidemia among Chinese adults aged over 18 in 2010, and to analyze the prevalent features. 97 409 subjects aged over 18 were recruited from 162 monitoring sites around 31 provinces in China mainland in 2010, applying multi-stage stratified cluster random sampling method. Information about subjects' history of dyslipidemia, treatment and control were collected by face-to-face interview; and each subject's fasting venous blood was drawn in the morning before having food, to test total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C). In total, 51 818 cases of dyslipidemia ever or now, including 2235 subjects who once suffered from dyslipidemia but had their blood lipid controlled to normal, were screened out. And the awareness, treatment and control rates were calculated by complex weighting. The awareness rate of dyslipidemia among Chinese adults was 10.93%, while the stratified rates were 6.00%, 16.75% and 18.74% in the groups of subjects aged 18 - 44, 45 - 59 and over 60 years old, respectively (χ² = 1293.02, P China, respectively (χ² = 117.04, P China, respectively (χ² = 50.71, P control rate of dyslipidemia was 3.53% among total subjects, while whose stratified rates were 1.64%, 5.49% and 6.94% in the groups of subjects aged 18 - 44, 45 - 59 and over 60 years old, respectively (χ² = 554.12, P China, respectively (χ² = 91.45, P control rates of dyslipidemia have been comparatively low among Chinese adults, especially among the population who were young, or who were from rural area or western China.

  15. Multiphoton ionization as a probe of molecular photofragmentation: statistical and dynamical energy partitioning in the multiphoton dissociation of nitromethane

    International Nuclear Information System (INIS)

    Rockney, B.H.

    1982-01-01

    Multiphoton ionization (MPI) appears in its first use as a probe of laser-induced photofragmentation. Specifically, MPI here reveals the internal and translational energy content of the nascent fragments from the infrared multiphoton dissociation (MPD) of nitromethane (CH 3 NO 2 ). The apparatus for this work consists of a pulsed supersonic molecular beam crossed by two pulsed and focused lasers - a CO 2 laser to induce collision-free unimolecular dissociation of CH 3 NO 2 , and a tunable dye laser following immediately to ionize selectively one of the pair of dissociation fragments for detection by a mass spectrometer and particle multiplier. A computer simulation of each fragment's MPI spectrum, a series of four photon resonances to members of the npsigma/sub u/ Rydberg state of NO 2 and three photon resonances to two vibrational members of the #betta# 1 Rydberg state of CH 3 , aids in determining the fragment's internal energy content. The dye laser is delayed and its focus is traced through a small quarter circle centered at the focus of the CO 2 laser. The flight times of the fragments from the point of dissociation and their laboratory scattering angular distributions at fixed ionizing laser wavelength provide their center of mass recoil velocity distributions. The energy deposited in the fragments evidences a striking mixture of statistical and dynamical energy partitioning. The statistical RRKM theory of unimolecular decomposition accurately predicts the amount of internal energy found in the fragments

  16. Heart rate index

    DEFF Research Database (Denmark)

    Haedersdal, C; Pedersen, F H; Svendsen, J H

    1992-01-01

    after the myocardial infarction. A significant correlation (Spearman's correlation coefficient rs, p less than 0.05) was found between LVEF at rest and the following variables assessed at exercise test: 1) the heart rate at rest, 2) rise in heart rate, 3) ratio between maximal heart rate and heart rate...... at rest, 4) rise in systolic blood pressure, 5) rate pressure product at rest, 6) rise in rate pressure product, 7) ratio (rHR) between maximal rate pressure product and rate pressure product at rest, 8) total exercise time. The heart rate was corrected for effects caused by age (heart index (HR...

  17. Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize

    Science.gov (United States)

    Balz, Ben N.; Reimann, Peter

    2017-05-01

    We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and X X Z models.

  18. ms 2: A molecular simulation tool for thermodynamic properties, release 3.0

    Science.gov (United States)

    Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran

    2017-12-01

    A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.

  19. Algorithmic alternatives

    International Nuclear Information System (INIS)

    Creutz, M.

    1987-11-01

    A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/

  20. Combinatorial nuclear level-density model

    International Nuclear Information System (INIS)

    Uhrenholt, H.; Åberg, S.; Dobrowolski, A.; Døssing, Th.; Ichikawa, T.; Möller, P.

    2013-01-01

    A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei

  1. Monopoles and quark confinement: Introduction and overview

    International Nuclear Information System (INIS)

    Yee, Ken.

    1994-01-01

    We (try to) pedagogically explain how monopoles arise in QCD, why maximal Abelian (MA) gauge is ''special'' for monopole study, the Abelian projection in MA gauge, its resultant degrees of freedom (photons, monopoles and charged matter fields), and the QCD-equivalent action in terms of these degrees of freedom. Then we turn to more recent developments in the subject: Abelian dominance, large N behavior of Abelian projected QCD, mass of the charged matter fields, notion of an effective photon-monopole action obtained by integrating out the charged matter fields, and problems encountered in evaluating this effective action using the microcanonical demon method on the lattice

  2. An alternative path integral for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Chethan; Kumar, K.V. Pavan; Raju, Avinash [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)

    2016-10-10

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  3. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  4. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Scott A. [Marquette University

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy Transfer  Energy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  5. Pass-through of Change in Policy Interest Rate to Market Rates

    OpenAIRE

    M. Idrees Khawaja; Sajawal Khan

    2008-01-01

    This paper examines the pass through of the change in policy interest rate of the central bank of Pakistan to market interest rates. The market rates examined include KIBOR, six month deposit rate and weighted average lending rate. More or less complete pass-through of the change in policy rate to KIBOR is observed within one month. However, the magnitude of change in policy rate to deposit and lending rate is not only low but is slow as well. The pass-through to the weighted average lending ...

  6. 2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    2006-11-01

    This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.

  7. Interest Rates and Exchange Rate Relationship in BRIC-T Countries

    OpenAIRE

    Selim KAYHAN; Tayfur BAYAT; Ahmet UGUR

    2013-01-01

    This study examines the dynamic relationships between the real exchange rate and the real interest rate in the BRIC-T (Brazil, Russia, India, China and Turkey) countries by employing monthly data from the beginning of flexible exchange rate regime to July 2011. For this aim, non-linear causality test and frequency domain causality test approaches are used. According to frequency domain causality test results, interest rate affects exchange rate in only China and this effect exist only in the ...

  8. Money market rates and implied CCAPM rates: some international evidence

    OpenAIRE

    Yamin Ahmad

    2004-01-01

    New Neoclassical Synthesis models equate the instrument of monetary policy to the implied CCAPM rate arising from an Euler equation. This paper identifies monetary policy shocks within six of the G7 countries and examines the movement of money market and implied CCAPM rates. The key result is that an increase in the nominal interest rate leads to a fall in the implied CCAPM rate. Incorporating habit still yields the same result. The findings suggest that the movement of these two rates implie...

  9. The influence of sovereign credit ratings on corporate credit ratings.

    OpenAIRE

    Umutoni, Liliane

    2017-01-01

    Credit ratings have a key role in modern financial markets as they communicate crucial information on the creditworthiness of a debt issuer to investors and regulators. These credit ratings are mostly determined by three rating agencies, namely Standard & Poor’s, Moody’s and Fitch, even though, the credit rating industry counts a dozen of recognized rating agencies. Indeed, the three agencies have become the market leaders with a market share of 94.3% on the U.S market (Bloomberg, 2015) and 9...

  10. Characteristics of self-rating and rating by others of safety behavior

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Sugiman, Toshio; Watanabe, Toshie

    2002-01-01

    It is known that in questionnaire surveys in general, behavior that are recognized as socially desirable are more highly rated by the actors themselves than by others. Safety behavior can be viewed as behavior closely related to social desirability. Therefore, in the present study, multiple regression analysis was conducted to examine how the self-rating and rating by others of 'safety confirmation/report', which serves as one of the rating scales of safety climate and criterion for safety behavior rating, are related to other factors of safety climate. The analysis results reveal that the self-rating of 'safety confirmation/report' tends to give better scores than rating by others and is more strongly related to individual factors than organizational environmental factors. Meanwhile, the rating by others of safety confirmation/report' is strongly related to organizational environmental factors and demonstrates little or no link with individual factors. It can be said, therefore, that the rating by others of 'safety confirmation/report' reflects more accurately the influence of the organizational environment concerned than self-rating, and hence is more appropriate as a rating scale for safety climate. (author)

  11. Characteristics of self-rating and rating by others of safety behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Yoshida, Michio; Sugiman, Toshio; Watanabe, Toshie [Japan Institute for Group Dynamics, Fukuoka (Japan)

    2002-09-01

    It is known that in questionnaire surveys in general, behavior that are recognized as socially desirable are more highly rated by the actors themselves than by others. Safety behavior can be viewed as behavior closely related to social desirability. Therefore, in the present study, multiple regression analysis was conducted to examine how the self-rating and rating by others of 'safety confirmation/report', which serves as one of the rating scales of safety climate and criterion for safety behavior rating, are related to other factors of safety climate. The analysis results reveal that the self-rating of 'safety confirmation/report' tends to give better scores than rating by others and is more strongly related to individual factors than organizational environmental factors. Meanwhile, the rating by others of safety confirmation/report' is strongly related to organizational environmental factors and demonstrates little or no link with individual factors. It can be said, therefore, that the rating by others of 'safety confirmation/report' reflects more accurately the influence of the organizational environment concerned than self-rating, and hence is more appropriate as a rating scale for safety climate. (author)

  12. 10 CFR 903.21 - Completion of rate development; provisional rates.

    Science.gov (United States)

    2010-01-01

    ... business principles. The rates shall be submitted promptly to the FERC for confirmation and approval on a..., Southwestern, and Western Area Power Administrations § 903.21 Completion of rate development; provisional rates...

  13. Degradation of epoxy coatings under gamma irradiation

    International Nuclear Information System (INIS)

    Djouani, F.; Zahra, Y.; Fayolle, B.; Kuntz, M.; Verdu, J.

    2013-01-01

    Epoxy networks based on Diglycidyl ether of bisphenol A (DGEBA) and cured with Jeffamine® (POPA) or polyamidoamine (PAA) were gamma irradiated at 25 °C in air. Dose rates of 50, 200 or 2000 Gy h −1 for doses up 100 kGy were used. Structural changes were monitored by IR spectrophotometry, DSC and sol–gel analysis. Both networks display some common features: for I≥200 Gy h −1 , reaction products grow proportionally to time and the rate is a decreasing function of dose rate. The simplest explanation is that peroxy radicals are the main precursors of these products (in the dose rate domain under study), through a unimolecular rearrangement of which an hypothetical mechanism is proposed. DGEBA–POPA are more reactive then DGEBA–PAA networks (according to IR criteria), that can be attributed to the high reactivity of tertiary CH bands in polyoxypropylene segments. The oxidation of these sites leads to methyl ketones. A simple kinetic model in which methyl ketones result from rearrangements of tertiary peroxyls and from tertiary alkoxyls was proposed. It leads to an expression of the radiochemical yield of methyl ketones (G(MK)) of the form G(MK)=a+bI −1/2 where a and b are parameters depending of elementary rate constants. Experimental G(MK) values are reasonably well fitted by this equation. In DGEBA–PAA networks, a wide variety of oxidation products, among which amides predominate, can be observed. In these networks, chain scissions predominate over crosslinking, whereas a slight predominance of crosslinking was observed, at least for the lowest dose rate, in DGEBA–POPA. - Highlights: ► The effects of irradiation at three distinct dose rates have been studied on two epoxy networks. ► DGEBA–polyamidoamine networks appear more stable than DGEBA–polyoxypropylene diamine ones. ► A simple kinetic model involving methyl ketones is proposed.

  14. Phylogenetic estimates of diversification rate are affected by molecular rate variation.

    Science.gov (United States)

    Duchêne, D A; Hua, X; Bromham, L

    2017-10-01

    Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Understanding High Rate Behavior Through Low Rate Analog

    Science.gov (United States)

    2014-04-28

    challenges in high rate character- isation of polymers. The most important is that, owing to their low stress wavespeed, the structural response of...box’ tool, to provide supporting date for the rate dependent mechanical character- isation . Experiments were performed on a TA instruments Q800

  16. The foreign exchange rate rate exposure of nations

    OpenAIRE

    Entorf, Horst; Moebert, Jochen; Sonderhof, Katja

    2007-01-01

    Following the well-known approach by Adler and Dumas (1984) we evaluate the foreign exchange rate exposure of nations. Results based on data from 27 countries show that national foreign exchange rate exposures are significantly related to the current trade balance variables of corresponding economies.

  17. 47 CFR 64.1801 - Geographic rate averaging and rate integration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Geographic rate averaging and rate integration. 64.1801 Section 64.1801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Geographic Rate Averaging and...

  18. 7 CFR 1714.5 - Determination of interest rates on municipal rate loans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Determination of interest rates on municipal rate... General § 1714.5 Determination of interest rates on municipal rate loans. (a) RUS will post on the RUS website, Electric Program HomePage, a schedule of interest rates for municipal rate loans at the beginning...

  19. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  20. Exchange rate behavior with negative interest rates: Some early negative observations

    OpenAIRE

    Hameed, Allaudeen S.; Rose, Andrew

    2017-01-01

    This paper examines exchange rate behavior during the recent period with negative nominal interest rates. We use a daily panel of data on 61 currencies from January 2010 through May 2016, during which five economies - Denmark, the European Economic and Monetary Union, Japan, Sweden, and Switzerland - experienced negative nominal interest rates. We examine both effective exchange rates and bilateral rates; the latter typically measured against the Swiss franc since Switzerland has had the long...

  1. A Longitudinal Examination of Rater and Ratee Effects in Performance Ratings.

    Science.gov (United States)

    Vance, Robert J.; And Others

    1983-01-01

    Investigated the consistency and loci of leniency, halo, and range restriction effects in performance ratings in a longitudinal study. Policy supervisors (N=90) rated 350 subordinates on five occasions. Concluded that reliable variance in mean ratings is partly attributable to ratees, but mainly introduced by raters. (JAC)

  2. Electric rate operations

    International Nuclear Information System (INIS)

    Maillard, D.

    1993-01-01

    The share of nuclear power in EDF production implies multiple rate structures. How are these rates determined. What are the new applications of electricity, and in particular those that make use of the especially low summer prices for electricity. These are topics of interest to the man in the street (witness EDF's recent 'red-white-blue' rates). This prompted the 'Nuclear Power in the Financial, Energy and Economic situation' department of France's nuclear power company to organize a conference bringing together an expert on rates - M.P. Bernard, head of the rate fixing service at the EDF's headquarters - and representatives from suppliers of equipment taking advantage of the various EDF rate options

  3. Exchange rate policy

    Directory of Open Access Journals (Sweden)

    Plačkov Slađana

    2013-01-01

    Full Text Available Small oscillations of exchange rate certainly affect the loss of confidence in the currency (Serbian dinar, CSD and because of the shallow market even the smallest change in the supply and demand leads to a shift in exchange rate and brings uncertainty. Some economists suggest that the course should be linked to inflation and thus ensure predictable and stable exchange rates. Real exchange rate or slightly depressed exchange rate will encourage the competitiveness of exporters and perhaps ensure the development of new production lines which, in terms of overvalued exchange rate, had no economic justification. Fixed exchange rate will bring lower interest rates, lower risk and lower business uncertainty (uncertainty avoidance, but Serbia will also reduce foreign exchange reserves by following this trend. On the other hand, a completely free exchange rate, would lead to a (real fall of Serbian currency, which in a certain period would lead to a significant increase in exports, but the consequences for businessmen and citizens with loans pegged to the euro exchange rate, would be disastrous. We will pay special attention to the depreciation of the exchange rate, as it is generally favorable to the export competitiveness of Serbia and, on the other hand, it leads to an increase in debt servicing costs of the government as well as of the private sector. Oscillations of the dinar exchange rate, appreciation and depreciation, sometimes have disastrous consequences on the economy, investors, imports and exports. In subsequent work, we will observe the movement of the dinar exchange rate in Serbia, in the time interval 2009-2012, in order to strike a balance and maintain economic equilibrium. A movement of foreign currencies against the local currency is controlled in the foreign exchange market, so in case economic interests require, The National Bank of Serbia (NBS, on the basis of arbitrary criteria, can intervene in the market.

  4. Interest Rate Rules, Exchange Market Pressure, and Successful Exchange Rate Management

    NARCIS (Netherlands)

    Klaassen, F.; Mavromatis, K.

    2016-01-01

    Central banks with an exchange rate objective set the interest rate in response to what they call ''pressure.'' Instead, existing interest rate rules rely on the exchange rate minus its target. To stay closer to actual policy, we introduce a rule that uses exchange market pressure (EMP), the

  5. Interest rate derivatives

    DEFF Research Database (Denmark)

    Svenstrup, Mikkel

    This Ph.D. thesis consists of four self-contained essays on valuation of interest rate derivatives. In particular derivatives related to management of interest rate risk care are considered.......This Ph.D. thesis consists of four self-contained essays on valuation of interest rate derivatives. In particular derivatives related to management of interest rate risk care are considered....

  6. Simulating lattice fermions by microcanonically averaging out the nonlocal dependence of the fermionic action

    International Nuclear Information System (INIS)

    Azcoiti, V.; Cruz, A.; Di Carlo, G.; Grillo, A.F.; Vladikas, A.

    1991-01-01

    We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calculating the fermionic determinant just once for all the values of the theory's gauge coupling and flavor number. Our proposal is based on the determination of an effective fermionic action by the calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The feasibility of our method is justified by the observed volume dependence of the fluctuations of the logarithm of the determinant. The algorithm we have used in order to calculate the fermionic determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test the method by simulating compact lattice QED, finding good agreement with other standard calculations. New results on the phase transition of compact QED with massless fermions on 6 4 and 8 4 lattices are also presented

  7. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  8. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  9. An introduction to thermodynamics and statistical mechanics

    CERN Document Server

    Saxena, A K

    2016-01-01

    An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)

  10. Thermodynamic identities and particle number fluctuations in weakly interacting Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, Fabrizio [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Dipartimento di Fisica, Universita di Salerno, and INFM, Unita di Salerno, I-84081 Baronissi SA (Italy); Navez, Patrick [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Institute of Materials Science, Demokritos NCSR, POB 60228, 15310 Athens (Greece); Wilkens, Martin [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany)

    1999-08-14

    We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V{sup 4/3} of the fluctuations in the ideal Bose gas. (author). Letter-to-the-editor.

  11. Breakout character of islet amyloid polypeptide hydrophobic mutations at the onset of type-2 diabetes

    Science.gov (United States)

    Frigori, Rafael B.

    2014-11-01

    Toxic fibrillar aggregates of islet amyloid polypeptide (IAPP) appear as the physical outcome of a peptidic phase transition signaling the onset of type-2 diabetes mellitus in different mammalian species. In particular, experimentally verified mutations on the amyloidogenic segment 20-29 in humans, cats, and rats are highly correlated with the molecular aggregation propensities. Through a microcanonical analysis of the aggregation of IAPP20 -29 isoforms, we show that a minimalist one-bead hydrophobic-polar continuum model for protein interactions properly quantifies those propensities from free-energy barriers. Our results highlight the central role of sequence-dependent hydrophobic mutations on hot spots for stabilization, and thus for the engineering, of such biological peptides.

  12. Aggregate Social Discount Rate Derived from Individual Discount Rates

    OpenAIRE

    Kenneth F. Reinschmidt

    2002-01-01

    In the economic evaluation of large public-sector projects, an aggregate social discount rate may be used in present worth comparison of alternatives. This paper uses the assumptions that individual discount rates are constant over time and approximately Normally distributed across the affected population, with mean \\mu and variance \\sigma 2 , to derive an aggregate discount function that is exponential in form but with time-dependent aggregate discount rate \\rho (t) = \\mu - \\sigma 2 t/2, whe...

  13. Variable-Rate Premiums

    Data.gov (United States)

    Pension Benefit Guaranty Corporation — These interest rates are used to value vested benefits for variable rate premium purposes as described in PBGC's regulation on Premium Rates (29 CFR Part 4006) and...

  14. Experimental and theoretical examples of the value and limitations of transition state theory

    International Nuclear Information System (INIS)

    Golden, D.M.

    1979-01-01

    Value and limitations of transition-state theory (TST) are reviewed. TST analyses of the temperature dependence of the ''direct'' reactions CH 3 + CH 3 CHO → CH 4 + CH 3 CO (1) and O + CH 4 → OH + CH 3 (2) are presented in detail, and other examples of TST usefulness are recalled. Limitations are discussed for bimolecular processes in terms of ''complex'' vs ''direct'' mechanisms. The reaction OH + CO → CO 2 + H is discussed in this context. Limitations for unimolecular processes seem to arise only for simple bond fission processes, and recent advances are noted. 2 figures, 5 tables

  15. The instability of molecules in laser field and isotope separation

    International Nuclear Information System (INIS)

    Li, K.

    1981-01-01

    In the present paper the nonlinear differential equation describing the selective decomposition of a molecule as an unimolecular reaction has be deduced from the usual time dependent semi-classical Schroedinger equation. The selective conditions for the instability of a molecule are discussed. The thresholds of the required laser intensities for ICl and HCl diatomic molecules are estimated respectively, where on type of isotope molecules ought to be decomposed for hundred per cent in a laser pulse for different pulse widths. And possibly selective decomposition of the molecule without permanent dipole moment by Raman process is also discussed briefly. (orig.)

  16. Experimental and theoretical examples of the value and limitations of transition state theory

    Science.gov (United States)

    Golden, D. M.

    1979-01-01

    Value and limitations of transition-state theory (TST) are reviewed. TST analyses of the temperature dependence of the 'direct' reactions CH3 + CH3CHO yields CH4 + CH3CO(1) and O + CH4 yields OH + CH3(2) are presented in detail, and other examples of TST usefulness are recalled. Limitations are discussed for bimolecular processes in terms of 'complex' vs. 'direct' mechanisms. The reaction OH + CO yields CO2 + H is discussed in this context. Limitations for unimolecular processes seem to arise only for simple bond fission processes, and recent advances are noted.

  17. Theoretical study on junctions in porphyrin oligomers for nano scale devices

    International Nuclear Information System (INIS)

    Mizuseki, Hiroshi; Belosludov, Rodion V.; Farajian, Amir A.; Igarashi, Nobuaki; Kawazoe, Yoshiyuki

    2005-01-01

    A unimolecular rectifier could be built by combining two molecular sub-units that contain acceptor or donor groups. Porphyrin possesses good electron-donating properties due to its large, easily ionized, π-conjugated system. In this study, we propose that a rectifier diode could be created by combining two metal porphyrin molecules containing different metal atoms. This function would realize an effect similar to a p-n junction in a solid-state device. A Zn porphyrin-Ni porphyrin junction in a non-conjugated porphyrin system displays a localization of frontier orbitals that is similar to a rectifier function

  18. Branched alkanes from ancient and modern sediments: isomer discrimination by GC/MS with multiple reaction monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Summons, R.E.

    1987-01-01

    Linked scanning of a tandem sector mass spectrometer has been used to identify abundant, first field free region (FFR1) unimolecular fragmentations in branched and isoprenoid hydrocarbons. The most intense, structure-specific reactions were selected to establish multiple reaction monitoring (MRM) parameters for GC/MS analysis. This methodology has been used to study the identify of co-eluting and closely eluting hydrocarbon biomarkers from modern and ancient sediments and from extant microorganisms. Some sediments of Cambrian and Proterozoic age have been found to contain suites of monomethylalkanes with all possible isomers present and with little apparent preference for the site of branching.

  19. Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.

    Science.gov (United States)

    Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth

    2015-01-01

    This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.

  20. Rates of Very Preterm Birth in Europe and Neonatal Mortality Rates

    DEFF Research Database (Denmark)

    Field, David John; Draper, Elizabeth S; Fenton, Alan

    2008-01-01

    OBJECTIVE: To estimate the influence of variation in the rate of very preterm delivery on the reported rate of neonatal death in ten European regions. DESIGN: Comparison of 10 separate geographically defined European populations, from nine European countries, over a one year period (seven months......) a standardised rate of very preterm delivery and b) the existing death rate for babies born at this gestation in the individual region. This produced much greater homogeneity in terms of neonatal mortality. CONCLUSIONS: Variation in the rate of very preterm delivery has a major influence on reported neonatal...

  1. 5 CFR 531.245 - Computing locality rates and special rates for GM employees.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Computing locality rates and special... Gm Employees § 531.245 Computing locality rates and special rates for GM employees. Locality rates and special rates are computed for GM employees in the same manner as locality rates and special rates...

  2. Rate My Stake: Interpretation of Ordinal Stake Ratings

    Science.gov (United States)

    Patricia Lebow; Grant Kirker

    2014-01-01

    Ordinal rating systems are commonly employed to evaluate biodeterioration of wood exposed outdoors over long periods of time. The purpose of these ratings is to compare the durability of test systems to nondurable wood products or known durable wood products. There are many reasons why these systems have evolved as the chosen method of evaluation, including having an...

  3. Kinetic evidence for the formation of discrete 1,4-dehydrobenzene intermediates. Trapping by inter- and intramolecular hydrogen atom transfer and observation of high-temperature CIDNP

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Thomas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Comita, Paul B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Bergman, Robert G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)

    1981-07-01

    Upon heating, alkyl-substituted cis-1,2-diethynyl olefins undergo cyclization to yield reactive 1,4-dehydrobenzenes; the products isolated may be derived from either unimolecular or bimolecular reactions of the intermediate. (Z)-4,5-Diethynyl-4-octene (4) undergoes rearrangement to yield 2,3-di-n-propyl-1,4-dehydrobenzene (17). Solution pyrolysis of 4 in inert aromatic solvents produces three unimolecular products, (Z)-dodeca-4,8-diyn-6-ene (7), benzocyclooctene (9), and o-allyl-n-propylbenzene (10), in high yield. When 1,4-cyclohexadiene is added to the pyrolysis solution as a trapping agent, high yields of the reduced product o-di-n-propylbenzene (12) are obtained. The kinetics of solution pyrolysis of 4 in the presence and absence of trapping agent establish that 2,3-di-n-propyl-1,4-dehydrobenzene is a discrete intermediate on the pathway leading to products. When the reaction was run in the heated probe of an NMR spectrometer, CIDNP was observed in 10. This observation, along with kinetic and chemical trapping evidence, indicates the presence of two additional intermediates, formed from 17 by sequential intramolecular [1,5] hydrogen transfer, on the pathway to products. The observation of CIDNP, coupled with the reactivity exhibited by 17 and the other two intermediates, implicate a biradical description of these molecules. Biradical 17 has been estimated to have a lifetime of about 10-9 s at 200°C and to lie in a well of about 5 kcal/mol with respect to the lowest energy unimolecular pathway ([1,5] hydrogen transfer). Ring opening (expected to be the lowest energy process for 1,4-dehydrobenzenes in which intramolecular hydrogen transfer is unlikely) to the isomeric diethynyl olefin 7 appears to have an activation enthalpy of about 10 kcal/moL Upon thermal reaction in the gas phase (400°C) or in solution in inert solvents (Z)-hexa-2,3-diethyl-1,5-diyn-3-ene (5) rearranges in good yield to the isomeric diethynyl olefin (Z)-deca-3,7-diyn-5-ene (8

  4. Nonequilibrium process of self-gravitating N-body systems and quasi-equilibrium structure using normalized q-expectation values for Tsallis' generalized entropy

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Kiwata, Takahiro; Kimura, Shigeo

    2010-01-01

    To clarify the nonequilibrium processes of self-gravitating systems, we examine a system enclosed in a spherical container with reflecting walls, by N-body simulations. To simulate nonequilibrium processes, we consider loss of energy through the reflecting wall, i.e., a particle reflected at a non-adiabatic wall is cooled to mimic energy loss. We also consider quasi-equilibrium structures of stellar polytropes to compare with the nonequilibrium process, where the quasi-equilibrium structure is obtained from an extremum-state of Tsallis' entropy. Consequently, we numerically show that, with increasing cooling rates, the dependence of the temperature on energy, i.e., the ε-T curve, varies from that of microcanonical ensembles (or isothermal spheres) to a common curve. The common curve appearing in the nonequilibrium process agrees well with an ε-T curve for a quasi-equilibrium structure of the stellar polytrope, especially for the polytrope index n ∼ 5. In fact, for n > 5, the stellar polytrope within an adiabatic wall exhibits gravothermal instability [Taruya, Sakagami, Physica A, 322 (2003) 285]. The present study indicates that the stellar polytrope with n ∼ 5 likely plays an important role in quasi-attractors of the nonequilibrium process in self-gravitating systems with non-adiabatic walls.

  5. Universal Rate Model Selector: A Method to Quickly Find the Best-Fit Kinetic Rate Model for an Experimental Rate Profile

    Science.gov (United States)

    2017-08-01

    k2 – k1) 3.3 Universal Kinetic Rate Platform Development Kinetic rate models range from pure chemical reactions to mass transfer...14 8. The rate model that best fits the experimental data is a first-order or homogeneous catalytic reaction ...Avrami (7), and intraparticle diffusion (6) rate equations to name a few. A single fitting algorithm (kinetic rate model ) for a reaction does not

  6. Eddy-current flow rate meter for measuring sodium flow rates

    International Nuclear Information System (INIS)

    Knaak, J.

    1976-01-01

    For safety reasons flow rate meters for monitoring coolant flow rates are inserted in the core of sodium-cooled fast breeder reactors. These are so-called eddy-current flow rate meters which can be mounted directly above the fuel elements. In the present contribution the principle of measurement, the mechanical construction and the circuit design of the flow rate measuring device are described. Special problems and their solution on developing the measuring system are pointed out. Finally, results of measurement and experience with the apparatus in several experiments are reported, where also further possibilities of application were tested. (orig./TK) [de

  7. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  8. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  9. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bintu, Alexandra [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Vincze, Gabriela, E-mail: gvincze@ua.pt [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Picu, Catalin R. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lopes, Augusto B. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Grácio, Jose J. [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Barlat, Frederic [Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-04-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS.

  10. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    International Nuclear Information System (INIS)

    Bintu, Alexandra; Vincze, Gabriela; Picu, Catalin R.; Lopes, Augusto B.; Grácio, Jose J.; Barlat, Frederic

    2015-01-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS

  11. Interest Rate Swaps

    OpenAIRE

    Marina Pepic

    2014-01-01

    Interest rates changes have a huge impact on the business performance. Therefore, it is of great importance for the market participants to identify and adequately manage this risk. Financial derivatives are a relatively simple way of protection from adverse changes in interest rates. Interest rate swaps are particularly popular because they reduce interest rate risk to a minimum with a relatively low initial cost and without great risk, but also because of the fact that there are many modific...

  12. The influence of interest rates on the exchange rate and exchange rate volatility

    OpenAIRE

    Florin MAVRIS; Dumitru-Cristian OANEA

    2014-01-01

    The dynamic of interest rates has been the subject of attention by both traders and researchers. We see in what manner different factors that depend on the actions of central banks that influence them by using a GARCH type model and we compare its performance with other models to see what approach explains and predicts the movement of the exchange rate. To better understand the type of model that is applicable the data is tested for heteroskedasticity, and only after that the model is impleme...

  13. The rating reliability calculator

    Directory of Open Access Journals (Sweden)

    Solomon David J

    2004-04-01

    Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.

  14. Parents rate the ratings: a test of the validity of the American movie, television, and video game ratings.

    Science.gov (United States)

    Walsh, D A; Gentile, D A; Van Brederode, T M

    2002-02-01

    Numerous studies have documented the potential effects on young audiences of violent content in media products, including movies, television programs, and computer and video games. Similar studies have evaluated the effects associated with sexual content and messages. Cumulatively, these effects represent a significant public health risk for increased aggressive and violent behavior, spread of sexually transmitted diseases, and pediatric pregnancy. In partial response to these risks and to public and legislative pressure, the movie, television, and gaming industries have implemented ratings systems intended to provide information about the content and appropriate audiences for different films, shows, and games. We conducted a panel study to test the validity of the current movie, television, and video game rating systems. Participants used the KidScore media evaluation tool, which evaluates films, television shows, and video and computer games on 10 aspects, including the appropriateness of the media product for children on the basis of age. Results revealed that when an entertainment industry rates a product as inappropriate for children, parent raters agree that it is inappropriate for children. However, parent raters disagree with industry usage of many of the ratings designating material suitable for children of different ages. Products rated as appropriate for adolescents are of the greatest concern. The level of disagreement varies from industry to industry and even from rating to rating. Analysis indicates that the amount of violent content and portrayals of violence are the primary markers for disagreement between parent raters and industry ratings. Short-term and long-term recommendations are suggested.

  15. Interest rates mapping

    Science.gov (United States)

    Kanevski, M.; Maignan, M.; Pozdnoukhov, A.; Timonin, V.

    2008-06-01

    The present study deals with the analysis and mapping of Swiss franc interest rates. Interest rates depend on time and maturity, defining term structure of the interest rate curves (IRC). In the present study IRC are considered in a two-dimensional feature space-time and maturity. Exploratory data analysis includes a variety of tools widely used in econophysics and geostatistics. Geostatistical models and machine learning algorithms (multilayer perceptron and Support Vector Machines) were applied to produce interest rate maps. IR maps can be used for the visualisation and pattern perception purposes, to develop and to explore economical hypotheses, to produce dynamic asset-liability simulations and for financial risk assessments. The feasibility of an application of interest rates mapping approach for the IRC forecasting is considered as well.

  16. Ratings Revisited

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    2015-01-01

    tværs af medier og platforme, forskudt i tid og on-demand. This article focuses on audience ratings, which have functioned as the central ‘currency’ informing the media trade. It discusses changes to the production and accuracy of audience ratings at a time when established standards are being...

  17. Estimation of the rate of volcanism on Venus from reaction rate measurements

    Science.gov (United States)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1989-01-01

    Laboratory rate data for the reaction between SO2 and calcite to form anhydrite are presented. If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the Venusian atmosphere will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulfur content of the erupted material, is in the range 0.4-11 cu km of magma erupted per year. The Venus surface composition at the Venera 13, 14, and Vega 2 landing sites implies a volcanism rate of about 1 cu km/yr. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates is correct. It also suggests that Venus may be less volcanically active than the earth.

  18. The Effects of Gun Ownership Rates and Gun Control Laws on Suicide Rates

    OpenAIRE

    Mark Gius

    2011-01-01

    The purpose of the present study is to determine the effects of gun control laws and gun ownership rates on state-level suicide rates. Using the most recent data on suicide rates, gun control measures, and gun ownership rates, the results of the present study suggest that states that require handgun permits have lower gun-related suicide rates, and states that have higher gun ownership rates have higher gun-related suicide rates. Regarding non-gun suicides, results suggest that stricter gun c...

  19. 15 CFR 700.3 - Priority ratings and rated orders.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Priority ratings and rated orders. 700.3 Section 700.3 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE...

  20. Interest Rate Swaps

    Directory of Open Access Journals (Sweden)

    Marina Pepić

    2014-12-01

    Full Text Available Interest rates changes have a huge impact on the business performance. Therefore, it is of great importance for the market participants to identify and adequately manage this risk. Financial derivatives are a relatively simple way of protection from adverse changes in interest rates. Interest rate swaps are particularly popular because they reduce interest rate risk to a minimum with a relatively low initial cost and without great risk, but also because of the fact that there are manymodifications of the standard swap created to better satisfy the different needs of market players.

  1. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    The heating and cooling rates of adult Chersina angulata were investigated to ascertain whether these tortoises can physiologically alter their rates of heat exchange. In addition, heart rates were recorded to provide an insight into the control of heat exchange. C. angulata heats significantly faster than it cools. Heart rates ...

  2. Rain-rate data base development and rain-rate climate analysis

    Science.gov (United States)

    Crane, Robert K.

    1993-01-01

    The single-year rain-rate distribution data available within the archives of Consultative Committee for International Radio (CCIR) Study Group 5 were compiled into a data base for use in rain-rate climate modeling and for the preparation of predictions of attenuation statistics. The four year set of tip-time sequences provided by J. Goldhirsh for locations near Wallops Island were processed to compile monthly and annual distributions of rain rate and of event durations for intervals above and below preset thresholds. A four-year data set of tropical rain-rate tip-time sequences were acquired from the NASA TRMM program for 30 gauges near Darwin, Australia. They were also processed for inclusion in the CCIR data base and the expanded data base for monthly observations at the University of Oklahoma. The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data base were used to estimate parameters for several rain-rate distribution models: the lognormal model, the Crane two-component model, and the three parameter model proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set of parameters that can be mapped globally for use in rain attenuation predictions. If the form of the distribution can be established, then perhaps available climatological data can be used to estimate the parameters rather than requiring years of rain-rate observations to set the parameters. The two-component model provided the best fit to the Wallops Island data but the Moupfuma model provided the best fit to the Darwin data.

  3. The optimal rating philosophy for the rating of SMEs

    NARCIS (Netherlands)

    Rikkers, F.; Thibeault, A.

    2007-01-01

    The objective of this research is to determine the optimal rating philosophy for the rating of SMEs, and to describe the consequences of the chosen philosophy on several related aspects. As to our knowledge, this is the first paper that studies the considerations of financial institutions on what

  4. Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.

    Science.gov (United States)

    Abdelmoez, Wael; Ashour, Eman; Naguib, Shahenaz M; Hilal, Amr; Al Mahdy, Dalia A; Mahrous, Engy A; Abdel-Sattar, Essam

    2016-06-01

    In this work both kinetic and thermodynamics of castor oil extraction from its seeds using subcritical water technique were studied. It was found that the extraction process followed two consecutive steps. In these steps, the oil was firstly extracted from inside the powder by diffusion mechanism. Then the extracted oil, due to extending the extraction time under high temperature and pressure, was subjected to a decomposition reaction following first order mechanism. The experimental data correlated well with the irreversible consecutive unimolecular-type first order mechanism. The values of both oil extraction rate constants and decomposition rate constants were calculated through non-linear fitting using DataFit software. The extraction rate constants were found to be 0.0019, 0.024, 0.098, 0.1 and 0.117 min(-1), while the decomposition rate constants were 0.057, 0.059, 0.014, 0.019 and 0.17 min(-1) at extraction temperatures of 240, 250, 260, 270 and 280°C, respectively. The thermodynamic properties of the oil extraction process were investigated using Arrhenius equation. The values of the activation energy, Ea, and the frequency factor, A, were 73 kJ mol(-1) and 946, 002 min(-1), respectively. The physicochemical properties of the extracted castor oil including the specific gravity, viscosity, acid value, pH value and calorific value were found to be 0.947, 7.487, 1.094 mg KOH/g, 6.1, and 41.5 MJ/Kg, respectively. Gas chromatography analysis showed that ricinoleic acid (83.6%) appears as the predominant fatty acid in the extracted oil followed by oleic acid (5.5%) and linoleic acid (2.3%).

  5. Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...... rates for a selected quantity are identified through numerical analysis. Evidently, the concept of a characteristic rate, within the rate-dependent material models, may help unlock an otherwise inaccessible parameter space....

  6. River rating complexity

    Science.gov (United States)

    Holmes, Robert R.

    2016-01-01

    Accuracy of streamflow data depends on the veracity of the rating model used to derive a continuous time series of discharge from the surrogate variables that can readily be collected autonomously at a streamgage. Ratings are typically represented as a simple monotonic increasing function (simple rating), meaning the discharge is a function of stage alone, however this is never truly the case unless the flow is completely uniform at all stages and in transitions from one stage to the next. For example, at some streamflow-monitoring sites the discharge on the rising limb of the hydrograph is discernably larger than the discharge at the same stage on the falling limb of the hydrograph. This is the so-called “loop rating curve” (loop rating). In many cases, these loops are quite small and variation between rising- and falling-limb discharge measurements made at the same stage are well within the accuracy of the measurements. However, certain hydraulic conditions can produce a loop that is large enough to preclude use of a monotonic rating. A detailed data campaign for the Mississippi River at St. Louis, Missouri during a multi-peaked flood over a 56-day period in 2015 demonstrates the rating complexity at this location. The shifting-control method used to deal with complexity at this site matched all measurements within 8%.

  7. Provider-Initiated Patient Satisfaction Reporting Yields Improved Physician Ratings Relative to Online Rating Websites.

    Science.gov (United States)

    Ricciardi, Benjamin F; Waddell, Brad S; Nodzo, Scott R; Lange, Jeffrey; Nocon, Allina A; Amundsen, Spencer; Tarity, T David; McLawhorn, Alexander S

    2017-09-01

    Recently, providers have begun to publicly report the results of patient satisfaction surveys from their practices. However, these outcomes have never been compared with the findings of commercial online physician rating websites. The goals of the current study were to (1) compare overall patient satisfaction ratings for orthopedic surgeons derived from provider-based third-party surveys with existing commercial physician rating websites and (2) determine the association between patient ratings and provider characteristics. The authors identified 12 institutions that provided publicly available patient satisfaction outcomes derived from third-party surveys for their orthopedic surgeons as of August 2016. Orthopedic surgeons at these institutions were eligible for inclusion (N=340 surgeons). Provider characteristics were recorded from publicly available data. Four high-traffic commercial online physician rating websites were identified: Healthgrades.com, UCompareHealthCare.com, Vitals.com, and RateMDs.com. For each surgeon, overall ratings (on a scale of 1-5), total number of ratings, and percentage of negative ratings were compared between provider-initiated internal ratings and each commercial online website. Associations between baseline factors and overall physician ratings and negative ratings were assessed. Provider-initiated internal patient satisfaction ratings showed a greater number of overall patient ratings, higher overall patient satisfaction ratings, and a lower percentage of negative comments compared with commercial online physician rating websites. A greater number of years in practice had a weak association with lower internal ratings, and an academic practice setting and a location in the Northeast were protective factors for negative physician ratings. Compared with commercial online physician rating websites, provider-initiated patient satisfaction ratings of orthopedic surgeons appear to be more favorable, with greater numbers of responses

  8. 76 FR 77581 - Interest Rates

    Science.gov (United States)

    2011-12-13

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  9. 77 FR 76586 - Interest Rates

    Science.gov (United States)

    2012-12-28

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  10. 76 FR 18821 - Interest Rates

    Science.gov (United States)

    2011-04-05

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  11. 78 FR 18664 - Interest Rates

    Science.gov (United States)

    2013-03-27

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  12. 75 FR 81326 - Interest Rates

    Science.gov (United States)

    2010-12-27

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  13. 77 FR 39560 - Interest Rates

    Science.gov (United States)

    2012-07-03

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  14. 75 FR 37872 - Interest Rates

    Science.gov (United States)

    2010-06-30

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  15. 77 FR 20476 - Interest Rates

    Science.gov (United States)

    2012-04-04

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  16. 75 FR 60152 - Interest Rates

    Science.gov (United States)

    2010-09-29

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  17. 77 FR 59447 - Interest Rates

    Science.gov (United States)

    2012-09-27

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  18. 78 FR 62932 - Interest Rates

    Science.gov (United States)

    2013-10-22

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  19. 78 FR 39434 - Interest Rates

    Science.gov (United States)

    2013-07-01

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This rate will...

  20. The Optimal Interest Rates and the Current Interest Rate System

    Directory of Open Access Journals (Sweden)

    Ioannis N. Kallianiotis

    2014-12-01

    Full Text Available The paper discusses the current target interest rate, which is closed to zero with the new experiment of quantitative easing since 2009 and has reduced the rate of return and the income and has made the real savings rate negative. This target rate has not reduced unemployment and has not improved growth (it is not optimal, but has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. People were borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit cards. The current monetary system needs to be changed and an interest rate floor on deposits (savings and an interest rate ceiling on individuals‟ loans (borrowings is necessary to improve social welfare, fairness, and justice in our society and not to support only disintermediation (financial markets. The middle class cannot work only to pay taxes and interest on its debt (redistribution of their wealth to government and banks or worse to be in chronic unemployment. Many home owners defaulted on their loans payments and their homes are foreclosed. They will end up without property (real assets. The unconcern towards the middle class will affect negatively the entire socio-economic structure of the nation and after losing its productive power, it will start declining, as history has shown to us with so many empires that do not exist anymore. We hope the leaders (the democratic governments to improve public policies, to regulate the financial market and institutions, and to satisfy their policy ultimate objective, which is citizens‟ perfection and the nation‟s highest point of prosperity.

  1. Airline Quality Rating 1996

    OpenAIRE

    Bowen, Brent D.; Headley, Dean E.

    1996-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple factors important to consumers. Development history and calculation details for the AQR rating system are detailed in The Airline Quality Rating issued in April, 1991, by the National Institute for Aviation Research at Wichita State University. This current report, Airline Quality Rating 1996, contains monthly Airline Quality Rating scor...

  2. Rating mutual funds

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Rangvid, Jesper

    2007-01-01

    We develop a new rating of mutual funds: the atpRating. The atpRating assigns crowns to each individual mutual fund based upon the costs an investor pays when investing in the fund in relation to what it would cost to invest in the fund's peers. Within each investment category, the rating assigns...... the return of a fund in a certain year generally contains only little information about the future return that the fund will generate. Finally, we have information on the investments in different mutual funds made by a small subgroup of investors known to have been exposed to both the atp...... five crowns to funds with the lowest costs and one crown to funds with the highest costs. We investigate the ability of the atpRating to predict the future performance of a fund. We find that an investor who has invested in the funds with the lowest costs within an investment category would have...

  3. Rating Mutual Funds

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Rangvid, Jesper

    We develop a new rating of mutual funds: the atpRating. The atpRating assigns crowns to each individual mutual fund based upon the costs an investor pays when investing in the fund in relation to what it would cost to invest in the fund’s peers. Within each investment category, the rating assigns......, whereas the return of a fund in a certain year generally contains only little information about the future return that the fund will generate. Finally, we have information on the investments in different mutual funds made by a small subgroup of investors known to have been exposed to both the atp...... five crowns to funds with the lowest costs and one crown to funds with the highest costs. We investigate the ability of the atpRating to predict the future performance of a fund. We find that an investor who has invested in the funds with the lowest costs within an investment category would have...

  4. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps

    Science.gov (United States)

    Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate koff is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate kon. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design. PMID:25605901

  5. Ratings are Overrated!

    Directory of Open Access Journals (Sweden)

    Georgios N. Yannakakis

    2015-07-01

    Full Text Available Are ratings of any use in human-computer interaction and user studies at large? If ratings are of limited use, is there a better alternative for quantitative subjective assessment? Beyond the intrinsic shortcomings of human reporting, there are a number of supplementary limitations and fundamental methodological flaws associated with rating-based questionnaires --- i.e. questionnaires that ask participants to rate their level of agreement with a given statement such as a Likert item. While the effect of these pitfalls has been largely downplayed, recent findings from diverse areas of study question the reliability of using ratings. Rank-based questionnaires --- i.e. questionnaires that ask participants to rank two or more options --- appear as the evident alternative that not only eliminates the core limitations of ratings but also simplifies the use of sound methodologies that yield more reliable models of the underlying reported construct: user emotion, preference, or opinion. This paper solicits recent findings from various disciplines interlinked with psychometrics and offers a quick guide for the use, processing and analysis of rank-based questionnaires for the unique advantages they offer. The paper challenges the traditional state-of-practice in human-computer interaction and psychometrics directly contributing towards a paradigm shift in subjective reporting.

  6. Structural and dynamical properties of the Cu{sub 46}Zr{sub 54} alloy in crystalline, amorphous and liquid state: A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Valencia-Balvin, Camilo, E-mail: cavalen@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); ITM Institucion Universitaria, A.A 54959 Medellin (Colombia); Loyola, Claudia [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Osorio-Guillen, Jorge [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Gutierrez, Gonzalo [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile)

    2010-12-15

    Molecular dynamics simulations for the crystal, amorphous and liquid Cu{sub 46}Zr{sub 54} alloy were carried out on a system with up to 2000 particles, using a pairwise potential of the Rosato-Guillope-Legrand type. All simulations were done in the microcanonical ensemble, for a initial density of 5.76 g/cm{sup 3}, at different temperatures. A detailed analysis has been made by means of the pair-correlation function, coordination number, angle distribution, diffusion coefficient and vibrational density of states. We compared the main peaks of the amorphous phase with experimental data, obtaining a good agreement. The analysis of coordination number for the amorphous phase shows that the main building block of this phase are distorted icosahedron.

  7. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  8. Chaotic behavior of the lattice Yang-Mills on CUDA

    Directory of Open Access Journals (Sweden)

    Forster Richárd

    2015-12-01

    Full Text Available The Yang-Mills fields plays important role in the strong interaction, which describes the quark gluon plasma. The non-Abelian gauge theory provides the theoretical background understanding of this topic. The real time evolution of the classical fields is derived by the Hamiltonian for SU(2 gauge field tensor. The microcanonical equations of motion is solved on 3 dimensional lattice and chaotic dynamics was searched by the monodromy matrix. The entropy-energy relation was presented by Kolmogorov-Sinai entropy. We used block Hessenberg reduction to compute the eigenvalues of the current matrix. While the purely CPU based algorithm can handle effectively only a small amount of values, the GPUs provide enough performance to give more computing power to solve the problem.

  9. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  10. Aspects of statistical model for multifragmentation

    International Nuclear Information System (INIS)

    Bhattacharyya, P.; Das Gupta, S.; Mekjian, A. Z.

    1999-01-01

    We deal with two different aspects of an exactly soluble statistical model of fragmentation. First we show, using zero range force and finite temperature Thomas-Fermi theory, that a common link can be found between finite temperature mean field theory and the statistical fragmentation model. We show the latter naturally arises in the spinodal region. Next we show that although the exact statistical model is a canonical model and uses temperature, microcanonical results which use constant energy rather than constant temperature can also be obtained from the canonical model using saddle-point approximation. The methodology is extremely simple to implement and at least in all the examples studied in this work is very accurate. (c) 1999 The American Physical Society

  11. Dynamics of Rb{sup +}-benzene and Rb{sup +}-benzene-Ar {sub n} (n {<=} 3) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain)], E-mail: m.alberti@ub.edu; Aguilar, A. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Lucas, J.M. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Cappelletti, D. [Dipartimento di Ingegneria Civile ed Ambientale, Universita di Perugia, 06123 Perugia (Italy); Lagana, A. [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy); Pirani, F. [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy)

    2006-09-29

    The potential energy function of the Rb{sup +}-benzene cluster and of some of its Ar solvated variants is here modeled using a combination (pairwise sum) of ion(atom)-molecular bond and ion-molecular charges interaction contributions which provide, respectively, the non electrostatic and the electrostatic terms of the total non covalent intermolecular potential energy. In particular, such interaction contributions have been represented using, in addition to the ion(atom) polarizability, the bond polarizability tensor components and the charge distribution which account, respectively, for the polarizability and the quadrupolar moment of the benzene molecule. On the resulting potential energy surface, dynamical calculations have been carried out for the microcanonical ensemble by focusing on isomerization processes and on the effect of the mass of the cation.

  12. Break-up fragment topology in statistical multifragmentation models

    International Nuclear Information System (INIS)

    Raduta, Ad. R.

    2009-01-01

    Break-up fragmentation patterns together with kinetic and configurational energy fluctuations are investigated in the framework of a microcanonical model with fragment degrees of freedom over a broad excitation energy range. As long as fragment partitioning is approximately preserved, energy fluctuations are found to be rather insensitive to both the way in which the freeze-out volume is constrained and the trajectory followed by the system in the excitation-energy-freeze-out volume space. Due to hard-core repulsion, the freeze-out volume is found to be populated nonuniformly, its highly depleted core giving the source a bubble-like structure. The most probable localization of the largest fragments in the freeze-out volume may be inferred experimentally from their kinematic properties, largely dictated by Coulomb repulsion.

  13. Statistical Physics of Nanoparticles in the Gas Phase

    CERN Document Server

    Hansen, Klavs

    2013-01-01

    Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. This book has the twofold aim to present coherently the relevant results coming from the recent scientific literature and to guide the readers through the process of deriving results, enabling them to explore the limits of the mathematical approximations and test the power of the method. The book is focused on the fundamental properties of nanosystems in the gas phase. For this reason there is a strong emphasis on microcanonical physics. Each chapter is enriched with exercises and 3 Appendices provide additional useful materials.

  14. 39 CFR 3010.25 - Limitation on unused rate adjustment authority rate adjustments.

    Science.gov (United States)

    2010-07-01

    ... only be applied together with inflation-based limitation rate adjustments or when inflation-based... used in lieu of an inflation-based limitation rate adjustment. ... 39 Postal Service 1 2010-07-01 2010-07-01 false Limitation on unused rate adjustment authority...

  15. Credit Rating and Competition

    OpenAIRE

    Nelson Camanho; Pragyan Deb; Zijun Liu

    2010-01-01

    In principle, credit rating agencies are supposed to be impartial observers that bridge the gap between private information of issuers and the information available to the wider pool of investors. However, since the 1970s, rating agencies have relied on an issuer-pay model, creating a conflict of interest the largest source of income for the rating agencies are the fees paid by the issuers the rating agencies are supposed to impartially rate. In this paper, we explore the trade-off between re...

  16. Understanding Interest Rate Volatility

    DEFF Research Database (Denmark)

    Volker, Desi

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty...... and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochastic Volatility" (co-authored with Sebastian Fux), investigates the ability of the class of regime switching models...... with and without stochastic volatility to capture the main stylized features of U.S. interest rates. The third essay, \\Variance Risk Premia in the Interest Rate Swap Market", investigates the time-series and cross-sectional properties of the compensation demanded for holding interest rate variance risk. The essays...

  17. The Impact of the Rating Agencies' Through-the-cycle Methodology on Rating Dynamics

    NARCIS (Netherlands)

    Altman, E.I.; Rijken, H.A.

    2005-01-01

    Surveys on the use of agency credit ratings reveal that some investors believe that credit-rating agencies are relatively slow in adjusting their ratings. A well-accepted explanation for this perception on rating timeliness is the through-the-cycle methodology that agencies use. Through-the-cycle

  18. 76 FR 38717 - Interest Rates

    Science.gov (United States)

    2011-07-01

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may be used as a base rate for guaranteed fluctuating interest rate SBA loans. This [[Page...

  19. Tapping Into Rate Flexibility: Musical Training Facilitates Synchronization Around Spontaneous Production Rates

    Science.gov (United States)

    Scheurich, Rebecca; Zamm, Anna; Palmer, Caroline

    2018-01-01

    The ability to flexibly adapt one’s behavior is critical for social tasks such as speech and music performance, in which individuals must coordinate the timing of their actions with others. Natural movement frequencies, also called spontaneous rates, constrain synchronization accuracy between partners during duet music performance, whereas musical training enhances synchronization accuracy. We investigated the combined influences of these factors on the flexibility with which individuals can synchronize their actions with sequences at different rates. First, we developed a novel musical task capable of measuring spontaneous rates in both musicians and non-musicians in which participants tapped the rhythm of a familiar melody while hearing the corresponding melody tones. The novel task was validated by similar measures of spontaneous rates generated by piano performance and by the tapping task from the same pianists. We then implemented the novel task with musicians and non-musicians as they synchronized tapping of a familiar melody with a metronome at their spontaneous rates, and at rates proportionally slower and faster than their spontaneous rates. Musicians synchronized more flexibly across rates than non-musicians, indicated by greater synchronization accuracy. Additionally, musicians showed greater engagement of error correction mechanisms than non-musicians. Finally, differences in flexibility were characterized by more recurrent (repetitive) and patterned synchronization in non-musicians, indicative of greater temporal rigidity. PMID:29681872

  20. Tapping Into Rate Flexibility: Musical Training Facilitates Synchronization Around Spontaneous Production Rates

    Directory of Open Access Journals (Sweden)

    Rebecca Scheurich

    2018-04-01

    Full Text Available The ability to flexibly adapt one’s behavior is critical for social tasks such as speech and music performance, in which individuals must coordinate the timing of their actions with others. Natural movement frequencies, also called spontaneous rates, constrain synchronization accuracy between partners during duet music performance, whereas musical training enhances synchronization accuracy. We investigated the combined influences of these factors on the flexibility with which individuals can synchronize their actions with sequences at different rates. First, we developed a novel musical task capable of measuring spontaneous rates in both musicians and non-musicians in which participants tapped the rhythm of a familiar melody while hearing the corresponding melody tones. The novel task was validated by similar measures of spontaneous rates generated by piano performance and by the tapping task from the same pianists. We then implemented the novel task with musicians and non-musicians as they synchronized tapping of a familiar melody with a metronome at their spontaneous rates, and at rates proportionally slower and faster than their spontaneous rates. Musicians synchronized more flexibly across rates than non-musicians, indicated by greater synchronization accuracy. Additionally, musicians showed greater engagement of error correction mechanisms than non-musicians. Finally, differences in flexibility were characterized by more recurrent (repetitive and patterned synchronization in non-musicians, indicative of greater temporal rigidity.

  1. To the reaction of silyl radicals. The ratio of disproportionation/recombination

    International Nuclear Information System (INIS)

    Reimann, B.; Matten, A.; Laupert, R.; Potzinger, P.

    1977-01-01

    Silyl radicals react in two distinct ways: (1) recombination to a vibrationally highly excited disilane, and (2) disproportionation to silylene and silane. Silylene disappears by a very fast insertion reaction in which disilane is formed. - Both reaction paths (1) and (2) can be distinguished by isotopic labelling. Disilane formed by (1), either undergoes unimolecular decomposition forming silylene and silane or it is stabilized through collisions. The ratio of disproportionation to recombination products is therefore pressure dependent. The disproportionation to recombination ratio, as calculated by extrapolation to infinite pressure, is 0.7 +- 0.1. - Photoionization mass spectrometry has been applied for the quantitative analysis of the deuterated disilanes. (orig.) [de

  2. Raman spectroscopic study of reaction dynamics

    Science.gov (United States)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  3. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis

    Science.gov (United States)

    Wang, Meng; Liu, Chao; Xu, Xiaoxiao; Li, Qibin

    2016-06-01

    The unimolecular and bimolecular decomposition reactions in processes of vanillin pyrolysis were theoretically investigated by employing density functional theory (DFT) method at M06-2X/6-31 G+(d,p) level. The result shows that the homolytic cleavage of O-CH3 bond could be the dominant initial step in the pyrolysis of vanillin. The hydrogen abstractions from functional groups of vanillin by the formed radicals play important roles in the formation of main products. Both formyl, hydroxyl and methoxyl group contribute to the formation of CO. Benzene is formed from the hydrogen addition reaction between hydrogen radical and phenol at high temperature.

  4. Ion-molecule reactions: their role in radiation chemistry

    International Nuclear Information System (INIS)

    Lias, S.G.; Ausloos, P.

    1975-01-01

    A comprehensive review of ion--molecule reactions is presented, including information from mass spectrometric, organic chemistry, and NMR studies, from theoretical calculations, and from gas and liquid phase radiation chemistry. Special emphasis is placed on interpreting the role of ion--molecule reactions in systems under high energy irradiation. The discussion is presented under the following chapter headings: ion--molecule reactions and their role in radiation chemistry; unimolecular processes: the nature and structure of ionic intermediates in radiolysis; ion lifetimes and the fate of unreactive ions; kinetics and mechanisms of ion--molecule reactions; proton transfer reactions; negative atom and two-atom transfer reactions; condensation reactions; and, association or clustering reactions

  5. Understanding Rig Rates

    OpenAIRE

    Petter Osmundsen; Knut Einar Rosendahl; Terje Skjerpen

    2013-01-01

    We examine the largest cost component in offshore development projects, drilling rates, which have been high over the last years. To our knowledge, rig rates have not been analysed empirically before in the economic literature. By econometric analysis we examine the effects on Gulf of Mexico rig rates of gas and oil prices, rig capacity utilization, contract length and lead time, and rig specific characteristics. Having access to a unique data set containing contract information, we are able ...

  6. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  7. Effects of Liraglutide on Heart Rate and Heart Rate Variability

    DEFF Research Database (Denmark)

    Kumarathurai, Preman; Anholm, Christian; Larsen, Bjørn Strøier

    2017-01-01

    OBJECTIVE: Reduced heart rate variability (HRV) and increased heart rate (HR) have been associated with cardiovascular mortality. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) increase HR, and studies have suggested that they may reduce HRV. We examined the effect of the GLP-1 RA...

  8. Empirical Studies of Exchange Rates: Price Behavior, Rate Determinationand Market Efficiency

    OpenAIRE

    Richard M. Levich

    1983-01-01

    Theoretical and empirical research completed over the last decade has dramatically increased our understanding of exchange rate behavior. The major insight to come from this decade of research is that foreign exchange is a financial asset. In an asset pricing framework, current exchange rates reflect the expected values of future exogenous variables. The purpose of this paper is to survay the empirical evidence on exchange rate behavior, market efficiency and related topics. Section 2 present...

  9. Rate My Information Systems Professor: Exploring the Factors That Influence Student Ratings

    Science.gov (United States)

    Sena, Mark; Crable, Elaine

    2017-01-01

    Based on 820 entries on Ratemyprofessors.com, we explore whether information systems course ratings differ from those in marketing or management courses, whether lower level course ratings differ from those in senior or graduate level courses, whether course ratings differ between genders, and whether perceived course difficulty impacts course…

  10. Content and ratings of teen-rated video games.

    Science.gov (United States)

    Haninger, Kevin; Thompson, Kimberly M

    2004-02-18

    Children's exposure to violence, blood, sexual themes, profanity, substances, and gambling in the media remains a source of public health concern. However, content in video games played by older children and adolescents has not been quantified or compared with the rating information provided to consumers by the Entertainment Software Rating Board (ESRB). To quantify and characterize the content in video games rated T (for "Teen") and to measure the agreement between the content observed in game play and the ESRB-assigned content descriptors displayed on the game box. We created a database of all 396 T-rated video game titles released on the major video game consoles in the United States by April 1, 2001, to identify the distribution of games by genre and to characterize the distribution of ESRB-assigned content descriptors. We randomly sampled 80 video game titles (which included 81 games because 1 title included 2 separate games), played each game for at least 1 hour, quantitatively assessed the content, and compared the content we observed with the content descriptors assigned by the ESRB. Depictions of violence, blood, sexual themes, gambling, and alcohol, tobacco, or other drugs; whether injuring or killing characters is rewarded or is required to advance in the game; characterization of gender associated with sexual themes; and use of profanity in dialogue, lyrics, or gestures. Analysis of all content descriptors assigned to the 396 T-rated video game titles showed 373 (94%) received content descriptors for violence, 102 (26%) for blood, 60 (15%) for sexual themes, 57 (14%) for profanity, 26 (7%) for comic mischief, 6 (2%) for substances, and none for gambling. In the random sample of 81 games we played, we found that 79 (98%) involved intentional violence for an average of 36% of game play, 73 (90%) rewarded or required the player to injure characters, 56 (69%) rewarded or required the player to kill, 34 (42%) depicted blood, 22 (27%) depicted sexual themes

  11. Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The π3s Rydberg state

    Science.gov (United States)

    Wu, Guorong; Boguslavskiy, Andrey E.; Schalk, Oliver; Schuurman, Michael S.; Stolow, Albert

    2011-10-01

    Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ* valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (˜20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ* state increases with increasing methylation, and (2) the π3s/ππ* minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.

  12. Split credit ratings and the prediction of bank ratings in the Basel II environment

    OpenAIRE

    Barton, Amanda

    2006-01-01

    This thesis investigates two aspects of credit risk measurement in the context of Basel 11: The International Convergence of Capital Measurement and Capital Standards. The first is the problem arising when two credit rating agencies disagree over the rating assigned to an issuer and a split rating arises. The second area is the determination of internal credit rating models for use under the Internal ratings-based approach. This thesis presents a variety of bank rating modes for individual an...

  13. Rate Review Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — As of September 1, 2011, the Affordable Care Act and rate review regulation require review of rate increases of 10 percent or more. A non-grandfathered health plan...

  14. Real Property Tax Rates

    Data.gov (United States)

    Montgomery County of Maryland — The Levy Year 2012 real property tax rate dataset reflects all the rates per $100 set each year by the County Council. These rates are applied to the assessed value...

  15. Field Office Telephone Service - Monthly National Answer Rate and Busy Rate

    Data.gov (United States)

    Social Security Administration — This dataset provides information at the national level by month for federal fiscal year 2013 onward for answer rate and busy rate for calls to our field offices....

  16. Low dose rate and high dose rate intracavitary treatment for cervical cancer

    International Nuclear Information System (INIS)

    Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo

    1997-01-01

    From 1984 through 1993, 144 previous untreated patients with carcinoma of uterine cervix were treated with either low dose rate 137 Cs therapy (LDR) or high dose rate 60 Co therapy (HDR). The local failure rates for more than 2-years for the primary lesions were 11.8% (8 of 63 patients) for LDR and 18.0% (11 of 61 patients). Rectal complication rates were significantly lower for HDR versus LDR (14.3% VS. 32.8%. p<0.01). Also, bladder complication rates were significantly lower for HDR versus LDR (0% VS. 10.4%, p<0.005). Treatment results in term of local control were equivalent for HDR and LDR treatment. However, the incidence of complications was higher for the LDR group than for the HDR group. (author)

  17. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2012-12-01

    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  18. 75 FR 17453 - Interest Rates

    Science.gov (United States)

    2010-04-06

    ... SMALL BUSINESS ADMINISTRATION Interest Rates The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120.214) on a quarterly basis. This rate is a.... This rate may [[Page 17454

  19. Bretton Woods Fixed Exchange Rate System versus Floating Exchange Rate System

    OpenAIRE

    Geza, Paula; Giurca Vasilescu, Laura

    2011-01-01

    One of the most important issues of monetary policy is to find out whether the state should intervene among the exchange rates, taking into account the fact that changes in the exchange rates represent a significant transmission channel of the effects generated by the monetary policy. Taking into consideration the failure of fixed exchange rate regimes and the recent improvement of financial markets, the return in the near future to such a regime – as for example the Bretton Woods system –...

  20. Observed Barium Emission Rates

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  1. Throughput rate study

    International Nuclear Information System (INIS)

    Ford, L.; Bailey, W.; Gottlieb, P.; Emami, F.; Fleming, M.; Robertson, D.

    1993-01-01

    The Civilian Radioactive Waste Management System (CRWMS) Management and Operating (M ampersand O) Contractor, has completed a study to analyze system wide impacts of operating the CRWMS at varying throughput rates, including the 3000 MTU/year rate which has been assumed in the past. Impacts of throughput rate on all phases of the CRWMS operations (acceptance, transportation, storage and disposal) were evaluated. The results of the study indicate that a range from 3000 to 5000 MTU/year is preferred, based on system cost per MTU of SNF emplaced and logistics constraints

  2. Nonmarital Fertility and the Effects of Divorce Rates on Youth Suicide Rates

    Science.gov (United States)

    Messner, Steven F.; Bjarnason, Thoroddur; Raffalovich, Lawrence E.; Robinson, Bryan K.

    2006-01-01

    Using pooled, time-series data for a sample of 15 developed nations, we assess the effect of divorce rates on gender-specific suicide rates for youths aged 15-19 with models of relative cohort size, lagged nonmarital fertility, and an interaction term for divorce rates and nonmarital fertility. The results reveal that, for young men, relative…

  3. Understanding Interest Rate Volatility

    OpenAIRE

    Volker, Desi

    2016-01-01

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochast...

  4. Airline Quality Rating 2003

    OpenAIRE

    Bowen, Brent D.; Headley, Dean E.

    2003-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2003, reflects monthly Airline Quality Rating scores for 2002. AQR scores for the calendar year 2002 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2003 is a summary of month-by-month qualit...

  5. Airline Quality Rating 2001

    OpenAIRE

    Bowen, Brent D.; Headley, Dean E.

    2001-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2001, reflects monthly Airline Quality Rating scores for 2000. AQR scores for the calendar year 2000 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2001 is a summary of month-by-month quality ra...

  6. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  7. [Do online ratings reflect structural differences in healthcare? The example of German physician-rating websites].

    Science.gov (United States)

    Meszmer, Nina; Jaegers, Lena; Schöffski, Oliver; Emmert, Martin

    2018-04-01

    Previous surveys have shown that patient satisfaction varies with the regional supply of physicians. Online ratings on physician-rating websites represent a relatively new instrument to display patient satisfaction results. The aim of this study was (1) to assess the current state of online ratings for two medical disciplines (dermatologists and ear, nose and throat (ENT) specialists), and (2) to analyze online derived patient satisfaction results according to the physician density in Germany. We collected online ratings for 420 dermatologists and 450 ear, nose, and throat (ENT) specialists on twelve German physician-rating websites. We analyzed the online ratings according to the physician density (low, medium, high physician density). For this purpose, we collected secondary data from both physician-rating websites and the regional associations of statutory health insurance physicians. Data analysis was performed using Median tests and Chi-square tests. In total, 10,239 online ratings for dermatologists and 8,168 online ratings for ENT specialists were analyzed. Almost all dermatologists (99.3 %) and ENT specialists (98.9 %) were listed on one of the physician-rating websites. A total of 93.5 % of all listed dermatologists and 96.9 % of ENT-specialists were rated on at least one of the physician-rating websites. Significant differences were found in the distribution (i.e., percentage of listed or rated physicians) of the ratings according to the regional physician density on only one physician-rating website (pexample, dermatologist ratings were better in regions with a higher physician density compared to regions with a lower number of physicians (average rating: 2.16 vs. 2.67; p<0.001). Online ratings of dermatologists and ENT specialists hardly differ in terms of regional physician density. Physician-rating websites thus do not appear to be appropriate to mirror differences in the health service delivery structure. Our findings thus do not confirm the

  8. Interest Rates and Inflation

    OpenAIRE

    Coopersmith, Michael; Gambardella, Pascal J.

    2016-01-01

    This article is an extension of the work of one of us (Coopersmith, 2011) in deriving the relationship between certain interest rates and the inflation rate of a two component economic system. We use the well-known Fisher relation between the difference of the nominal interest rate and its inflation adjusted value to eliminate the inflation rate and obtain a delay differential equation. We provide computer simulated solutions for this equation over regimes of interest. This paper could be of ...

  9. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    Science.gov (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  10. Relativistic electronic structure calculations on endohedral Gd rate at C60, La rate at C60, Gd rate at C74, and La rate at C74

    International Nuclear Information System (INIS)

    Lu, J.; Zhang, X.; Zhao, X.

    2000-01-01

    Relativistic discrete-variational local density functional calculations on endohedral Gd rate at C 60 , La rate at C 60 ,Gd rate at C 74 , and La rate at C 74 are performed. All the C 60 - and C 74 -derived levels are lowered upon endohedral Gd and La doping. Both the Gd (4f 7 5d 1 6s 2 ) and La (5d 1 6s 2 ) atoms only donate their two 6s valence electrons to the cages, leaving behind their 5d electrons when they are placed at the cage centers. Compared with large-band-gap C 60 , small-band-gap C 74 and Gd (La)-metallofullerenes have strong both electron-donating and electron-accepting characters, and the calculated ionization potentials and electron affinities for them agree well with the available experimental data. (orig.)

  11. Rating the Quality of Open Textbooks: How Reviewer and Text Characteristics Predict Ratings

    Science.gov (United States)

    Fischer, Lane; Ernst, David; Mason, Stacie

    2017-01-01

    Using data collected from peer reviews for Open Textbook Library titles, this paper explores questions about rating the quality of open textbooks. The five research questions addressed the relationship between textbook and reviewer characteristics and ratings. Although reviewers gave textbooks high ratings generally, reviewers identified…

  12. Inflation, Exchange Rates and Interest Rates in Ghana: an Autoregressive Distributed Lag Model

    Directory of Open Access Journals (Sweden)

    Dennis Nchor

    2015-01-01

    Full Text Available This paper investigates the impact of exchange rate movement and the nominal interest rate on inflation in Ghana. It also looks at the presence of the Fisher Effect and the International Fisher Effect scenarios. It makes use of an autoregressive distributed lag model and an unrestricted error correction model. Ordinary Least Squares regression methods were also employed to determine the presence of the Fischer Effect and the International Fisher Effect. The results from the study show that in the short run a percentage point increase in the level of depreciation of the Ghana cedi leads to an increase in the rate of inflation by 0.20%. A percentage point increase in the level of nominal interest rates however results in a decrease in inflation by 0.98%. Inflation increases by 1.33% for every percentage point increase in the nominal interest rate in the long run. An increase in inflation on the other hand increases the nominal interest rate by 0.51% which demonstrates the partial Fisher effect. A 1% increase in the interest rate differential leads to a depreciation of the Ghana cedi by approximately 1% which indicates the full International Fisher effect.

  13. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman

    2012-01-01

    Solid thin films have been deposited on stainless steel 202 (SS 202) substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD) reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in g...

  14. Choice of exchange rate regimes for African countries: Fixed or Flexible Exchange rate regimes?

    OpenAIRE

    Simwaka, Kisu

    2010-01-01

    The choice of an appropriate exchange rate regime has been a subject of ongoing debate in international economics. The majority of African countries are small open economies and thus where the choice of the exchange rate regime is an important policy issue. Aside from factors such as interest rates and inflation, the exchange rate is one of the most important determinants of a country’s relative level of economic health. For this reason, exchange rates are among the most watched analyzed and ...

  15. Is a more stable exchange rate associated with reduced exchange rate pass-through?

    OpenAIRE

    Mark J. Holmes

    2007-01-01

    Pass-through from the nominal effective exchange rate to import prices is modelled within a regime-switching environment. Evidence suggests that exchange rate pass through can be characterised as regime-specific where the probability of switching between regimes is influenced by the extent of exchange rate volatility.

  16. Analysis of 4999 online physician ratings indicates that most patients give physicians a favorable rating.

    Science.gov (United States)

    Kadry, Bassam; Chu, Larry F; Kadry, Bayan; Gammas, Danya; Macario, Alex

    2011-11-16

    Many online physician-rating sites provide patients with information about physicians and allow patients to rate physicians. Understanding what information is available is important given that patients may use this information to choose a physician. The goals of this study were to (1) determine the most frequently visited physician-rating websites with user-generated content, (2) evaluate the available information on these websites, and (3) analyze 4999 individual online ratings of physicians. On October 1, 2010, using Google Trends we identified the 10 most frequently visited online physician-rating sites with user-generated content. We then studied each site to evaluate the available information (eg, board certification, years in practice), the types of rating scales (eg, 1-5, 1-4, 1-100), and dimensions of care (eg, recommend to a friend, waiting room time) used to rate physicians. We analyzed data from 4999 selected physician ratings without identifiers to assess how physicians are rated online. The 10 most commonly visited websites with user-generated content were HealthGrades.com, Vitals.com, Yelp.com, YP.com, RevolutionHealth.com, RateMD.com, Angieslist.com, Checkbook.org, Kudzu.com, and ZocDoc.com. A total of 35 different dimensions of care were rated by patients in the websites, with a median of 4.5 (mean 4.9, SD 2.8, range 1-9) questions per site. Depending on the scale used for each physician-rating website, the average rating was 77 out of 100 for sites using a 100-point scale (SD 11, median 76, range 33-100), 3.84 out of 5 (77%) for sites using a 5-point scale (SD 0.98, median 4, range 1-5), and 3.1 out of 4 (78%) for sites using a 4-point scale (SD 0.72, median 3, range 1-4). The percentage of reviews rated ≥75 on a 100-point scale was 61.5% (246/400), ≥4 on a 5-point scale was 57.74% (2078/3599), and ≥3 on a 4-point scale was 74.0% (740/1000). The patient's single overall rating of the physician correlated with the other dimensions of care that

  17. An Econometric Diffusion Model of Exchange Rate Movements within a Band - Implications for Interest Rate Differential and Credibility of Exchange Rate Policy

    OpenAIRE

    Rantala, Olavi

    1992-01-01

    The paper presents a model ofexchange rate movements within a specified exchange rate band enforced by central bank interventions. The model is based on the empirical observation that the exchange rate has usually been strictly inside the band, at least in Finland. In this model the distribution of the exchange rate is truncated lognormal from the edges towards the center of the band and hence quite different from the bimodal distribution of the standard target zone model. The model is estima...

  18. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  19. Hatching rate and growth rate of Nothobranchius guentheri fertilized eggs after space flight

    International Nuclear Information System (INIS)

    Guo Mingzhong; Zheng Leyun; Lin Guangji; Zhong Jianxing; Yang Huosheng; Zheng Yangfu

    2012-01-01

    Hatching, abnormal, growth and survival rate of the fertilized eggs of Nothobranchius guentheri were carried by Shenzhou 7 spacecraft were studied. The results indicated that the hatching and abnormal rate were no significant difference between the spaceflight group (99.3% and 16.8%) and ground group (97.2% and 10.4%); but the growth rate of male fish from spaceflight group was significant higher (0.094 g/d) than that of ground group (0.059 g/d), leading to the significant bigger of the male fish from spaceflight group. The survival rate of spaceflight group (66.7%) was higher than the ground group (47.9%). It was concluded that there was a higher growth and survival rate of Nothobranchius guentheri fertilized eggs after space flight. (authors)

  20. Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?

    Science.gov (United States)

    David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier

    1999-01-01

    Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...

  1. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  2. Dose rate correction in medium dose rate brachytherapy for carcinoma cervix

    International Nuclear Information System (INIS)

    Patel, F.D.; Negi, P.S.; Sharma, S.C.; Kapoor, R.; Singh, D.P.; Ghoshal, S.

    1998-01-01

    Purpose: To establish the magnitude of brachytherapy dose reduction required for stage IIB and III carcinoma cervix patients treated by external radiation and medium dose rate (MDR) brachytherapy at a dose rate of 220±10 cGy/h at point A.Materials and methods: In study-I, at the time of MDR brachytherapy application at a dose rate of 220±10 cGy/h at point A, patients received either 3060 cGy, a 12.5% dose reduction (MDR-12.5), or 2450 cGy, a 30% dose reduction (MDR-30), to point A and they were compared to a group of previously treated LDR patients who received 3500 cGy to point A at a dose rate of 55-65 cGy/h. Study-II was a prospective randomized trial and patients received either 2450 cGy, a 30% dose reduction (MDR-II (30)) or 2800 cGy, a 20% dose reduction (MDR-II (20)), at point A. Patients were evaluated for local control of disease and morbidity. Results: In study-I the 5-year actuarial local control rate in the MDR-30 and MDR-12.5 groups was 71.7±10% and 70.5±10%, respectively, compared to 63.4±10% in the LDR group. However, the actuarial morbidity (all grades) in the MDR-12.5 group was 58.5±14% as against 34.9±9% in the LDR group (P 3 developed complication as against 62.5% of those receiving a rectal BED of (140 3 (χ 2 =46.43; P<0.001). Conclusion: We suggest that at a dose rate of 220±10 cGy/h at point A the brachytherapy dose reduction factor should be around 30%, as suggested by radiobiological data, to keep the morbidity as low as possible without compromising the local control rates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. On the Dependence of the X-Ray Burst Rate on Accretion and Spin Rate

    Science.gov (United States)

    Cavecchi, Yuri; Watts, Anna L.; Galloway, Duncan K.

    2017-12-01

    Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations: when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.

  4. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    Directory of Open Access Journals (Sweden)

    Abulon DJK

    2015-02-01

    Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System

  5. The Vietnamese lending rate, policy-related rate, and monetary policy post-1997 Asian financial crisis

    Directory of Open Access Journals (Sweden)

    Chu V. Nguyen

    2015-12-01

    Full Text Available Asymmetries in the Vietnamese lending central bank’s policy-related rate spread were documented. Empirical results revealed that the spread adjusts to the threshold faster when the central bank’s policy-related rates decrease relative to the lending rates than when the central bank’s policy-related rates move in the opposite direction. Additionally, the empirical findings indicate that Vietnamese commercial banks exhibit competitive rate setting behavior which may be attributable to graft maximization by bank’s management. The results also show bidirectional Granger causality between the Vietnamese lending rate and the central bank’s policy-related rate, indicating that the lending rate and the central bank’s policy-related rate affect each other’s movements. These results suggest that monetary authority can use its countercyclical monetary policy instruments to achieve its macroeconomics objectives. However, the estimation results of the GARCH (2, 3-in-Mean model suggest that they should intervene more frequently and by small policy measures to minimize the conditional variance of the spread to minimize the magnitude of the cycle of the lending rate.

  6. Photoredox-Based Actuation of an Artificial Molecular Muscle.

    Science.gov (United States)

    Liles, Kevin P; Greene, Angelique F; Danielson, Mary K; Colley, Nathan D; Wellen, Andrew; Fisher, Jeremy M; Barnes, Jonathan C

    2018-01-24

    The use of light to actuate materials is advantageous because it represents a cost-effective and operationally straightforward way to introduce energy into a stimuli-responsive system. Common strategies for photoinduced actuation of materials typically rely on light irradiation to isomerize azobenzene or spiropyran derivatives, or to induce unidirectional rotation of molecular motors incorporated into a 3D polymer network. Although interest in photoredox catalysis has risen exponentially in the past decade, there are far fewer examples where photoinduced electron transfer (PET) processes are employed to actuate materials. Here, a novel mode of actuation in a series of redox-responsive hydrogels doped with a visible-light-absorbing ruthenium-based photocatalyst is reported. The hydrogels are composed primarily of polyethylene glycol and low molar concentrations of a unimolecular electroactive polyviologen that is activated through a PET mechanism. The rate and degree of contraction of the hydrogels are measured over several hours while irradiating with blue light. Likewise, the change in mechanical properties-determined through oscillatory shear rheology experiments-is assessed as a function of polyviologen concentration. Finally, an artificial molecular muscle is fabricated using the best-performing hydrogel composition, and its ability to perform work, while irradiated, is demonstrated by lifting a small weight. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Long Maturity Forward Rates

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2001-01-01

    The paper aims to improve the knowledge of the empirical properties of the long maturity region of the forward rate curve. Firstly, the theoretical negative correlation between the slope at the long end of the forward rate curve and the term structure variance is recovered empirically and found...... to be statistically significant. Secondly, the expectations hypothesis is analyzed for the long maturity region of the forward rate curve using "forward rate" regressions. The expectations hypothesis is numerically close to being accepted but is statistically rejected. The findings provide mixed support...... for the affine term structure model....

  8. Estimating Discount Rates

    Directory of Open Access Journals (Sweden)

    Laurence Booth

    2015-04-01

    Full Text Available Discount rates are essential to applied finance, especially in setting prices for regulated utilities and valuing the liabilities of insurance companies and defined benefit pension plans. This paper reviews the basic building blocks for estimating discount rates. It also examines market risk premiums, as well as what constitutes a benchmark fair or required rate of return, in the aftermath of the financial crisis and the U.S. Federal Reserve’s bond-buying program. Some of the results are disconcerting. In Canada, utilities and pension regulators responded to the crash in different ways. Utilities regulators haven’t passed on the full impact of low interest rates, so that consumers face higher prices than they should whereas pension regulators have done the opposite, and forced some contributors to pay more. In both cases this is opposite to the desired effect of monetary policy which is to stimulate aggregate demand. A comprehensive survey of global finance professionals carried out last year provides some clues as to where adjustments are needed. In the U.S., the average equity market required return was estimated at 8.0 per cent; Canada’s is 7.40 per cent, due to the lower market risk premium and the lower risk-free rate. This paper adds a wealth of historic and survey data to conclude that the ideal base long-term interest rate used in risk premium models should be 4.0 per cent, producing an overall expected market return of 9-10.0 per cent. The same data indicate that allowed returns to utilities are currently too high, while the use of current bond yields in solvency valuations of pension plans and life insurers is unhelpful unless there is a realistic expectation that the plans will soon be terminated.

  9. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  10. Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs

    Science.gov (United States)

    Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen

    2012-03-01

    The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.

  11. Thermal decomposition of FC(O)OCH3 and FC(O)OCH2CH3.

    Science.gov (United States)

    Berasategui, M; Argüello, G A; Burgos Paci, M A

    2018-05-09

    The thermal decomposition of methyl and ethyl formates has been extensively studied due to their importance in the oxidation of several fuels, pesticidal properties and their presence in interstellar space. We hitherto present the study of the thermal decomposition of methyl and ethyl fluoroformates, which could help in the elucidation of the reaction mechanisms. The reaction mechanisms were studied using FTIR spectroscopy in the temperature range of 453-733 K in the presence of different pressures of N2 as bath gas. For FC(O)OCH3 two different channels were observed; the unimolecular decomposition which is favored at higher temperatures and has a rate constant kFC(O)OCH3 = (5.3 ± 0.5) × 1015 exp[-(246 ± 10 kJ mol-1/RT)] (in units of s-1) and a bimolecular channel with a rate constant kFC(O)OCH3 = (1.6 ± 0.5) × 1011 exp[-(148 ± 10 kJ mol-1/RT)] (in units of s-1 (mol L)-1). However for ethyl formate, only direct elimination of CO2, HF and ethylene operates. The rate constants of the homogeneous first-order process fit the Arrhenius equation kFC(O)OCH2CH3 = (2.06 ± 0.09) × 1013 exp[-(169 ± 6 kJ mol-1/RT)] (in units of s-1). The difference between the mechanisms of the two fluoroformates relies on the stabilization of a six-centered transition state that only exists for ethyl formate. First principles calculations for the different channels were carried out to understand the dynamics of the decomposition.

  12. Determination of the Optimal Exchange Rate Via Control of the Domestic Interest Rate in Nigeria

    Directory of Open Access Journals (Sweden)

    Virtue U. Ekhosuehi

    2014-01-01

    Full Text Available An economic scenario has been considered where the government seeks to achieve a favourable balance-of-payments over a fixed planning horizon through exchange rate policy and control of the domestic interest rate. The dynamics of such an economy was considered in terms of a bounded optimal control problem where the exchange rate is the state variable and the domestic interest rate is the control variable. The idea of balance-of-payments was used as a theoretical underpinning to specify the objective function. By assuming that, changes in exchange rates were induced by two effects: the impact of the domestic interest rate on the exchange rate and the exchange rate system adopted by the government. Instances for both fixed and flexible optimal exchange rate regimes have been determined. The use of the approach has been illustrated employing data obtained from the Central Bank of Nigeria (CBN statistical bulletin. (original abstract

  13. The Russian Landing Rate, Central Bank’s Policy Related Rate and Intermediation Premium

    Directory of Open Access Journals (Sweden)

    Chu V. Nguyen

    2017-04-01

    Full Text Available This paper illustrates asymmetries in the Russian intermediation premium as measured by the spread between the commercial lending rate and the Central Bank’s policy related rate. Empirical results have shown that the Russian intermediation premium adjusts to the threshold faster when the Central Bank’s policy related rates increase relative to lending rates as opposed to when the Central Bank’s policy related rates move in the opposite direction. The findings of this paper suggest that during the period when the Russian Federation faced formidable challenges from a sharp decline in oil prices and reduced access to international capital markets due to Western sanctions, the Central Bank of Russia was not effective in utilizing countercyclical monetary policy to achieve macroeconomic objectives and commercial banks exhibited predatory pricing behavior.

  14. High-level theoretical characterization of the vinoxy radical (•CH2CHO) + O2 reaction

    Science.gov (United States)

    Weidman, Jared D.; Allen, Ryan T.; Moore, Kevin B.; Schaefer, Henry F.

    2018-05-01

    Numerous processes in atmospheric and combustion chemistry produce the vinoxy radical (•CH2CHO). To understand the fate of this radical and to provide reliable energies needed for kinetic modeling of such processes, we have examined its reaction with O2 using highly reliable theoretical methods. Utilizing the focal point approach, the energetics of this reaction and subsequent reactions were obtained using coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] extrapolated to the complete basis set limit. These extrapolated energies were appended with several corrections including a treatment of full triples and connected quadruple excitations, i.e., CCSDT(Q). In addition, this study models the initial vinoxy radical + O2 reaction for the first time with multireference methods. We predict a barrier for this reaction of approximately 0.4 kcal mol-1. This result agrees with experimental findings but is in disagreement with previous theoretical studies. The vinoxy radical + O2 reaction produces a 2-oxoethylperoxy radical which can undergo a number of unimolecular reactions. Abstraction of a β-hydrogen (a 1,4-hydrogen shift) and dissociation back to reactants are predicted to be competitive to each other due to their similar barriers of 21.2 and 22.3 kcal mol-1, respectively. The minimum-energy β-hydrogen abstraction pathway produces a hydroperoxy radical (QOOH) that eventually decomposes to formaldehyde, CO, and •OH. Two other unimolecular reactions of the peroxy radical are α-hydrogen abstraction (38.7 kcal mol-1 barrier) and HO2• elimination (43.5 kcal mol-1 barrier). These pathways lead to glyoxal + •OH and ketene + HO2• formation, respectively, but they are expected to be uncompetitive due to their high barriers.

  15. Thermonuclear reaction rates. III

    International Nuclear Information System (INIS)

    Harris, M.J.; Fowler, W.A.; Caughlan, G.R.; Zimmerman, B.A.

    1983-01-01

    Stellar thermonuclear reaction rates are revised and updated, adding a number of new important reaction rates. Several reactions with large negative Q-values are included, and examples of them are discussed. The importance of the decay rates for Mg-26(p,n) exp 26 Al and Al-26(n,p) exp 26 Mg for stellar studies is emphasized. 19 references

  16. Resonant thermonuclear reaction rate

    International Nuclear Information System (INIS)

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  17. Credit rating dynamics and competition

    DEFF Research Database (Denmark)

    Hirth, Stefan

    2014-01-01

    I analyze the market for credit ratings with competition between more than two rating agencies. How can honest rating behavior be achieved, and under which conditions can a new honest rating agency successfully invade a market with inflating incumbents? My model predicts cyclic dynamics...

  18. Tsallis thermostatistics for finite systems: a Hamiltonian approach

    Science.gov (United States)

    Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.

    2003-05-01

    The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.

  19. Relating the thermodynamic arrow of time to the causal arrow

    International Nuclear Information System (INIS)

    Allahverdyan, Armen E; Janzing, Dominik

    2008-01-01

    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born–Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonical distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning

  20. Localized AdS_{5}×S^{5} Black Holes.

    Science.gov (United States)

    Dias, Óscar J C; Santos, Jorge E; Way, Benson

    2016-10-07

    According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.

  1. Typical equilibrium state of an embedded quantum system.

    Science.gov (United States)

    Ithier, Grégoire; Ascroft, Saeed; Benaych-Georges, Florent

    2017-12-01

    We consider an arbitrary quantum system coupled nonperturbatively to a large arbitrary and fully quantum environment. In the work by Ithier and Benaych-Georges [Phys. Rev. A 96, 012108 (2017)2469-992610.1103/PhysRevA.96.012108] the typicality of the dynamics of such an embedded quantum system was established for several classes of random interactions. In other words, the time evolution of its quantum state does not depend on the microscopic details of the interaction. Focusing on the long-time regime, we use this property to calculate analytically a partition function characterizing the stationary state and involving the overlaps between eigenvectors of a bare and a dressed Hamiltonian. This partition function provides a thermodynamical ensemble which includes the microcanonical and canonical ensembles as particular cases. We check our predictions with numerical simulations.

  2. Entropy of isolated quantum systems after a quench.

    Science.gov (United States)

    Santos, Lea F; Polkovnikov, Anatoli; Rigol, Marcos

    2011-07-22

    A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a system of hard-core bosons in a superlattice potential. The former systems have a chaotic regime, where the diagonal entropy becomes equivalent to the equilibrium microcanonical entropy, coinciding with the onset of thermalization. The latter system is integrable. We show that its diagonal entropy is additive and different from the entropy of a generalized Gibbs ensemble, which has been introduced to account for the effects of conserved quantities at integrability.

  3. Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Gibbs Method and Statistical Physics of Electron Gases

    CERN Document Server

    Askerov, Bahram M

    2010-01-01

    This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.

  4. Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-10-01

    Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. The resulting energy conservation in micro-canonical AIMD demonstrates that the implementation provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.

  5. High population increase rates.

    Science.gov (United States)

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  6. Decomposing the social discount rate

    OpenAIRE

    Scarborough, Helen

    2010-01-01

    Recent modelling of the costs and benefits of climate change has renewed debate surrounding assumptions regarding the social discount rate in analysing the impacts of environmental change. Previous literature segments the social discount rate into being influenced by two key factors; the rate of pure time preference and the elasticity of marginal utility of future consumption. These components of the social discount rate reinforce the linkages between the choice of social discount rate and in...

  7. Exchange rate smoothing in Hungary

    OpenAIRE

    Karádi, Péter

    2005-01-01

    The paper proposes a structural empirical model capable of examining exchange rate smoothing in the small, open economy of Hungary. The framework assumes the existence of an unobserved and changing implicit exchange rate target. The central bank is assumed to use interest rate policy to obtain this preferred rate in the medium term, while market participants are assumed to form rational expectations about this target and influence exchange rates accordingly. The paper applies unobserved varia...

  8. National Rates of Uterine Rupture are not Associated with Rates of Previous Caesarean Delivery

    DEFF Research Database (Denmark)

    Colmorn, Lotte B.; Langhoff-Roos, Jens; Jakobsson, Maija

    2017-01-01

    % of all Nordic deliveries. Information on the comparison population was retrieved from the national medical birth registers. Incidence rate ratios by previous caesarean delivery and intended mode of delivery after caesarean were modelled using Poisson regression. RESULTS: The incidence of uterine rupture......BACKGROUND: Previous caesarean delivery and intended mode of delivery after caesarean are well-known individual risk factors for uterine rupture. We examined if different national rates of uterine rupture are associated with differences in national rates of previous caesarean delivery and intended...... was 7.8/10 000 in Finland and 4.6/10 000 in Denmark. Rates of caesarean (21.3%) and previous caesarean deliveries (11.5%) were highest in Denmark, while the rate of intended vaginal delivery after caesarean was highest in Finland (72%). National rates of uterine rupture were not associated...

  9. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  10. The Correlation of Sovereign Rating and Bonds’ Interest Rate in EU Member States

    Directory of Open Access Journals (Sweden)

    Emilian-Constantin MIRICESCU

    2015-06-01

    Full Text Available The importance of borrowing is fundamental for central public administration and it consists in sources of f nancing budget def cit and ref nanc-ing government debt. In the last years, a lot of countries had diff culties regarding the payment of public loans at their maturity due to the burden of government debt to GDP ratio. In this situa-tion, investors lose their conf dence not only in the country that is facing problems, but also in other states that pay their debt at maturity. For this reason, they are careful at any change that affects sovereign rating. From our investigation we found that sover-eign rating has a negative inf uence on bonds’ interest rate. As such, decision makers from central public administration should focus on improving sovereign ratings in order to decrease interest rates.

  11. Rate Control Efficacy in Permanent Atrial Fibrillation : Successful and Failed Strict Rate Control Against a Background of Lenient Rate Control

    NARCIS (Netherlands)

    Groenveld, Hessel F.; Tijssen, Jan G. P.; Crijns, Harry J. G. M.; Van den Berg, Maarten P.; Hillege, Hans L.; Alings, Marco; Van Veldhuisen, Dirk J.; Van Gelder, Isabelle C.

    2013-01-01

    Objectives This study sought to investigate differences in outcome between patients treated with successful strict, failed strict, and lenient rate control. Background The RACE II (Rate Control Efficacy in Permanent Atrial Fibrillation) study showed no difference in outcome between lenient and

  12. An Empirical Investigation into Exchange Rate Regime Choice and Exchange Rate Volatility

    OpenAIRE

    Helge Berger; Jan-Egbert Sturm; Jakob de Haan

    2000-01-01

    We test a simple model of exchange rate regime choice with data for 65 non-OECD countries covering the period 1980-94. We find that the variance of output at home and in potential target c ountries as well as the correlation between home and foreign real activity are powerful and robust predictors of exchange rate regime choice. Surprisingly, a more volatile foreign economy can be an argument in favor of a fixed exchange rate regime once similarities in the business cycle are taken into accou...

  13. National Utility Rate Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  14. States with low non-fatal injury rates have high fatality rates and vice-versa.

    Science.gov (United States)

    Mendeloff, John; Burns, Rachel

    2013-05-01

    State-level injury rates or fatality rates are sometimes used in studies of the impact of various safety programs or other state policies. How much does the metric used affect the view of relative occupational risks among U.S. states? This paper uses a measure of severe injuries (fatalities) and of less severe injuries (non-fatal injuries with days away from work, restricted work, or job transfer-DART) to examine that issue. We looked at the correlation between the average DART injury rate (from the BLS Survey of Occupational Injuries and Illnesses) and an adjusted average fatality rate (from the BLS Census of Fatal Occupational Injuries) in the construction sector for states for 2003-2005 and for 2006-2008. The RAND Human Subjects Protection Committee determined that this study was exempt from review. The correlations between the fatal and non-fatal injury rates were between -0.30 and -0.70 for all construction and for the subsector of special trade contractors. The negative correlation was much smaller between the rate of fatal falls from heights and the rate of non-fatal falls from heights. Adjusting for differences in the industry composition of the construction sector across states had minor effects on these results. Although some have suggested that fatal and non-fatal injury rates should not necessarily be positively correlated, no one has suggested that the correlation is negative, which is what we find. We know that reported non-fatal rates are influenced by workers' compensation benefits and other factors. Fatality rates appear to be a more valid measure of risk. Efforts to explain the variations that we find should be undertaken. Copyright © 2012 Wiley Periodicals, Inc.

  15. Linkage of Credit on BI Rate, Funds Rate, Inflation and Government Spending on Capital

    Directory of Open Access Journals (Sweden)

    Mangasa Augustinus Sipahutar

    2017-03-01

    Full Text Available Linkage of credit on BI rate, funds rate, inflation, and government spending on capital provides evidence from Indonesia.  This paper found advance explanation about banks credit as monetary transmission channel and its role on Indonesian economy.  We used credit depth as a ratio of banks credit to GDP nominal, to explain the role of credit in Indonesian economy.  We developed a VAR model to measure the response of credit to BI rate, funds rate and inflation rate, and OLS method to find out how banks credit response to government spending on capital. This paper revealed bi-direction causality between credit and BI rate, credit and funds rate, and credit and inflation.  There is trade-off between credit and BI rate, credit and funds rate, and credit and inflation, but government spending on capital promotes credit depth.  We found that Indonesian banking is bank view, allocated their credit based on their performance, not merely on the monetary policy determined by central bank.  For bank view perspectives, we analyzed the link between LDR as an indicator of credit channel mechanism to NPLs and CAR.  We found that there is no significant effect of CAR to LDR, but has a strong negatively relationship between NPLs to LDR.  This evidence indicates that commercial banks in Indonesia allocated their credit do not related to their capital but merely to the quality of their credit portfolio.

  16. Sovereign ratings in the post-crisis world : an analysis of actual, shadow and relative risk ratings

    OpenAIRE

    Basu, Kaushik; De, Supriyo; Ratha, Dilip; Timmer, Hans

    2013-01-01

    This paper analyzes the evolution of sovereign credit ratings in the wake of the global financial crisis by studying changes in actual, shadow, and relative ratings between 2008 and 2012. For countries that do not have a rating from the major rating agencies, shadow ratings are estimated as a function of macroeconomic, structural, and governance variables. The shadow rating exercise confir...

  17. Moisture Sorption in Porous Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    pressure and weight data can be "translated" to pore geometry by known physical relationships. In this context, analytical descriptions are important which can relate moisture condensation in pore structures to ambient vapor pressure. Such a description, the extended BET-relation, is presented...... physical parameters, the so-called BET-parameters: The heat property factor, C, and the pore surface, SBET (derived from the so-called uni-molecular moisture content uBET). A software ‘SORP07’ has been developed to handle any calculations made in the paper. For readers who have a special interest...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  18. Boronic acid-based chemical sensors for saccharides.

    Science.gov (United States)

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  20. Heart rate monitoring mobile applications

    OpenAIRE

    Chaudhry, Beenish M.

    2016-01-01

    Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone?s camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, ?Unique Heart Rate Monitor?, you can also maintain your heart rate history for personal ...

  1. The association between household poverty rates and tuberculosis case notification rates in Cambodia, 2010

    Directory of Open Access Journals (Sweden)

    Mao Yang Eang

    2013-03-01

    Full Text Available Introduction: Poverty is a risk factor for tuberculosis (TB; it increases the risk of infection and active disease but limits diagnostic opportunities. The role of poverty in the stagnant case detection in Cambodia is unclear. This study aims to assess the relationship between district household poverty rates and sputum-positive TB case notification rates (CNRs in Cambodia in 2010. Methods: Poisson regression models were used to calculate the relative risk of new sputum-positive TB CNR for Operational Districts (ODs with different poverty rates using data from the National Centre for Tuberculosis and Leprosy Control and the National Committee for SubNational Democratic Development. Models were adjusted for other major covariates and a geographical information system was used to examine the spatial distribution of these covariates in the country. Results: The univariate model showed a positive association between household poverty rates and sputum-positive TB CNRs. However, in multivariate models, after adjusting for major covariates, household poverty rates showed a significantly negative association with sputum-positive TB CNRs (relative risk [RR] = 0.95 per 5% increase in poverty rate. The negative association was stronger among males than females (RR = 0.93 versus 0.96 per 5% increase in poverty rate. Similar spatial patterns were observed between household poverty rates and other covariates, particularly OD population density. Conclusion: Household poverty rate is associated with a decrease in sputum-positive TB CNR in Cambodia, particularly in men. The potential of combining surveillance data and socioeconomic variables should be explored further to provide more insights for TB control programme planning.

  2. Heart rate monitoring mobile applications.

    Science.gov (United States)

    Chaudhry, Beenish M

    2016-01-01

    Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone's camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, 'Unique Heart Rate Monitor', you can also maintain your heart rate history for personal reflection and sharing with a provider.

  3. Legal issues of tax rates

    OpenAIRE

    Sadílek, Jiří

    2010-01-01

    Tax rate problems The subject of the graduation thesis is legal problems of tax rate. The aim of this thesis is description and estimation of the flat tax rate and states, where is established. First of all I define the basic kinds of tax systems - the tax system with one tax rate, the progressive tax system and the flat tax system. Further I deal with the principles and elements of the flat tax rate as interpreted by American economists Robert E. Hall and Alvin Rabushka who are generally ack...

  4. Optimal Discount Rates for Government Projects

    OpenAIRE

    Park, Sangkyun

    2012-01-01

    Project selection based on the net present value can be optimal only if the discount rate is optimal. The optimal discount rate for a government project can be a risk-free rate, a comparable market rate (market interest rate corresponding to the risk of cash flows to the government), or an adjusted market rate, depending on circumstances. This paper clarifies the conditions for each case. Provided that the optimal discount rate is the comparable market rate, it varies across intervention meth...

  5. Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating

    Science.gov (United States)

    Wang, Bingkun; Huang, Yongfeng; Li, Xing

    2016-01-01

    E-commerce develops rapidly. Learning and taking good advantage of the myriad reviews from online customers has become crucial to the success in this game, which calls for increasingly more accuracy in sentiment classification of these reviews. Therefore the finer-grained review rating prediction is preferred over the rough binary sentiment classification. There are mainly two types of method in current review rating prediction. One includes methods based on review text content which focus almost exclusively on textual content and seldom relate to those reviewers and items remarked in other relevant reviews. The other one contains methods based on collaborative filtering which extract information from previous records in the reviewer-item rating matrix, however, ignoring review textual content. Here we proposed a framework for review rating prediction which shows the effective combination of the two. Then we further proposed three specific methods under this framework. Experiments on two movie review datasets demonstrate that our review rating prediction framework has better performance than those previous methods. PMID:26880879

  6. Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating.

    Science.gov (United States)

    Wang, Bingkun; Huang, Yongfeng; Li, Xing

    2016-01-01

    E-commerce develops rapidly. Learning and taking good advantage of the myriad reviews from online customers has become crucial to the success in this game, which calls for increasingly more accuracy in sentiment classification of these reviews. Therefore the finer-grained review rating prediction is preferred over the rough binary sentiment classification. There are mainly two types of method in current review rating prediction. One includes methods based on review text content which focus almost exclusively on textual content and seldom relate to those reviewers and items remarked in other relevant reviews. The other one contains methods based on collaborative filtering which extract information from previous records in the reviewer-item rating matrix, however, ignoring review textual content. Here we proposed a framework for review rating prediction which shows the effective combination of the two. Then we further proposed three specific methods under this framework. Experiments on two movie review datasets demonstrate that our review rating prediction framework has better performance than those previous methods.

  7. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence.

    Science.gov (United States)

    Pitzer, Virginia E; Viboud, Cécile; Lopman, Ben A; Patel, Manish M; Parashar, Umesh D; Grenfell, Bryan T

    2011-11-07

    Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rotavirus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics, although recent observational studies have challenged the universality of this pattern. While numerous studies have examined the association between environmental factors and rotavirus incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of rotavirus transmission dynamics to published age distributions of cases from 15 countries, we obtain estimates of local transmission rates. Model-predicted patterns of seasonal incidence based solely on differences in birth rates and transmission rates are significantly correlated with those observed (Spearman's ρ = 0.65, p birth rates and transmission rates and explore how vaccination may impact these patterns. Our results suggest that the relative lack of rotavirus seasonality observed in many tropical countries may be due to the high birth rates and transmission rates typical of developing countries rather than being driven primarily by environmental conditions. While vaccination is expected to decrease the overall burden of disease, it may increase the degree of seasonal variation in the incidence of rotavirus in some settings.

  8. 13 CFR 301.4 - Investment rates.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Investment rates. 301.4 Section... ELIGIBILITY, INVESTMENT RATE AND PROPOSAL AND APPLICATION REQUIREMENTS Investment Rates and Matching Share Requirements § 301.4 Investment rates. (a) Minimum Investment Rate. There is no minimum Investment Rate for a...

  9. Mind the rate. Why rate global climate change matters, and how much

    International Nuclear Information System (INIS)

    Ambrosi, Ph.

    2006-01-01

    To assess climate policies in a cost-efficiency framework with constraints on the magnitude and rate of global climate change we have built RESPONSE, an optimal control integrated assessment model. Our results show that the uncertainty about climate sensitivity leads to significant short-term mitigation efforts all the more as the arrival of information regarding this parameter is belated. There exists thus a high opportunity cost to know before 2030 the true value of this parameter, which is not totally granted so far. Given this uncertainty, a +2 deg C objective could lead to rather stringent policy recommendations for the coming decades and might prove unacceptable. Furthermore, the uncertainty about climate sensitivity magnifies the influence of the rate constraint on short-term decision, leading to rather stringent policy recommendations for the coming decades. This result is particularly robust to the choice of discount rate and to the beliefs of the decision-maker about climate sensitivity. We finally show that the uncertainty about the rate constraint is even more important for short-term decision than the uncertainty about climate sensitivity or magnitude of warming. This means that the critical rate of climate change, i.e. a transient characteristic of climate risks, matters much more than the long-term objective of climate policy, i.e. the critical magnitude of climate change. Therefore, research should be aimed at better characterising climate change risks in view to help decision-makers in agreeing on a safe guardrail to limit the rate of global warming. (author)

  10. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heart rate response to breathing

    DEFF Research Database (Denmark)

    Mehlsen, J; Pagh, K; Nielsen, J S

    1987-01-01

    Heart rate responses to stepwise and periodic changes in lung volume were studied in seven young healthy males. Stepwise inspiration and expiration both resulted in an increase in heart rate followed by a rapid decrease in heart rate. The fastest heart rate was reached in 1.6 +/- 0.5 s and in 3.......6 +/- 1.4 s in response to inspiration and expiration, respectively (P less than 0.01). The slowest heart rate was reached in 4.8 +/- 1.0 s and in 7.6 +/- 1.9 s in response to inspiration and expiration, respectively (P less than 0.01). Following this biphasic change the heart rate returned to a steady...... level. The difference between the fastest and the slowest heart rates was significantly larger in response to inspiration (21.7 +/- 7.3 beats per minute) than in response to expiration (12.0 +/- 7.3 beats per minute; P less than 0.01). Periodic changes in lung volume were performed with frequencies from...

  12. Determinants of patient-rated and clinician-rated illness severity in schizophrenia.

    Science.gov (United States)

    Fervaha, Gagan; Takeuchi, Hiroyoshi; Agid, Ofer; Lee, Jimmy; Foussias, George; Remington, Gary

    2015-07-01

    The contribution of specific symptoms on ratings of global illness severity in patients with schizophrenia is not well understood. The present study examined the clinical determinants of clinician and patient ratings of overall illness severity. This study included 1,010 patients with a DSM-IV diagnosis of schizophrenia who participated in the baseline visit of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study conducted between January 2001 and December 2004 and who had available symptom severity, side effect burden, cognition, and community functioning data. Both clinicians and patients completed the 7-point Clinical Global Impressions-Severity of Illness scale (CGI-S), the primary measure of interest in the present study. Symptoms were rated using the Positive and Negative Syndrome Scale and the Calgary Depression Scale for Schizophrenia, and functional status with the Quality of Life Scale. Neurocognition, insight, and medication-related side effects were also evaluated. Clinicians rated illness severity significantly higher than patients (P negative, disorganized, and depressive symptoms, as well as functional outcome (all P values enhance patient engagement in care and improve outcomes. ClinicalTrials.gov identifier: NCT00014001. © Copyright 2014 Physicians Postgraduate Press, Inc.

  13. Exchange Rate and Interest Rate in the Monetary Policy Reaction Function

    Directory of Open Access Journals (Sweden)

    Krušković Borivoje D.

    2017-01-01

    Full Text Available In recent years there has been a particular interest in the relation between exchange rates and interest rates both in developed countries and emerging countries. This is understandable given the important role that these variables have in determining the movement of nominal and real economic variables, including the movement of domestic inflation, real output, exports and imports, foreign exchange reserves, etc. To realized the importance of the given instruments selected macroeconomic indicators, data analysis (monthly data relating to Serbia was made on the basis of the Transfer Function Model, a data analysis (annual data relating to emerging countries was done on the basis of the Stepvise Multiple Regression model. In the transfer function model we used the Maximum Likelihood method for assessing unknown coefficients. In the gradual multiple regression model we used the Least Square method for the evaluation of unknown coefficients. All indicator values were used in the original unmodified form, i.e. there was no need for a variety of transformations. Empirical analysis showed that the exchange rate is a more significant transmission mechanism than the interest rate both in emerging markets and Serbia.

  14. Airline Quality Rating 2013

    OpenAIRE

    Bowen, Brent D.; Headley, Dean E.

    2013-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method for assessing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2013, reflects monthly Airline Quality Rating scores for calendar year 2012. AQR scores for 2013 are based on 15 elements in four major areas that focus on airline performance aspects important to air travel consumers over the calendar year of 2012. The Airline Quality...

  15. Does basal metabolic rate drive eating rate?

    Science.gov (United States)

    Henry, Christiani Jeyakumar; Ponnalagu, Shalini; Bi, Xinyan; Forde, Ciaran

    2018-05-15

    There have been recent advances in our understanding of the drivers of energy intake (EI). However, the biological drivers of differences in eating rate (ER) remain less clear. Studies have reported that the fat-free mass (FFM) and basal metabolic rate (BMR) are both major components that contribute to daily energy expenditure (EE) and drive EI. More recently, a number of observations report that higher ER can lead to greater EI. The current study proposed that adults with a higher BMR and higher energy requirements would also exhibit higher ERs. Data on BMR, FFM, and ER were collected from 272 Chinese adults (91 males and 181 females) in a cross-sectional study. Analysis showed significant positive associations between BMR and ER (r s  = 0.405, p BMR explained about 15% of the variation in ER which was taken to be metabolically significant. This association provides metabolic explanation that the differences in an individual's BMR (hence energy requirements) may be correlated with ERs. This merits further research. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Basal metabolic rate and the rate of senescence in the great tit

    NARCIS (Netherlands)

    Bouwhuis, Sandra; Sheldon, Ben C.; Verhulst, Simon; Koteja, Pawel

    1. Between-individual variation in rates of senescence has recently been found to relate to natal and early-life conditions in several natural populations. Mechanistic theories of senescence have predicted between-individual variation in basal metabolic rate (BMR) to also underlie such variation in

  17. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  18. 42 CFR 413.196 - Notification of changes in rate-setting methodologies and payment rates.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Notification of changes in rate-setting... NURSING FACILITIES Payment for End-Stage Renal Disease (ESRD) Services and Organ Procurement Costs § 413.196 Notification of changes in rate-setting methodologies and payment rates. Link to an amendment...

  19. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  20. Rate design in a competitive environment

    International Nuclear Information System (INIS)

    Wathen, J.M.

    1995-01-01

    Innovative rate designs used by several United States utilities to become more competitive, were presented. Considerations of retail wheeling and other services for increasing competitiveness were debated. The process for designing specialized rate programs was described, along with descriptions of special rate types, including economic development rates, load retention/anti-bypass rates, cogeneration/self-generation rates, distressed industry rates, load management rates and special situation rates. The existence of special provisions in state legislation allowing special rates to be offered was noted. Confidentiality and the need for a review process to ensure fairness of special agreements was discussed. The efficacy of using individual customer contracts to allow full recognition of the special characteristics and needs of individual customers and the effects of such contracts on the industry, were considered

  1. Extending the Direct Behavior Rating: An Examination of Schoolwide Behavior Ratings and Academic Engagement

    Science.gov (United States)

    Bruhn, Allison; Barron, Sheila; Fernando, Josephine; Balint-Langel, Kinga

    2018-01-01

    Direct behavior ratings have been identified as a practical and feasible alternative to direct observation of behavior for monitoring behavioral progress. Despite the evidence of usability, there have been calls for further examination of direct behavior ratings using different behaviors and scales. To this end, we examined the ratings of…

  2. On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2017-10-01

    Full Text Available In this paper we study a corporate bond-pricing model with credit rating migration and astochastic interest rate. The volatility of bond price in the model strongly depends on potential creditrating migration and stochastic change of the interest rate. This new model improves the previousexisting models in which the interest rate is considered to be a constant. The existence, uniquenessand regularity of the solution for the model are established. Moreover, some properties includingthe smoothness of the free boundary are obtained. Furthermore, some numerical computations arepresented to illustrate the theoretical results.

  3. Correlation analysis of the progesterone-induced sperm acrosome reaction rate and the fertilisation rate in vitro.

    Science.gov (United States)

    Jiang, T; Qin, Y; Ye, T; Wang, Y; Pan, J; Zhu, Y; Duan, L; Li, K; Teng, X

    2015-10-01

    In this study, we aimed to investigate whether progesterone-induced acrosome reaction (AR) rate could be an indicator for fertilisation rate in vitro. Twenty-six couples with unexplained infertility and undergoing in vitro fertilisation (IVF) treatment were involved. On the oocytes retrieval day after routine IVF, residual sperm samples were collected to receive progesterone induction (progesterone group) or not (control group). AR rate was calculated and fertilisation rate was recorded. The correlation between progesterone-induced AR and fertilisation rate and between sperm normal morphology and 3PN (tripronuclear) were analysed using the Spearman correlation analysis. The AR rate of progesterone group was statistically higher than that of the control group (15.6 ± 5.88% versus 9.66 ± 5.771%, P rate (r = -0.053, P > 0.01) or rate of high-quality embryo development (r = -0.055, P > 0.01). Normal sperm morphology also showed no significant correlation with the amount of 3PN zygotes (r = 0.029, P > 0.01), rate of 3PN zygotes production (r = 0.20, P > 0.01), rate of 3PN embryo development (r = -0.406, P > 0.01), fertilisation rate (r = -0.148, P > 0.01) or progesterone-induced AR rate (r = 0.214, P > 0.01). Progesterone can induce AR in vitro significantly; however, the progesterone-induced AR may not be used to indicate fertilisation rate. © 2014 Blackwell Verlag GmbH.

  4. Subcutaneous insulin infusion: change in basal infusion rate has no immediate effect on insulin absorption rate

    International Nuclear Information System (INIS)

    Hildebrandt, P.; Birch, K.; Jensen, B.M.; Kuehl, C.

    1986-01-01

    Eight insulin-dependent diabetic patients were simultaneously given subcutaneous infusions (1.12 IU/h each) of 125 I-labeled Actrapid insulin in each side of the abdominal wall. After 24 h of infusion, the size of the infused insulin depots was measured by external counting for 5 h. The basal infusion rate was then doubled in one side and halved in the other for the next 4 h. Finally, 1.12 IU/h of insulin was given in both sides of the abdominal wall for an additional 3 h. The changes in the size of the depots were measured, and the absorption rates for each hour were calculated. During the first 5 h of infusion, the depot size was almost constant (approximately 5 IU) with an absorption rate that equaled the infusion rate. Doubling the infusion rate led to a significant increase in depot size, but the absorption rate remained unchanged for the first 3 h, and only thereafter was a significant increase seen. When the infusion rate was reduced to the initial 1.12 IU/h, the absorption rate remained elevated during the next 3 h. Correspondingly, when the infusion rate was decreased, the depot size also decreased, but the absorption rate remained unchanged for the first 3 h. The results show that a change in the basal insulin infusion rate does not lead to any immediate change in the insulin absorption rate. This should be considered when planning an insulin-infusion program that includes alteration(s) in the basal-rate setting

  5. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  6. Labor Force Participation Rate

    Data.gov (United States)

    City and County of Durham, North Carolina — This thematic map presents the labor force participation rate of working-age people in the United States in 2010. The 2010 Labor Force Participation Rate shows the...

  7. High Rate Digital Demodulator ASIC

    Science.gov (United States)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  8. Testing the Control of Mineral Supply Rates on Chemical Erosion Rates in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2016-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including how tightly Earth's climate should be coupled to tectonics, how strongly nutrient supply to soils and streams depends on soil production, and how much lithology affects landscape evolution. Despite widespread interest in this relationship, there remains no consensus on how closely coupled chemical erosion rates should be to mineral supply rates. To address this, we have established a network of field sites in the Klamath Mountains along a latitudinal transect that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. Here, we present new measurements of regolith geochemistry and topographic analyses that will be compared with cosmogenic 10Be measurements to test hypotheses about supply-limited and kinetically-limited chemical erosion on granodioritic ridgetops. Previous studies in this area suggest a balance between rock uplift rates and basin wide erosion rates, implying the study ridgetops may have adjusted to an approximate steady state. Preliminary data are consistent with a decrease in chemical depletion fraction (CDF) with increasing ridgetop curvature. To the extent that ridgetop curvature reflects ridgetop erosion rates, this implies that chemical erosion rates at these sites are influenced by both mineral supply rates and dissolution kinetics.

  9. Implantation rate effects on microstructure

    International Nuclear Information System (INIS)

    Choyke, W.J.; Spitznagel, J.A.; Wood, S.; Doyle, N.J.

    1981-01-01

    We report a detailed TEM study of rate effects in a metal (304 SS) where we dope with an insoluble atom (He) and create the displacement damage with high energy Si. The rates of doping and the rates of producing lattice damage are independently varied during dual implantation. In addition to varying the doping rates of the He the magnitude of the displacement damage prior to He implantation is also varied (beam history). We find that the beam history has virtually no effect on maximum bubble size but it has a major effect on the average cavity diameter. A weak dependence of cavity number density on helium implantation rate is found. The total dislocation density is relatively independent of the doping rate and beam history at 550 and 700 0 C, whereas the loop fraction is sensitive to beam history at these temperatures. Acicular precipitate formation is weakly dependent on doping, doping rate and more strongly dependent on doping concentration and temperature. This form of solute segregation is very sensitive to beam history. (orig.)

  10. Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating

    Directory of Open Access Journals (Sweden)

    Bingkun Wang

    2016-01-01

    Full Text Available E-commerce develops rapidly. Learning and taking good advantage of the myriad reviews from online customers has become crucial to the success in this game, which calls for increasingly more accuracy in sentiment classification of these reviews. Therefore the finer-grained review rating prediction is preferred over the rough binary sentiment classification. There are mainly two types of method in current review rating prediction. One includes methods based on review text content which focus almost exclusively on textual content and seldom relate to those reviewers and items remarked in other relevant reviews. The other one contains methods based on collaborative filtering which extract information from previous records in the reviewer-item rating matrix, however, ignoring review textual content. Here we proposed a framework for review rating prediction which shows the effective combination of the two. Then we further proposed three specific methods under this framework. Experiments on two movie review datasets demonstrate that our review rating prediction framework has better performance than those previous methods.

  11. Rising Long-term Interest Rates

    DEFF Research Database (Denmark)

    Hallett, Andrew Hughes

    Rather than chronicle recent developments in European long-term interest rates as such, this paper assesses the impact of increases in those interest rates on economic performance and inflation. That puts us in a position to evaluate the economic pressures for further rises in those rates......, the first question posed in this assignment, and the scope for overshooting (the second question), and then make some illustrative predictions of future interest rates in the euro area. We find a wide range of effects from rising interest rates, mostly small and mostly negative, focused on investment...... till the emerging European recovery is on a firmer basis and capable of overcoming increases in the cost of borrowing and shrinking fiscal space. There is also an implication that worries about rising/overshooting interest rates often reflect the fact that inflation risks are unequally distributed...

  12. Effectiveness of high interest rate policy on exchange rates: A reexamination of the Asian financial crisis

    Directory of Open Access Journals (Sweden)

    Chin Diew Lai

    2006-09-01

    Full Text Available One of the most controversial issues in the aftermath of the Asian financial crisis has been the appropriate response of monetary policy to a sharp decline in the value of some currencies. In this paper, we empirically examine the effects on Asian exchange rates of sharply higher interest rates during the Asian financial crisis. Taking account of the currency contagion effect, our results indicate that sharply higher interest rates helped to support the exchange rates of South Korea, the Philippines, and Thailand. For Malaysia, no significant causal relation is found from the rate of interest to exchange rates, as the authorities in Malaysia did not actively adopt a high interest rate policy to defend the currency.

  13. 47 CFR 65.800 - Rate base.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Rate base. 65.800 Section 65.800 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Rate Base § 65.800 Rate base. The rate base shall...

  14. Calculating graduation rates.

    Science.gov (United States)

    Starck, Patricia L; Love, Karen; McPherson, Robert

    2008-01-01

    In recent years, the focus has been on increasing the number of registered nurse (RN) graduates. Numerous states have initiated programs to increase the number and quality of students entering nursing programs, and to expand the capacity of their programs to enroll additional qualified students. However, little attention has been focused on an equally, if not more, effective method for increasing the number of RNs produced-increasing the graduation rate of students enrolling. This article describes a project that undertook the task of compiling graduation data for 15 entry-level programs, standardizing terms and calculations for compiling the data, and producing a regional report on graduation rates of RN students overall and by type of program. Methodology is outlined in this article. This effort produced results that were surprising to program deans and directors and is expected to produce greater collaborative efforts to improve these rates both locally and statewide.

  15. 76 FR 59767 - Interest Rates; Notice

    Science.gov (United States)

    2011-09-27

    ... SMALL BUSINESS ADMINISTRATION Interest Rates; Notice AGENCY: Small Business Administration. The Small Business Administration publishes an interest rate called the optional ``peg'' rate (13 CFR 120... fluctuating interest rate SBA loans. This rate will be 3.125 (3\\1/8\\) percent for the October-December quarter...

  16. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  17. Aspect-Aware Latent Factor Model: Rating Prediction with Ratings and Reviews

    OpenAIRE

    Cheng, Zhiyong; Ding, Ying; Zhu, Lei; Kankanhalli, Mohan

    2018-01-01

    Although latent factor models (e.g., matrix factorization) achieve good accuracy in rating prediction, they suffer from several problems including cold-start, non-transparency, and suboptimal recommendation for local users or items. In this paper, we employ textual review information with ratings to tackle these limitations. Firstly, we apply a proposed aspect-aware topic model (ATM) on the review text to model user preferences and item features from different aspects, and estimate the aspect...

  18. 7 CFR 1779.33 - Interest rates.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Interest rates. 1779.33 Section 1779.33 Agriculture... (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.33 Interest rates. (a) General. Rates.... Interest rates will be those rates customarily charged borrowers in similar circumstances in the ordinary...

  19. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hensley, Jr., William H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Burns, Bryan L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Doerry, Armin Walter [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  20. Rising longitudinal trajectories in suicide rates: The role of firearm suicide rates and firearm legislation.

    Science.gov (United States)

    Anestis, Michael D; Selby, Edward A; Butterworth, Sarah E

    2017-07-01

    Firearms account for approximately half of all US suicide deaths each year despite being utilized in only a small minority of suicide attempts. We examined the extent to which overall suicide rates fluctuated relative to firearm and non-firearm suicide rates across a period of 16years (1999-2015). We further tested the notion of means substitution by examining the association between firearm suicide rates and non-firearm suicide rates. Lastly, we examined the extent to which the presence of specific laws related to handgun ownership previously shown cross-sectionally to be associated with lower suicide rates (universal background checks, mandatory waiting periods) were associated with an attenuated trajectory in suicide rates across the study period. As anticipated, whereas decreases in firearm suicide rates were associated with decreases in overall suicide rates (b=0.46, SE=0.07, psuicides were not associated with off-setting increases in suicides by other methods (b=-0.04, SE=0.05, p=0.36). Furthermore, the absence of universal background check (b=0.12, SE=0.05, p=0.028) and mandatory waiting period (b=0.16, SE=0.06, p=0.008) laws was associated with a more steeply rising trajectory of statewide suicide rates. These results mitigate concerns regarding means substitution and speak to the potential high yield impact of systematically implemented means safety prevention efforts focused on firearms. Copyright © 2017 Elsevier Inc. All rights reserved.